高等数学(一)计算题
高等数学试题及其参考答案1
高等数学试题及其参考答案一、填空题(每小题2分,共10分)11limXsin───=___________。
x→∞ X2.设f(x,y)=sin(xy),则fx(x,y)=____________。
_______R √R2-x23.累次积分∫ dx∫ f(X2+Y2)dy化为极坐标下的累次积分为____________。
0 0d3y3d2y4.微分方程─── +──(─── )2的阶数为____________。
dx3xdx2∞ ∞5.设级数∑ an 发散,则级数∑ an_______________。
n=1 n=1000 二)选择题每小题3分,共30分1.下列函数中为偶函数的是()①y=ex②y=x3+1③y=x3cosx④y=ln│x│2.设f(x)在(a,b)可导,a〈x1〈x2〈b,则至少有一点ζ∈(a,b)使()①f(b)-f(a)=f'(ζ)(b-a)②f(b)-f(a)=f'(ζ)(x2-x1)③f(x2)-f(x1)=f'(ζ)(b-a)④f(x2)-f(x1)=f'(ζ)(x2-x1)3.设f(X)在X=Xo 的左右导数存在且相等是f(X)在X=Xo 可导的()①充分必要的条件②必要非充分的条件③必要且充分的条件④既非必要又非充分的条件d4.设2f(x)cosx=──[f(x)]2,则f(0)=1,则f(x)=()dx①cosx②2-cosx③1+sinx④1-sinx5.过点(1,2)且切线斜率为4x3的曲线方程为y=()①x4②x4+c③x4+1④x4-11x6.lim─── ∫ 3tgt2dt=()x→0 x301① 0② 1③ ── ④ ∞3xy7.limxysin───── =()x→0 x2+y2y→0① 0② 1③ ∞ ④ sin18.对微分方程y"=f(y,y'),降阶的方法是()① 设y'=p,则y"=p'dp② 设y'=p,则y"=───dydp③ 设y'=p,则y"=p───dy1dp④ 设y'=p,则y"=── ───pdy∞ ∞9.设幂级数∑ an xn在xo(xo≠0)收敛,则∑ anxn在│x│〈│xo│()n=o n=o①绝对收敛②条件收敛③发散④收敛性与a有关nsinx10.设D域由y=x,y=x2所围成,则∫∫ ─────dσ=()D x1 1 sinx① ∫ dx∫ ───── dy0 x x__1 √y sinx② ∫ dy∫ ─────dx0 y x__1 √x sinx③ ∫ dx∫ ─────dy0 x x__1 √x sinx④∫ dy∫ ─────dx0 x x三、计算题(每小题5分,共45分)___________/x-11.设y=/────── 求y' 。
高等数学第一、二、三章测验题
B. y 2x 1
C. y x 1
D. y x 1
5.函数 y ax3 bx2 cx d 满足条件 b2 3ac 0 则该函数 [
]
A. 有一个极大值 B. 有一个极小值 C. 无极值 D. 无法确定有无极值
满 分:15 实得分:
二.填空题(每小题 3 分,共 15 分)
3
6.曲线 y x2 的过点 (0,4) 的切线方程为 7.函数 f ( x) sin x ex , f (x)
适用班级
考试时间
遥感、造价、采矿、机电、土木等
2021 年 11 月 日
……○……○……○……○……○……○……○……○……○……○……○……○……○……
满 分:64 实得分:
三.计算题(共 64 分)
11.(8 分)计算极限
lim(
x1
x
x
1
1 ln x
)
。
12.
(8 分)
lim x x cos x x0 x sin x
二
三
四
五
满分
15
15
64
6
实得分
满 分:15 实得分:
一.单项选择题(每小题 3 分,共 15 分)
1.极限 lim 2 n sin 3 n [
]
n 3 2
A. 2
3
B.1
C.0
D.不存在.
2 x, 0 x 1
2.函数
f
(x)
1,
x 1 在 0,上的间断点 x 1为 [
]
1 x, x 1
辽宁科技学院试卷
学生姓名 十位学号
课程名称 高等数学(1)
系别
试题名称 一、二、三章测验题
自考高等数学一历年真题
全国2010年10月高等教育自学考试高等数学(一)试题一、单项选择题(本大题共5小题,每小题2分,共10分) 1.设函数x x f 31)(+=的反函数为)(x g ,则)10(g =( )A.-2B.-1C.2D.32.下列极限中,极限值等于1的是( )A.e)11(limxx x -∞→ B.x x x sin lim ∞→ C.2)1(lim xx x x +∞→ D.x xx arctan lim ∞→3.已知曲线x x y 22-=在点M 处的切线平行于x 轴,则切点M 的坐标为A.(-1,3)B.(1,-1)C.(0,0)D.(1,1) 4.设C x F x x f +=⎰)(d )(,则不定积分⎰x f xxd )2(2=( )A.C F x +2ln )2( B.F (2x )+C C.F (2x )ln2+C D.2x F (2x )+C5.若函数),(y x z z=的全微分y y x x y z d cos d sin d +=,则二阶偏导数yx z∂∂∂2=( )A.x sin - B.y sin C.x cos D.y cos 二、填空题(本大题共10小题,每小题3分,共30分) 6.设函数f (x )的定义域为[0,4],则f (x 2)的定义域是______.7.极限=-+-∞→17272lim n nnn n ______. 8.设某产品的成本函数为C (q )=1000+82q ,则产量q =120时的边际成本为______.9.函数212x xy -=在x =0处的微分d y =______.10.曲线2ln -+=x x xy 的水平渐近线为______.11.设函数f (x )=x (x -1)(x -2)(x -3),则方程0)(='x f 的实根个数为______.12.导数⎰=-xt t t xd )1(d d ______.13.定积分x x d |1|20⎰-=______.14.二元函数f (x ,y )=x 2+y 4-1的极小值为______. 15.设y =y (x )是由方程e y -xy =e 所确定的隐函数,则导数xy d d =______.三、计算题(一)(本大题共5小题,每小题5分,共25分) 16.设函数||sin )(x x x x f -=,问能否补充定义f (0)使函数在x =0处连续?并说17.求极限)5cos 1(lim 2xx x -∞→. 18.设函数y =ax 3+bx 2+cx+2在x =0处取得极值,且其图形上有拐点(-1,4),求常数a ,b ,c 的值. 19.求微分方程)1()2(322y x y y ++='的通解.20.求不定积分⎰--x xx d 112.四、计算题(二)(本大题共3小题,每小题7分,共21分) 21.设函数f (x )=sin e -x ,求)0()0()0(f f f ''+'+.22.计算定积分⎰-=121d 12arctanx x I .23.计算二重积分⎰⎰+=Dy x y xI d d )1(2,其中D 是由直线y =x ,y =2-x 及y轴所围成的区域.五、应用题(本题9分)24.在一天内,某用户t 时刻用电的电流为2)24(1001)(2+-=t t t I (安培),其中240≤≤t .(1)求电流I (t )单调增加的时间段;(2)若电流I (t )超过25安培系统自动断电,问该用户能否在一天内不被断电?六、证明题(本题5分)25.设函数f (x ),g (x )在区间[-a ,a ]上连续,g (x )为偶函数,且f (-x )+f (x )=2. 证明:⎰⎰-=aaax x g x x g x f 0d )(2d )()(.全国2010年1月高等教育自学考试高等数学(一)试题 课程代码:00020一、单项选择题(本大题共5小题,每小题2分,共10分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
(完整word版)《高等数学(1)》练习题库
华中师范大学网络教育 《高等数学(1)》练习测试题库一.选择题1.函数y=112+x 是( ) A.偶函数 B.奇函数 C 单调函数 D 无界函数 2.设f(sin 2x )=cosx+1,则f(x)为( )A 2x 2-2B 2-2x 2C 1+x 2D 1-x 2 3.下列数列为单调递增数列的有( )A .0.9 ,0.99,0.999,0.9999B .23,32,45,54C .{f(n)},其中f(n)=⎪⎩⎪⎨⎧-+为偶数,为奇数n nn n n n1,1 D. {n n 212+}4.数列有界是数列收敛的( )A .充分条件 B. 必要条件 C.充要条件 D 既非充分也非必要 5.下列命题正确的是( )A .发散数列必无界B .两无界数列之和必无界C .两发散数列之和必发散D .两收敛数列之和必收敛6.=--→1)1sin(lim21x x x ( ) A.1 B.0 C.2 D.1/2 7.设=+∞→x x xk)1(lim e 6 则k=( )A.1B.2C.6D.1/6 8.当x →1时,下列与无穷小(x-1)等价的无穷小是( )A.x2-1B. x3-1C.(x-1)2D.sin(x-1)9.f(x)在点x=x0处有定义是f(x)在x=x0处连续的()A.必要条件B.充分条件C.充分必要条件D.无关条件10、当|x|<1时,y= ()A、是连续的B、无界函数C、有最大值与最小值D、无最小值11、设函数f(x)=(1-x)cotx要使f(x)在点:x=0连续,则应补充定义f(0)为()A、B、e C、-e D、-e-112、下列有跳跃间断点x=0的函数为()A、xarctan1/xB、arctan1/xC、tan1/xD、cos1/x13、设f(x)在点x0连续,g(x)在点x0不连续,则下列结论成立是()A、f(x)+g(x)在点x0必不连续B、f(x)×g(x)在点x0必不连续须有C、复合函数f[g(x)]在点x0必不连续D、在点x0必不连续14、设f(x)= 在区间(- ∞,+ ∞)上连续,且f(x)=0,则a,b满足()A、a>0,b>0B、a>0,b<0C、a<0,b>0D、a<0,b<015、若函数f(x)在点x0连续,则下列复合函数在x0也连续的有()A、B、C、tan[f(x)]D、f[f(x)]16、函数f(x)=tanx能取最小最大值的区间是下列区间中的()A、[0,л]B、(0,л)C、[-л/4,л/4]D、(-л/4,л/4)17、在闭区间[a ,b]上连续是函数f(x)有界的()A、充分条件B、必要条件C、充要条件D、无关条件18、f(a)f(b) <0是在[a,b]上连续的函f(x)数在(a,b)内取零值的()A、充分条件B、必要条件C、充要条件D、无关条件19、下列函数中能在区间(0,1)内取零值的有()A、f(x)=x+1B、f(x)=x-1C、f(x)=x2-1D、f(x)=5x4-4x+120、曲线y=x2在x=1处的切线斜率为()A、k=0B、k=1C、k=2D、-1/221、若直线y=x与对数曲线y=logx相切,则()aA、eB、1/eC、e