概率论与数理统计课件(第六章)
合集下载
概率与统计学课件-第六章-数理统计的基本概念2-1
6.1
�总体与样本
基本概念: 总体:研究的问题所涉及的对象的全体 个体:总体中的每个成员 样本:从总体中抽取部分个体 样本容量:样本所包含的个体数量 样本观测值:
数的属性 样本的二重性 随机变量的属性
设X1,X2, …,Xn为总体X的一个容量为 n的 样本。若它满足 独立性,即X1,X2, …,Xn 相互独立; 同分布性,即每个 Xi都与总体X服从相 同的分布. 则称这样的样本为简单随机样本,简称为 样本。
�统计量
设是总体X的样本,g(X1,X2, …,Xn)是样本 的实值函数,且不包含任何未知参数,则 称g(X1,X2, …,Xn)为统计量。
例2.若X1,X2, X3是来自总体X~N(μ, σ 2)的 其中参数μ未知, σ2已知,则
X 1 X 3 − 3µ , X12 + 4 X 22 + 5µ 都不是统计量
�定理
若X1,X2, …,Xn是来自总体X的样本,设X 的分布函数为 F(x),则样本X1,X2, …,Xn的 联合分布函数为
n
∏ F (x )
i i =1
例1.若X1,X2, …,Xn是来自总体X的样本,设 X的分布函数为 F(x),则样本 X1,X2, …,Xn的联合分布函数为
⎧ n − λ xi (1 − e ), xi > 0(i = 1, 2,⋯ , n) ⎪∏ F ( x1 , x2 ,⋯ , xn ) = ⎨ i =1 ⎪ 0 , 其他 ⎩
1/8, 25 ≤ x<27 2/8, 27 ≤ x<30 3/8, 30 ≤ x<33 Fn(x)= 5/8, 33 ≤ x<35 6/8, 35 ≤ x<45 7/8, 45 ≤ x<65 1, 65 ≤ x
�总体与样本
基本概念: 总体:研究的问题所涉及的对象的全体 个体:总体中的每个成员 样本:从总体中抽取部分个体 样本容量:样本所包含的个体数量 样本观测值:
数的属性 样本的二重性 随机变量的属性
设X1,X2, …,Xn为总体X的一个容量为 n的 样本。若它满足 独立性,即X1,X2, …,Xn 相互独立; 同分布性,即每个 Xi都与总体X服从相 同的分布. 则称这样的样本为简单随机样本,简称为 样本。
�统计量
设是总体X的样本,g(X1,X2, …,Xn)是样本 的实值函数,且不包含任何未知参数,则 称g(X1,X2, …,Xn)为统计量。
例2.若X1,X2, X3是来自总体X~N(μ, σ 2)的 其中参数μ未知, σ2已知,则
X 1 X 3 − 3µ , X12 + 4 X 22 + 5µ 都不是统计量
�定理
若X1,X2, …,Xn是来自总体X的样本,设X 的分布函数为 F(x),则样本X1,X2, …,Xn的 联合分布函数为
n
∏ F (x )
i i =1
例1.若X1,X2, …,Xn是来自总体X的样本,设 X的分布函数为 F(x),则样本 X1,X2, …,Xn的联合分布函数为
⎧ n − λ xi (1 − e ), xi > 0(i = 1, 2,⋯ , n) ⎪∏ F ( x1 , x2 ,⋯ , xn ) = ⎨ i =1 ⎪ 0 , 其他 ⎩
1/8, 25 ≤ x<27 2/8, 27 ≤ x<30 3/8, 30 ≤ x<33 Fn(x)= 5/8, 33 ≤ x<35 6/8, 35 ≤ x<45 7/8, 45 ≤ x<65 1, 65 ≤ x
概率论与数理统计(06)第6章 统计量及其抽样分布
一个任意分 布的总体
σx =
σ
n
当样本容量足够 大时( 大时(n ≥ 30) , 样本均值的抽样 分布逐渐趋于正 态分布
6 - 11
µx = µ
xቤተ መጻሕፍቲ ባይዱ
x 的分布趋 于正态分布 的过程
6 - 12
6.4 正态总体 6.3.1 χ2分布 6.3.2 t 分布 6.3.3 F 分布
6 - 13
χ2 分布
第六章 样本与统计量
6.1引言 6.1引言
数理统计学: 运用概率论的基础知识,对要研究的随机现象进行 多次观察或试验,研究如何合理地获得数据资料, 建立有效的数学方法,根据所获得的数据资料,对 所关心的问题作出估计与检验。
6-1
§6.2总体与样本 6.2总体与样本
对某一问题的研究对象全体称为总体。 组成总体的某个基本单元,称为个体。 总体可以是具体事物的集合,如一批产品。 也可以是关于事物的度量数据集合,如长度测量。 总体可以包含有限个个体,也可以包含无限个个体。 有限总体在个体相当多的情况下,可以作为无限 总体进行研究。 总体中的个体,应当有共同的可观察的特征。该 特征与研究目的有关。
6 - 16
χ2分布
(图示) 图示)
n=1 n=4 n=10
n=20
6 - 17 不同容量样本的抽样分布
χ2
t 分布
6 - 18
t 分布
1. 高 塞 特 (W.S.Gosset) 于 1908 年 在 一 篇 以 (W. “Student”(学生)为笔名的论文中首次提出 Student”(学生)
X ~ N(µ,σ ) ,则
2
χ2分布
2. 3.
