复变函数与积分变换期末试题附有答案完整版
【复变函数与积分变换期末复习题】含大题答案
复习题2一.单项选择题1.函数),(),()(y x iv y x u z f +=在点000iy x z +=处连续的充要条件是()(A)),(y x u 在),(00y x 处连续(B)),(y x v 在),(00y x 处连续(C)),(y x u 和),(y x v 在),(00y x 处连续(D)),(),(y x v y x u +在),(00y x 处连续2.设C z ∈且1=z ,则函数zz z z f 1)(2+-=的最小值为()(A)3-(B)2-(C)1-(D)13.函数)(z f 在点z 可导是)(z f 在点z 解析的()(A)充分不必要条件(B)必要不充分条件(C)充分必要条件(D)既非充分条件也非必要条件4.下列命题中,正确的是()(A)设y x ,为实数,则1)cos(≤+iy x (B)若0z 是函数)(z f 的奇点,则)(z f 在点0z 不可导(C)若v u ,在区域D 内满足柯西-黎曼方程,则iv u z f +=)(在D 内解析(D)若)(z f 在区域D 内解析,则)(z if 在D 内也解析5.设1:1=z c 为负向,3:2=z c 正向,则=⎰+=dz z zc c c 212sin ()(A)iπ2-(B)0(C)iπ2(D)iπ46.设c 为正向圆周2=z ,则=-⎰dz z zc2)1(cos ()(A)1sin -(B)1sin (C)1sin 2i π-(D)1sin 2i π7.设c 为从原点沿x y =2至i +1的弧段,则=+⎰cdz iy x )(2()(A)i6561-(B)i 6561+-(C)i 6561--(D)i6561+8.复变函数1)(-=z e z f 在复平面上()(A)无可导点(B)有可导点,但不解析(C)仅在零点不解析(D)处处解析9.使得22z z =成立的复数z 是()(A)不存在的(B)唯一的(C)纯虚数(D)实数10.设z 为复数,则方程i z z +=+2的解是()(A)i +-43(B)i +43(C)i -43(D)i --4311.ii 的主值为()(A)0(B)1(C)2πe(D)2eπ-12.ze 在复平面上()(A)无可导点(B)有可导点,但不解析(C)有可导点,且在可导点集上解析(D)处处解析13.设z z f sin )(=,则下列命题中,不正确的是()(A))(z f 在复平面上处处解析(B))(z f 以π2为周期(C)2)(iziz e e z f --=(D))(z f 是无界的14.设c 为从原点沿x y =2至i +1的弧段,则=+⎰cdz iy x )(2()(A)i 6561-(B)i 6561+-(C)i 6561--(D)i 6561+15.设c 为不经过点1与1-的正向简单闭曲线,则dz z z zc⎰+-2)1)(1(为()(A)2iπ(B)2i π-(C)0(D)(A)(B)(C)都有可能16.设1:1=z c 为负向,3:2=z c 正向,则=⎰+=dz zzc c c 212sin ()(B)i π2-(B)0(C)iπ2(D)iπ417.设()()F f t F ω=⎡⎤⎣⎦则()0sin F f t t ω=⎡⎤⎣⎦().A .()()00j2F F ωωωω+--⎡⎤⎣⎦B.()()00j2F F ωωωω++-⎡⎤⎣⎦C.()()0012F F ωωωω+--⎡⎤⎣⎦D.()()0012F F ωωωω++-⎡⎤⎣⎦18.设()()F f t F ω=⎡⎤⎣⎦则()()1F t f t -=⎡⎤⎣⎦().A .()()F F ωω'- B.()()F F ωω'--C.()()j F F ωω'- D.()()j F F ωω'--19.积分=-⎰=231091z dz z z ()(A)0(B)i π2(C)10(D)5i π20.积分21sin z z zdz ==⎰()(A)0(B)61-(C)3i π-(D)iπ-21.复数ii+=1z 位于复平面第()象限.A .一B .二C .三D .四22.下列等式成立的是().A .Lnz Lnz 77=;B .)1arg()1(r =g A ;C .112=i;D .)z z Re(z z =。
复变函数与积分变换五套试题及答案
复变函数与积分变换试题(一)一、填空(3分×10)1.的模 ,幅角 。
)31ln(i --2.-8i 的三个单根分别为: ,,。
3.Ln z 在 的区域内连续。
4.的解极域为:。
z z f =)(5.的导数。
xyi y x z f 2)(22+-==')(z f 6.。
=⎥⎦⎤⎢⎣⎡0,sin Re 3z z s 7.指数函数的映照特点是:。
8.幂函数的映照特点是:。
9.若=F [f (t )],则= F 。
)(ωF )(t f )][(1ω-f 10.若f (t )满足拉氏积分存在条件,则L [f (t )]=。
二、(10分)已知,求函数使函数为解析函222121),(y x y x v +-=),(y x u ),(),()(y x iv y x u z f +=数,且f (0)=0。
三、(10分)应用留数的相关定理计算⎰=--2||6)3)(1(z z z z dz四、计算积分(5分×2)1.⎰=-2||)1(z z z dz2. C :绕点i 一周正向任意简单闭曲线。
⎰-c i z z3)(cos 五、(10分)求函数在以下各圆环内的罗朗展式。
)(1)(i z z z f -=1.1||0<-<i z 2.+∞<-<||1i z 六、证明以下命题:(5分×2)(1)与构成一对傅氏变换对。
)(0t t -δo iwt e -(2))(2ωπδ=⎰∞+∞-ω-dt e t i 七、(10分)应用拉氏变换求方程组满足x (0)=y (0)=z (0)=0的解y (t )。
⎪⎩⎪⎨⎧='+=+'+='++'0401z y z y x z y x 八、(10分)就书中内容,函数在某区域内解析的具体判别方法有哪几种。