xD、e1/e22、曲线y=lnx平行于直线x-y+1=0的法线方程是()A、x-y-1=0B、x-y+3e-2=0C、x-y-3e-2=0D、-x-y+3e-2=023、设直线y=x+a与曲线y=2arctanx相切,则a=()A、±1B、±л/2C、±(л/2+1)D、±(л/2-1)24、设f(x)为可导的奇函数,且f`(x0)=a,则f`(-x0)=()A、aB、-aC、|a|D、025、设y=㏑,则y’|x=0=()A、-1/2B、1/2C、-1D、026、设y=(cos)sinx,则y’|x=0=()A、-1B、0C、1D、不存在27、设yf(x)= ㏑(1+X),y=f[f(x)],则y’|x=0=()A、0B、1/ ㏑2C、1D、㏑228、已知y=sinx,则y(10)=()A、sinxB、cosxC、-sinxD、-cosx29、已知y=x㏑x,则y(10)=()A、-1/x9B、1/ x9C、8.1/x9D、-8.1/x930、若函数f(x)=xsin|x|,则()A、f``(0)不存在B、f``(0)=0C、f``(0) =∞D、f``(0)= л31、设函数y=yf(x)在[0,л]内由方程x+cos(x+y)=0所确定,则|dy/dx|x=0=()A、-1B、0C、л/2D、232、圆x2cosθ,y=2sinθ上相应于θ=л/4处的切线斜率,K=()A、-1B、0C、1D、233、函数f(x)在点x0连续是函数f(x)在x0可微的()A、充分条件B、必要条件C、充要条件D、无关条件34、函数f(x)在点x0可导是函数f(x)在x0可微的()A、充分条件B、必要条件C、充要条件D、无关条件35、函数f(x)=|x|在x=0的微分是()A 、0B 、-dxC 、dxD 、 不存在36、极限)ln 11(lim 1xx x x --→的未定式类型是( )A 、0/0型B 、∞/∞型C 、∞ -∞D 、∞型37、极限 012)sin lim(→x x xx 的未定式类型是( ) A 、00型 B 、0/0型 C 、1∞型 D 、∞0型 38、极限 xx x x sin 1sin lim20→=( )A 、0B 、1C 、2D 、不存在39、x x 0时,n 阶泰勒公式的余项Rn(x)是较x x 0 的( )A 、(n+1)阶无穷小B 、n 阶无穷小C 、同阶无穷小D 、高阶无穷小40、若函数f(x)在[0, +∞]内可导,且f`(x) >0,xf(0) <0则f(x)在[0,+ ∞]内有( )A 、唯一的零点B 、至少存在有一个零点C 、没有零点D 、不能确定有无零点41、曲线y=x 2-4x+3的顶点处的曲率为( )A 、2B 、1/2C 、1D 、042、抛物线y=4x-x 2在它的顶点处的曲率半径为( ) A 、0 B 、1/2 C 、1 D 、2 43、若函数f(x)在(a,b )内存在原函数,则原函数有( )A 、一个B 、两个C 、无穷多个D 、都不对44、若∫f(x)dx=2e x/2+C=( )A 、2e x/2B 、4 e x/2C 、e x/2 +CD 、e x/245、∫xe-x dx =( D )A、xe-x -e-x +CB、-xe-x+e-x +CC、xe-x +e-x +CD、-xe-x -e-x +C46、设P(X)为多项式,为自然数,则∫P(x)(x-1)-n dx()A、不含有对数函数B、含有反三角函数C、一定是初等函数D、一定是有理函数47、∫-10|3x+1|dx=()A、5/6B、1/2C、-1/2D、148、两椭圆曲线x2/4+y2=1及(x-1)2/9+y2/4=1之间所围的平面图形面积等于()A、лB、2лC、4лD、6л49、曲线y=x2-2x与x轴所围平面图形绕轴旋转而成的旋转体体积是()A、лB、6л/15C、16л/15D、32л/1550、点(1,0,-1)与(0,-1,1)之间的距离为()A、B、2 C、31/2D、21/251、设曲面方程(P,Q)则用下列平面去截曲面,截线为抛物线的平面是()A、Z=4B、Z=0C、Z=-2D、x=252、平面x=a截曲面x2/a2+y2/b2-z2/c2=1所得截线为()A、椭圆B、双曲线C、抛物线D、两相交直线53、方程=0所表示的图形为()A、原点(0,0,0)B、三坐标轴C、三坐标轴D、曲面,但不可能为平面54、方程3x2+3y2-z2=0表示旋转曲面,它的旋转轴是()A、X轴B、Y轴C、Z轴D、任一条直线55、方程3x2-y2-2z2=1所确定的曲面是()A、双叶双曲面B、单叶双曲面C、椭圆抛物面D、圆锥曲面56、设函数f(x)=──,g(x)=1-x,则f[g(x)]=()x111A.1-──B.1+ ──C. ────D.xxx1-x157、x→0 时,xsin──+1是()xA.无穷大量B.无穷小量C.有界变量D.无界变量58、方程2x+3y=1在空间表示的图形是()A.平行于xoy面的平面B.平行于oz轴的平面C.过oz轴的平面D.直线59、下列函数中为偶函数的是()A.y=e^xB.y=x^3+1C.y=x^3cosxD.y=ln│x│60、设f(x)在(a,b)可导,a〈x_1〈x_2〈b,则至少有一点ζ∈(a,b)使()A.f(b)-f(a)=f'(ζ)(b-a)B.f(b)-f(a)=f'(ζ)(x2-x1)C.f(x2)-f(x1)=f'(ζ)(b-a)D.f(x2)-f(x1)=f'(ζ)(x2-x1)61、设f(X )在 X =Xo 的左右导数存在且相等是f(X )在 X =Xo 可导的 ( ) A.充分必要的条件 B.必要非充分的条件 C.必要且充分的条件 D 既非必要又非充分的条件二、填空题1、求极限1lim -→x (x 2+2x+5)/(x 2+1)=( )2、求极限 0lim →x [(x 3-3x+1)/(x-4)+1]=( )3、求极限2lim →x x-2/(x+2)1/2=( )4、求极限∞→x lim [x/(x+1)]x =( )5、求极限0lim →x (1-x)1/x = ( )6、已知y=sinx-cosx ,求y`|x=л/6=( )7、已知ρ=ψsin ψ+cos ψ/2,求d ρ/d ψ| ψ=л/6=( ) 8、已知f(x)=3/5x+x 2/5,求f`(0)=( )9、设直线y=x+a 与曲线y=2arctanx 相切,则a=( ) 10、函数y=x 2-2x+3的极值是y(1)=( ) 11、函数y=2x 3极小值与极大值分别是( ) 12、函数y=x 2-2x-1的最小值为( ) 13、函数y=2x-5x 2的最大值为( )14、函数f(x)=x 2e -x 在[-1,1]上的最小值为( )15、点(0,1)是曲线y=ax 3+bx 2+c 的拐点,则有b=( ) c=( )16、∫xx 1/2dx= ( )17、若F`(x)=f(x),则∫dF(x)= ( ) 18、若∫f(x)dx=x 2e 2x +c ,则f(x)= ( ) 19、d/dx ∫a b arctantdt=( )20、已知函数f(x)=⎪⎩⎪⎨⎧=≠⎰-0,0,022)1(1x a x x t dt e x在点x=0连续, 则a=( ) 21、∫02(x 2+1/x 4)dx=( ) 22、∫49 x 1/2(1+x 1/2)dx=( ) 23、∫031/2a dx/(a 2+x 2)=( ) 24、∫01 dx/(4-x 2)1/2=( ) 25、∫л/3лsin(л/3+x)dx=( ) 26、∫49 x 1/2(1+x 1/2)dx=( ) 27、∫49 x 1/2(1+x 1/2)dx=( ) 28、∫49 x 1/2(1+x 1/2)dx=( ) 29、∫49 x 1/2(1+x 1/2)dx=( ) 30、∫49 x 1/2(1+x 1/2)dx=( ) 31、∫49 x 1/2(1+x 1/2)dx=( ) 32、∫49 x 1/2(1+x 1/2)dx=( )33、满足不等式|x-2|<1的X 所在区间为 ( ) 34、设f(x) = [x] +1,则f (л+10)=( ) 35、函数Y=|sinx|的周期是 ( )36、y=sinx,y=cosx 直线x=0,x=л/2所围成的面积是 ( ) 37、 y=3-2x-x 2与x 轴所围成图形的面积是 ( )38、心形线r=a(1+cosθ)的全长为()39、三点(1,1,2),(-1,1,2),(0,0,2)构成的三角形为()40、一动点与两定点(2,3,1)和(4,5,6)等距离,则该点的轨迹方程是()41、求过点(3,0,-1),且与平面3x-7y+5z-12=0平行的平面方程是()42、求三平面x+3y+z=1,2x-y-z=0,-x+2y+2z=0的交点是( )43、求平行于xoz面且经过(2,-5,3)的平面方程是()44、通过Z轴和点(-3,1,-2)的平面方程是()45、平行于X轴且经过两点(4,0,-2)和(5,1,7)的平面方程是()46、函数y=arcsin√1-x^2 +──────的定义域为_________√1-x^2_______________。
自考365整理的自考高等数学一历年试题(2007-2010)
2010年7月高等数学(一)试题一、单项选择题(本大题共5小题,每小题2分,共10分)1.若f (x )为奇函数,且对任意实数x 恒有f (x +3)-f (x -1)=0,则f (2)=( )A. -1B.0C.1D.22.极限xx x)31(lim -∞→=( )A.e -3B.e -2C.e -1D.e 33.若曲线y =f (x )在x =x 0处有切线,则导数f '(x 0)( )A.等于0B.存在C.不存在D.不一定存在4.设函数y =(sin x 4)2,则导数xy d d =( )A.4x 3cos(2x 4) B.4x 3sin(2x 4) C.2x 3cos(2x 4) D.2x 3sin(2x 4)5.若f '(x 2)=x1(x >0),则f (x )=( )A.2x +CB.x1+CC.2x +CD.x 2+C二、填空题(本大题共10小题,每小题3分,共30分) 6.若f (x +1)=x 2-3x +2,则f (x )=_________.7.无穷级数+⎪⎭⎫⎝⎛-++-+-n218141211的和为_________.8.已知函数f (x )=x+11,f (x 0)=1,则导数f '(x 0)=_________.9.若导数f '(x 0)=10,则极限=--→)()2(lim000x f h x f hh _________.10.函数f (x )=52)1(-x 的单调减少区间为_________. 11.函数f (x )=x 4-4x +3在区间[0,2]上的最小值为_________. 12.微分方程y 〃+x (y ')3+sin y=0的阶数为_________. 13.定积分=⎰-x x x d sin ||22_________.14.导数⎰=+2141d d d xtt x_________.15.设函数z =22y x +,则偏导数=∂∂xz _________.三、计算题(一)(本大题共5小题,每小题5分,共25分)16.设y =y (x )是由方程e x -e y =sin(xy )所确定的隐函数,求微分d y .17.求极限xx xxxx ----→tan 2ee lim 0.18.求曲线y =x 2ln x 的凹凸区间及拐点.19.计算无穷限反常积分⎰+∞∞-++=xx x I d 112.20.设函数z=xy cotarc ,求二阶偏导数22xz ∂∂,yx z ∂∂∂2.四、计算题(二)(本大题共3小题,每小题7分,共21分) 21.设f (x )的一个原函数为2e x -,求不定积分⎰ xf '(x )d x .22.求曲线y =ln x 及其在点(e,1)的切线与x 轴所围成的平面图形的面积A .23.计算二重积分⎰⎰+=-Dx y x x I d d 1e2)1(,其中D 是由曲线y =x 2-1及直线y =0,x =2所围成的区域.五、应用题(本大题9分)24.设某厂生产q 吨产品的成本函数为C (q )=4q 2-12q +100,该产品的需求函数为q =30-.5p ,其中p 为产品的价格. (1)求该产品的收益函数R (q ); (2)求该产品的利润函数L (q );(3)问生产多少吨该产品时,可获最大利润?最大利润是多少?六、证明题(本大题5分)25.证明方程x 3-4x 2+1=0在区间(0,1)内至少有一个实根.2010年4月高等数学(一)试题一、单项选择题(本大题共5小题,每小题2分,共10分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
