图形的平移和旋转

合集下载

图形的平移和旋转(经典)

图形的平移和旋转(经典)

DCFE CBA第四讲 图形的平移与旋转【基础知识精讲】一、平移:1.平移的定义——在平面内,把一个图形沿某一个方向移动一定的距离,这样的图形运动叫图形的平移。

说明:(1)平移是图形的一种运动(变换)(2)平移的要素:①平移方向;②平移距离。

2.平移的性质:①平移前后图形的大小、形状都不改变。

即:平移前后的图形全等形。

②平移前后对应点的连线段平行(或在同一直线上)且相等;对应线段平行(或在同一直线上)且相等;对应角相等。

二、旋转1.旋转的定义——在平面内,把一个图形绕一个定点沿着某一个方向转动一个角度,这样的图形运动叫图形的旋转。

说明:(1)旋转是图形的一种运动(变换)(2)旋转的要素: ①旋转中心 ②旋转方向 ③旋转角2.旋转的性质①旋转前后图形的大小、形状都不改变。

即:旋转前后的图形全等形。

②图形上任意点都绕中心沿相同方向转动相同的角度(旋转角); ③对应点到旋转中心的距离相等。

【重难点高效突破】例1.如图,经过平移△ABC 的边AB 移到了EF ,作出平移后的三角形.例2.如图,△ABC 绕C 点旋转后,B 转到了D 处,作出旋转后的三角形。

例3.如图,在长32m 宽20m 的土地上要修筑同样宽的两条“之”字路,路宽2m ,则剩余耕地的面积为 . 例4、如图,E 为正方形ABCD 的边AB 上一点,AE=3,BE=1,P 为AC 上的动点,则PB+PE 的最小值是_________.例5、如图,△ABC 是等腰直角三角形,AB=AC ,D 是斜边BC 的中点,E 、F 分别是AB 、AC 边上的点,且DE ⊥DF ,若BC=12,CF=5,则△DEF 的面积为______________。

例6、如图,在△ABC 中,AB 2=32,∠BAC=45°, ∠BAC 的平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点,求BM+MN 的最小值。

例7、如图,设P 为等边△ABC 内的一点,且PA=3,PB=4,PC=5,能否确定∠APB 的大小?请说明理由。

图形的平移与旋转

图形的平移与旋转

图形的平移与旋转
一、平移变换
1、平移概念:在平面内,将一个图形沿着某个方向移动
一定的距离,这样的图形运动叫做平移。

2、性质:(1)平移前后图形全等(平移不改变图形的形
状和大小)
(2)对应点连线平行或在同一直线上且相等?(图形上的每一个点都沿着同一个方向移动相同的距离)
(3)经过平移对应点所连接的线段平行且相等,对于线段平行且相等。