复变函数与积分变换试题答案(一)一、1., 2.-i 2i -i22942ln π+ππk arctg 22ln 32+-333.Z 不取原点和负实轴 4. 空集5.2z 6.07.将常形域映为角形域8.角形域映为角形域9.10.⎰∞+∞-ωωπωωd e F i )(21⎰∞+-0)(dte tf st 二、解:∵∴(5分)yu x x v ∂∂-=-=∂∂xuy y v ∂∂==∂∂c xy u +=cxy y x i z f ++⎪⎭⎫ ⎝⎛+-=222121)(∵f (0)=0c =0(3分)∴(2分)222222)2(2)(2)(z ixyi y x i y x i xy z f -=+--=--=三、解:原式=(2分)⎥⎦⎤⎢⎣⎡--∑=k k z z z z s i ,)3)(1(1Re 2621π01=z 12=z (2分)⎥⎦⎤⎢⎣⎡---=∑=k k z z z z s i ,)3)(1(1Re 2643π33=z ∞=4z 2312(3,)3)(1(1Re 66⨯=⎥⎦⎤⎢⎣⎡--分)z z z s =0⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⋅--=⎥⎦⎤⎢⎣⎡∞--0,1)31)(11(11Re 2,)3)(1(1Re 266z z z z s z z z s 分)(∴原式=(2分) =23126⨯⨯i πi 63π-四、1.解:原式(3分)z 1=0z 2=1⎥⎦⎤⎢⎣⎡-π=∑=k k z z z s i ,)1(1Re 221=0(2分)]11[2+-=i π2.解:原式=iz z i=''=s co !22πi z z i =-π=)(cos i i cos π-=1ich π-五、1.解:ni z z f ∑∞⎪⎫⎛--⋅=⋅⋅=⋅=1111111111)(分)(分)(分)((2分)11)(--∞=-=∑n n n i z in nn i z i )(1-=∑∞-=2.解:⎪⎭⎫⎝⎛-+⋅-=-+⋅-=i z i i z i z i i z z f 11)(11)(1)(11)(2分)(分)((1分)(2分)nn i z i i z ∑∞=⎪⎭⎫ ⎝⎛---=02)(120)(11+∞=-=∑n n n i z i 20)(--∞=-=∑n n n i z i 六、1.解:∵(3分)∴结论成立0)(0t i e t t ti t i e dt e t t ωωωδ-==--∞+∞-=-⎰(2)解:∵(2分)1)(2210==ωπδπ=ωω-ω-∞+∞-⎰t i t i e dw e ∴与1构成傅氏对)(2w πδ∴(2分))(2ωπδω=-∞+∞-⎰dt e t i 七、解:∵(3分)⎪⎪⎩⎪⎪⎨⎧=+=++=++)3(0)(4)()2(0)()()()1(1)()()(s sZ s Y s Z s sY s X S s sZ s Y s sX S (2)-(1):∴(3分)⎪⎭⎫ ⎝⎛-⋅-=s s s Y 111)(2⎪⎭⎫ ⎝⎛++--=--=1111211112s s s s s s ∴cht e e t Y t t -=--=-121211)(八、解:①定义;②C-R 充要条件Th ;③v 为u 的共扼函数10分复变函数与积分变换试题(二)一、填空(3分×10)1.函数f (z )在区域D 内可导是f (z )在D 内解析的()条件。
复变函数与积分变换试题及答案
南昌大学2008~2009学年第一学期期末考试试卷Q(z) f(z)=复变函数与积分变换试题(一)一、填空(3分×10)1.)31ln(i --的模,幅角。
2.-8i 的三个单根分别为: , , 。
3.Ln z 在 的区域内连续。
4.z z f =)(的解极域为:。
5.xyi y x z f 2)(22+-=的导数=')(z f。
6.=⎥⎦⎤⎢⎣⎡0,sin Re 3z z s。
7.指数函数的映照特点是: 。
8.幂函数的映照特点是:。
9.若)(ωF =F [f (t )],则)(t f = F )][(1ω-f。
10.若f (t )满足拉氏积分存在条件,则L [f (t )]=。
二、(10分)已知222121),(y x y x v +-=,求函数),(y x u 使函数),(),()(y x iv y x u z f +=为解析函数,且f (0)=0。
三、(10分)应用留数的相关定理计算⎰=--2||6)3)(1(z z z z dz四、计算积分(5分×2) 1.⎰=-2||)1(z z z dz2.⎰-c i z z3)(cos C :绕点i 一周正向任意简单闭曲线。
五、(10分)求函数)(1)(i z z z f -=在以下各圆环内的罗朗展式。
1.1||0<-<i z 2.+∞<-<||1i z六、证明以下命题:(5分×2)(1))(0t t -δ与o iwt e -构成一对傅氏变换对。
(2))(2ωπδ=⎰∞+∞-ω-dt e t i七、(10分)应用拉氏变换求方程组⎪⎩⎪⎨⎧='+=+'+='++'0401z y z y x z y x 满足x (0)=y (0)=z (0)=0的解y (t )。
八、(10分)就书中内容,函数在某区域内解析的具体判别方法有哪几种。
复变函数与积分变换试题答案(一)一、1. 22942ln π+ ,ππk arctg 22ln 32+-2.3-i2i3-i3. Z 不取原点和负实轴4. 空集5. 2z 6. 07.将常形域映为角形域8. 角形域映为角形域9.⎰∞+∞-ωωπωωd e F i )(2110.⎰∞+-0)(dt e t f st二、解:∵y ux x v ∂∂-=-=∂∂ xuy y v ∂∂==∂∂∴c xy u += (5分)c xy y x i z f ++⎪⎭⎫ ⎝⎛+-=222121)(∵f (0)=0c =0(3分)∴222222)2(2)(2)(z i xyi y x i y x i xy z f -=+--=--=(2分)三、解:原式=(2分)⎥⎦⎤⎢⎣⎡--∑=k k z z z z s i ,)3)(1(1Re 2621π 01=z 12=z(2分)⎥⎦⎤⎢⎣⎡---=∑=k k z z z z s i ,)3)(1(1Re 2643π 33=z ∞=4z2312(3,)3)(1(1Re 66⨯=⎥⎦⎤⎢⎣⎡--分)z z z s⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⋅--=⎥⎦⎤⎢⎣⎡∞--0,1)31)(11(11Re 2,)3)(1(1Re 266z z z z s z z z s 分)(=0∴原式=(2分) 23126⨯⨯i π=i 63π- 四、1.解:原式⎥⎦⎤⎢⎣⎡-π=∑=k k z z z s i,)1(1Re 221 (3分) z 1=0 z 2=1]11[2+-=i π=0(2分)2.解:原式iz z i=''=s co !22πi z z i =-π=)(cos i i cos π-==1ich π-五、1.解:nn i i z i i z ii z ii z i i z i z z f ∑∞=⎪⎭⎫⎝⎛--⋅-=-+⋅⋅-=+-⋅-=0111111)(111)(11)(分)(分)(分)(11)(--∞=-=∑n n n i z in nn i z i )(1-=∑∞-=(2分)2.解:⎪⎭⎫⎝⎛-+⋅-=-+⋅-=i z i i z i z i i z z f 11)(11)(1)(11)(2分)(分)((1分)nn i z i i z ∑∞=⎪⎭⎫ ⎝⎛---=02)(120)(11+∞=-=∑n n n i z i 20)(--∞=-=∑n n n i z i (2分) 六、1.解:∵00)(0t i e t t ti t i e dt e t t ωωωδ-==--∞+∞-=-⎰(3分) ∴结论成立 (2)解:∵1)(2210==ωπδπ=ωω-ω-∞+∞-⎰ti t i e dw e(2分)∴)(2w πδ与1构成傅氏对∴)(2ωπδω=-∞+∞-⎰dt e t i(2分)七、解:∵⎪⎪⎩⎪⎪⎨⎧=+=++=++)3(0)(4)()2(0)()()()1(1)()()(s sZ s Y s Z s sY s X S s sZ s Y s sX(3分)S (2)-(1): ∴⎪⎭⎫ ⎝⎛-⋅-=s s s Y 111)(2⎪⎭⎫ ⎝⎛++--=--=1111211112s s s s s s (3分)∴cht e e t Y tt -=--=-121211)( 八、解:①定义;②C-R 充要条件Th ; ③v 为u 的共扼函数10分复变函数与积分变换试题(二)一、填空(3分×10)1.函数f (z )在区域D 内可导是f (z )在D 内解析的()条件。