高等数学(大一)题库
(一)函数、极限、连续一、选择题:1、 在区间(-1,0)内,由( )所给出的函数是单调上升的。
(A);1+=x y (B);2x x y -= (C)34+-=x y(D)25-=x y2、 当+∞→x 时,函数f (x )=x sin x 是( )(A )无穷大量 (B )无穷小量 (C )无界函数 (D )有界函数 3、 当x →1时,31)(,11)(x x xxx f -=+-=ϕ都是无穷小,则f (x )是)(x ϕ的( ) (A )高阶无穷小 (B )低阶无穷小 (C )同阶无穷小 (D )等阶无穷小4、 x =0是函数1()arctanf x x=的( ) (A )可去间断点 (B )跳跃间断点; (C )振荡间断点 (D )无穷间断点5、 下列的正确结论是( )(A ))(lim x f xx →若存在,则f (x )有界;(B )若在0x 的某邻域内,有()()(),g x f x h x ≤≤且),(lim 0x g x x →),(lim 0x h x x →都存在,则),(lim 0x f x x →也 存在;(C )若f(x)在闭区间[a , b ]上连续,且f (a ), f (b )<0则方程f (x )=0,在(a , b )内有唯一的实根;(D ) 当∞→x 时,xx x x x a sin )(,1)(==β都是无穷小,但()x α与)(x β却不能比.二、填空题:1、 若),1(3-=x f y Z且x Zy ==1则f (x )的表达式为 ;2、 已知数列n x n 1014-=的极限是4, 对于,1011=ε满足n >N 时,总有ε<-4n x 成立的最小N 应是 ;3、 3214lim 1x x ax x b x →---+=+(b 为有限数) , 则a = , b = ; 4、 设,)(ax ax x f --=则x =a 是f (x )的第 类 间断点; 5、,0,;0,)(,sin )(⎩⎨⎧>+≤-==x n x x n x x g x x f 且f [g (x )]在R 上连续,则n = ;三、 计算题:1、计算下列各式极限: (1)x x x x sin 2cos 1lim0-→; (2)xxx x -+→11ln 1lim 0;(3))11(lim 220--+→x x x (4)xx x x cos 11sinlim30-→ (5)x x x 2cos 3sin lim 0→ (6)xx xx sin cos ln lim0→2、确定常数a , b ,使函数⎪⎩⎪⎨⎧-<<∞---=<<-+=1,11,11,arccos )(2x x x b x x a x f 在x =-1处连续.四、证明:设f (x )在闭区间[a , b ]上连续,且a <f (x )<b , 证明在(a , b )内至少有一点ξ,使()f ξξ=.(二)导数与微分一、填空题:1、 设0()f x '存在,则t t x f t x f t )()(lim 000+--+→= ;2、 ,1,321,)(32⎪⎩⎪⎨⎧≤>=x x x x x f 则(1)f '= ; 3、 设xey 2sin =, 则dy = ;4、 设),0(sin >=x x x y x则=dxdy; 5、 y =f (x )为方程x sin y + y e 0=x确定的隐函数, 则(0)f '= .二、选择题:1、)0(),1ln()(2>+=-a a x f x 则(0)f '的值为( )(A) –ln a (B) ln a (C)a ln 21 (D) 21 2、 设曲线21x e y -=与直线1x =-相交于点P , 曲线过点P 处的切线方程为( )(A) 2x -y -2=0 (B) 2x +y +1=0 (C) 2x +y -3=0 (D) 2x -y +3=03、 设⎪⎩⎪⎨⎧>-≤=0),1(0)(2x x b x e x f ax 处处可导,则( )(A) a =b =1 (B) a =-2, b =-1 (C) a =0, b =1 (D) a =2, b =14、 若f (x )在点x 可微,则xdyy x ∆-∆→∆0lim的值为( )(A) 1 (B) 0 (C) -1 (D) 不确定5、设y =f (sin x ), f (x )为可导函数,则dy 的表达式为( ) (A)(sin )f x dx ' (B)(cos )f x dx ' (C)(sin )cos f x x ' (D)(sin )cos f x xdx '三、计算题:1、 设对一切实数x 有f (1+x )=2f (x ),且(0)0f '=,求(1)f '2、若g(x)=⎪⎩⎪⎨⎧=≠0,00,1cos 2x x x x 又f (x )在x =0处可导,求))((=x x g f dx d3、 求曲线⎩⎨⎧=++=-+010)1(y te t t x y 在t =0处的切线方程4、 f (x )在x =a 处连续,),()sin()(x f a x x -=ϕ求)('a ϕ5、 设3222()x y y u x x =+⋅=+, 求.dudy 6、 设()ln f x x x =, 求()()n fx . 7、计算.(三)中值定理与导数的应用一、填空题:1、 函数f (x )=arctan x 在[0 ,1]上使拉格朗日中值定理结论成立的ξ= ;2、 若01lim sin 22ax x e b x →-=则a = , b = ; 3、 设f (x )有连续导数,且(0)(0)1f f '==则)(ln )0()(sin lim 0x f f x f x -→= ;4、x e y x sin =的极大值为 ,极小值为 ;5、 )10(11≤≤+-=x xxarctgy 的最大值为 ,最小值为 . 二、选择题:1、 如果a,b 是方程f(x)=0的两个根,函数f(x)在[a,b]上满足罗尔定理条件,那么方程f’(x)=0在(a,b)内( )(A )仅有一个根; (B )至少有一个根; (C )没有根; (D )以上结论都不对。
高等数学(一)试题(附答案)
高等数学(一)试题(附答案)一、填空题(每小题1分,共10分)_________ 11.函数y=arcsin√1-x2+──────的定义域为_______________。
_________√1-x22.函数y=x+ex上点(0,1)处的切线方程是______________。
f(Xo+2h)-f(Xo-3h)3.设f(X)在Xo可导且f'(Xo)=A,则lim───────────────=___。
h→o h4.设曲线过(0,1),且其上任意点(X,Y)的切线斜率为2X,则该曲线的方程是___。
x5.∫─────dx=_____________。
1-x416.limXsin───=___________。
x→∞X7.设f(x,y)=sin(xy),则fx(x,y)=____________。
_______R √R2-x28.累次积分∫ dx∫f(X2+Y2)dy化为极坐标下的累次积分为_______。
0 0d3y3d2y9.微分方程─── +──(─── )2的阶数为____________。
dx3xdx2∞∞10.设级数∑an发散,则级数∑an_______________。
n=1 n=1000二、单项选择题(在每小题的四个备选答案中,选出一个正确的答案,将其码写在题干的○内,1~10每小题1分,11~20每小题2分,共30分)(一)每小题1分,共10分11.设函数f(x)=──,g(x)=1-x,则f[g(x)]=( )x111①1-──②1+──③────④xxx1-x12.x→0 时,xsin──+1是( )x①无穷大量②无穷小量③有界变量④无界变量3.下列说法正确的是( )①若f(X )在X=Xo连续,则f(X )在X=Xo可导②若f(X )在X=Xo不可导,则f(X )在X=Xo不连续③若f(X )在X=Xo不可微,则f(X )在X=Xo极限不存在④若f(X )在X=Xo不连续,则f(X )在X=Xo不可导4.若在区间(a,b)内恒有f'(x)〈0,f"(x)〉0,则在(a,b)内曲线弧y=f(x)为( ) ①上升的凸弧②下降的凸弧③上升的凹弧④下降的凹弧5.设F'(x) =G'(x),则( )①F(X)+G(X) 为常数②F(X)-G(X) 为常数③F(X)-G(X) =0dd④──∫F(x)dx=──∫G(x)dxdxdx16.∫ │x│dx=( )-1①0②1③2④37.方程2x+3y=1在空间表示的图形是( )①平行于xoy面的平面②平行于oz轴的平面③过oz轴的平面④直线x8.设f(x,y)=x3+y3+x2ytg── ,则f(tx,ty)=( )1①tf(x,y)②t2f(x,y)③t3f(x,y)④──f(x,y)t2an+1∞9.设an≥0,且lim───── =p,则级数∑an( )n→∞an=1①在p〉1时收敛,p〈1时发散②在p≥1时收敛,p〈1时发散③在p≤1时收敛,p〉1时发散④在p〈1时收敛,p〉1时发散10.方程y'+3xy=6x2y是( )①一阶线性非齐次微分方程②齐次微分方程③可分离变量的微分方程④二阶微分方程(二)每小题2分,共20分11.下列函数中为偶函数的是( )①y=ex②y=x3+1③y=x3cosx④y=ln│x│12.设f(x)在(a,b)可导,a〈x1〈x2〈b,则至少有一点ζ∈(a,b)使( )①f(b)-f(a)=f'(ζ)(b-a)②f(b)-f(a)=f'(ζ)(x2-x1)③f(x2)-f(x1)=f'(ζ)(b-a)④f(x2)-f(x1)=f'(ζ)(x2-x1)13.设f(X)在X=Xo 的左右导数存在且相等是f(X)在X=Xo 可导的( )①充分必要的条件②必要非充分的条件③必要且充分的条件④既非必要又非充分的条件d14.设2f(x)cosx=──[f(x)]2,则f(0)=1,则f(x)=( )dx①cosx②2-cosx③1+sinx④1-sinx15.过点(1,2)且切线斜率为4x3的曲线方程为y=( )①x4②x4+c③x4+1④x4-11x16.lim─── ∫ 3tgt2dt=( )x→0x301①0②1③──④∞3xy17.limxysin─────=( )x→0x2+y2y→0①0②1③∞④sin118.对微分方程y"=f(y,y'),降阶的方法是( )①设y'=p,则y"=p'dp②设y'=p,则y"=───dydp③设y'=p,则y"=p───dy1dp④设y'=p,则y"=─────pdy∞∞19.设幂级数∑ anxn在xo(xo≠0)收敛,则∑ anxn在│x│〈│xo│ ( ) n=o n=o①绝对收敛②条件收敛③发散④收敛性与an有关sinx20.设D域由y=x,y=x2所围成,则∫∫ ─────dσ=( )D x1 1 sinx①∫ dx∫ ───── dy0 x x1 √ysinx②∫ dy∫─────dx0 y x__1 √x sinx③∫ dx∫─────dy0 x x__1 √xsinx④∫ dy∫─────dx0 x x三、计算题(每小题5分,共45分)___________/x-11.设y=/──────求y' 。