z=
X −µ
Y=z
σx =
σ
n
当样本容量足够 大时( 大时(n ≥ 30) , 样本均值的抽样 分布逐渐趋于正 态分布
6 - 11
µx = µ
xቤተ መጻሕፍቲ ባይዱ
x 的分布趋 于正态分布 的过程
6 - 12
6.4 正态总体 6.3.1 χ2分布 6.3.2 t 分布 6.3.3 F 分布
6 - 13
χ2 分布
第六章 样本与统计量
6.1引言 6.1引言
数理统计学: 运用概率论的基础知识,对要研究的随机现象进行 多次观察或试验,研究如何合理地获得数据资料, 建立有效的数学方法,根据所获得的数据资料,对 所关心的问题作出估计与检验。
6-1
§6.2总体与样本 6.2总体与样本
对某一问题的研究对象全体称为总体。 组成总体的某个基本单元,称为个体。 总体可以是具体事物的集合,如一批产品。 也可以是关于事物的度量数据集合,如长度测量。 总体可以包含有限个个体,也可以包含无限个个体。 有限总体在个体相当多的情况下,可以作为无限 总体进行研究。 总体中的个体,应当有共同的可观察的特征。该 特征与研究目的有关。
6 - 16
χ2分布
(图示) 图示)
n=1 n=4 n=10
n=20
6 - 17 不同容量样本的抽样分布
χ2
t 分布
6 - 18
t 分布
1. 高 塞 特 (W.S.Gosset) 于 1908 年 在 一 篇 以 (W. “Student”(学生)为笔名的论文中首次提出 Student”(学生)
X ~ N(µ,σ ) ,则
2
χ2分布
2. 3.
z=
X −µ
Y=z
概率论与数理统计第2版教学课件第6章
随机样本与统计量
6.1.2
样本统计量
定义4 (极差) 设X1,X2,…,Xn是来自总体X的样本,则称统计量
R=X(n)-X(1)
为样本的极差。
极差反映了样本观测值的波动幅度。它同方差一样是反映观察值离散程度的数量指标。
(6-8)
6.1
随机样本与统计量
6.1.2
样本统计量
例 从某工厂生产的轴承中随机地抽取10只,测得其重量(以kg计)为
从一个总体X抽取n个个体,由于抽样的独立性与随机性,每个个体都是一个随机变量
Xi(i=1,2,…,n)。这里X1,X2,…,Xn相互独立,并且Xi与X具有相同分布。这样的n个随机变量称为总体X的
一个容量为n的样本。但是在具体抽样后,它们就有了具体的数值
x1,x2,…,xn,
称为样本观察值。
6.1
随机样本与统计量
有钢筋视为一个总体,则这一天生产的每一根钢筋为个体。又如,要检验一批灯泡的质量,这一批灯
泡可看成是一个总体,每一个灯泡则为个体。
在数理统计中,我们往往对表征总体性质的某一个或某n个数量指标感兴趣。如灯泡的使用寿命X
就是灯泡质量的一个重要的数量指标;钢筋的抗拉强度Y1,抗剪切力的大小Y2是表征钢筋质量的两个
一些带有严重破坏性的自然灾害进行必要的估计与预测。如在建造桥梁时,为了防止洪水冲塌桥梁这
类事故发生,设计时就必须事先考虑到在使用期间该河流可能爆发的最高水位;在建造高大建筑物时,
也要考虑到今后若干年内的最大风压、地震的最大震级等。了解这些随机变量的概率分布,就是极值
的分布。
6.2
抽样分布
6.2.2
6.1.1
总体、个体与样本
定义1 设X1,X2,…,Xn是来自总体X的容量为n的样本,若X1,X2,…,Xn相互独立,且每个
概率论数理统计课件第6讲
(2) X的分布函数为
F x
x
5 3 5 3 (3) P X F F 2 2 2 2 1 0.9375 0.0625
2.3.3 常见的连续型随机变量
均匀分布、指数分布、正态分布
1. 均匀分布 (Uniform) 若随机变量X 的概率密度为:
(2).
f ( x) dx 1;
这两条性质是判定函数 f(x) 是否为某随机变量 X 的概率密度函数的充 要条件。
f(x)与x轴所围 面积等于1。
(3). 对 f(x)的进一步理解:
若x是 f(x)的连续点,则 x x f (t )dt P( x X x x) x lim lim x 0 x 0 x x =f(x), 故, X的概率密度函数f(x)在 x 这一点的值, 恰 好是X 落在区间 [x , x +△x]上的概率与区间长 度△x 之比的极限。 这里, 如果把概率理解为 质量,f (x)相当于物理学中的线密度。
这100个数据中,最小值是128,最大值是155。
作频率直方图的步骤
(1). 先确定作图区间 (a, b); a = 最小数据-ε/ 2,b = 最大数据+ε/ 2,
ε 是数据的精度。 本例中 ε = 1, a = 127.5, b = 155.5 。
(2). 确定数据分组数 m = 7, 组距 d = (b − a) / m=28/7=4,
1
。
p k 0, k 1,2,,
2。
p
k 1
k
1.
随机变量X 的所有取值 随机变量X的 各个取值所 对应的概率
常用的离散型随机变量的分布
1.两点分布( 0-1分布) 模型:一个人射击,射中的概率为p,不中的概 率为 q=1-p. 规定:
西北工业大学《概率论与数理统计》课件-第六章 参数估计
最大概率的思想就是最大似然法的基本思想 .
(2) 似然函数
定义6.1 设总体X的分布密度(或分布律)为 p(x; ), 其中 (1, 2, ,m )为未知参数. 又设
( x1, x2,, xn ) 为自总体X的样本(X1,X2,…,Xn) 的一 个观察值,则称样本的联合分布
n
L( ) p(x1, x2, … , xn; ) p( xi; )
2º似然估计方程组与最大似然估计之间没有必 然
从中解得 pˆ k n
参数 p的估计值
这时, 对一切 0< p <1, 均有
P{Y k; pˆ } P{Y k; p}
综上所述: 设某试验的可能结果为: A1, A2 , ···, Ai , ···
若在一次试验中,某结果 Ai 出现,则应选择参 数使Ai 出现的概率最大.
以上这种选择一个参数使得实验结果具有
(k 1,2,, m)
(4) 求最大似然估计(MLE)的步骤:
1 写出似然函数
(1, 2 , ,m )
n
L( ) L( x1, x2,, xn; ) p( xi; )
n
i 1
2 取对数 ln L( ) ln p( xi; )
i 1
3 解似然方程(组)
ln L
ln L
2
为来自总体X的简单随机样本. 矩估计法的具体步骤:
1 求出k E( X k ) (1,2,,m ), k 1,2,,m;
2 要求k Ak , k 1,2,, m
这是一个包含 m个未知参数1,2 ,,m的方程组.