(完整版)北京交通大学《复变函数和积分变换》期末试卷及其答案
北 京 交 通 大 学2006-2007学年第二学期《复变函数和积分变换》期末试卷(B )学院_____________ 专业_________________ 班级____________ 学号_______________ 姓名_____________ 任课教师一.(1) 方程()t i 1z +=(t 为实参数)给出的曲线是 ; (2) 复数3i 1+的指数形式是 ; (3) 函数()224z z 1z +-,z=0为 级极点,2i z ±=为 级极点;(4)(5) 若∑==0n n n2nz )(z f ,则其收敛半径 ;(6) 计算留数:⎪⎭⎫⎝⎛0,z cosz Res 3 ;(7) 函数()()()y ,x iv y ,x u z f +=在()y ,x z =可微的充要条件为;(8) 曲线y x :=C 在映射z1)(=z f 下的像是 ;(9) C 为以a 为圆心,r 为半径的圆周,计算()⎰-Cna z dz(n 为正整数); (10) 判断n1n 25i 1∑∞=⎪⎭⎫ ⎝⎛+的敛散性 .二、计算题(25分,每小题各5分) (1)、计算积分⎰CRezdz 其中积分路径C 为:①连接由原点到1+i 的直线段;②连接由原点到点1的直线段及连接由点1到点1+i 的直线段所组成的折线.(2)、已知:()()3z e 1zsinzz f -=求:]0),z (f [Re s(3)、计算()()10dz z 1ln rz <<+⎰=r(4)、计算()()dz i z z 9zC2⎰+-,其中2||=z C 为正向圆周:。
(5)计算dz e 1z z 12⎰=.三、求积分()dz 1z z e 4z 22z⎰=-(7分)四、求解析函数),(),()(y x v y x u z f +=,已知()233x y x y ,x u -= ,且()i 0f =.(7分)五、验证()()0x xyarctgy ,x v >=在右半z 平面内满足Laplace 方程,即0,0=∆=∆ψϕ;其中22y x ∂∂+∂∂=∆, 并求以此为虚部的解析函数()z f .(8分)六、(8分)求函数()()()2z 1z 1z f --=分别在如下区域展成洛朗展式(1).1|1|0<-<z (2)0<2z -<1.七、求实轴在映射iz 2i+=ω下的象曲线(8分) 八、求函数()()0t 0,t 1,t f >⎪⎩⎪⎨⎧>≤=δδδ的傅立叶变换(7分)一、(1)直线y=x(2)i32k 2e⎪⎭⎫ ⎝⎛+ππ(3)一;二 (4)()()3i 12;2;3i 12313231--+--(5)2 (6)21-(7)①函数u(x,y),v(x,y)在(x,y)可微②u(x,y),v(x,y)在(x,y)满足C.-R.条件.即x y y x v u ,v u -==. (8)x=-y (9)⎩⎨⎧>=1n ,01n ,i 2π(10发散二、(1) ①连接原点到点1+i 的直线段的参数方程为:z=(1+i)t 1)t (0≤≤故⎰CRezdz =()[]{}()dt i 1t i 1Re 1++⎰=()⎰+1tdt i 1=2i1+ ②连接由原点到点1的直线段的参数方程为: z=t 1)t (0≤≤,连接由点1到点1+i 的直线段参数方程为: z=(1-t)+(1+i)t 1)t (0≤≤, 即 z=1+it 1)t (0≤≤,故⎰CRezdz =()[]⎰⎰++110idt it 1Re Retdt=⎰⎰+110dt i tdt=i 21+ (2)由题可知被积函数只有z=0一个奇点。
《复变函数与积分变换》期末考试试卷含答案
一.填空题(每小题3分,共计15分)1.231i -的幅角是( 2,1,0,23±±=+-k k ππ); 2.)1(i Ln +-的主值是( i 432ln 21π+ ); 3. 211)(z z f +=,=)0()5(f ( 0 ), 4.0=z 是 4sin zzz -的( 一级 )极点; 5.zz f 1)(=,=∞]),([Re z f s (-1 );二.选择题(每题4分,共24分) 1.解析函数),(),()(y x iv y x u z f +=的导函数为(B ); (A ) y x iu u z f +=')(; (B )y x iu u z f -=')(;(C )y x iv u z f +=')(; (D )x y iv u z f +=')(.2.C 是正向圆周3=z ,如果函数=)(z f ( D ),则0d )(=⎰Cz z f . (A )23-z ; (B )2)1(3--z z ; (C )2)2()1(3--z z ; (D )2)2(3-z .3.如果级数∑∞=1n n nz c 在2=z 点收敛,则级数在(C )(A )2-=z 点条件收敛 ; (B )i z 2=点绝对收敛;(C )i z +=1点绝对收敛; (D )i z 21+=点一定发散.4.下列结论正确的是( B )(A )如果函数)(z f 在0z 点可导,则)(z f 在0z 点一定解析;(B) 如果)(z f 在C 所围成的区域内解析,则0)(=⎰Cdz z f(C )如果0)(=⎰Cdz z f ,则函数)(z f 在C 所围成的区域内一定解析;(D )函数),(),()(y x iv y x u z f +=在区域内解析的充分必要条件是),(y x u 、),(y x v在该区域内均为调和函数.5.下列结论不正确的是( D ).的可去奇点;为、z A 1sin )(∞的本性奇点;为、z B sin )(∞.sin )(的孤立奇点为、z C 11∞的孤立奇点;为、z D sin )(1∞ 三.按要求完成下列各题(每小题10分,共40分) (1).设)()(2222y dxy cx i by axy x z f +++++=是解析函数,求.,,,d c b a解:因为)(z f 解析,由C-R 条件y v x u ∂∂=∂∂ xvy u ∂∂-=∂∂ y dx ay x 22+=+,22dy cx by ax --=+,2,2==d a ,,2,2d b c a -=-=,1,1-=-=b c给出C-R 条件6分,正确求导给2分,结果正确2分。
(完整)复变函数_期末试卷及答案,推荐文档
复变函数与积分变换 第 3 页共 6 页
23. 将函数 f (z)
1
在点 z 0 处展开为洛朗级数.