高等数学(上)五套题
《高等数学(上)》试卷(一)一.计算题(每题5分,共40分) ①.求极限30tan sin lim.sin x x x x-→ ②.指出()f x 的间断点及其类型(可去、跳跃、无穷、振荡?).已知 110110x e x f x x x ,()ln(),-⎧⎪>=⎨⎪+-<≤⎩ ③.设11arctan,xy x+=-求,.y y '''④.设函数()y y x =由方程 y e xy e +=确定,求0().y ''⑤.设210020()tan ,x f x t tdt =⎰求0()()lim.h f x f x h h→--⑥.求极限22130cot lim (tan ).x x x +→ ⑦.求不定积分1sin .cos x x I dx x +=+⎰⑧.求曲线23y x =- 与直线2y x =所围图形面积.二.证明题(任选两题,每题5分,共10分) 1.证明,当4x >时,22x x >. 2.设0()f x ''存在,证明000022()()()lim().h f x h f x h f x f x h→++--''= 3.证明222114lim .nn k n k nπ→∞=-=∑三.应用题(每题10分,共50分)1.确定函数3226187y x x x =---的单调区间和极值. 2.证明方程3520x x --=有且只有一正根.3.用半径为R 的圆铁片挖去一扇形做成一个漏斗,问留下的扇形中心角φ为多大时漏斗容积最大? 4.求曲线2y x =与2x y =所围图形绕x 轴旋转生成旋转体体积.5.求曲线ln y x =从3x =到8x =这一段的弧长.《高等数学(上)》试卷(二)一.选择题(每题2分,共12分) 1.设极限21lim (),k xe x x+=→∞则k =( ) A .14B. 12C .1 D. 22.下列命题中结论正确的是( )A .()f x 在 (,)a b 中的极值点处,必定能使 0()f x '= B. 使0()f x '=的点必定是()f x 的极值点C. ()f x 在(,)a b 内取得极值的点处,其倒数()f x '必不存在D. 使0()f x '=的点是()f x 可能取得极值的点 3设22()cos ,x f x x =+-则当0x →时( )A ()f x 和x 是等价无穷小 B. ()f x 和x 是同价但非等价无穷小. C. ()f x 是比x 高阶无穷小 D. ()f x 是比x 低阶无穷小 4.设()f x 满足201()ln(),xf t dt x =+⎰则()f x =( )A.211x + B. 21x x + C. 221xx+ D. 2x 5.已知()f x 的一个原函数为3x ,则2()()fx df x =⎰( )A. 69x . B. 93x C +. C. 69x C + D. 9x C + 6.曲线24y x =-与y 轴所围图形面积的积分表达式为( )A.44xdx -⎰B.224()y dy -⎰ C.2224()y dy --⎰D.444xdx --⎰二.填空题(每题2分,共14分)1.3111limx x x e x -→=-. 2.方程32310x x +-=在区间01(,)内的实根个数有___个. 3.设函数()f x 在点0x 处有二阶导数,且0000(),()f x f x '''=<则()f x 在0x 处取得_____值. 4.拉格朗日中值定理的条件和结论是_______________________________________________.5.若33sec tan (_________)x xdx d ⋅=.6.设()f x 的一个原函数为 2ln x +,则()f x '=___. 7.定积分21______x dx -=⎰三. 计算下列各题(每题6分,共54分) 1.设432521ln ,xy x +=+求().y x '2.已知2201220()(),(),x xty x f dt x x=+>⎰其中()f x 可导,且1212(),()ln ,f f '==求1'().y3.求极限01tan lim()xx x→+ 4.求极限235253limsin x x x x→∞++ 5.求不定积分321d x x x-⎰6.求不定积分211d ln x x x-⎰7.求50121()x dx -⎰8.求1arctan xdx ⎰ 9.求41xdx x +∞+⎰ 四,应用题1. (6分)求由4014,,xy y x ≤≥≤≤所围图形绕x 轴旋转所产生的旋转体体积.2.(9分) 求函数21()x y x =-的单调区间,极值以及该函数所表示的曲线的凹、凸区间,拐点. 五,证明题(5分) 设2,e a b e <<<证明 2224ln ln ()b a b a e->-《高等数学(上)》试卷(三)一、填空题(每题3分,共18分)1、函数f x x x ()12arcsin =-+的定义区间是2、设()f x 在1x =处可导且 2)1('=f ,则xx f f x )1()1(lim 0+-→=_____3、曲线 x y =在 1 =x 处的法线斜率为_______________4、设()f x 的一个原函数为ln x ,则()f x '=________5、42 416 x dx --⎰=____________6、设向量a与}2,1,2{-=b平行,18-=⋅b a,则a=二、简单计算题(每题4分,共24分)1、若 2(1)sin f x x x +=-,求函数()f x2、设函数x x x f x xa x x ln(2)cos 0 () 20sin ++<⎧⎪=⎨+≥⎪⎩ 在 0 x =处连续,求 a 。
高等数学一自考题-12
高等数学一自考题-12(总分:100.00,做题时间:90分钟)一、第Ⅰ部分选择题(总题数:0,分数:0.00)二、单项选择题(总题数:5,分数:10.00)1.______(分数:2.00)A.(-3,3)B.(-4,3)C.(-4,4) √D.(-4,0)解析:[考点] 已知函数定义域的求法[解析] 由|x|≤3得,-3≤x≤3,由3<|x|<4得,3<x<4或-4<x<-3.综上,x∈(-4,4).故选C.2.要使函数在x=0处连续,应给f (0)补充定义的数值是______A.B.2C.1D.0(分数:2.00)A.B.C. √D.解析:[考点] 函数在某点处的连续性[解析故补充的条件是f(0)=1故选C.3.(2,3)的切线斜率是______(分数:2.00)A.-2B.2 √C.-1D.1解析:[考点] 函数导数的几何意义[解析] 由又因过点(2,3),故k=2.故选B.4.设f(x)=xln(1+x),则f′(0)=______(分数:2.00)A.0 √B.1C.-1D.2解析:[考点] 导数的计算[解析] 因故f′(0)=0.故选A.5.曲线y=e -x2上拐点的个数是______(分数:2.00)A.0B.1C.2 √D.3解析:[考点] 曲线拐点的求法[解析] 由题意得:y′=-2xe -x2,y″=-2e -x2 +4x 2 e -x2,令y″=0,故故当时,y″>0;当时,y″<0;当时,y″>0.故点x 1,x 2处都是拐点.故选C.三、第Ⅱ部分非选择题(总题数:0,分数:0.00)四、填空题(总题数:10,分数:30.00)(分数:3.00)解析: [考点] 数列极限的计算[解析] 原式7.设f′(1)= 1.(分数:3.00)解析: [考点] 函数导数的计算[解析] 因故8.设函数y″(0)为 1.(分数:3.00)解析:0 [考点] 函数的微分解法[解析,所以y″(0)=0.9.函数x=3处连续,则A= 1.(分数:3.00)解析:6 [考点] 函数在某点连续的含义[解析] 由于f(x)在点x=3处连续,则,故故A=6.10.函数f(x)=x 3 +4x 2 -7x-10在区间[-1,2]上满足罗尔定理的条件,则定理中的值ξ= 1.(分数:3.00)解析: [考点] 罗尔定理的含义[解析] 罗尔定理:设函数y=f(x)在[a,b]上连续,在(a,b)上可导,且f(a)=f(b),则ξ∈(a,b),使得f′(ξ)=0.根据题意得:f′(ξ)=3ξ2 +8ξ-7=0,故又因ξ∈[-1,2],故11.设曲线y=ax 2与y=lnx相切,则a= 1.(分数:3.00)解析: [考点] 导数的几何意义[解析] 由两曲线相切,可知两曲线相切时切线的斜率相等.故(ax 2 )′=(lnx)′,即①又因两曲线相切(即有切点),故ax 2=lnx. ②由①、②式可解得12.若∫f(x)dx=F(x)+C,则∫e -x f(e -x )dx= 1.(分数:3.00)解析:-F(e -x )+C [考点] 不定积分的计算[解析] 因∫f(x)dx=F(x)+C,故∫e -x f(e -x )dx=-∫f(e -x )d(e -x )=-F(e -x )+C.13.设商品的收益R与价格P之间的关系为R=6500P-100P 2,则收益R对价格P的弹性为 1.(分数:3.00)解析: [考点] 需求价格弹性[解析14.若f(x+y,x-y)=x 2 -y 2,则(分数:3.00)解析:x+y [考点] 二元函数偏导数的计算[解析] 易得f(x,y)=xy,则(分数:3.00)解析: [考点] 二重积分的计算[解析五、计算题(一)(总题数:5,分数:25.00)(分数:5.00)__________________________________________________________________________________________ 正确答案:()17.求函数f(x)=x 4 -2x 2 +5在区间[-1,2]上的最大值和最小值.(分数:5.00)__________________________________________________________________________________________ 正确答案:()解析:解:令f′(x)=4x 3 -4x=4x(x-1)(x+1)=0,得x 1 =-1,x 2 =0,x 3 =1.比较f(±1)=4,f(0)=5,f(2)=13,可知函数在[-1,2]上的最大值为13,最小值为4.18.设,求(分数:5.00)__________________________________________________________________________________________ 正确答案:()19.计算(分数:5.00)__________________________________________________________________________________________ 正确答案:()解析:解:令x=sint,则原式20.求极限(分数:5.00)__________________________________________________________________________________________ 正确答案:()六、计算题(二)(总题数:3,分数:21.00)21.设z=f(x,y)是由方程e z -z+xy 3 =0确定的隐函数,求z的全微分dz.