3 解出其中1,2,,m , 用ˆ1,ˆ2,,ˆm表示.
4 用方程组的解ˆ1, ˆ2 , ,ˆm 分别作为 1,2 ,,m的估计量,这个估计量称为
(2) 似然函数
定义6.1 设总体X的分布密度(或分布律)为 p(x; ), 其中 (1, 2, ,m )为未知参数. 又设
( x1, x2,, xn ) 为自总体X的样本(X1,X2,…,Xn) 的一 个观察值,则称样本的联合分布
n
L( ) p(x1, x2, … , xn; ) p( xi; )
2º似然估计方程组与最大似然估计之间没有必 然
从中解得 pˆ k n
参数 p的估计值
这时, 对一切 0< p <1, 均有
P{Y k; pˆ } P{Y k; p}
综上所述: 设某试验的可能结果为: A1, A2 , ···, Ai , ···
若在一次试验中,某结果 Ai 出现,则应选择参 数使Ai 出现的概率最大.
以上这种选择一个参数使得实验结果具有
(k 1,2,, m)
(4) 求最大似然估计(MLE)的步骤:
1 写出似然函数
(1, 2 , ,m )
n
L( ) L( x1, x2,, xn; ) p( xi; )
n
i 1
2 取对数 ln L( ) ln p( xi; )
i 1
3 解似然方程(组)
ln L
ln L
2
为来自总体X的简单随机样本. 矩估计法的具体步骤:
1 求出k E( X k ) (1,2,,m ), k 1,2,,m;
2 要求k Ak , k 1,2,, m
这是一个包含 m个未知参数1,2 ,,m的方程组.
3 解出其中1,2,,m , 用ˆ1,ˆ2,,ˆm表示.
4 用方程组的解ˆ1, ˆ2 , ,ˆm 分别作为 1,2 ,,m的估计量,这个估计量称为
概率论与数理统计教程第二版茆诗松课件PPT第六章
( 其中 是 可能的取值范围)
ˆ 与样本值 x1 , x2 ,, xn 有关, 记为 这样得到的 ˆ ( x1 , x2 ,, xn ), 参数 的最大似然估计值 ,
ˆ ( X 1 , X 2 , , X n ) 参数 的最大似然估计量 .
12 April 2016
L( ) 1
n
I
i 1
n
{0 xi }
1
n
I{ x
( n ) }
要使L( )达到最大,首先一点是示性函数取值 n n 应该为1,其次是1/ 尽可能大。由于1/ 是 的单调减函数,所以 的取值应尽可能小,但 示性函数为1决定了 不能小于x(n),由此给出 的极大似然估计 ˆ x( n ) 。
经计算有
x 28.695,
2 sn 0.9185,源自m0.5 28.6由此给出总体均值、方差和中位数的估计分别 为: 28.695, 0.9185 和 28.6。 矩法估计的实质是用经验分布函数去替换总体 分布,其理论基础是格里纹科定理。
12 April 2016
第六章 参数估计
第6页
二、概率函数P(x,θ)已知时未知参数的矩法估计 设总体具有已知的概率函数 P(x, 1, …, k), x1, x2 , …, xn 是样本,假定总体的k阶原点矩k 存在,若1, …, k 能够表示成 1, …, k 的函数 j = j(1, …,k),则可给出诸j 的矩法估计为
数作出估计。
参数估计的形式有两种:点估计与区间估计。
12 April 2016
第六章 参数估计
第3页
设 x1, x2,…, xn 是来自总体 X 的一个样本,
ˆ ˆ( x ,, x ) 我们用一个统计量 的 1 n ˆ 取值作为 的估计值, 称为 的点估计 ˆ (量),简称估计。在这里如何构造统计量 并没有明确的规定,只要它满足一定的合理 性即可。这就涉及到两个问题:
ˆ 与样本值 x1 , x2 ,, xn 有关, 记为 这样得到的 ˆ ( x1 , x2 ,, xn ), 参数 的最大似然估计值 ,
ˆ ( X 1 , X 2 , , X n ) 参数 的最大似然估计量 .
12 April 2016
L( ) 1
n
I
i 1
n
{0 xi }
1
n
I{ x
( n ) }
要使L( )达到最大,首先一点是示性函数取值 n n 应该为1,其次是1/ 尽可能大。由于1/ 是 的单调减函数,所以 的取值应尽可能小,但 示性函数为1决定了 不能小于x(n),由此给出 的极大似然估计 ˆ x( n ) 。
经计算有
x 28.695,
2 sn 0.9185,源自m0.5 28.6由此给出总体均值、方差和中位数的估计分别 为: 28.695, 0.9185 和 28.6。 矩法估计的实质是用经验分布函数去替换总体 分布,其理论基础是格里纹科定理。
12 April 2016
第六章 参数估计
第6页
二、概率函数P(x,θ)已知时未知参数的矩法估计 设总体具有已知的概率函数 P(x, 1, …, k), x1, x2 , …, xn 是样本,假定总体的k阶原点矩k 存在,若1, …, k 能够表示成 1, …, k 的函数 j = j(1, …,k),则可给出诸j 的矩法估计为
数作出估计。
参数估计的形式有两种:点估计与区间估计。
12 April 2016
第六章 参数估计
第3页
设 x1, x2,…, xn 是来自总体 X 的一个样本,
ˆ ˆ( x ,, x ) 我们用一个统计量 的 1 n ˆ 取值作为 的估计值, 称为 的点估计 ˆ (量),简称估计。在这里如何构造统计量 并没有明确的规定,只要它满足一定的合理 性即可。这就涉及到两个问题:
东华大学《概率论与数理统计》课件 第6章样本与抽样分布
X
的
n
一
个
样
本的
观察
值
,
则g( x1 , x2 , xn )是统计量g( X1 , X 2 , X n )的观察值.
例1 设总体X 服从两点分布b(1, p) ,其中p 是未知参数,
X1,
,
X
是
5
来自X的简
单
随机样本.试指出
X1
X
,
2
max
1 i 5
X
i
,
X5 2 p,
( X5 X1)2
哪些是统计量,哪些不是统计量,为什么?