(z 1)(z 2)
dz
25. 计算 |z|3 (z 1)2 (z i)(z 4) .
四、综合题(共 4 小题,每题 8 分,共 32 分)
2
25. 计算
1
d .
0 5 4 cos
A. 3 4i 的主辐角为 arctan 4 3
C. a rg(3 4i)2 2 arg(3 4i)
B. arg(3i) arg(i) D. z z | z |2
3.下列命题中,正确的是( )
A. z 1表示圆的内部
B. Re(z) 0 表示上半平面
C. 0 arg z 表示角形区域 4
19.
( 2)n
幂极数
n2
n 1
zn
的收敛半径为_______.
复变函数与积分变换 第 2 页 共 6 页
20. 设 z3 ,则映射在 z0 1 i 处的旋转角为____________,伸缩率为____________. 20. 设函数 f (t) t 2 sin t ,则 f (t) 的拉氏变换等于____________.
15.已知 F () F[ f (t)] ,则下列命题正确的是( )
A. F[ f (t 2)] e2 j F ()
B. e2 j f (t) F 1[F ( 2)]
C. F[ f (2t)] 2F (2)
D. F[e2 jt f (t)] F ( 2)
二、填空题(本大题共 5 小题,每小题 2 分,共 10 分)
解:设曲线 C 的参数方程为 C : z (2 3i)t 0 t 1.
复变函数与积分变换试题及答案
南昌大学2008~2009学年第一学期期末考试试卷Q(z) f(z)=复变函数与积分变换试题(一)一、填空(3分×10)1.)31ln(i --的模,幅角。
2.-8i 的三个单根分别为: , , 。
3.Ln z 在 的区域内连续。
4.z z f =)(的解极域为:。
5.xyi y x z f 2)(22+-=的导数=')(z f。
6.=⎥⎦⎤⎢⎣⎡0,sin Re 3z z s。
7.指数函数的映照特点是: 。
8.幂函数的映照特点是:。
9.若)(ωF =F [f (t )],则)(t f = F )][(1ω-f。
10.若f (t )满足拉氏积分存在条件,则L [f (t )]=。
二、(10分)已知222121),(y x y x v +-=,求函数),(y x u 使函数),(),()(y x iv y x u z f +=为解析函数,且f (0)=0。
三、(10分)应用留数的相关定理计算⎰=--2||6)3)(1(z z z z dz四、计算积分(5分×2) 1.⎰=-2||)1(z z z dz2.⎰-c i z z3)(cos C :绕点i 一周正向任意简单闭曲线。
五、(10分)求函数)(1)(i z z z f -=在以下各圆环内的罗朗展式。
1.1||0<-<i z 2.+∞<-<||1i z六、证明以下命题:(5分×2)(1))(0t t -δ与o iwt e -构成一对傅氏变换对。
(2))(2ωπδ=⎰∞+∞-ω-dt e t i七、(10分)应用拉氏变换求方程组⎪⎩⎪⎨⎧='+=+'+='++'0401z y z y x z y x 满足x (0)=y (0)=z (0)=0的解y (t )。
八、(10分)就书中内容,函数在某区域内解析的具体判别方法有哪几种。
复变函数与积分变换试题答案(一)一、1. 22942ln π+ ,ππk arctg 22ln 32+-2.3-i2i3-i3. Z 不取原点和负实轴4. 空集5. 2z 6. 07.将常形域映为角形域8. 角形域映为角形域9.⎰∞+∞-ωωπωωd e F i )(2110.⎰∞+-0)(dt e t f st二、解:∵y ux x v ∂∂-=-=∂∂ xuy y v ∂∂==∂∂∴c xy u += (5分)c xy y x i z f ++⎪⎭⎫ ⎝⎛+-=222121)(∵f (0)=0c =0(3分)∴222222)2(2)(2)(z i xyi y x i y x i xy z f -=+--=--=(2分)三、解:原式=(2分)⎥⎦⎤⎢⎣⎡--∑=k k z z z z s i ,)3)(1(1Re 2621π 01=z 12=z(2分)⎥⎦⎤⎢⎣⎡---=∑=k k z z z z s i ,)3)(1(1Re 2643π 33=z ∞=4z2312(3,)3)(1(1Re 66⨯=⎥⎦⎤⎢⎣⎡--分)z z z s⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⋅--=⎥⎦⎤⎢⎣⎡∞--0,1)31)(11(11Re 2,)3)(1(1Re 266z z z z s z z z s 分)(=0∴原式=(2分) 23126⨯⨯i π=i 63π- 四、1.解:原式⎥⎦⎤⎢⎣⎡-π=∑=k k z z z s i,)1(1Re 221 (3分) z 1=0 z 2=1]11[2+-=i π=0(2分)2.解:原式iz z i=''=s co !22πi z z i =-π=)(cos i i cos π-==1ich π-五、1.解:nn i i z i i z ii z ii z i i z i z z f ∑∞=⎪⎭⎫⎝⎛--⋅-=-+⋅⋅-=+-⋅-=0111111)(111)(11)(分)(分)(分)(11)(--∞=-=∑n n n i z in nn i z i )(1-=∑∞-=(2分)2.解:⎪⎭⎫⎝⎛-+⋅-=-+⋅-=i z i i z i z i i z z f 11)(11)(1)(11)(2分)(分)((1分)nn i z i i z ∑∞=⎪⎭⎫ ⎝⎛---=02)(120)(11+∞=-=∑n n n i z i 20)(--∞=-=∑n n n i z i (2分) 六、1.解:∵00)(0t i e t t ti t i e dt e t t ωωωδ-==--∞+∞-=-⎰(3分) ∴结论成立 (2)解:∵1)(2210==ωπδπ=ωω-ω-∞+∞-⎰ti t i e dw e(2分)∴)(2w πδ与1构成傅氏对∴)(2ωπδω=-∞+∞-⎰dt e t i(2分)七、解:∵⎪⎪⎩⎪⎪⎨⎧=+=++=++)3(0)(4)()2(0)()()()1(1)()()(s sZ s Y s Z s sY s X S s sZ s Y s sX(3分)S (2)-(1): ∴⎪⎭⎫ ⎝⎛-⋅-=s s s Y 111)(2⎪⎭⎫ ⎝⎛++--=--=1111211112s s s s s s (3分)∴cht e e t Y tt -=--=-121211)( 八、解:①定义;②C-R 充要条件Th ; ③v 为u 的共扼函数10分复变函数与积分变换试题(二)一、填空(3分×10)1.函数f (z )在区域D 内可导是f (z )在D 内解析的()条件。
复变函数与积分变换试题和答案
复变函数与积分变换试题(一)一、填空(3分×10)1.)31ln(i --的模.幅角。
2.-8i 的三个单根分别为: . . 。
3.Ln z 在 的区域内连续。
4.z z f =)(的解极域为:。
5.xyi y x z f 2)(22+-=的导数=')(z f。
6.=⎥⎦⎤⎢⎣⎡0,sin Re 3z z s。
7.指数函数的映照特点是: 。
8.幂函数的映照特点是:。