(分数:7.00)__________________________________________________________________________________________ 正确答案:()解析:解:两边关于x求偏导,所以两边关于y求偏导,所以因此:22.设,求(分数:7.00)__________________________________________________________________________________________ 正确答案:()解析:解:23.计算二重积分D是由直线y=x,y=5x,x=1所围成的平面区域.(分数:7.00)__________________________________________________________________________________________ 正确答案:()解析:解:如图于是七、应用题(总题数:1,分数:9.00)24.某商店以每条100元的价格购进一批牛仔裤,已知市场的需求函数为Q=400-2p,问怎样选择牛仔裤的售价p(元/条),可使所获利润最大,最大利润是多少.(分数:9.00)__________________________________________________________________________________________ 正确答案:()解析:解:由题意,利润函数为L(p)=pQ-100Q=-2p 2 +600p-40000,求导数令,解得p=150.由于,因此在p=150处L取得极大值.八、证明题(总题数:1,分数:5.00)25.证明方程x 3 -3x+1=0在区间(0,1)内有唯一实根.(分数:5.00)__________________________________________________________________________________________ 正确答案:()解析:证明:令f(x)=x 3 -3x+1,因为f(0)=1>0,所以由连续函数的中值定理知所讨论方程在(0,1)内有实根.又由x∈(0,1)时,f′(x)=3(x 2-1)<0,可知f(x)在(0,1)上是严格单调递减的,所以所讨论方程在(0,1)内仅有一个实根.。
高数(一)试题(2)
高等数学(一)(第三章练习题)一、单项选择题(本大题共5小题,每小题2分,共10分) 1.设f (x )=⎩⎨⎧<≥0x ,x sin 0x ,x ,则)0(f '=( )A.-1B.1C.0D.不存在2.设函数f(x)在点a 可导,且1h 2)h 5a (f )h 5a (f lim 0h =--+→,则=')a (f ( )A.51B.5C.2D.21 3.设函数y=2x 2,已知其在点x 0处自变量增量3.0x =∆时,对应函数增量y ∆的线性主部为-0.6,则x 0=( ) A.0B.1C.-0.5D.-44.设某商品的需求函数为Q=a-bp ,其中p 表示商品价格,Q 为需求量,a 、b 为正常数,则需求量对价格的弹性=EPEQ( )A.bp a b --B. bp a b- C. bp a bp -- D. bp a bp -5.函数f(x)在点x=x 0处连续是f(x)在x=x 0处可导的( )A .必要条件B .充分条件C .充分必要条件D .既非充分条件又非必要条件 6.设函数f(x)在x=a 处可导,则f(x)在x=a 处( ) A.极限不一定存在 B.不一定连续 C.可微 D.不一定可微 7.设函数(x)(x),a)-(x f (x)ϕϕ=在x=a 处可导,则( ) A.)x ()x (f ϕ=' B.)a ()a (f ϕ'=' C.)a ()a (f ϕ=' D.)a x ()x ()x (f -+ϕ=' 8.设y=lnsinx,则dy=( ) A.-cotx dx B.cotx dx C.-tanx dx D.tanx dx9.设y=a x (a>0,a ≠1),则y (n)==0x ( )A.0B.1C.lnaD.(lna)n10.设一产品的总成本是产量x 的函数C(x),则生产x 0个单位时的总成本变化率(即边际成本)是( ) A.x )x (C B.0x x x )x (C = C.dx )x (dC D.0x x dx )x (dC =11.设函数y=f(x)在点x 0可导,且,a )x (f 0='则 =∆-∆-→∆x)x (f )x 2x (f lim 000x ( )A.aB.2aC.-2aD.-2a 12.若函数f(x)在点x 0处自变量增量Δx=0.25,对应函数增量Δy 的线性主部为2,则函数在该点的导数值=')x (f 0( ) A.4B.8C.0.5D.0.12513.设某商品的供给函数为S=a+bp ,其中p 为商品价格,S 为供给量,a,b 为正常数,则该商品的供给价格弹性=EPES( ) A.bpa bp+B.bp a b+ C.bpa bp +- D.bpa b+- 14.设D=D (p )是市场对某一商品的需求函数,其中p 是商品价格,D 是市场需求量,则需求价格弹性是( ) A .)p ('D p D - B .)p ('D D p - C .)D ('p pD-D .)D ('p Dp-15.设△y=f(x 0+△x)-f(x 0)且函数f(x)在x=x 0处可导,则必有( ) A .0x lim →∆△y=0 B .△y=0 C .dy=0 D .△y=dy16.设产品的利润函数为L (x ),则生产x o 个单位时的边际利润为( ) A .00x )x (L B .dx)x (dL C .0x x dx )x (dL =D .)dx)x (L (dx d 17.设f(x)=x 15+3x 3-x+1,则f (16)(1)=( ) A .16! B .15! C .14!D .018.设f (x )为可微函数,且n 为自然数,则⎥⎦⎤⎢⎣⎡+-∞→)n x (f )x (f 1lim n =( )A.0B.)x (f 'C.-)x (f 'D.不存在19.设函数f(x)可导,又y=f(-x),则y '=( ) A.)x (f ' B.)x (f -' C.-)x (f 'D.-)x (f -'20.设某商品的需求函数为D(P)=475-10P-P 2,则当P = 5时的需求价格弹性为( ) A.0.25 B.-0.25 C.100D.-10021已知某商品的成本函数为500302)(++=Q Q Q C ,则当产量Q =100时的边际成本( ) A .5 B .3 C .3.5D .1.522.设f(x)=⎩⎨⎧<≥+0x ,x 0x ),x 1ln(, 则=')0(f ( )A.0B.1C.-1D.不存在23.设供给函数S=S(p)(其中p 为商品价格), 则供给价格弹性是( )A.)p (S S p '-B. )p (S S p 'C. )p (S p 'D. )p (S S 1'24.设f (x )=x |x |,则f ′(0)=( ) A.1 B.-1 C.0 D.不存在25.设某商品的需求量D 对价格p 的需求函数为D =50-5p,则需求价格弹性函数为( ) A.250-p p B.p p -250 C.51pp -250D.51250-p p 26.设生产x 个单位的总成本函数为C (x )=7x 2012x 2++,则生产6个单位产品时的边际成本是( )A.6B.20C.21D.2227.设函数y =150-2x 2,则其弹性函数ExEy=( ) A .221504x - B .221504x x- C .150242-x xD .1502422-x x28.设f (x )=2x,则f ″(x )=( )A.2x ·ln 22B.2x ·ln4C.2x ·2D.2x ·429.设f (x )=arccos(x 2),则f '(x )=( ) A .211x--B .212xx --C .411x--D .412xx --二、填空题(本大题共10小题,每小题3分,共30分)1.曲线y =x +ln x 在点(1,1)处的切线方程为________________.2.设函数y =ln x ,则它的弹性函数ExEy=_____________. 3.函数f(x)在点x 0处左、右导数存在且相等是函数f(x)在x 0可导的___________条件.4.设某商品的市场需求函数为D=1-7P,P 为商品价格,则需求价格弹性函数为 .5.设y=2x 2e x ,则y ''(0)= .6. 已知某商品的产量为q 件时总成本为C (q )=100q+160q 2(百元),则q=500件时的边际成本为___________.7.设f(x)在x=a 处可导,则=--→h)a (f )h 2a (f lim 0h ___________.8.曲线y=sinx 在点π=32x 处的切线方程为___________. 9.若f(x)在x=x 0处可导,且.__________)x ('f ,3h)h 5x (f )x (f lim0000h ==+-→则10. 设f(x)=⎩⎨⎧≥<-1|x |,01|x |,x 12,则'-f (1)=_____.11.设y=cos 2x 1+,则'y =_____.12.已知某产品的产量为g 时,总成本是C(g)=9+800g 2,则生产100件产品时的边际成本MC|g=100=_____.13.设⎩⎨⎧>≤-=0x ,x 0x ,e 1)x (f 2x ,则-'f (0)=___________。
本科高等数学练习题(I)(含答案)
. . . .
2. sin 2 x cos xdx 4. cos 2 x sin xdx 6. cos 4 x sin xdx 8.
. . . .
ln x dx x
二.解答题 1.求 e (1
x
ex x
)dx .
2.求
ex e x e x dx .
Simpo PDF Merge and Split Unregistered Version -
第一章
一.填空题
函数与极限
x2 1 x 1 x 3 1 3x 2 5 x 1 2. lim x 5 x 2 7 x 3 3x 3 5 x 2 7 3. lim . x 4 x 3 x 5 3 x 2 5. lim 3 x 5 x 3 x 2 7 x 5 2n 2 3n 7 7. lim 3 n n 5n 2 6 x 3 9. lim 1 x x
x dx . 2x 9
4
0
3
1 dx . 2x 1
x 1 x dx .Fra bibliotek0
8
0
7.计算
0
8.计算
4
x2 2x 1
dx .
9.计算
0
1 cos 2 x dx .
4
10.计算 12.计算 14.计算
4
0 1
e
x
dx .
11.计算 13.计算
0
e
e
2 x 1
dx .
高等数学试题(含答案)
7.解.特征方程为 k 2 k 0 ,得到特征根 k1 0, k2 1,
故对应的齐次方程的通解为 y c1 c2ex ,
由观察法,可知非齐次方程的特解是 y 1 e x , 2
因而,所求方程的通解为
y
c1
c2ex
1 2
e x ,其中 c1 , c2
第4页,共12页
报考学校:______________________报考专业:______________________姓名:
准考证号:
-------------------------------------------------------------------------------------密封线---------------------------------------------------------------------------------------------------
是任意常数.