3、平移的作图步骤和方法
(1)分清题目要求,确定平移的方向和平移的距离
(2)分析所作的图形,找出构成图形的关键点。

(3)沿一定的方向,按一定的距离平移各个关键点。

(4)连接所作的各个关键点,并标上响应的字母。

(5)写出结论。

二、旋转变换
1、概念:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动叫做旋转。

说明:(1)图形的旋转是由旋转中心和旋转的角度决定的(2)旋转过程中旋转中心始终不动。

(3)旋转过程中,旋转的方向是相同的。

(4)旋转过程静止时,图形上一个点的旋转角度是一样的。

(5)旋转不改变图形的形状和大小。

3、旋转作图的步骤和方法
(1)确定旋转中心及旋转方向,旋转角。

(2)找出图形的关键点。

(3)将图形的关键点和旋转中心连接起来,然后按旋转方向分别将它们旋转一个角度数,得到这些关键点的对应点。

(4)按原图形顺次连接这些对应点所得到的图形就是旋转后的图形。

说明:在旋转作图时,对应点与旋转中心的夹角即旋转角。

旋转和平移都是改变图形位置,而不改变图形的形状和大小。

平移与旋转的性质

平移与旋转的性质

平移与旋转的性质在数学中,平移和旋转是常见的几何变换操作。

它们分别意味着通过移动对象的位置或者旋转对象的方向来改变它们的形状或者位置。

本文将介绍平移和旋转的性质,并探讨它们在实际生活中的应用。

一、平移的性质平移是指在平面或者空间中按照规定的方向和距离,将图形的每个点都沿着相同的路径移动。

以下是平移的一些性质:1. 平移不改变图形的大小和形状,只改变了图形的位置。

例如,一张纸条平移到桌子上的另一边,纸条的形状和长度都没有发生改变。

2. 平移是保持图形内部的相对位置不变的变换。

也就是说,图形中的每一对点之间的距离和角度关系在平移前后保持不变。

3. 平移可以自由进行组合。

即使将多个图形进行平移操作,它们之间的相对位置关系仍然保持不变。

平移在日常生活中有广泛的应用。

例如,在矿山中,把挖掘出来的矿石通过平移方式运输到生产线的下一个环节,可以提高工作效率并减少人力成本。

此外,在城市规划中,规划师可以通过平移建筑物或者道路来优化城市的布局。

二、旋转的性质旋转是指围绕着一个中心点,按照一定的角度将图形沿着一个圆周或者轴线进行转动。

以下是旋转的一些性质:1. 旋转同样不改变图形的大小和形状,只改变了图形的方向。

如果我们旋转一个正方形,它仍然是正方形,只是方向改变了。

2. 旋转可以改变图形中点与点之间的距离和角度关系。

例如,旋转一个矩形,原先垂直的边可能会变为斜边。

3. 旋转也可以进行组合操作。

多个图形进行旋转后,它们的相对位置关系可能发生变化。

旋转在现实生活中也有广泛的应用。

例如,在建筑设计中,设计师可以通过旋转建筑物的平面图,探索不同的视角和光线照射下的外观效果,以便于更好地优化设计。

此外,在工业生产中,机械加工时的旋转切削操作可以使得切削工具更均匀地削减工件,提高加工质量。

总结起来,平移和旋转是常见的几何变换操作,它们在数学中具有一些共同的性质。

平移只改变图形的位置而不改变形状,而旋转不仅改变位置,还改变方向。

数学中的平移与旋转变换

数学中的平移与旋转变换

数学中的平移与旋转变换平移变换和旋转变换是数学中常见的两种几何变换方式。

它们在几何学、计算机图形学等领域有着广泛的应用。

本文将介绍平移变换和旋转变换的基本概念、数学表示和实际应用。

一、平移变换平移变换是指将一个图形在平面上移动一段距离,保持图形的形状和大小不变。

平移变换是一种刚体变换,即变换之后的图形与原始图形相似但不重合。

平移变换的数学表示是一个二维向量,表示平移的横向和纵向的距离。

如果一个平面上的点P(x, y)进行平移变换,假设平移向量为v,则变换后的点P'的坐标为P'(x + v1, y + v2)。

其中,v1和v2分别表示平移向量在x轴和y轴上的分量。

平移变换可以用来描述物体的位移、运动和位置变化。

在计算机图形学中,平移变换被广泛应用于图像处理、动画制作等领域。

二、旋转变换旋转变换是指将一个图形绕一个固定点旋转一定角度,保持图形的形状和大小不变。

旋转变换同样是一种刚体变换,变换后的图形与原始图形相似但不重合。

旋转变换的数学表示是一个旋转矩阵,通过矩阵相乘的方式实现旋转。

设点P(x, y)绕一个点O旋转θ角度,变换后的点P'的坐标可表示为:```P' = |cosθ -sinθ | * P|sinθ cosθ |```其中,cosθ和sinθ分别表示角度θ的余弦和正弦值。