从国产轿车中抽5辆进行耗 油量试验
样本容量为5 抽到哪5辆是随机的
对总体X在相同条件下,进行n次重复、独立观察,其结果依次记 为 X1,X2,…,Xn.这样得到的随机变量X1,X2,…,Xn.是来自总体的一个简单 随机样本,其特点是:
1. 代表性:X1,X2,…,Xn中每一个与所考察的总体X有相同的分布. 2. 独立性:X1,X2,…,Xn相互独立.
k同分布,
E(
X
k i
)
k
k 1, 2, , n 再由辛钦大数定律可得上述结论.
再由依概率收敛性质知,可将上述性质推广为
g( A1 , A2 , , Ak ) P g(1, 2 , , k )
其中g为连续函数.
矩估计法的理论依据
2. 经验分布函数
设X1, X2,
,
X
是
n
总
体
F的
一
个Hale Waihona Puke 本,用S(
x
则称变量
t X Yn
所服从的分布为自由度为 n的 t 分布.
概率论与数理统计教材第六章习题PPT课件
d 2i 1xi 0
参数θ的最大似然估计值为
ˆ
1 n
n
i 1
xi
14
3.
设总体X服从伽玛分布:
f(x;,)()
x1ex,
x0 ,
0,
x0
其中 0,0. 如果取得样本观测值为 x1,x2,,xn,
(1) 求参数α及β的矩估计值;
(2) 已知 0, 求参数β 的最大似然估计值.
解 (1) 矩估计法
定 义 若E (ˆ)0或 E (ˆ), 则 称ˆ为θ的无偏估计量。
结论1 样本均值 X 是总体均值μ的无偏估计量.
结论2 样本方差 S 2是总体方差 2 的无偏估计量.
3
2.有效性
定义 ˆ1X1,X2, ,Xn及 ˆ2X1,X2, ,Xn都是θ的无偏估计量,
如果D(ˆ1)D(ˆ2), 则称ˆ1 较ˆ 2 有效。
23
9、已知高度表的误差 X~N(,0 2) ,01米5,飞机上应该
有多少 这样的仪器,才能使得以概率0.98保持平均高度
的误差的绝对值小于30米?
解 PX300.98
PX3
0
P
X
15 n
30 15 n
P2
nX2
15 n
n2 2n10.98
2n0 .99(2.33)0.9901
X
k i
来估计总体原点矩
vk E(Xk).
(1)设总体分布函数 F(x;)含有一个未知参数θ,令
v1()E(X)n1
n i1
Xi
解方程得:ˆˆ(X1,X2, ,Xn)——θ 的矩估计量
1
(2)设总体分布函数 F(x;1,2)含有两个未知参数θ1,θ2,
令
参数θ的最大似然估计值为
ˆ
1 n
n
i 1
xi
14
3.
设总体X服从伽玛分布:
f(x;,)()
x1ex,
x0 ,
0,
x0
其中 0,0. 如果取得样本观测值为 x1,x2,,xn,
(1) 求参数α及β的矩估计值;
(2) 已知 0, 求参数β 的最大似然估计值.
解 (1) 矩估计法
定 义 若E (ˆ)0或 E (ˆ), 则 称ˆ为θ的无偏估计量。
结论1 样本均值 X 是总体均值μ的无偏估计量.
结论2 样本方差 S 2是总体方差 2 的无偏估计量.
3
2.有效性
定义 ˆ1X1,X2, ,Xn及 ˆ2X1,X2, ,Xn都是θ的无偏估计量,
如果D(ˆ1)D(ˆ2), 则称ˆ1 较ˆ 2 有效。
23
9、已知高度表的误差 X~N(,0 2) ,01米5,飞机上应该
有多少 这样的仪器,才能使得以概率0.98保持平均高度
的误差的绝对值小于30米?
解 PX300.98
PX3
0
P
X
15 n
30 15 n
P2
nX2
15 n
n2 2n10.98
2n0 .99(2.33)0.9901
X
k i
来估计总体原点矩
vk E(Xk).
(1)设总体分布函数 F(x;)含有一个未知参数θ,令
v1()E(X)n1
n i1
Xi
解方程得:ˆˆ(X1,X2, ,Xn)——θ 的矩估计量
1
(2)设总体分布函数 F(x;1,2)含有两个未知参数θ1,θ2,
令
华东理工大学概率论与数理统计课件第六章
得方程组
解得
ˆ X 3B ˆ X 3B2 , b a 2
2 最大似然估计法 (1) 似然函数(样本的联合密度函数) 设总体X为连续型,X~f(x;θ1,θ2,…θm), θi为待估 参数(i=1,2,…,m),X1,X2,…,Xn为来自该总体的样本,则 Xi~f(xi;θ1,θ2,…θm), (i=1,2,…,m) (X1,X2,…,Xn)的联合密度函数为 (似然函数)
例 设总体
1 1 0
的概率分布为
P{ k}
-1
(1 )
0
(1 ) 2
1
其中, ( 0 1 )是未知参数,已知有样本观测值 -1,0,0,0,0,1,1,1 。 (1)求 的矩法估计值; (2)求 的极大似然估计值。
x 1. (1) x EX 2 x , 取 2 (2) L (1 )(1 )8 3 , ln L 4 ln 9 ln(1 ),
1
)
1
例:设X服从[0,θ]区间上的均匀分布,参数
θ>0,求θ的最大似然估计.
解 由题意得:
1 X ~ f ( x; ) 0
0 x 其它
L( x1 , x2 ,..., xn ; )
1 n 0
0 x1 , x2 ,..., xn 其它
是来自总体的一个容量为设总体分布中含有未知参数根据来自该总体的srs如果能够找到两个统计量使得随机区间包含达到一定的把握那么便称该随机区间为未知参数的区间估计
第6章 参数估计
• 点估计法 • 期望与方差的点估计 • 期望、方差的区间估计
概率论与数理统计PPT课件(共8章)第六章 数理统计的基本概念
代表性
每个样本Xi(i=1,2,…,n)与 总体X具有相同的分布
独立性
各个样本X1,X2,…,Xn的取 值互不影响,即X1,X2,…,Xn是 相互独立的随机变量.