………..1 分 ………..3 分 ………..5 分
……….6 分
8.解.因为 ln1 x x x 2 x3 x 4 1n x n1 (1 x 1) ,
234
n 1
….3 分
所以 x 2 ln1 x x 2 (x x 2 x3 x 4 1n x n1 )
1
1.解法一(1). S e e x dx
0
ex e x 1 e e 1 1 . 0
1
(2).V e2 e2x dx
0
e2 x 1 e2x 1
2 0
e2
1 2
e2
1
2
e2 1
1
解法二.(1) S e e x dx
高数练习题 第一章 函数与极限
‰高等数学(Ⅰ)练习 第一章 函数、极限与连续________系_______专业 班级 姓名______ ____学号_______习题一 函数一.选择题 1.函数216ln 1x xx y -+-=的定义域为 [ D ] (A )(0,1) (B )(0,1)⋃(1,4) (C )(0,4) (D )4,1()1,0(⋃] 2.3arcsin 2lgxx x y +-=的定义域为 [ C ] (A ))2,3(]3,(-⋃-∞ (B )(0,3) (C )]3,2()0,3[⋃- (D )),3(+∞- 3.函数)1ln(2++=x x y 是 [ A ](A )奇函数 (B )非奇非偶函数 (C )偶函数 (D )既是奇函数又是偶函数 4.下列函数中为偶函数且在)0,(-∞上是减函数的是 [ D ](A )222-+=x x y (B ))1(2x y -= (C )||)21(x y = (D ).||log 2x y =二.填空题1. 已知),569(log )3(22+-=x x x f 则=)1(f 22. 已知,1)1(2++=+x x x f 则=)(x f3. 已知xx f 1)(=,x x g -=1)(, 则()=][x g f4. 求函数)2lg(1-+=x y 的反函数5. 下列函数可以看成由哪些基本初等函数复合而成 (1) x y ln tan 2=:(2) 32arcsin lg x y =:__________ _____________________三.计算题1.设)(x f 的定义域为]1,0[, 求)(sin ),(2x f x f 的定义域21x x -+1102()x y x R -=+∈11x -2,tan ,ln ,y u u v v w w ====23,lg ,arcsin ,y v v w w t t x =====2()[11](sin )[2,2]()f x f x k k k Z πππ-+∈的定义域为,的定义域为2.设⎪⎩⎪⎨⎧<<-≤-=2||111||1)(2x x x x x ϕ , 求)23(),21(),1(ϕϕϕ-, 并作出函数)(x y ϕ=的图形.4.已知水渠的横断面为等腰梯形,斜角40=ϕ(图1-22)。
高等教育自学考试《高等数学(一)》真题卷一
高等教育自学考试《高等数学(一)》真题卷一1. 【单选题】(江南博哥)下列函数为奇函数的是()。
A. |x|sin2xB. |x|cos2xC. xsinxD. xcosx正确答案:D参考解析:D项中,-xcos(-x)=-xcosx,故D项中的函数为奇函数。
2. 【单选题】当x>0,y>0时,下列等式成立的是()。
A. ln(xy)=lnx·lnyB. ln(x+y)=lnx+lnyC. ln(xy)=lnx+lnyD. ln(x/y)=lnx/lny正确答案:C参考解析:3. 【单选题】()。
A. 1B. 2C. 3D. 4正确答案:B参考解析:4. 【单选题】()。
A. 0B. 1/2C. 1D. 2正确答案:B参考解析:5. 【单选题】曲线y=2x2-x在点(1,1)处的切线方程为()。
A. y=3x-2B. y=3x-4C. y=2x-2D. y=2x-4正确答案:A参考解析:(1,1)处的切线为y-1=3(x-1),即y=3x-2。
6. 【单选题】设需求函数Q=35-P2,其中P和Q分别是价格与需求量,则P=5时的需求价格弹性为()。
A. -9B. -7C. -5D. -3正确答案:C参考解析:7. 【单选题】函数f(x)=3x-3-x在()。
A. (-∞,+∞)内单调增加B. (-∞,+∞)内有增有减C. (0,+∞)内单调减少D. (-∞,0)内单调减少正确答案:A参考解析:8. 【单选题】曲线y=x3-6x2+10x-1的拐点为()。
A. (2,3)B. (3,2)C. (1,2)D. (2,1)正确答案:A参考解析:9. 【单选题】()。
A. ln(x2+1)+CB. arctan(x2+1)+CC. 1/2ln(x2+1)+CD. 1/2arctan(x2+1)+C正确答案:C参考解析:10. 【单选题】设函数z=x2+xy+2y2,则全微分dz|(2,1)=()。
高等数学考试题库(附答案)
《高数》试卷1(上)(一)一.选择题(将答案代号填入括号内,每题3分,共30分).1.下列各组函数中,是相同的函数的是( ).(A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ()g x =(C )()f x x = 和 ()2g x = (D )()||xf x x = 和 ()g x =1 2.函数()00x f x a x ≠=⎨⎪=⎩在0x =处连续,则a =( ).(A )0 (B )14(C )1 (D )2 3.曲线ln y x x =的平行于直线10x y -+=的切线方程为( ).(A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x =4.设函数()||f x x =,则函数在点0x =处( ).(A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微5.点0x =是函数4y x =的( ).(A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点 6.曲线1||y x =的渐近线情况是( ). (A )只有水平渐近线 (B )只有垂直渐近线 (C )既有水平渐近线又有垂直渐近线(D )既无水平渐近线又无垂直渐近线 7.211f dx x x⎛⎫' ⎪⎝⎭⎰的结果是( ). (A )1f C x ⎛⎫-+ ⎪⎝⎭ (B )1f C x ⎛⎫--+ ⎪⎝⎭ (C )1f C x ⎛⎫+ ⎪⎝⎭ (D )1f C x ⎛⎫-+ ⎪⎝⎭ 8.x x dx e e -+⎰的结果是( ).(A )arctan x e C + (B )arctan x eC -+ (C )x x e e C --+ (D )ln()x x e e C -++9.下列定积分为零的是( ). (A )424arctan 1x dx x ππ-+⎰ (B )44arcsin x x dx ππ-⎰ (C )112x x e e dx --+⎰ (D )()121sin x x x dx -+⎰ 10.设()f x 为连续函数,则()102f x dx '⎰等于( ). (A )()()20f f - (B )()()11102f f -⎡⎤⎣⎦(C )()()1202f f -⎡⎤⎣⎦(D )()()10f f - 二.填空题(每题4分,共20分)1.设函数()2100x e x f x x a x -⎧-≠⎪=⎨⎪=⎩在0x =处连续,则a =. 2.已知曲线()y f x =在2x =处的切线的倾斜角为56π,则()2f '=. 3.21x y x =-的垂直渐近线有条. 4.()21ln dx x x =+⎰. 5.()422sin cos x x x dx ππ-+=⎰.三.计算(每小题5分,共30分)1.求极限①21lim x x x x →∞+⎛⎫ ⎪⎝⎭②()20sin 1lim x x x x x e →--2.求曲线()ln y x y =+所确定的隐函数的导数x y '.3.求不定积分①()()13dxx x ++⎰②()220dx a x a >-⎰③x xe dx -⎰四.应用题(每题10分,共20分)1. 作出函数323y x x =-的图像.2.求曲线22y x =和直线4y x =-所围图形的面积.《高数》试卷1参考答案一.选择题1.B 2.B 3.A 4.C 5.D 6.C 7.D 8.A 9.A 10.C二.填空题1.2- 2.33- 3. 2 4.arctanln x c + 5.2三.计算题1①2e ②16 2.11x y x y '=+-3. ①11ln ||23x C x +++②22ln ||x a x C -++③()1x e x C --++四.应用题1.略 2.18S =《高数》试卷2(上)一.选择题(将答案代号填入括号内,每题3分,共30分)1.下列各组函数中,是相同函数的是( ).(A)()f x x =和()2g x x = (B)()211x f x x -=-和1y x =+(C)()f x x =和()22(sin cos )g x x x x =+ (D)()2ln f x x =和()2ln g x x =2.设函数()()2sin 21112111x x x f x x x x -⎧<⎪-⎪⎪==⎨⎪->⎪⎪⎩,则()1lim x f x→=( ).(A) 0 (B) 1 (C) 2 (D) 不存在3.设函数()y f x =在点0x 处可导,且()f x '>0, 曲线则()y f x =在点()()00,x f x 处的切线的倾斜角为{ }.(A) 0 (B) 2π(C) 锐角 (D) 钝角4.曲线ln y x =上某点的切线平行于直线23y x =-,则该点坐标是( ).(A) 12,ln 2⎛⎫ ⎪⎝⎭ (B) 12,ln 2⎛⎫- ⎪⎝⎭ (C) 1,ln 22⎛⎫ ⎪⎝⎭ (D) 1,ln 22⎛⎫- ⎪⎝⎭5.函数2x y x e -=及图象在()1,2内是( ).(A)单调减少且是凸的 (B)单调增加且是凸的 (C)单调减少且是凹的 (D)单调增加且是凹的6.以下结论正确的是( ).(A) 若0x 为函数()y f x =的驻点,则0x 必为函数()y f x =的极值点.(B) 函数()y f x =导数不存在的点,一定不是函数()y f x =的极值点.(C) 若函数()y f x =在0x 处取得极值,且()0f x '存在,则必有()0f x '=0.(D) 若函数()y f x =在0x 处连续,则()0f x '一定存在.7.设函数()y f x =的一个原函数为12x x e ,则()f x =( ). (A) ()121x x e - (B) 12x x e - (C) ()121x x e + (D) 12x xe8.若()()f x dx F x c =+⎰,则()sin cos xf x dx =⎰( ).(A) ()sin F x c + (B) ()sin F x c -+ (C) ()cos F x c + (D) ()cos F x c -+ 9.设()F x 为连续函数,则12x f dx ⎛⎫' ⎪⎝⎭⎰=( ). (A) ()()10f f - (B)()()210f f -⎡⎤⎣⎦ (C)()()220f f -⎡⎤⎣⎦ (D)()1202f f ⎡⎤⎛⎫- ⎪⎢⎥⎝⎭⎣⎦10.定积分ba dx ⎰()ab <在几何上的表示( ).(A) 线段长b a - (B) 线段长a b - (C) 矩形面积()1a b -⨯ (D) 矩形面积()1b a -⨯二.填空题(每题4分,共20分)1.设 ()()2ln 101cos 0x x f x x a x ⎧-⎪≠=⎨-⎪=⎩, 在0x =连续,则a =________. 2.设2sin y x =, 则dy =_________________sin d x .3.函数211x y x =+-的水平和垂直渐近线共有_______条. 4.不定积分ln x xdx =⎰______________________. 5. 定积分2121sin 11x x dx x -+=+⎰___________. 三.计算题(每小题5分,共30分)1.求下列极限:①()10lim 12x x x →+②arctan 2lim 1x x x π→+∞-2.求由方程1y y xe =-所确定的隐函数的导数x y '.3.求下列不定积分:①3tan sec x xdx ⎰②()220dxa x a >+⎰③2x x e dx ⎰ 四.