旋转变换在几何学、物理学和计算机图形学中有着广泛的应用。

它可以用来描述物体的旋转、变形和方向的变化。

三、平移与旋转的组合变换平移变换和旋转变换可以通过组合运算,实现更加复杂的图形变换。

在组合变换中,先进行平移变换,然后再进行旋转变换。

设点P(x, y)先进行平移变换,假设平移向量为v,则平移后的点为P'(x + v1, y + v2)。

再将平移后的点P'绕一个点O旋转θ角度,变换后的点为P''。

组合变换的数学表示为:```P'' = R * P'= R * (P + v)```其中,R表示旋转矩阵,P表示原始点的坐标,v表示平移向量。

图形的平移与旋转

图形的平移与旋转

我喜欢的艺术形式在我的生命中,艺术一直是我的灵魂之一。

它们给予我灵感,帮助我看到其他方面未曾看到的东西,深化了我的思考方式。

我的喜欢的艺术形式包括音乐、书法和雕塑。

音乐是我最喜欢的艺术形式之一。

它可以带你进入一个崭新的世界,让你在充满情感的旋律中沉浸。

对我而言,音乐是一种信仰,它让我进入一个完全与外界隔离的领域。

听音乐时,我可以独自思考、反省和放松。

对这个世界形形色色的音乐,我都有所了解和欣赏,但我最喜欢的还是爵士。

爵士曲风包含了丰富的文化、历史和音乐元素,是音乐中的瑰宝。

它的旋律富有情感、节奏感强烈、变化多端,每一首都带有与别不同的灵魂和风韵。

每次听爵士音乐时,我都会感受到其中复杂的调和和深层的意义,同时在欣赏中不断找寻着自我。

我也非常喜欢书法。

书法艺术是东方文化的瑰宝,随着时间的推移,逐渐成为了具有独特形式的艺术。

用毛笔和墨水写字,书法艺术呈现出的充满个性和灵气,可以表达出动人心魄的视觉冲击力,同时涵盖丰富的思想和意涵。

对我而言,书法是一种美丽的表达方式,是一种能够帮我表达自己想法的方式。

当我坐下来,拿起笔、墨水和纸时,我进入了一个完全不同的世界,并沉浸在其中。

我能够用笔的用心制作出独特的笔划和彩墨,而且在用毛笔写字的那段时间,我可以把所有的愤怒和烦恼都表达出来。

在那一瞬间,我只有墨、纸和我的心思,而它们成为了我的思想积累。

最后,我非常喜欢雕塑。

在每件雕塑作品里,雕塑家都融入了他们的灵魂和观点,这对我来说是令人震撼的。

每一个雕塑作品都可以让我感受到雕塑家灵魂对这个世界的见解,同时也给我提供了一个新的观点来看待这个世界。

我欣赏那些流畅、精致和内涵丰富的作品,更喜欢那些把现实与虚幻结合在一起的作品,同时欣赏那些充满奇异与幻想的作品。

总的来说,音乐、书法、雕塑三种艺术形式均具有自己的独特之处,它们各自呈现出来的灵感和意味让人们无限想象。

在我看来,艺术不仅是为了娱乐,更为了能够帮我们了解自己、世界和生命的真谛。

图形的旋转与平移

图形的旋转与平移

图形的旋转与平移图形的旋转与平移在几何学中起着重要的作用,它们能够帮助我们理解和描述物体在平面上的位置和形态的变化。

本文将介绍图形的旋转和平移的概念、特性及其应用。

一、图形的旋转旋转是指围绕某一点或某一轴线进行转动,使图形按一定角度沿轴旋转后得到的新图形。

图形的旋转有以下几个重要特性:1. 旋转角度:指图形旋转的角度,可以是逆时针方向的正角度或顺时针方向的负角度。

2. 旋转中心:指图形旋转的中心点,可以是图形内部的某个点,也可以是图形外部的某个点。

3. 旋转方向:旋转可以按逆时针方向或顺时针方向进行。

图形的旋转可以应用于许多领域,如计算机图形学、工程制图等。

在计算机图形学中,旋转可用于实现图像的变换和动画效果。

二、图形的平移平移是指沿着平行于某一方向的轴线移动图形,使图形在平面上平行地移动到另一个位置,但形状和大小保持不变。

图形的平移有以下几个重要特性:1. 平移向量:指平移移动的方向和距离,可以用向量表示。

2. 平移方向:平移可以沿着任意方向进行,只要是平行于轴线即可。

3. 平移距离:指图形平移的具体距离。

平移常用于地图上的位置标记、机械设计、建筑设计等领域。

在计算机图形学中,平移可用于实现图像的拖动和位置调整。

三、旋转与平移的组合应用旋转和平移常常需要组合应用,以实现更加复杂的变换效果。

例如,在游戏开发中,我们可以利用旋转和平移将一个平面上的二维图形转换为在三维空间中的位置和姿态,以实现更真实的游戏画面。

旋转和平移的组合应用还可用于机器人控制、航天器轨道设计等领域。

通过将图形围绕不同的方向旋转和平移,可以控制机器人或航天器在空间中的位置和方向。

总结:图形的旋转与平移是几何学中的基本概念,它们能够帮助我们描述和理解物体的位置和形态变化。

通过旋转和平移,我们可以实现图像的变换、位置调整和动画效果等。

无论是在计算机图形学还是实际应用中,旋转与平移都具有重要的意义。

理解和掌握图形的旋转与平移,对于几何学的学习和应用都具有重要的帮助。

什么是平移 什么是旋转

什么是平移 什么是旋转

很多同学学习几何时对于一些概念都不是很了解。

那么什么是平移?什么是旋转呢?
平移简介
平移,是指在同一平面内,将一个图形上的所有点都按照某个直线方向做相同距离的移动,这样的图形运动叫做图形的平移运动,简称平移。

平移不改变图形的形状和大小。

图形经过平移,对应线段相等,对应角相等,对应点所连的线段相等。

它是等距同构,是仿射空间中仿射变换的一种。

它可以视为将同一个向量加到每点上,或将坐标系统的中心移动所得的结果。

即是说,若是一个已知的向量,是空间中一点,平移。

旋转的定义
在平面内,一个图形绕着一个定点旋转一定的角度得到另一个图形的变化叫做旋转。

这个定点叫做旋转中心,旋转的角度叫做旋转角,如果一个图形上的点A经过旋转变为点A',那么这两个点叫做旋转的对应点。

平移和旋转的区别与联系
1、区别:旋转不改变物体在空间上的位置不发生位移,平移将一个图形上的所有点都按照某个直线方向做相同距离的移动发生了位移。

2、联系:旋转和平移都是物体运动现象,在运动中都没有改变本身的形状、大小与自身性质特征。

以上就是一些有关于平移和旋转的相关信息,供大家参考。

图形的平移与旋转

图形的平移与旋转
将线段OP绕点O逆时针旋转90°到OP′位置,则点P′的坐标为( C ) A.(3,4) B.(-4,3) C.(-3,4) D.(4,-3)
解 如图,OA=3,PA=4,
∵线段OP绕点O逆时针旋转90°到OP′位置,
∴OA 旋转到 x 轴负半轴 OA′ 的位置, ∠P′A′O =
∠PAO=90°,OA′=OA=3,P′A′=PA=4,
A.把△ABC向左平移4个单位,再向下平移2个单位
B.把△ABC向右平移4个单位,再向下平移2个单位
C.把△ABC向右平移4个单位,再向上平移2个单位
D.把△ABC向左平移4个单位,再向上平移2个单位
2.如图,将周长为8的△ABC沿BC方向平移1个单位得到△DEF,则四边
形ABFD的周长为( C )
∵PB= 22+32= 13, 90π· 13 13 ∴点 B 运动的最短路径长= 180 = 2 π.
【变式4】 (2017· 盐城)如图,在边长为1的小正方形网格中,将△ABC 13 π 绕某点旋转到△A′B′C′的位置,则点B运动的最短路径长为_______. 2

答案
解题要领
旋转变换是几何证明题中一种很重要的解题技巧,在同一平
剖析
正确解答
分析与反思
错误答案展示 解:在AM、MN、NB中,MN是一个定值,因此AM+MN +NB的最小值就是求AM+NB的最小值.如图,连接AB交河岸边为M, 过M作MN垂直于河岸的另一边,则MN为最佳的造桥位置.
剖析
正确解答
分析与反思
剖析 虽然A、B两点在河两侧,但连接AB的线段不垂直于河岸,由于 MN是一个定值,要求出AM+MN+NB最短,关键在于使AM+BN最 短,根据“两点之间线段最短”,为此,最有效的办法还是把它们移 到一起讨论,利用平行四边形的特征可以实现这一目的. 正确解答 解:如图,作BB′垂直于河岸GH,使BB′等于河宽,连接 AB′,与河岸EF交于点M,作MN⊥GH, 则MN∥BB′,MN=BB′, ∵MNBB′为平行四边形,∴NB=MB′. 根据“两点之间线段最短”可知,AB′最短,