6.1.3 样本的联合分布
若 X1 ,X2 , ,Xn 为总体 X 的一个样本, X 的分布函数为 F(x) ,则 X1 ,X2 , ,Xn
n
n
xi
n xi
p i1 (1 p) i1 ,
概
率
论
与
数 理
6.2
统
计
统计量与抽样分布
6.2.1 统计量
定义 6.2 不含任何未知参数的样本 X1 ,X2 , ,Xn 的连续函数 g(X1 ,X2 , ,Xn )
称为统计量.
下面列出一些常用的统计量.
(1)样本均值
X
1 n
n i1
Xi
(2)样本方差
概
率
论
与
数
理 统 计
数理统计的基本概念
第六章
概
率
论
与
数
理 统
壹 总体与样本
计
贰 统计量与抽样分布
目录
概
率
论
与
数 理
6.1
统
计
总体与样本
总体与个体
6.1.1 总体
在数理统计中,通常把研究对象的全体称为总体,把构 成总体的每个研究对象称为个体.
总体分布
为了便于数学上的处理,我们将总体定义为随机变量, 记作.随机变量的分布称为总体分布.
N
(1
,12
)
与
N
(2
,
2 2
)
的样本,且这两个样本相互独立.设
第六章《概率论与数理统计教程》课件
1
例5. 设X服从[0,λ]区间上的均匀分布,参数
λ>0,求λ的最大似然估计. 1 解:由题意得: X ~ f ( x; )
1 L( x1 , x 2 ,..., x n ; ) n 0
0 x
0 其它 0 x1 , x 2 ,..., x n
dL n n1 0 d
其它
无解.
应用最大似然估计基本思想: L越大,样本观察值越可能出现 取 max( x1 , x 2 ,..., x n ) 此时,L取值最大, 所以,所求最大似然估计为 max( x1 , x 2 ,..., x n )
考虑L的取值,要使L取值最大,λ应最小, 0 x1 , x 2 ,..., x n
例2 设总体 X ~ N ( , 2 ) ,其中 及 2 都是未知参数,如
果取得样本观测值为 x1 ,, x n , 求 及 2 的矩估计值。
解: 因为总体X的分布中有两个未知参数,所以应考虑一、二阶 原点矩,我们有 v1 ( X ) E ( X )
v 2 ( X ) E( X 2 ) D( X ) [ E( X )]2 2 2
e
e
1 2
2
2
( x )2 2 2
e
L( x1 , x 2 ,..., x n ; , )
2
i 1
1 2
2
( xi )2
(
2
1 2
2
1 2 2
) e
n
i 1
n
( xi )2
1 n 2 n 1 n 2 2 ) 2 ( x i ) ln 2 ln L n ln( ( xi ) 2 i 1 2 2 2 n 2 2 i 1 1 ln L 1 n Xi X 2 ( xi ) 0 n i 1 i 1 1 n 2 1 n n ln L n 1 ( xi )2 ( xi X )2 2 2 4 ( x i ) 0 n i 1 n i 1 2 2 2 i 1
第六章.ppt数理统计
用频率近似概率
例:从鱼塘里捞一条鱼,这条鱼为鲤鱼的概率?
重复捞取鱼1000次,每次捞一条,有100次左右是鲤鱼,
近似认为再捞一次鱼是鲤鱼的概率为10%。
用频率近似概率
3、主观定义 人们根据经验和所掌握的信息对事件发 生的可能性给以主观的估计。
例:本拉登活着的概率;估计自己能考上大学 的概率;上一个新项目能否赚钱的概率。
(3)不可能事件:每次试验必然不会发生的事件 称为不可能事件。
上例中,观察正反面正面出现的次数为3次——这一事件为不可
能事件
二、事件的关系和运算
(1)包含——事件A发生必然导致B发生, A包含于B
例:抛两个硬币,观察正反面情况:可能结果:①1正2 反,②1反2正,③12全正,④12全反四个基本事件。
解:P(A)=40%,P(B)=50%,P(AB)=30%, P(A+B)=40%+50%-30%=60%; P(A/B)(抽一个公司,已知它进行销售预测,那么它研究 广告效果的概率)=P(AB)/P(B)=30%/50%=60%。 P(B/A)(已知这个公司研究广告效果,那么它进行销售 预测的概率是多少)=P(AB)/P(A)=30%/40%=75%。
(二)概率的运算法则
1、加法公式
两个互斥事件A、B,P(A+B)=P(A)+P(B) A、B互斥(A、B没有交集),P(A+B)(A、B至少 一个发生的概率)=P(A)+P(B)
2、乘法公式
(1)条件概率(事件B已经发生的条件下 事件A发生的概率)。 P(A/B)=P(AB)/P(B)
例:将一枚硬币掷两次,观察出现正反面的情况,设事件 A为“至少一次为正面”,事件B为“两次掷出同一面”, 现在来求已知事件A已经发生的条件下事件B发生的概率 P(B/A)。 解:S={正正、正反、反正、反反}, A={正正、正反、反正}, B={正正,反反}, A已经发生(抛两次硬币后,知道至少有一次正面), 那么掷出同一面的概率是1/3。
例:从鱼塘里捞一条鱼,这条鱼为鲤鱼的概率?