9.若)(ωF =F [f (t )].则)(t f = F )][(1ω-f。
10.若f (t )满足拉氏积分存在条件.则L [f (t )]=。
二、(10分)已知222121),(y x y x v +-=.求函数),(y x u 使函数),(),()(y x iv y x u z f +=为解析函数.且f (0)=0。
三、(10分)应用留数的相关定理计算⎰=--2||6)3)(1(z z z z dz四、计算积分(5分×2) 1.⎰=-2||)1(z z z dz2.⎰-c i z z3)(cos C :绕点i 一周正向任意简单闭曲线。
五、(10分)求函数)(1)(i z z z f -=在以下各圆环内的罗朗展式。
1.1||0<-<i z 2.+∞<-<||1i z六、证明以下命题:(5分×2)(1))(0t t -δ与o iwt e -构成一对傅氏变换对。
(2))(2ωπδ=⎰∞+∞-ω-dt e t i七、(10分)应用拉氏变换求方程组⎪⎩⎪⎨⎧='+=+'+='++'0401z y z y x z y x 满足x (0)=y (0)=z (0)=0的解y (t )。
八、(10分)就书中内容.函数在某区域内解析的具体判别方法有哪几种。
复变函数与积分变换试题答案(一)一、1. 22942ln π+ .ππk arctg 22ln 32+-2.3-i 2i 3-i3. Z 不取原点和负实轴4. 空集5. 2z 6. 0 7.将常形域映为角形域8. 角形域映为角形域9.⎰∞+∞-ωωπωωd e F i )(2110. ⎰∞+-0)(dt e t f st二、解:∵y ux x v ∂∂-=-=∂∂ xuy y v ∂∂==∂∂∴c xy u += (5分)c xy y x i z f ++⎪⎭⎫ ⎝⎛+-=222121)(∵f (0)=0c =0 (3分)∴222222)2(2)(2)(z i xyi y x i y x i xy z f -=+--=--=(2分)三、解:原式=(2分)⎥⎦⎤⎢⎣⎡--∑=k k z z z z s i ,)3)(1(1Re 2621π 01=z 12=z(2分)⎥⎦⎤⎢⎣⎡---=∑=k k z z z z s i ,)3)(1(1Re 2643π 33=z ∞=4z2312(3,)3)(1(1Re 66⨯=⎥⎦⎤⎢⎣⎡--分)z z z s⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⋅--=⎥⎦⎤⎢⎣⎡∞--0,1)31)(11(11Re 2,)3)(1(1Re 266z z z z s z z z s 分)(=0∴原式=(2分) 23126⨯⨯i π=i 63π-四、1.解:原式⎥⎦⎤⎢⎣⎡-π=∑=k k z z z s i ,)1(1Re 221 (3分) z 1=0z 2=1]11[2+-=i π=0(2分)2.解:原式iz z i=''=s co !22πi z z i =-π=)(cos i i cos π-==1ich π-五、1.解:nn i i z i i z ii z ii z i i z i z z f ∑∞=⎪⎭⎫⎝⎛--⋅-=-+⋅⋅-=+-⋅-=0111111)(111)(11)(分)(分)(分)(11)(--∞=-=∑n n n i z in nn i z i )(1-=∑∞-=(2分)2.解:⎪⎭⎫⎝⎛-+⋅-=-+⋅-=i z i i z i z i i z z f 11)(11)(1)(11)(2分)(分)((1分)nn i z i i z ∑∞=⎪⎭⎫ ⎝⎛---=02)(120)(11+∞=-=∑n n n i z i 20)(--∞=-=∑n n n i z i (2分) 六、1.解:∵00)(0t i e t t ti t i e dt e t t ωωωδ-==--∞+∞-=-⎰(3分) ∴结论成立 (2)解:∵1)(2210==ωπδπ=ωω-ω-∞+∞-⎰ti t i e dw e(2分)∴)(2w πδ与1构成傅氏对∴)(2ωπδω=-∞+∞-⎰dt e t i(2分)七、解:∵⎪⎪⎩⎪⎪⎨⎧=+=++=++)3(0)(4)()2(0)()()()1(1)()()(s sZ s Y s Z s sY s X S s sZ s Y s sX(3分)S (2)-(1):∴⎪⎭⎫ ⎝⎛-⋅-=s s s Y 111)(2⎪⎭⎫ ⎝⎛++--=--=1111211112s s s s s s (3分)∴cht e e t Y tt -=--=-121211)( 八、解:①定义;②C-R 充要条件Th ; ③v 为u 的共扼函数 10分复变函数与积分变换试题(二)一、填空(3分×10)1.函数f (z )在区域D 内可导是f (z )在D 内解析的( )条件。
复变函数与积分变换试题及答案
南昌大学2008~2009学年第一学期期末考试试卷468复变函数与积分变换试题(一)一、填空(3分×10)1.)31ln(i --的模,幅角。
2.-8i 的三个单根分别为: , , 。
3.Ln z 在 的区域内连续。
4.z z f =)(的解极域为:。
5.xyi y x z f 2)(22+-=的导数=')(z f。
6.=⎥⎦⎤⎢⎣⎡0,sin Re 3z z s。
7.指数函数的映照特点是: 。
8.幂函数的映照特点是:。
9.若)(ωF =F [f (t )],则)(t f = F )][(1ω-f。
10.若f (t )满足拉氏积分存在条件,则L [f (t )]=。
二、(10分)已知222121),(y x y x v +-=,求函数),(y x u 使函数),(),()(y x iv y x u z f +=为解析函数,且f (0)=0。
三、(10分)应用留数的相关定理计算⎰=--2||6)3)(1(z z z z dz四、计算积分(5分×2) 1.⎰=-2||)1(z z z dz2.⎰-c i z z3)(cos C :绕点i 一周正向任意简单闭曲线。
五、(10分)求函数)(1)(i z z z f -=在以下各圆环内的罗朗展式。
1.1||0<-<i z 2.+∞<-<||1i z六、证明以下命题:(5分×2)(1))(0t t -δ与o iwt e -构成一对傅氏变换对。
(2))(2ωπδ=⎰∞+∞-ω-dt e t i七、(10分)应用拉氏变换求方程组⎪⎩⎪⎨⎧='+=+'+='++'0401z y z y x z y x 满足x (0)=y (0)=z (0)=0的解y (t )。
八、(10分)就书中内容,函数在某区域内解析的具体判别方法有哪几种。