图形的平移和旋转知识点

图形的平移和旋转知识点

图形的平移和旋转【图形的平移】(1) 平移的概念:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移,平移不改变图形的形状和大小.注意:①平移是运动的一种形式,是图形变换的一种,本讲的平移是指平面图形在同一平面内的变换.②图形的平移有两个要素:一是图形平移的方向,二是图形平移的距离,这两个要素是图形平移的依据.③图形的平移是指图形整体的平移,经过平移后的图形,与原图形相比,只改变了位置,而不改变图形的大小,这个特征是得出图形平移的基本性质的依据.(2)平移的基本性质:由平移的基本概念知,经过平移,图形上的每一个点都沿同一个方向移动相同的距离,平移不改变图形的形状和大小,因此平移具有下列性质:经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.注意:①要正确找出“对应线段,对应角”,从而正确表达基本性质的特征.②“对应点所连的线段平行且相等”,这个基本性质既可作为平移图形之间的性质,又可作为平移作图的依据.(3)简单的平移作图平移作图:确定一个图形平移后的位置所需条件为:①图形原来的位置;②平移的方向;③平移的距离.1, 【典型例题】例 1.如图,△ABC 绕 C 点旋转后,顶点 A 的对应点为点 D ,试确定顶点 B 对应点的位置,以及旋转后的三角形.分析:绕 C 点旋转,A 点的对应点是 D 点,那么旋转角就是∠ACD ,根据对应点与旋转中心所连线段的夹角等于旋转角即∠BCB′=ACD, 又由对应点到旋转中心的距离相等,即CB=CB ′,就可确定 B′的位置,如图所示.解:(1)连结 CD(2) 以 CB 为一边作∠BCE,使得∠BCE=∠ACD(3) 在射线 CE 上截取 CB′=CB则 B′即为所求的 B 的对应点.(4) 连结 DB′则△DB′C 就是△ABC 绕 C 点旋转后的图形.例 2.如图,四边形 ABCD 是边长为 1 的正方形,且 DE= 1 ,4△ABF 是△ADE 的旋转图形.(1) 旋转中心是哪一点?(2) 旋转了多少度?(3) AF 的长度是多少?(4) 如果连结 EF ,那么△AEF 是怎样的三角形?分析:由△ABF 是△ADE 的旋转图形,可直接得出旋转中心和旋转角,要求AF 的长度,根据旋转前后的对应线段相等,只要求 AE 的长度,由勾股定理很容易得到. △ABF 与△ADE 是完全重合的,所以它是直角三角形.解:(1)旋转中心是 A 点.(2)∵△ABF 是由△ADE 旋转而成的∴B 是 D 的对应点∴∠DAB=90°就是旋转角(3)∵AD=1,DE= 1412 (1)2 4∴AE= = 4∵对应点到旋转中心的距离相等且 F 是 E 的对应点∴AF= 174(4)∵∠EAF=90°(与旋转角相等)且 AF=AE ∴△EAF 是等腰直角三角形.【图形的旋转】(1) 旋转的概念:图形绕着某一点(固定)转动的过程,称为旋转,这一固定点叫做旋转中心。

平移与旋转的概念与性质

平移与旋转的概念与性质

平移与旋转的概念与性质平移和旋转是数学中常见的几何变换方式,它们在几何学、计算机图形学、物理学等领域中都有广泛应用。

本文将介绍平移和旋转的概念以及它们的性质。

一、平移的概念与性质平移是指将一个图形按照指定的方向和距离在平面上移动,移动后的图形形状与原图形完全相同。

平移可以用向量表示,通过将图形的每个点都按照同样的位移量进行平移。

1. 平移的概念平移可以视为一种刚体运动,它保持图形的形状和大小不变,只是位置发生了改变。

平移可以沿任意方向进行,它不改变图形的内部结构和角度关系。

2. 平移的性质(1)平移不改变图形的面积、周长和角度大小。

(2)平移具有可逆性,即平移后再进行逆向平移可以回到原来的位置。

(3)平移可以用向量运算表示,例如一个点P(x, y)经过向量v(a, b)的平移后的新位置为P'(x+a, y+b)。

二、旋转的概念与性质旋转是指将一个图形围绕某个点或某条线进行旋转,使得图形绕旋转中心旋转一定的角度,旋转后的图形与原图形形状相似但位置不同。

旋转也可以用向量表示,通过将图形的每个点都绕旋转中心旋转同样的角度。

1. 旋转的概念旋转是一种刚体变换,它改变了物体的方向和位置,但保持了物体的形状和大小。

旋转可以绕任意点或任意直线进行,旋转中心可以在图形内部,也可以在图形外部。

2. 旋转的性质(1)旋转不改变图形的面积和周长,但可能改变图形的角度大小。

(2)旋转具有可逆性,即旋转后再进行逆向旋转可以回到原来的位置。

(3)旋转可以用矩阵运算表示,例如一个点P(x, y)绕原点逆时针旋转角度θ后的新位置为P'(x', y'),其中x' = x*cosθ - y*sinθ,y' =x*sinθ + y*cosθ。