重复捞取鱼1000次,每次捞一条,有100次左右是鲤鱼,
近似认为再捞一次鱼是鲤鱼的概率为10%。
用频率近似概率
3、主观定义 人们根据经验和所掌握的信息对事件发 生的可能性给以主观的估计。
例:本拉登活着的概率;估计自己能考上大学 的概率;上一个新项目能否赚钱的概率。
(3)不可能事件:每次试验必然不会发生的事件 称为不可能事件。
上例中,观察正反面正面出现的次数为3次——这一事件为不可
能事件
二、事件的关系和运算
(1)包含——事件A发生必然导致B发生, A包含于B
例:抛两个硬币,观察正反面情况:可能结果:①1正2 反,②1反2正,③12全正,④12全反四个基本事件。
解:P(A)=40%,P(B)=50%,P(AB)=30%, P(A+B)=40%+50%-30%=60%; P(A/B)(抽一个公司,已知它进行销售预测,那么它研究 广告效果的概率)=P(AB)/P(B)=30%/50%=60%。 P(B/A)(已知这个公司研究广告效果,那么它进行销售 预测的概率是多少)=P(AB)/P(A)=30%/40%=75%。
(二)概率的运算法则
1、加法公式
两个互斥事件A、B,P(A+B)=P(A)+P(B) A、B互斥(A、B没有交集),P(A+B)(A、B至少 一个发生的概率)=P(A)+P(B)
2、乘法公式
(1)条件概率(事件B已经发生的条件下 事件A发生的概率)。 P(A/B)=P(AB)/P(B)
例:将一枚硬币掷两次,观察出现正反面的情况,设事件 A为“至少一次为正面”,事件B为“两次掷出同一面”, 现在来求已知事件A已经发生的条件下事件B发生的概率 P(B/A)。 解:S={正正、正反、反正、反反}, A={正正、正反、反正}, B={正正,反反}, A已经发生(抛两次硬币后,知道至少有一次正面), 那么掷出同一面的概率是1/3。
[学习]概率论与数理统计课件第6章
为样本,构造一个统计量 (X1, X2, , Xn ) 来估计 参数,则称 (X1, X2, , Xn ) 为参数的估计量。
将样本观测值 x1, x2 , , xn 代入 (X1, X2, , Xn ) , 得到的值 (x1, x2, , xn ) 称为参数的估计值。
点估计(point estimation) :如果构造一个统计量
设总体的分布中含有一个参数,对给定的,如果 由样本(X1,X2,…,Xn)确定两个统计量
1( X1,X2,…,Xn ), 2( X1,X2,…,Xn ), 使得P{1 << 2}=1- ,则称随机区间( 1 , 2 )为 参数的置信度(或置信水平)为1- 的置信区间。
1——置信下限 2——置信上限
几点说明
或 Uk (1,2,
,m )
1 n
n i 1
(Xi
X )k
(k 1, 2,
, m)
得m个方程构成方程组,解得的 1,2, ,m 即为参数 1,2 , ,m的矩估计量,代入样本观测值,即得参数
的矩估计值。
例2 设某总体X的数学期望为EX=,方差DX=2,X1, X2,…,Xn为样本,试求和2的矩估计量。
X
1 n
n i 1
Xi
2
1 n
n i 1
(Xi
X )2
S
2 n
估计值为
x
1 n
n i 1
xi
2
1 n
n i 1
( xi
x )2
例3 设X1,X2,…,Xn为总体X的样本,试求下列总体 分布参数的矩估计量。
(1) X ~ N , 2 (2)X ~ B N, p(N已知)(3)X ~ P()
将样本观测值 x1, x2 , , xn 代入 (X1, X2, , Xn ) , 得到的值 (x1, x2, , xn ) 称为参数的估计值。
点估计(point estimation) :如果构造一个统计量
设总体的分布中含有一个参数,对给定的,如果 由样本(X1,X2,…,Xn)确定两个统计量
1( X1,X2,…,Xn ), 2( X1,X2,…,Xn ), 使得P{1 << 2}=1- ,则称随机区间( 1 , 2 )为 参数的置信度(或置信水平)为1- 的置信区间。
1——置信下限 2——置信上限
几点说明
或 Uk (1,2,
,m )
1 n
n i 1
(Xi
X )k
(k 1, 2,
, m)
得m个方程构成方程组,解得的 1,2, ,m 即为参数 1,2 , ,m的矩估计量,代入样本观测值,即得参数
的矩估计值。
例2 设某总体X的数学期望为EX=,方差DX=2,X1, X2,…,Xn为样本,试求和2的矩估计量。
X
1 n
n i 1
Xi
2
1 n
n i 1
(Xi
X )2
S
2 n
估计值为
x
1 n
n i 1
xi
2
1 n
n i 1
( xi
x )2
例3 设X1,X2,…,Xn为总体X的样本,试求下列总体 分布参数的矩估计量。
(1) X ~ N , 2 (2)X ~ B N, p(N已知)(3)X ~ P()
大学课件概率论第6章数理统计的基本概念
=
(n
n! k )!(k
1)
[ !
FX
( x)]k 1[1
FX
( x)]nk
fX
( x)x,
故有
f X(k )
(x)
n! (n k)!(k
1)![FX
( x)]k 1[1
FX
( x)]nk
fX
(x).
数理统计中常用的分布除正态分布外,还有 三个非常有用的连续型分布,即
2分布 t 分布 数理统计的三大分布(都是连续型). F分布
2
n 2
1
n 2
x
n 1 x
2 e2
,
0,
x0 x0
其中Gamma函数 Γ(x) 通过下面积分定义
(x) ett x1dt, x 0 0
(x 1) x(x),
(n 1) n!,
(1) 1,
1 2
π
一般的,若X的分布密度函数为
fX
(x)
(
)
x 1ex
0
x0 其他
则称X服从参数为 α>0和λ>0的Γ分布,记为X~ Γ(α, λ)。 Γ分布的数学期望和方差为
1)
[ !
FX
(x)]k1[1 FX
( x)]nk
fX
(x)
其中k 1, 2,..., n. 特别地,有 fX(1) (x) n[1 FX (x)]n1 fX (x), fX(n) (x) n[FX (x)]n1 fX (x).