应用题(每题10分,共20分)1.作出函数313y x x =-的图象.(要求列出表格)2.计算由两条抛物线:22,y x y x ==所围成的图形的面积.《高数》试卷2参考答案一.选择题:CDCDB CADDD二填空题:1.-2 2.2sin x 3.3 4.2211ln 24x x x c -+ 5.2π 三.计算题:1. ①2e ②1 2.2yx e y y '=- 3.①3sec 3x c +②()22ln x a x c +++③()222x x x e c -++四.应用题:1.略 2.13S = 《高数》试卷3(上)一、 填空题(每小题3分, 共24分)1.函数y =的定义域为________________________.2.设函数()sin 4,0,0x x f x x a x ⎧≠⎪=⎨⎪=⎩, 则当a =_________时, ()f x 在0x =处连续.3. 函数221()32x f x x x -=-+的无穷型间断点为________________. 4. 设()f x 可导, ()xy f e =, 则____________.y '= 5. 221lim _________________.25x x x x →∞+=+- 6. 321421sin 1x x dx x x -+-⎰=______________. 7. 20_______________________.x t d e dt dx -=⎰ 8. 30y y y '''+-=是_______阶微分方程.二、求下列极限(每小题5分, 共15分) 1.01lim sin x x e x →-; 2. 233lim 9x x x →--; 3. 1lim 1.2x x x -→∞⎛⎫+ ⎪⎝⎭三、求下列导数或微分(每小题5分, 共15分) 1.2x y x =+, 求(0)y '. 2. cos x y e =, 求dy . 3. 设x y xy e +=, 求dy dx . 四、求下列积分 (每小题5分, 共15分) 1.12sin x dx x ⎛⎫+ ⎪⎝⎭⎰. 2. ln(1)x x dx +⎰. 3.120x e dx ⎰ 五、(8分)求曲线1cos x t y t=⎧⎨=-⎩在2t π=处的切线与法线方程. 六、(8分)求由曲线21,y x =+ 直线0,0y x ==和1x =所围成的平面图形的面积, 以及此图形绕y 轴旋转所得旋转体的体积.七、(8分)求微分方程6130y y y '''++=的通解.八、(7分)求微分方程x y y e x'+=满足初始条件()10y =的特解. 《高数》试卷3参考答案一.1.3x< 2.4a = 3.2x = 4.'()x x e f e 5.12 6.0 7.22x xe - 8.二阶二.1.原式=0lim 1x x x→= 2.311lim 36x x →=+ 3.原式=112221lim[(1)]2x x e x--→∞+=三.1.221','(0)(2)2y y x ==+ 2.cos sin x dy xe dx =-3.两边对x 求写:'(1')x y y xy e y +==+'x y x y e y xy y y x e x xy++--⇒==-- 四.1.原式=lim 2cos x x C -+2.原式=2221lim(1)()lim(1)[lim(1)]22x x x d x x d x x +=+-+⎰⎰ =22111lim(1)lim(1)(1)221221x x x x dx x x dx x x+-=+--+++⎰⎰ =221lim(1)[lim(1)]222x x x x x C +--+++ 3.原式=1221200111(2)(1)222x x e d x e e ==-⎰ 五.sin 1,122dy dy t t t y dx dx ππ=====且 切线:1,1022y x y x ππ-=---+=即 法线:1(),1022y x y x ππ-=--+--=即 六.12210013(1)()22S x dx x x =+=+=⎰ 112242005210(1)(21)228()5315V x dx x x dx x x x ππππ=+=++=++=⎰⎰七.特征方程:2312613032(cos 2sin 2)x r r r i y e C x C x -++=⇒=-±=+ 八.11()dx dx x x x y e e e dx C -⎰⎰=+⎰1[(1)]x x e C x=-+ 由10,0y x C ==⇒=1x x y e x-∴= 《高数》试卷4(上)一、选择题(每小题3分)1、函数 2)1ln(++-=x x y 的定义域是( ).A []1,2-B [)1,2-C (]1,2-D ()1,2-2、极限xx e ∞→lim 的值是( ). A 、 ∞+ B 、 0 C 、∞- D 、 不存在3、=--→211)1sin(limx x x ( ). A 、1 B 、 0 C 、 21- D 、21 4、曲线 23-+=x x y 在点)0,1(处的切线方程是( )A 、 )1(2-=x yB 、)1(4-=x yC 、14-=x yD 、)1(3-=x y5、下列各微分式正确的是( ).A 、)(2x d xdx =B 、)2(sin 2cos x d xdx =C 、)5(x d dx --=D 、22)()(dx x d =6、设 ⎰+=C xdx x f 2cos 2)( ,则 =)(x f ( ).A 、2sin xB 、 2sin x- C 、 C x+2sin D 、2sin 2x-7、⎰=+dx x xln 2( ).A 、C x x ++-22ln 212B 、C x ++2)ln 2(21C 、 C x ++ln 2lnD 、 C x x++-2ln 18、曲线2x y = ,1=x ,0=y 所围成的图形绕y 轴旋转所得旋转体体积=V ( ).A 、⎰104dx x π B 、⎰10ydy πC 、⎰-10)1(dy y π D 、⎰-104)1(dx x π9、⎰=+101dx e e x x( ).A 、21ln e +B 、22ln e +C 、31ln e+ D 、221ln e+10、微分方程 x e y y y 22=+'+'' 的一个特解为( ).A 、x e y 273=* B 、x e y 73=* C 、x xe y 272=* D 、x e y 272=*二、填空题(每小题4分)1、设函数x xe y =,则 =''y ;2、如果322sin 3lim 0=→x mxx , 则 =m .3、=⎰-113cos xdx x ;4、微分方程 044=+'+''y y y 的通解是.5、函数x x x f 2)(+= 在区间 []4,0 上的最大值是,最小值是;三、计算题(每小题5分)1、求极限 x xx x --+→11lim 0 ; 2、求x x y sin ln cot 212+= 的导数;3、求函数 1133+-=x x y 的微分; 4、求不定积分⎰++11x dx;5、求定积分 ⎰ee dx x 1ln ; 6、解方程 21x y xdx dy -= ;四、应用题(每小题10分)1、 求抛物线2x y = 与 22x y -=所围成的平面图形的面积.2、 利用导数作出函数323x x y -= 的图象.参考答案一、1、C ; 2、D ; 3、C ; 4、B ; 5、C ; 6、B ; 7、B ; 8、A ; 9、A ; 10、D ; 二、1、x e x )2(+; 2、94; 3、0 ; 4、xe x C C y 221)(-+= ; 5、8,0三、1、 1; 2、x 3cot - ; 3、dx x x 232)1(6+ ; 4、C x x +++-+)11ln(212; 5、)12(2e - ;6、C x y =-+2212 ;四、1、38;2、图略《高数》试卷5(上)一、选择题(每小题3分)1、函数)1lg(12+++=x x y 的定义域是( ).A 、()()+∞--,01,2B 、 ()),0(0,1+∞-C 、),0()0,1(+∞-D 、),1(+∞-2、下列各式中,极限存在的是( ).A 、 x x cos lim 0→B 、x x arctan lim ∞→C 、x x sin lim ∞→D 、xx 2lim +∞→3、=+∞→x x x x)1(lim ( ).A 、eB 、2eC 、1D 、e 14、曲线x x y ln =的平行于直线01=+-y x 的切线方程是( ).A 、 x y =B 、)1)(1(ln --=x x yC 、 1-=x yD 、)1(+-=x y5、已知x x y 3sin = ,则=dy ( ).A 、dx x x )3sin 33cos (+-B 、dx x x x )3cos 33(sin +C 、dx x x )3sin 3(cos +D 、dx x x x )3cos 3(sin +6、下列等式成立的是( ).A 、⎰++=-C x dx x 111ααα B 、⎰+=C x a dx a x x lnC 、⎰+=C x xdx sin cosD 、⎰++=C x xdx 211tan7、计算⎰xdx x e x cos sin sin 的结果中正确的是( ).A 、C e x +sinB 、C x e x +cos sinC 、C x e x +sin sinD 、C x e x +-)1(sin sin8、曲线2x y = ,1=x ,0=y 所围成的图形绕x 轴旋转所得旋转体体积=V (). A 、⎰104dx x π B 、⎰10ydy πC 、⎰-10)1(dy y π D 、⎰-104)1(dx x π9、设 a ﹥0,则 =-⎰dx x a a022( ).A 、2aB 、22a πC 、241a 0D 、241a π10、方程( )是一阶线性微分方程.A 、0ln 2=+'x yy x B 、0=+'y e y xC 、0sin )1(2=-'+y y y xD 、0)6(2=-+'dy x y dx y x二、填空题(每小题4分)1、设⎩⎨⎧+≤+=0,0,1)( x b ax x e x f x ,则有=-→)(lim 0x f x ,=+→)(lim 0x f x ;2、设 x xe y = ,则 =''y ;3、函数)1ln()(2x x f +=在区间[]2,1-的最大值是 ,最小值是 ;4、=⎰-113cos xdx x ;5、微分方程 023=+'-''y y y 的通解是.三、计算题(每小题5分)1、求极限 )2311(lim 21-+--→x x x x ;2、求 x x y arccos 12-= 的导数;3、求函数21x xy -=的微分;4、求不定积分⎰+dx x x ln 21 ;5、求定积分 ⎰ee dx x 1ln ;6、求方程y xy y x =+'2 满足初始条件4)21(=y 的特解.四、应用题(每小题10分)1、求由曲线 22x y -= 和直线 0=+y x 所围成的平面图形的面积.2、利用导数作出函数 49623-+-=x x x y 的图象.参考答案(B 卷)一、1、B ; 2、A ; 3、D ; 4、C ; 5、B ; 6、C ; 7、D ; 8、A ; 9、D ; 10、B. 二、1、 2 ,b ; 2、x e x )2(+ ; 3、 5ln ,0 ; 4、0 ; 5、x x eC e C 221+. 三、1、31 ; 2、1arccos 12---x xx ; 3、dx x x 221)1(1-- ; 4、C x ++ln 22 ; 5、)12(2e- ; 6、x e x y 122-= ; 四、1、 29 ; 2、图略。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计算题1. 求向量k j i a 434+-=在向量k j i b ++=22上的投影2. 求直线241312-=-=-z y x 与平面062=-++z y x 的交点。
3. 过点(3,0,-1)且与平面3x-7y+5z-12=0平行的平面方程。
4. 求过直线的平面与21121:21123:21zy x L z y x L =-=+-==-. 5.直线过点A (-3,5,-9)且和两直线⎩⎨⎧+=-=⎩⎨⎧-=+=10574:,3253:21x z x y l x z x y l 相交,求此直线方程.6. 已知平面0543:,0122:21=+-=+--y x z y x ππ,求平分21,ππ夹角的平面方程。