三、平移与旋转的关系平移和旋转都是刚体变换中的一种,它们可以通过复合运算相互转化。

1. 平移与旋转的复合如果一个图形先进行平移,再进行旋转,那么得到的结果与先进行旋转,再进行平移得到的结果是一样的。

图像的平移与旋转 知识点

图像的平移与旋转 知识点

第三章图像的平移与旋转第一节图形的平移1.在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动叫做平移。

2.一个图形经过平移后得到一个新的图形,这个图形能与原图形相互重合,只是位置发生了变化。

我们把能够相互重合的点称为对应点,能够相互重合的角称为对应角,能够相互重合的线段称为对应线段。

3.平移的条件:确定一个图形平移后的位置,除需要原来的位置外,还需要一一对应的点的位置或平移的方向和距离,平移的方向为原图上的点指向它的对应点的方向,这一对对应点连接的线段的长是平移的距离。

注:(1)图形的平移有两个基本的条件:方向(任意方向);距离(2)平移改变了图形的位置,但不改变图形的形状和大小。

4.平移的性质:(1)平移后的图形与原图形对应点所连线段平行或在一条直线上且相等;(2)平移后的图形与原图形对应线段平行(或在一条直线上)且相等;(3)平移后的图形与原图形对应角相等。

5.平移作图常见形式及作法:第二节图形的旋转1.旋转:在平面内,将一个图形绕一个定点按某个方向转动一个角度,这样的图形运动称为旋转。

这个定点被称为旋转中心,转动的角称为旋转角。

旋转不改变图形的形状和大小。

注:旋转是在平面内,而不是在空间内;旋转后的图形与原图形的形状、大小都相同,但形状、大小都相同的两个图形不一定可以通过旋转得到;旋转的角度一般小于360度。

2.旋转的三要素:图形的旋转由旋转中心、旋转的角度和旋转的方向所决定。

3.旋转的性质:一个图形和它经过旋转所得的图形中,对应点到旋转中心的距离相等,任意一组对应点与旋转中心的连线所成的角都等于旋转角;对应线段相等,对应角相等。

4.简单的旋转作图:旋转、平移、轴对称的异同:(1)三者的相同点:都是在平面内的图形变换不涉及立体图形的变换;三中变换都是只改变图形的位置,不改变形状和大小,其对应边相等,对应角相等。

(2)不同点:旋转、平移及轴对称的运动方式不同,旋转的运动方式是将一个图形旋转一定角度;而平移的运动方式则是将一个图形沿一条直线对折;旋转、平移及轴对称的对应线段、对应角之间的关系不同。

小学数学中的图形平移和旋转

小学数学中的图形平移和旋转

图形平移和旋转是小学数学中的重要内容,通过学习这两个概念,孩子们可以更好地理解和掌握数学知识。

在小学阶段,孩子们开始接触平面图形,平移和旋转就是对这些图形进行变换的方法。

首先,我们来了解一下图形平移。

平移是指在平面上将一个图形沿着某个方向移动一段距离而保持图形原来形状和大小的变换方式。

在平移过程中,图形上的点保持相对位置不变。

例如,我们可以把一个正方形沿着横向平移,或者沿着纵向平移,结果都是正方形的形状和大小不变,只是位置改变了。

平移还可以作用于其他图形,如长方形、三角形等等。

平移有很多实际应用。

比如,在日常生活中,我们经常使用平移概念来描述物体的位置变换。

如果我们把一杯水从桌子上移动到书架上,就是一个平移的过程。

在地理学中,我们也经常使用平移来表达地壳板块的位置变化。

接下来,我们来了解一下图形旋转。

旋转是指围绕某个定点将一个图形转动一定角度而保持图形原来形状和大小的变换方式。

在旋转过程中,图形上的每一个点都绕着定点进行旋转。

例如,我们可以将一个正方形围绕一个定点旋转90度,结果仍然是一个正方形,只是方向改变了。

旋转同样可以作用于其他图形,如长方形、三角形等等。

图形旋转也有很多实际应用。

在建筑设计中,我们经常使用旋转来改变房屋的朝向或者调整室内家具的位置。

在机械制造中,旋转也是常见的概念,比如车床上的金属材料围绕旋转轴旋转进行加工。

通过学习图形平移和旋转,孩子们不仅可以加深对图形的理解,还可以培养创造思维和空间想象力。

在解决实际问题时,他们可以利用平移和旋转的概念来找到最佳解决方案。

在教学中,老师可以通过举例子、展示实物、使用计算机软件等多种方式来引导学生理解和掌握图形平移和旋转的方法。

同时,也可以让学生亲自动手实践,通过自己操作图形来感受平移和旋转的过程。

这样可以帮助学生更好地理解这两个概念。

总之,图形平移和旋转是小学数学中重要的内容。

通过学习图形平移和旋转,孩子们可以培养空间想象能力,提高解决问题的能力。

五年级图形的平移和旋转

五年级图形的平移和旋转

五年级图形的平移和旋转Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】图形的平移和旋转知识点讲解:平移的概念:平移,是指在平面内,将一个图形上的所有点都按照某个方向作相同距离的移动,这样的图形运动叫做图形的平移运动,简称平移。