证明: x(k)落在[x, x x]这个区间的概率近似为
f X(k) (x)x Cn1Cnk11[FX (x)]k1[1 FX (x x)]nk f X (x)x
《概率论与数理统计教学课件》6第六章.ppt
一. 总体和个体 定义 将研究对象的某项数量指标的值的全体称
为总体(母体);将总体中的每个元素称为 个体 例1.(1) 当研究某地区中职工收入平均水平时,这地区 所有职工的月收入组成了总体;而每个职工月 收入就是个体。
(2) 研究某批灯泡的质量,则该批灯泡寿命的全体 就组成了总体;而每个灯泡的寿命就是个体。
概率统计
随机抽样法
在概率论中所研究和讨论的随机变量,它的分布 都是已知的,在这前提下去进一步的研究它的性质、 特点和规律性。而在数理统计中所研究和讨论的随机 变量,它的分布是未知的或不完全知道的。于是就必 须通过对所研究和讨论的随机变量进行重复独立的观 察和试验,得到许多观察值(数据),对这些数据进行 分析后才能对其分布作出种种判断。得到这些数据最 常用的方法是----随机抽样法。
的个 数是有限) 和 无限总体(个体的个数是无 限的)。但当有限总体它所含的个体的个 数很 大时也可视其为无限总体。
概率统计
二. 抽样和样本
抽样
为推断总体分布及各种特征,按一定规则 从总体中抽取若干个体进行观察试验,以
获得有关总体的信息,这一抽取过程称为
“抽样”,所抽取的部分个体称为 样本,
样本中所包含的个体数目称为 样本容量。 例如:
同时随着计算机的诞生与发展,为数据处 理提供了强有力的技术支持,这就导致了数理 统计与计算机结合的必然的发展趋势。
目前国内外著名的统计软件包:R, SAS,SPSS, STAT 等,都提供了快速、简便地进行数据处理 和分析的方法与工具。
概率统计
数理统计研究的对象 --- 带有随机性的数据
数理统计的任务 数理统计学是一门应用性很强的学科, 它
从某批国产轿车中抽 5 辆进行耗油量试验。 这一过程即为“抽样”
为总体(母体);将总体中的每个元素称为 个体 例1.(1) 当研究某地区中职工收入平均水平时,这地区 所有职工的月收入组成了总体;而每个职工月 收入就是个体。
(2) 研究某批灯泡的质量,则该批灯泡寿命的全体 就组成了总体;而每个灯泡的寿命就是个体。
概率统计
随机抽样法
在概率论中所研究和讨论的随机变量,它的分布 都是已知的,在这前提下去进一步的研究它的性质、 特点和规律性。而在数理统计中所研究和讨论的随机 变量,它的分布是未知的或不完全知道的。于是就必 须通过对所研究和讨论的随机变量进行重复独立的观 察和试验,得到许多观察值(数据),对这些数据进行 分析后才能对其分布作出种种判断。得到这些数据最 常用的方法是----随机抽样法。
的个 数是有限) 和 无限总体(个体的个数是无 限的)。但当有限总体它所含的个体的个 数很 大时也可视其为无限总体。
概率统计
二. 抽样和样本
抽样
为推断总体分布及各种特征,按一定规则 从总体中抽取若干个体进行观察试验,以
获得有关总体的信息,这一抽取过程称为
“抽样”,所抽取的部分个体称为 样本,
样本中所包含的个体数目称为 样本容量。 例如:
同时随着计算机的诞生与发展,为数据处 理提供了强有力的技术支持,这就导致了数理 统计与计算机结合的必然的发展趋势。
目前国内外著名的统计软件包:R, SAS,SPSS, STAT 等,都提供了快速、简便地进行数据处理 和分析的方法与工具。
概率统计
数理统计研究的对象 --- 带有随机性的数据
数理统计的任务 数理统计学是一门应用性很强的学科, 它
从某批国产轿车中抽 5 辆进行耗油量试验。 这一过程即为“抽样”
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、 t 分布 t(n) 若 X~N(0,1) ,Y~ 2 (n) ,且相互独立,则 X 随机变量 T Y n 服从自由度为 n 的 t 分布,记为 T~t(n). t 分布 t(20)的密度函数曲线和 N(0,1)的 曲线形状相似.理论上 n 时,T~t(n) N(0,1).
0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0 -6
1. 样本具有随机性:每一个样品Xi与总体X具有相同的分布
(要求总体中每一个个体都有同等机会被选入样本) 2. 样本具有独立性:x1,x2,…,xn是相互独立的随机变量(即 要求样本中每一个样品的取值不影响其他样品的取值)
[说明]:后面提到的样本均指简单随机样本,由
概率论知,若总体X具有密度函数f(x),则样本
一些常用的统计量
2、表示变异程度的统计量—标准差、方差和极差 样本方差: 设 x1 , x2 ,..., xn 为取自总体的样本,则 n 1 2 称为样本方差 s2 ( X X ) i n 1 i 1 它是各个数据与均值偏离程度的度量。
样本标准差:样本方差的算术平方根 s 称为样本标准关。 . 极差:样本中最大值与最小值之差.
样本标准差
s s 2 133.9368 11.5731
3.
表示分布形状的统计量—偏度和峰度 1 n 1 3 偏度: g1 3 ( X i X ) 峰度: g 2 4 s i 1 s
4 ( X X ) i i 1
n
偏度反映分布的对称性:g1 >0 称为右偏态,此时数据位 于均值右边的比位于左边的多;g1 <0 称为左偏态,情况相反; 而 g1 接近 0 则可认为分布是对称的. 峰度是分布形状的另一种度量,正态分布的峰度为 3,若 g2 比 3 大很多,表示分布有沉重的尾巴,说明样本中含有较多 远离均值的数据,因而峰度可用作衡量偏离正态分布的尺度之一.
1 n k k 阶原点矩: Vk X i n i 1 1 n k 阶中心矩: U k ( X i X ) k n i 1
4.
几个在统计中常用的概率分布
. 正态分布 N ( , )
2 ( x )2
2
1 1 2 e 密度函数: p( x) 分布函数: F ( x) 2p 2p 2 其中 为均值, 为方差, < x < .
则来自这一总体的简单随机样本
x1 , x2 ,..., xn 的联合概率密度为
n
xi n e i1 , x 0(i 1,2,...,n) f X ( x1 ) f X ( x2 ) f X ( xn ) i 0, 其他
例4:考虑电话交换台一小时内的呼唤次数X,求来自这一总体的
i 1 i 1
n
i 1 n
i 1
2
都不是统计量。
一些常用的统计量
1、 表示位置的统计量—平均值和中位数 样本均值:设 x1 , x2 ,..., xn 为取自总体的样本, 1 n 其算术平均值称为样本均值,记为 X X i n i 1 中位数:将数据由小到大排序后位于中间位置的那个数值.