复变函数与积分变换试题答案(一)一、1. 22942ln π+ ,ππk arctg 22ln 32+-2.3-i2i3-i3. Z 不取原点和负实轴4. 空集5. 2z 6. 07.将常形域映为角形域8. 角形域映为角形域9.⎰∞+∞-ωωπωωd e F i )(2110.⎰∞+-0)(dt e t f st二、解:∵y ux x v ∂∂-=-=∂∂ xuy y v ∂∂==∂∂∴c xy u += (5分)c xy y x i z f ++⎪⎭⎫ ⎝⎛+-=222121)(∵f (0)=0c =0(3分)∴222222)2(2)(2)(z i xyi y x i y x i xy z f -=+--=--=(2分)三、解:原式=(2分)⎥⎦⎤⎢⎣⎡--∑=k k z z z z s i ,)3)(1(1Re 2621π 01=z 12=z(2分)⎥⎦⎤⎢⎣⎡---=∑=k k z z z z s i ,)3)(1(1Re 2643π 33=z ∞=4z2312(3,)3)(1(1Re 66⨯=⎥⎦⎤⎢⎣⎡--分)z z z s⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⋅--=⎥⎦⎤⎢⎣⎡∞--0,1)31)(11(11Re 2,)3)(1(1Re 266z z z z s z z z s 分)(=0∴原式=(2分) 23126⨯⨯i π=i 63π-四、1.解:原式⎥⎦⎤⎢⎣⎡-π=∑=k k z z z s i ,)1(1Re 221 (3分) z 1=0z 2=1]11[2+-=i π=0(2分)2.解:原式iz z i=''=s co !22πi z z i =-π=)(cos i i cos π-==1ich π-五、1.解:nn i i z i i z ii z ii z i i z i z z f ∑∞=⎪⎭⎫⎝⎛--⋅-=-+⋅⋅-=+-⋅-=0111111)(111)(11)(分)(分)(分)(11)(--∞=-=∑n n n i z in nn i z i )(1-=∑∞-=(2分)2.解:⎪⎭⎫⎝⎛-+⋅-=-+⋅-=i z i i z i z i i z z f 11)(11)(1)(11)(2分)(分)((1分)nn i z i i z ∑∞=⎪⎭⎫ ⎝⎛---=02)(120)(11+∞=-=∑n n n i z i 20)(--∞=-=∑n n n i z i (2分) 六、1.解:∵00)(0t i e t t ti t i e dt e t t ωωωδ-==--∞+∞-=-⎰(3分) ∴结论成立 (2)解:∵1)(2210==ωπδπ=ωω-ω-∞+∞-⎰ti t i e dw e(2分)∴)(2w πδ与1构成傅氏对∴)(2ωπδω=-∞+∞-⎰dt e t i(2分)七、解:∵⎪⎪⎩⎪⎪⎨⎧=+=++=++)3(0)(4)()2(0)()()()1(1)()()(s sZ s Y s Z s sY s X S s sZ s Y s sX(3分)S (2)-(1): ∴⎪⎭⎫ ⎝⎛-⋅-=s s s Y 111)(2⎪⎭⎫ ⎝⎛++--=--=1111211112s s s s s s (3分)∴cht e e t Y tt -=--=-121211)( 八、解:①定义;②C-R 充要条件Th ; ③v 为u 的共扼函数10分复变函数与积分变换试题(二)一、填空(3分×10)1.函数f (z )在区域D 内可导是f (z )在D 内解析的()条件。
《复变函数与积分变换》期末考试试卷及答案[1](可打印
------14 分
1i
1.
的幅角是(
2k , k 0 1,2,L
);
2
4
2. Ln(1 i) 的主值是( 1 ln 2 i
z
ez 1)
2
z0
2i
无论采用那种方法给出公式至少给一半分,其他酌情给分。
z15
(3).
dz
z 3 (1 z 2 )2 (2 z 4 )3
共 6 页第 2 页
3/8
解:设 f (z) 在有限复平面内所有奇点均在: z 3 内,由留数定理
z15
dz 2i Re s[ f (z), ]
z 3 (1 z 2 )2 (2 z 4 )3
, Re
s[
f
( z ), ]
(-1
);
二.选择题(每题 4 分,共 24 分)
1.解析函数 f (z) u(x, y) iv(x, y) 的导函数为(B );
(A) f (z) u x iu y ; (B) f (z) u x iu y ; (C) f (z) u x iv y ; (D) f (z) u y ivx .
(D)函数 f (z) u(x, y) iv(x, y) 在区域内解析的充分必要条件是 u(x, y) 、
共 6 页第 1 页
2/8
v(x, y) 在该区域内均为调和函数.
5.下列结论不正确的是( D
( A)、
、
sin
1、、、、、、 z
).
(B)、 、 sin z、、、、、、
(C )、 、 1 、、、、、 1
2.C 是正向圆周 z 3 ,如果函数 f (z) ( D ),则 f (z)dz 0 . C
3
复变函数与积分变换期末试题附有答案
复变函数与积分变换期末试题附有答案Last revision on 21 December 2020复变函数与积分变换期末试题一.填空题(每小题3分,共计15分)1.231i -2.)1(i Ln +-的主值是();3. 211)(z z f +=,=)0()5(f( 0 ),4.0=z 是4sin z z z -的( 一级 )极点;5. zz f 1)(=,=∞]),([Re z f s (-1 );二.选择题(每题3分,共15分)1.解析函数),(),()(y x iv y x u z f +=的导函数为( );(A ) y x iu u z f +=')(; (B )y x iu u z f -=')(;(C )y x iv u z f +=')(; (D )x y iv u z f +=')(.2.C 是正向圆周3=z ,如果函数=)(z f ( ),则0d )(=⎰Cz z f .(A )23-z ; (B )2)1(3--z z ; (C )2)2()1(3--z z ;3.如果级数∑∞=1n nnz c 在2=z 点收敛,则级数在(A )2-=z 点条件收敛 ; (B )i z 2=点绝对收敛;(C )i z+=1点绝对收敛; (D )i z 21+=点一定发散.4.下列结论正确的是( )(A )如果函数)(z f 在0z 点可导,则)(z f 在0z 点一定解析;(C )如果0)(=⎰Cdz z f ,则函数)(z f 在C 所围成的区域内一定解析;(D )函数),(),()(y x iv y x u z f +=在区域内解析的充分必要条件是),(y x u 、),(y x v 在该区域内均为调和函数.5.下列结论不正确的是( ).(A) 的可去奇点;为z1sin ∞(B) 的本性奇点;为z sin ∞(C) ;1sin 1的孤立奇点为z∞三.按要求完成下列各题(每小题10分,共40分)(1).设)()(2222y dxy cx i by axy x z f +++++=是解析函数,求.,,,d c b a解:因为)(z f 解析,由C-R 条件,2,2==d a ,,2,2d b c a -=-=,1,1-=-=b c给出C-R 条件6分,正确求导给2分,结果正确2分。
《复变函数与积分变换》期末考试试卷及答案[1]