平移的条件:确定一个平移运动的条件是平移的和距离。

平移特征:1、平移前后图形的形状、大小不变,只是位置发生改变。

2、新图形与原图形的对应点所连的线段平行且相等(或在同一直线上)。

3、新图形与原图形的对应线段平行且相等,对应角相等。

旋转的概念:在平面内,把一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转。

在画旋转图形时,点O叫做旋转中心,旋转的角叫做旋转角,如果图形上的点P经过旋转变为点Pˊ,那么这两个点叫做这个旋转的对应点。

旋转的特征:1、对应点到旋转中心的距离相等。

2、对应点与旋转中心所连线段的夹角等于旋转角。

3、旋转前、后的图形全等。

旋转三要素:①旋转中心②旋转方向③旋转角度课堂练一练一.涂色1、把图形向右平移7格后得到的图形涂上颜色。

2、把图形向左平移5格后得到的图形涂上颜色。

3、把图形向右平移4格后得到的图形涂上颜色。

二、利用平移知识画图或填空1.画出小船向右平移6格后的图形2.、画出向右平移6格后的图形3、(1)小汽车向()平移了()格。

(2)小船向()平移了()格。

(3)小飞机向()平移了()格。

4、(1)绕O点顺时针旋转 90度。

(2)向右平移5格5、画出花瓶向上平移 6、(1)画出三角形绕O点逆时针旋转90度4格后的图形,再的图形。

画出它继续向左平(2)画出梯形绕O点顺时针旋转90度移7格后的图形。

的图形78平移和旋转练习题(一)一、连一连。

OO升旗时国旗的运动时针的运动在算盘上拨珠平移电梯的运动风扇叶片的运动火车的运动光盘在电脑里的运动? 旋转把握汽车的方向盘二、操作。

1、向( )平移了( )格。

平移和旋转

平移和旋转

平移和旋转的区别是:在图形当中,将一个图形从一个地方变换到另一个地方,这种过程叫做平移。

一个图形围着一个定点旋转到一定的角度,这种过程叫做旋转。

在准确的平移过程中,无论哪个对应点,他们的前进方向均保持一种平行状态。

而旋转最主要的在于准确的旋转过程中,旋转只围绕着一个点或轴,进行圆周运动。

无论是旋转变化还是平移变化,他们双方的进行过程均不会导致图形的状态和大小产生变化,双方保持不变的还有各项对应点之间的距离。

“平移和旋转”是两个抽象的概念,但是平移与旋转现象在生活中却无处不在。

从数学的意义上讲,平移和旋转是两种基本的图形变换。

图形的平移和旋转对于帮助学生建立空间观念,掌握变换的数学思想方法有很大作用。

因此,我们在教学时应充分考虑学生的认知水平,寻找新知识与学生已有经验的联系,尽可能选取学生熟悉的、丰富有趣的生活实例,同时注意突出所选事例的本质属性,使学生能抓住特征并达到初步感知的效果。

本节课主要是让学生充分动手操作,仔细观察,让学生在“做中学”,体验“平移和旋转”的相关知识,从而培养学生的实践能力和创新意识,使之获得良好的情感体验,提高学习能力。

图形的平移与旋转知识点

图形的平移与旋转知识点

图形的平移与旋转知识点第三章图形的平移与旋转复要点专点一:图形的平移1.平移的定义:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。

平移是由移动的方向和距离决定的。

2.平移的性质:(1)平移不改变图形的形状和大小:即平移前后的线段相等,平移前后的三角形或多边形全等。

(2)平移后的图形与原来图形的对应线段平行且相等,对应角相等。

(3)平移后两图形的对应点所连的线段平行且相等。

专点二:图形的旋转1.旋转的定义:在平面内,将一个图形绕着一个定点沿着某个方向(顺时针或逆时针)旋转一定的角度,这样的图形运动成为旋转,这个定点称为旋转中心,旋转的角度称为旋转角。

2.旋转的性质:(1)旋转不改变图形的形状和大小:即旋转前后的图形是一组全等形。

(2)旋转后的图形与原来的图形的对应线段相等,对应角相等。

(3)经过旋转,图形上的每点都绕着旋转中央沿相同的方向转动了相同的角度。

(4)任意一对对应点与旋转中央的间隔相称。

考点三、中心对称1、定义把一个图形绕着某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。

2、性质(1)关于中心对称的两个图形是全等形。

(2)关于中央对称的两个图形,对称点连线都经过对称中央,而且被对称中央中分。

(3)关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等。

3、判定如果两个图形的对应点连线都经过某一点,而且被这一点中分,那末这两个图形关于这一点对称。

4、中心对称图形把一个图形绕某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个店就是它的对称中心。

考点四、坐标系中对称点的特征1、关于原点对称的点的特征:两个点关于原点对称时,它们的坐标的符号相反,即点P(x,y)关于原点的对称点为P’(-x,-y)2、关于x轴对称的点的特征:两个点关于x轴对称时,它们的坐标中,x相等,y的符号相反,即点P(x,y)关于x 轴的对称点为P’(x,-y)3、关于y轴对称的点的特征:两个点关于y轴对称时,它们的坐标中,y相等,x的符号相反,即点P(x,y)关于y轴的对称点为P’(-x,y)专点五:利用轴对称、旋转和平移作图1.平移作图的一般步骤:(1)确定平移的方向和距离;(2)确定构成图形的枢纽点(线段两个端点,三角形三个极点,n边形n个顶点);(3)按照平移的方向和距离平移各个关键点;(4)顺次连接各个枢纽点的对应点,所得的图形就是平移后的图形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学校:年级:教学课题:学员姓名:辅导科目:数学学科教师:教学目标1.掌握图形平移的两个要素和性质;2. 理解点的平移对其坐标的影响。