第六章 统计量及其抽样分布
6.1 引言 6.2 总体和样本 6.3 统计量及其分布
6.1引
言
在我们的现实生活中,许多问题的不确定现象都是由随机 因素的影响所造成的 通常情况下,需要经过对实际中大量数据的处理或理论分 析,可以确定这些随机因素所要服从的概率分布,根据其概 率分布规律利用一些统计方法可对所研究的问题做出估计、 推断和预测 具体地讲,数理统计方法是研究从一定总体中随机抽取一 部分(称为样本)的性质,来推断和预测总体的性质的一类 有效方法
简单随机样本 x1 , x2 ,..., xn 的样本分布。 解:由概率论知识,X服从泊松分布P(λ),其分布律为
p X ( x) p{ X x}
则来自这一总体的简单随机样本
x
x!
e ( 0)
x1 , x2 ,..., xn 的联合分布律为
p X ( x1 ) p X ( x2 ) p X ( xn )
注:对多数实际问题,总体中的个体是一些实在的人或物。比如, 我们要研究某大学的学生身高情况,则该大学的全体学生构成问
题的总体,而每个学生即是一个个体。
事实上,每个学生都有许多特征:性别、年龄、身高、体重 等等,而在该问题中,我们关心的只是该校学生的身高如何,对 其他的特征不予考虑。这样,每个学生(个体)所具有的数量指 标值——身高就是个体,而将所有的身高全体看成总体。
再来看一个例子: 某公司要采购一批产品,每件产品要么是正品,要 么是次品。若设这批产品的次品率为p(一般是未知的), 则从该批产品中随机抽取一件,用X表示抽到的次品数, 不难看出X服从0-1分布。当分布中的参数p是不知道的。 而p的大小决定了该批产品的质量,它直接影响采购行 为的经济效益,因此人们对p提出一些问题,例如,“p 的大小是多少?”,“p大概落在什么范围内”
i 1
xi
n
x1! x2! xn !
e n
§6.3 统计量及其分布
样本来自总体,样本观测值中含有总体的各种信息,但
这些信息较为分散,有时显得杂乱无章。为将这些分散在
样本中的有关总体的信息集中起来以反映总体的各种特征, 需要对样本进行加工,其中最常用的一种方法就是构造关 于样本的函数,不同的函数反映总体的不同特征。
概率论与数理统计之间的关系:
数理统计学是一门研究怎样去有效地收集、整理和分析带
有随机性的数据,以对所考察的问题做出推测和预测,直至
采取一定的决策和行动提供依据和建议的数学分支学科。 统计方法的数学理论要用到很多近代数学知识,如函数论、
拓扑学、矩阵代数、组合数学等等,
但关系最密切的是概率论,故可以这这样说:概率论是数
例如:某单位收集到20名青年人某月的娱乐支出费用数据 79 84 84 88 92 93 94 97 98 99 100 101 101 102 102 108 110 113 118 125 样本均值 X 99.4 样本方差
n 1 s2 ( X i X )2 n 1 i 1 1 [(79 99.4) 2 (84 99.4) 2 (125 99.4) 2 ] 20 1 133.9368
(x1,x2,…,xn)具有联合密度函数:
f n ( x1 , x2 ,, xn ) f ( x1 ) f ( x2 ) f ( xn ) f ( xi )
i 1
n
例3:设某种电灯泡的寿命X服从指数分布E(λ),其概率密度为
e x , x 0 f X ( x) x0 0,
0.16 0.14 0.12 0.1 0.08 0.06 0.04 0.02 0
0
5
10
15Biblioteka 20当随机变量 ~ (n),对给定的
2 2
(0 < < 1)称满足P{ 2 2 (n)} 的 2 (n) 为自由度为n的卡方分布的分位数。
注:分位数的值可以人表中查到。
例如:n 10, 0.05, 20.05 (10) 18.307
这样一来,若抛开实际背景,总体就是一堆数,这堆
数中有大有小,有的出现机会多,有的出现机会少,因此
用一个概率分布去描述和归纳是恰当的 从这个意义上看,总体就是一个分布,而其数量指标 就是服从这个分布的随机变量,以后说“从总体中抽样” 与“从某分布中抽样”是同一个意思。
例1:考察某厂的产品质量,将其产品只分为合格品
称为总体的一个样本,n称为样本容量,或简称样本量,
例2:啤酒厂生产的瓶装啤酒规定净含量为640g,由于随机 性,事实上不可能使得所有的啤酒净含量均为640g。现从
某厂生产的啤酒中随机抽取10瓶测定其净含量,得到如下
结果:641 635 640 637 642 638 645 643 639 640 这是一个容量为10的样本的观测值,对应的总体为该厂生产 的瓶装啤酒的净含量。
以标准正态变量为基石而构造的三个著名统计量在实 际中有着广泛的应用。这是因为这三个统计量不仅有 明确背景,而且其抽样分布的密度函数有明显表达式, 它们被称为统计中的“三大抽样分布”
1、 2 分布(卡方分布)
若随机变量 X1,X2,„ Xn 相互独立,都服 从标准正态分布 N(0,1) ,则随机变量 2 2 Y= X 12 X 2 X n 服从自由度为 n 的 2 分布,记为 Y~ 2 (n). Y 的均值为 n,方差为 2n.
定义:设 数
x1 , x2 ,..., xn 为取自总体的样本,若关于样本的函
T T ( x1, x2 ,...,xn ) 中不含有任何未知参数,则称T为统
计量。统计量的分布称为抽样分布。 例如:若x1,x2,…,xn为样本,则 xi , xi 2 都是统计量;
n n
而当 ,
未知时, ( xi )2 , xi
与不合格品,并以0记合格品,以1记不合格品,则
总体={该厂生产的全部合格品与不合格品}={由0或1组成的一堆数} 设P表示这堆数中1的比例(不合格品率),则该总
体可由一个二点分布表示
X P 0 1-P 1 P
不同的P反映了总体的差异。
比如:两个生产同类产品的工厂的产品总体分布为:
X P
0
0.983
1
0.017
X
P
0
0.915
1
0.085
显然第一个工厂的产品质量优于第二个工厂,但
是在实际中,分布中的不合格品率是未知的,如何对
之进行估计是统计学要研究的问题。
二、样本 样本:为了了解总体的分布,我们从总体中随机地抽取n