一.填空题(每小题3分,共计15分)1.231i -的幅角是(Λ2,1,0,23±±=+-k k ππ);2.)1(i Ln +-的主值是( i 432ln 21π+ ); 3. 211)(z z f +=,=)0()5(f ( 0 ), 4.0=z 是 4sin zzz -的( 一级 )极点; 5.zz f 1)(=,=∞]),([Re z f s (-1 ); 二.选择题(每题4分,共24分) 1.解析函数),(),()(y x iv y x u z f +=的导函数为(B ); (A ) y x iu u z f +=')(; (B )y x iu u z f -=')(;(C )y x iv u z f +=')(; (D )x y iv u z f +=')(.2.C 是正向圆周3=z ,如果函数=)(z f ( D ),则0d )(=⎰Cz z f . (A )23-z ; (B )2)1(3--z z ; (C )2)2()1(3--z z ; (D )2)2(3-z .3.如果级数∑∞=1n n nz c 在2=z 点收敛,则级数在(C )(A )2-=z 点条件收敛 ; (B )i z 2=点绝对收敛;(C )i z +=1点绝对收敛; (D )i z 21+=点一定发散.4.下列结论正确的是( B )(A )如果函数)(z f 在0z 点可导,则)(z f 在0z 点一定解析;(B) 如果)(z f 在C 所围成的区域解析,则0)(=⎰Cdz z f(C )如果0)(=⎰Cdz z f ,则函数)(z f 在C 所围成的区域一定解析;(D )函数),(),()(y x iv y x u z f +=在区域解析的充分必要条件是),(y x u 、),(y x v 在该区域均为调和函数.5.下列结论不正确的是( D ).的可去奇点;为、z A 1sin )(∞的本性奇点;为、z B sin )(∞.sin )(的孤立奇点为、z C 11∞的孤立奇点;为、z D sin )(1∞ 三.按要求完成下列各题(每小题10分,共40分) (1).设)()(2222y dxy cx i by axy x z f +++++=是解析函数,求.,,,d c b a解:因为)(z f 解析,由C-R 条件y v x u ∂∂=∂∂ xvy u ∂∂-=∂∂ y dx ay x 22+=+,22dy cx by ax --=+,2,2==d a ,,2,2d b c a -=-=,1,1-=-=b c给出C-R 条件6分,正确求导给2分,结果正确2分。
复变函数与积分变换期末试题及答案
复变函数与积分变换试题与答案一、填空题:(每题3分)1.i 31--的三角表达形式: ; 指数表达形式: ; 几何表达形式: . 2.=-i 2)3( ;3. 设Max =M {}C z z f ∈|)(|,L 为曲线C 的长度,则≤⎰z z f C d )( . 4.级数21n z z z +++++的和函数的解析域是 。
5. 分式线性函数、指数函数、幂函数的映照特点各是 二、解答题(每题8分)1.设22()i f z xy x y =+,则()f z 在何处可导?何处解析?2.已知f (z )的虚部为222121),(y x y x v +-=,求解析函数0)0()(=+=f iv u z f 且.3.求积分 ,C I zdz =⎰ C 为沿单位圆(||1)z =的逆时针一周的曲线。
4.求sin d (1)Czz z z -⎰,其中C 为||2z =。
5.求e d cos zCz z⎰,其中C 为||2z =。
6.把函数)2)(1(12-+z z 在2||1<<z 内展开成罗朗级数。
7.指出 6sin )(z zz z f -= 在有限复平面上的孤立奇点及类型,并求奇点处的留数。
8.求将单位圆 | z | < 1内保形映照到单位圆 | w | < 1内, 且满足0)21(=f ,2)21(arg π='f 的分式线性映照。
四、利用拉氏变换求解微分方程(6分)⎩⎨⎧='==+'+''-1)0()0(34y y e y y y t (提示:1[]1t L e s -=+)试题答案一、填空题:(每题3分) 1.i 31--的三角表达形式:222[cos(2)sin(2)]33k i k ππππ-++-+; 指数表达形式:2(2)32k i eππ-+ ;几何表达形式:|12,-=2(1(2)3Arg k ππ-=-+. 2.=-i 2)3(222ln3k ieππ--+;3. 设Max =M {}C z z f ∈|)(|,L 为曲线C 的长度,则()d Cf z z ML ≤⎰.4.级数21n z z z +++++的和函数的解析域是||1z <。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复变函数与积分变换期末试题附有答案HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】复变函数与积分变换期末试题一.填空题(每小题3分,共计15分)1.231i -2.)1(i Ln +-的主值是();3. 211)(z z f +=,=)0()5(f ( 0 ),4.0=z 是4sin z z z -的( 一级 )极点;5. zz f 1)(=,=∞]),([Re z f s (-1 ); 二.选择题(每题3分,共15分)1.解析函数),(),()(y x iv y x u z f +=的导函数为( );(A ) y x iu u z f +=')(; (B )y x iu u z f -=')(;(C )y x iv u z f +=')(; (D )x y iv u z f +=')(.2.C 是正向圆周3=z ,如果函数=)(z f ( ),则0d )(=⎰C z z f .(A ) 23-z ; (B )2)1(3--z z ; (C )2)2()1(3--z z ;3.如果级数∑∞=1n n nz c 在2=z 点收敛,则级数在(A )2-=z点条件收敛 ; (B )i z 2=点绝对收敛; (C )i z +=1点绝对收敛; (D )i z 21+=点一定发散.4.下列结论正确的是( )(A )如果函数)(z f 在0z 点可导,则)(z f 在0z 点一定解析;(C )如果0)(=⎰C dz z f ,则函数)(z f 在C 所围成的区域内一定解析;(D )函数),(),()(y x iv y x u z f +=在区域内解析的充分必要条件是),(y x u 、),(y x v 在该区域内均为调和函数.5.下列结论不正确的是( ).(A) 的可去奇点;为z1sin ∞(B) 的本性奇点;为z sin ∞(C) ;1sin 1的孤立奇点为z ∞三.按要求完成下列各题(每小题10分,共40分)(1).设)()(2222y dxy cx i by axy x z f +++++=是解析函数,求.,,,d c b a 解:因为)(z f 解析,由C-R 条件,2,2==d a ,,2,2d b c a -=-=,1,1-=-=b c给出C-R 条件6分,正确求导给2分,结果正确2分。
(2).计算⎰-C zz zz e d )1(2其中C 是正向圆周: 解:本题可以用柯西公式\柯西高阶导数公式计算也可用留数计算洛朗展开计算,仅给出用前者计算过程 因为函数zz e z f z2)1()(-=在复平面内只有两个奇点1,021==z z ,分别以21,z z 为圆心画互不相交互不包含的小圆21,c c 且位于c 内⎰⎰⎰-+-=-21d )1(d )1(d )1(222C z C z C zz z z e z zz e z z z e 无论采用那种方法给出公式至少给一半分,其他酌情给分。