3.掌握图形旋转的三要素和性质;4. 会找图形旋转的角度和旋转中心。

5.图形平移和旋转的性质;6.在平移与旋转背景下进行几何证明与计算。

教学内容【知识点总述】1.平移的定义与规律(1)定义:在平面内将一个图形沿某个方向移动一定的距离,•这样的图形运动称为平移.关键:平移不改变图形的形状和大小,也不会改变图形的方向.(2)平移的规律:经过平移,对应线段、对应角分别相等,•对应点所连的线段平行且相等(或共线且相等).(3)简单作图平移的作图主要关注要点:1.方向,2.距离.整个平移的作图,就象把整个图案的每个特征点放在一套平行的轨道上滑动一样,每个特征点滑过的距离是一样的.2.旋转的定义与规律(1)定义:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,•这样的图形运动称为旋转.关键:旋转不改变图形的大小和形状,但改变图形的方向.(2)旋转的规律经过旋转,图形上的每一点,都绕旋转中心沿相同方向转动了相同的角度,任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等.(3)简单的旋转作图旋转作图关键有两点:①旋转方向,②旋转角度.主要分四步:边、转、截、连.旋转就象把每个特征点与旋转中心用线连住的风筝,每个点转的角度是相同的,每个点与旋转中心的距离是不会改变的,即对应点与旋转中心距离相等.3.图案的分析与设计首先找到图中的基本图案,然后分析其图案与它的关系,即由它作何种运动变换而形成的,我们主要遇到的变换有:轴对称、平移、旋转.在相似形一章里还会学到图形的放大与缩小等.【考点与命题趋势分析】(一)考点1.图形的平移(1)通过具体实例认识平移,探索它的基本性质,•理解对应点连线平行且相等的性质.(2)能按要求作出简单平面图形平移后的图形.(3)利用平移进行图案设计,认识和欣赏平移在现实生活中的应用.2.图形的旋转.(1)通过具体实例认识旋转,探索它的基本性质,•理解对应点到旋转中心的距离相等、对应点与旋转中心连线所成的角彼此相等的性质.(2)了解平行四边形、圆是中心对称图形.(3)能够按要求作出简单平面图形旋转后的图形.(4)欣赏旋转在现实生活中的应用.(5)探索图形之间的变换关系(轴对称、平移、旋转及其组合).(6)灵活运用轴对称、平移和旋转的组合进行图案设计.二)命题趋向分析近几年来,利用图形的平移出中考题在各省市屡见不鲜,有些题动手动脑程度很高,要求学生动手操作能力强.能够猜想、验证题目的结论,探索用平移变换解决比较复杂的问题.值得注意的是新课标把平移与旋转引入新课程,又增加了图案设计内容,本章内容将成为今后几年中考命题的热点之一.例1(2002年河北省)请你完成下列问题.图形的操作过程(本题中四个长方形的水平方向的边长均为a,•竖直方向的边长均为b);在图1中,将线段A1A2向右平移1个单位到B1B2,得到封闭图形A1A2B2B1(即阴影部分);(1)(2)(3)在图2中,将折线A1A2A3向右平移1个单位到B1B2B3,得到封闭图形A1A2A3B3B2B1(即阴影部分).(1)在图3中,请你类似地画一条有两个折点的折线,同样向右平移一个单位,•从而得到一个封闭图形,并用斜线画出阴影.(2)请你分别写出上述三个图形中除去阴影部分后剩余部分的面积:S1=_____,S2=_______,S3=_______;(3)联想与探索如图4,在一块长方形草地上,有一条弯曲的柏油小路(小路任何地方的水平宽度都是1个单位),请你猜想空白部分表示的草地面积是多少,并说明你的猜想是正确的.(4)(5)(6)例3如图,田村有一口呈四边形的池塘,在它的四角A、B、C、D•处均种有一棵大核桃树.田村准备开挖池塘建养鱼池,想使池塘面积扩大一倍,又想保持核桃树不动,并要求扩建后的池塘成平行四边形形状,请问田村能否实现这一设想?若能,请你设计并画出图形;若不能,请说明理由(画图要保留痕迹,不写画法.){分析}此题考查的是中心对称(或旋转)的应用.连结AC 、BD 相交于O ,•将△ABO 、△BCO 、△CDO 、△DAO 分别绕AB 、BC 、CD 、DA 的中点旋转180°,•拼成一个平行四边形.例4如图,有边长为1的等边三角形ABC 和顶角为120°的等腰△DBC ,•以D 为顶点作60°角,两边分别交AB 、AC 于M 、N 的三角形,连结MN ,试说明△AMN 的周长为2.例5如图,△AOB 和△COD 均为等腰直角三角形,∠AOB =∠COD =90º,D 在AB 上.(1)求证:△AOC ≌△BOD ; (2)若AD =1,BD =2,求CD 的长。

变式练习;(2011•山西)如图(1),Rt △ABC 中,∠ACB=90°,CD ⊥AB ,垂足为D .AF 平分∠CAB ,交CD 于点E ,交CB 于点F (1)求证:CE=CF .(2)将图(1)中的△ADE 沿AB 向右平移到△A′D′E′的位置,使点E′落在BC 边上,其它条件不变,如图(2)所示.试猜想:BE′与CF 有怎样的数量关系?请证明你的结论。