7.已知向量b a ,之间的夹角,8,5,60===b a ϕ求b a +与b a -. 8. 已知,24,19,13=+==b a b a 求b a -.9. 已知三点A (7,3,4),B (1,0,6),C (4,5,-2),求ΔABC 的面积.10. 已知,32),(,5,2π===b a b a 问系数λ为何值时,向量b a A 17+=λ与b a B-=3垂直.11. 已知向量b ,之间的夹角,3,2,135===b a ϕ求以b a -2和b a 2+为邻边的平行四边形面积.12.若向量垂直于向量)3,2,1(,)1,3,2(-=-=b ,且于)1,1,2(-=c的数量积等于-6,求.13.求过点(2,-3,1)和直线⎩⎨⎧=+-=--0620165z y y x 的平面方程.14. 求过点(3,2,-1)且与平面x-4z-3=0及2x-y-5z-1=0平行的直线方程. 15. 求过点(1,0,-2)且与平面0643=+-+z y x 平行,又与直线14213zy x =+=- 垂直的直线方程. 16.求通过直线⎩⎨⎧=+-=++0405z x z y x 且与平面01284=+--z y x 成45角的平面方程.17. 求通过直线⎩⎨⎧=+--=+-0620223z y x y x 且与点(1,2,1)的距离为1 的平面方程.18. 已知A (-5,-11,3),B (7,10,-6),C (1,-3,-2),求一平面平行于ΔABC 所在的平面且于它的距离等于2.19. 求直线⎩⎨⎧-=-=5272x z x y 与平面x z 3=的夹角ϕ和交点.20. 求点(-1,2,0)在平面012=+-+z y x 上的投影.21.设)2,1,2(,)3,2,1(,)1,3,2(=-=-=c b ,向量满足,14Pr ,,=⊥⊥r j b a c求.22.设),1,1()8,5,3(,z b a b a b a -=-=-=+,求Z .23. xyxy y x 42lim0+-→→24. 设y x z arctan =,求yz x z ∂∂∂∂, 25.设)2ln(3y x z +=,求)0,1(dz26. 设5222=-+xyz y x ,求dz27.设),(22y y x f z -=,f 具有二阶连续导数,求22,,xzy z x z ∂∂∂∂∂∂.28. 设z=f(u,x,y),yxe u =,其中f 具有连续的二阶偏导数,求yx z∂∂∂229. 设0=-xyz e z,求22xz∂∂30. 设),,(w v u f z =具有连续偏导数,而ηξξζζη-=-=-=w v u ,,,求ζηξ∂∂∂∂∂∂z z z ,, 31. 设04222=-++z z y x ,求22xz∂∂32. 设),(),,()sin(v u y x x xy z ϕϕ+=有两阶偏导数,求y x z∂∂∂2.33. 设),(y x x f z =,其中f 具有二阶连续偏导数,求yx z∂∂∂2.34. 设x y xy u u f z +==其中)(,求xzy z ∂∂∂∂,35.设ϕϕ,,)()(1f y x y xy f x z ++=具有二阶连续导数,求yx z∂∂∂236.设(),sin ,0,,),,,(2x y z e x z y x f u y ===ϕ其中ϕ,f 都具有一阶连续偏导数,且0≠∂∂z ϕ,求dxdu 37.设)(),(x z z x y y ==是由方程)(y x xf z +=和0),,(=z y x F 所确定的函数,其中F f ,分别具有一阶连续导数和一阶连续偏导数,求dxdz38.设,),(02dt e y x f xyt ⎰-=求yfx y y x f x f y x 222222∂∂+∂∂∂-∂∂ 39.223),,(z y x z y x f =,其中),(y x z z =为由03333=-++xyz z y x 所确定的隐函数,试求)1,0,1(-x f40. 设函数),(y x z z =由方程组⎪⎩⎪⎨⎧===-+uvz e y e x vu vu 所确定,求x z y z ∂∂∂∂,41.设)(22y x f yz -=,其中)(u f 为可导函数,验证211y z y z y x z x =∂∂+∂∂ 42.设),(y x f 有连续的偏导数,且x x x f x x f x ==),(,1),(22,求),(2x x f y43.已知,3),(,),(32y x y x f x y x y x f y x +=+=试求),(y x f 44.设f yx xyf z ,)(+=可微分,求dz 45.函数xyz z xy u -+=32在点P (1,1,1)处 沿哪个方向的方向导数最大? 最大值是多少?46.设xy ey x z arctan22)(-+=,求dz47. 计算三重积分dxdydz x ⎰⎰⎰Ω,其中Ω为三个坐标面及平面12=++z y x 所围的闭区域 48. 计算二重积分⎰⎰+Ddxdy x )1(,其中D 由曲线2x y =,直线x+y=2及y=0所围的闭区域。
49. 求⎰⎰-+Dd x y x σ)(22,其中D 是由直线y=2,y=x 及y=2x 所围成的闭区域。
50. 求dv z y x ⎰⎰⎰Ω++222,其中Ω是由球面z z y x =++222所围成的闭区域 51. 计算dv z y x )(++⎰⎰⎰Ω,其中Ω是由平面h z =及曲面222z y x =+(h > 0) 所围成的区域 52. 计算⎰⎰Ddxdy y y sin ,其中D 由抛物线x y =2,直线x y =所围成的平面闭区域 53.计算⎰⎰Dxyd σ,其中D 是由直线1,1,=-==y x x y 所围成的闭区域。
54. 利用柱面坐标计算三重积分⎰⎰⎰+Ωdv y x )(22,其中Ω是由曲面z y x 222=+及平面2=z 所围成的闭区域55. dy xe dx x y ⎰⎰-1103. 56. 计算,2ydxdy x D⎰⎰区域D 是由双曲线122=-y x 及直线y=0,y=1所围成的平面区域 57. 计算{}1),(,≤+=⎰⎰+y x y x D dxdy e Dyx58. σd y x D⎰⎰其中D 是由抛物线2,x y x y ==所围成的闭区域.59. D d y x D,)1(σ⎰⎰--由1,0,0=+==y x y x 围成的区域60. 计算⎰⎰Dxydxdy ,D 为22=+=y x x y 和所围成区域。
61. 计算,)1(4dv x +⎰⎰⎰Ω其中Ω是由4,2,222==+=x x z y x 所围成区域。
62. 计算⎰⎰≤+222R y x d xy σ63. 计算dv z y x )(22++⎰⎰⎰Ω,其中Ω是由曲线⎩⎨⎧==022x zy 绕Z 轴旋转一周而成的曲面与平面Z=4围成的立体64. 计算Ω⎰⎰⎰Ω,dxdydzz 是由球面4222=++z y x 与抛物面z y x 322=+所围成的区域65. 计算⎰⎰≤++222R y x dxdy y x66. 计算⎰⎰+-→Dy x r dxdy y x e r )cos(1lim 2220π,其中D 为中心在原点,半径为r 的圆所围成的区域67.设)(x f 在区间[0,1]上连续,并设A dx x f =⎰1)(,求dy y f x f dx x⎰⎰110)()(68. 计算⎰⎰+=Ddxdy x y I 3 ,其中D :122≤+y x69. 计算⎰⎰Dd x y σarctan ,其中D 是由园周4,12222=+=+y x y x 及直线0,==y x y 所围成的在第一象限内的闭区域 70. 计算Ω⎰⎰⎰Ω,2dxdydz z 是两个球:2222R z y x ≤++和)0(2222 R Rz z y x ≤++的公共部分 71. ⎰⎰∑zds,其中∑是球面9222=++z y x 被平面2=z 截出的顶部 72. ⎰-+Γydz zdy dx x 2:Γ为曲线θθθsin ,cos ,a z a y k x ===上对应θ从0到π的一段弧。
73. 求⎰⎰∑ds ,其中∑为抛物面)(222y x z +-=在xoy 面上方的部分。
74. 计算d x d y z y z d z d x x z d y d ⎰⎰∑-+22,其中∑是由曲面22y x z +=与222y x z --=所围主体表面的外侧.75. 计算⎰+++Ldy x xy dx x y x )sin ()cos (,其中L 为闭曲线1)1(22=+-y x 正向76. 计算,)4()32324dy xy x dx y xy L-++-⎰其中L 是曲线x e x y ππsin 38=上从点(0,0)到点(1,2)的一段弧. 77. 计算曲面积分⎰⎰∑+ds y x )(22,其中∑为曲面22y x z +=及平面 1=z 所围成的立体的表面78. 利用高斯公式计算曲面积分dxdy z dzdx y dydz x 333++⎰⎰∑,其中∑为球面2222a z y x =++的外侧79. 求dy m y e dx my y e x L x )cos ()sin (-+-⎰,其中m 为常数,L 为沿上半园周)0,0(22≥>=+y a ax y x ,从点A(a,0)至点O(0,0).80. ⎰+L xdy ydx 其中L 为园周t R y t R x sin ,cos ==上由01=t 到22π=t 的一段.81.设曲线积分⎰+Ldy x y dx xy)(2ϕ与路径无关,其中)(x ϕ具有连续导数,且0)0(=ϕ,计算⎰+)1,1()0,0(2)(dy x y dx xy ϕ的值82.设L 为取正向的圆周922=+y x ,求曲线积分⎰-+-Ldy x x dx y xy )4()22(2的值83. 计算ds z y L⎰+222,L 为球面2222a z y x =++与平面y x =相交的圆周84. 计算ds x L⎰,其中L 为由直线x y =及抛物线2x y =所围成的区域的整个边界.85. 计算ds eL y x ⎰+22,其中L 为圆周222a y x =+,直线x y =及x 轴在第一象限内所围成的扇形的整个边界.86. 计算ds x L⎰2,其中L 为圆周2222a z y x =++,0=++z y x87. 计算⎰++Lzdz ydy xdx ,其中L 为从(1,1,1)到(2,3,4)的直线段88. .设L 为椭圆13422=+y x ,其周长为a , 求ds y x xy L )432(22++⎰ 89. 计算曲面积分⎰⎰∑++dxdy z dydz z x )2(,其中∑是有向曲面)10(22≤≤+=z y x z , 其法向量与z 轴正向的夹角为锐角 90. 计算曲面积分dxdy z z y x f dxdy y z y x f dydz x z y x f ]),,([]),,(2[]),,([+++++⎰⎰∑,其中),,(z y x f 为连续函数,∑是平面1=+-z y x 在第四挂限部分的上侧91. 计算yzdz x ⎰Γ,其中Γ是用平面z y =截球面1222=++z y x 所得的截痕,从z 轴的正向看去,沿逆时针方向 92. 计算曲面积分y z d x d y d x d y yd y d z y x 4)1(2)18(2--++⎰⎰∑,其中∑是由曲线)31(01≤≤⎩⎨⎧=-=y x y z 绕y 轴旋转一周而成的曲面,其法向量与y 轴正向的夹角恒大于2π93. 计算曲面积分dxdy ay z dxdy ax y dydz az x )()()(232323+++++⎰⎰∑,其中∑为上半球面222y x a z --=的上侧94. 计算空间 曲线积分dz y x dy x z dx z y )()()(222222-+-+-⎰Γ,其中Γ为球面1222=++z y x ,x>0,y>0,z>0 的 围线,当沿着它的正向进行时,该曲面的外面保持在左边.95. 计算空间 曲线积分dz y x dy z x dx y z )()()(-+-+-⎰Γ,其中Γ是曲线⎩⎨⎧=+-=+2122z y x y x 从z 轴正向往z 轴负向看Γ的方向是顺时针的 96. 计算曲面积分⎰⎰∑dxdy xyz,其中∑是球面1222=++z y x 上满足x ≥0,y ≥0部分的外侧97. 求级数nn n n x n∑+∞=132的收敛区间 98. 求级数∑-∞=-11212n n n x 的和函数。