321CAOBD【中考试题归类解析】第1题. (2006 芜湖课改)如图,在平面直角坐标系中,A 点坐标为(34),,将OA 绕原点O 逆时针旋转90得到OA ',则点A '的坐标是( ) A.(43)-, B.(34)-, C.(34)-, D.(43)-,第2题. (2006 临沂非课改)如图,小正六边形沿着大正六边形的边缘顺时针滚动,小正六边形的边长是大正六边形边长的一半,当小正六边形由图①位置滚动到图②位置时,线段OA 绕点O 顺时针转过的角度为 度.第3题. (2006 长沙课改)如图,Rt ABC △沿直角边BC 所在的直线向右平移得到DEF △,下列结论中错误的是( )A.ABC DEF △≌△ B.90DEF ∠= C.AC DF =D.EC CF =第4题. (2006 长沙课改)如图,已知等腰梯形ABCD 中,AD BC ∥,60B ∠=,28AD BC ==,,则此等腰梯形的周长为( ) A.19 B.20C.21D.22yx(34)A ,OA O图① AO A OAO图②ABECFDADB C第5题. (2006 德州非课改)如图,已知ABC △中,AB AC =,90BAC ∠=,直角EPF ∠的顶点P 是BC 中点,两边PE ,PF 分别交AB ,AC 于点E ,F ,给出以下五个结论:①AE CF =②APE CPF ∠=∠③EPF △是等腰直角三角形④EF AP =⑤12AEPF ABC S S =四边形△ 当EPF ∠在ABC △内绕顶点P 旋转时(点E 不与A ,B 重合),上述结论中始终正确的序号有第6题. (2006 青岛课改)如图,P 是正三角形ABC 内的一点,且68PA PB ==,,10PC =.若将PAC △绕点A 逆时针旋转后,得到P AB '△,则点P 与点P '之间的距离为 ,APB ∠= .第7题. (2006 海南课改)ABC △在平面直角坐标系中的位置如图9所示. (1)作出ABC △关于y 轴对称的111A B C △,并写出111A B C △各顶点的坐标;(2)将ABC △向右平移6个单位,作出平移后的222A B C △,并写出222A B C △各顶点的坐标; (3)观察111A B C △与222A B C △,它们是否关 于某直线对称?若是,请在图上画出这条对称轴.ACFPBEx3-2-1-0123456712ABC y ACPBP '第8题. (2006 安徽课改)如图,ABC △中,90301B C AB ∠=∠==,,,将ABC △绕顶点A 旋转180,点C 落在C '处,则CC '的长为( ) A.42 B.4C.23D.25第9题. (2006 贵港课改)如图,将Rt ABC △绕点A 逆时针方向旋转90,则旋转后B 点的坐标是 .第10题. (2006 衡阳课改)如图所示的五角星绕中心点旋转一定的角度后能与自身完全重合,则其旋转的角度至少为 .第11题. (2006 苏州课改)下列图形中,旋转60后可以和原图形重合的是( ) A.正六边形B.正五边形C.正方形D.正三角形第12题. (2006 菏泽课改)下面方格中是美丽可爱的小金鱼,在方格中分别画出原图形向右平移五个格和把原图形以点A 为旋转中心顺时针方向旋转90得到的小金鱼(只要求画出平移、旋转后的图形,不要求写出作图步骤和过程).若每个小方格的边长均为1cm ,则小金鱼所占的面积为_________2cm (直接写出结果).第13题. (2006 枣庄课改)将点()31A ,绕原点O 按顺时针方向旋转90到点B ,则点B 的坐标是___________.BCC 'B '301 12 233 A B C 0xCG F D EBA第14题. (2006 长春课改)如图,将AOB △绕点O 逆时针旋转90,得到A OB ''△.若点A 的坐标为()a b ,,则点A '的坐标为 .第15题. (2006 新疆课改)如图,照相时为了把近处的较高物体照下来,常常保持镜头中心不动,使相机旋转一定的角度,若A 点从水平位置顺时针旋转了30︒,那么B 点从水平位置顺时针旋转了 _________度.第16题. (2006 山西临汾)将图中线段AB 绕点A 按顺时针方向旋转90后,得到线段AB ',则点B '的坐标是______________.第17题. (2006 安徽课改)下列现象不属于...平移的是( ) A.小华乘电梯从一楼到三楼 B.足球在操场上沿直线滚动 C.一个铁球从高处自由落下D.小朋友坐滑梯下滑第18题. (2006 郴州课改)如图方格中,有两个图形. (1)画出图形(1)向右平移7个单位的像a ; (2)画出像a 关于直线AB 轴反射的像b ;(3)将像b 与图形(2)看成一个整体图形,请写出这个整体图形的对称轴的条数.y A 'B 'OB ()A a b ,xABxy 43 2 1 1 2 3 4A B(1)(2)AB第19题. (2006 娄底)如图,在平面直角坐标系中,已知ABC △的顶点坐标(04)A ,,(20)B -,,(20)C ,.(1)写出DEF △的顶点坐标;(2)将ABC △变换至DEF △要通过什么变换?请说明; (3)画出ABC △关于x 轴的轴反射图形.第20题. (2006 娄底)下列A 、B 、C 、D 四幅图案中,能通过平移图案(1)得到的是( )(1) A . B . C D【学生练兵场】 一、选择题。

相关文档
最新文档