(3).⎰=++3342215d )2()1(z z z z z 解:设)(z f 在有限复平面内所有奇点均在:3<z 内,由留数定理]),([Re 2d )2()1(3342215∞-=++⎰=z f s i z z z z z π -----(5分)]1)1([Re 22zz f s i π= ----(8分) ⎰==++∴33422152d )2()1(z i z z z z π --------(10分) (4)函数2332)3()(sin )2)(1()(-+-=z z z z z z f π在扩充复平面上有什么类型的奇点, 如果有极点,请指出它的级.解 :∞±±±==-+-=,的奇点为 ,3,2,1,0,)(sin )3()2)(1()(3232k k z z z z z z z f π(1)的三级零点,)为(032103=±±±==z k k z πsin ,,,,,(2)的可去奇点,是的二级极点,为,)()(,z f z z f z z 210-=±==(3)的一级极点,为)(3z f z= (4)的三级极点;,为)(4,3,2z f z ±-=(5)的非孤立奇点。
为)(z f ∞备注:给出全部奇点给5分 ,其他酌情给分。
四、(本题14分)将函数)1(1)(2-=z z z f 在以下区域内展开成罗朗级数; (1)110<-<z ,(2)10<<z ,(3)∞<<z 1解:(1)当110<-<z 而])1()1([])11(1[0'--='+-∑∞=n n n z z ∑∞=-+--=021)1()1()(n n n z n z f -------6分(2)当10<<z)1(1)1(1)(22z z z z z f --=-==∑∞=-021n n z z∑∞=--=02n n z -------10分(3)当∞<<z 1∑∑∞=+∞===03031)1(1)(n n n n z z z z f ------14分 每步可以酌情给分。
五.(本题10分)用Laplace 变换求解常微分方程定解问题:解:对)(x y 的Laplace 变换记做)(s L ,依据Laplace 变换性质有11)(4)1)((51)(2+=+----s s L s sL s s L s …(5分) 整理得 )4(151)1(65)1(101 11)4(151)1(61)1(101 11)4)(1)(1(1)(-+-++=-+-+--+=-+--+=s s s s s s s s s s s s L …(7分) x x x e e e x y 415165101)(++=- …(10分) 六、(6分)求)()(0>=-ββt e t f 的傅立叶变换,并由此证明:解:)()(0>=-+∞∞--⎰βωβω dt e e F t t i --------3分)()(021122>+=++-=βωββωβωβω i i F ------4分 )()()(021>=⎰+∞∞-βωωπω d F e t f t i - -------5分 )(cos )(02022>+=⎰+∞βωωβωπβd t t f , -------6分 B ) 一. 填3分,共计15分)的幅角是();2.)1(i Ln --的主值是 );3. 211)(z z f +=,=)0()7(f ( 0 );4.3sin )(z z z z f -= ,=]0),([Re z f s ( 0 ) ;5. 21)(z z f =,=∞]),([Re z f s ( 0 );二.选择题(每小题3分,共计15分)1.解析函数),(),()(y x iv y x u z f +=的导函数为( );(A )x y iv u z f +=')(; (B )y x iu u z f -=')(; (C )y x iv u z f +=')(; (D )y x iu u z f +=')(.2.C 是正向圆周2=z ,如果函数=)(z f ( ),则0d )(=⎰C z z f .(B )13-z z ; (C )2)1(3-z z ; (D )2)1(3-z . 3.如果级数∑∞=1n n n z c 在i z 2=点收敛,则级数在(A )2-=z 点条件收敛 ; (B )i z 2-=点绝对收敛;(C )i z +=1点绝对收敛; (D )i z 21+=点一定发散.4.下列结论正确的是( )(A )如果函数)(z f 在0z 点可导,则)(z f 在0z 点一定解析;(B) 如果0)(=⎰Cdz z f ,其中C 复平面内正向封闭曲线, 则)(z f 在C 所围成的区域内一定解析;(C )函数)(z f 在0z 点解析的充分必要条件是它在该点的邻域内一定可以展开成为0z z -的幂级数,而且展开式是唯一的;(D )函数),(),()(y x iv y x u z f +=在区域内解析的充分必要条件是),(y x u 、),(y x v 在该区域内均为调和函数.5.下列结论不正确的是( ).(A )、lnz 是复平面上的多值函数; cosz )B (、是无界函数;z sin )C (、 是复平面上的有界函数;(D )、z e 是周期函数.三.按要求完成下列各题(每小题10分,共计40分)(1)求d c b a ,,,使)()(2222y dxy cx i by axy x z f +++++=是解析函数,解:因为)(z f 解析,由C-R 条件,2,2==d a ,,2,2d b c a -=-=,1,1-=-=b c给出C-R 条件6分,正确求导给2分,结果正确2分。
(2).⎰-C z z z d )1(12.其中C 是正向圆周2=z ;解:本题可以用柯西公式\柯西高阶导数公式计算也可用留数计算洛朗展开计算,仅给出用前者计算过程 因为函数zz z f 2)1(1)(-=在复平面内只有两个奇点1,021==z z ,分别以21,z z 为圆心画互不相交互不包含的小圆21,c c 且位于c 内⎰⎰⎰-+-=-21d )1(1d )1(1d )1(1222C C C z z z z z z z z z (3).计算⎰-C z z ze z d )1(13,其中C 是正向圆周2=z ; 解:设)(z f 在有限复平面内所有奇点均在:2<z 内,由留数定理122]),([Re 2(z)d -==∞-=⎰ic z f s i z f z ππ -----(5分)(4)函数332)(sin )2)(1()(z z z z f π+-=在扩充复平面上有什么类型的奇点, 如果有极点,请指出它的级.给出全部奇点给5分。
其他酌情给分。
四、(本题14分)将函数)1(1)(2+=z z z f 在以下区域内展开成罗朗级数; (1)110<+<z ,(2)10<<z ,(3)∞<<z 1(1)110<+<z ,(2)10<<z ,(3)∞<<z 1解:(1)当110<+<z而])1([])1(1(1[0'+='+-∑∞=n n z z ∑∞=-+=01)1(n n z n ∑∞=-+=02)1()(n n z n z f --------6分(2)当10<<z)1(1)(2+=z z z f =∑∞=-02)1(1n n n z z∑∞=--=02)1(n n z -----10分(3)当∞<<z 1∑∑∞=+∞=-=-=03031)1()1(1)(n n n n n z z zz f --------14分 五.(本题10分)用Laplace 变换求解常微分方程定解问题)(xy 的Laplace 变换记做)(s L ,依据Laplace 变换性质有11)(3)(21)(2+=-+-s s L s sL s L s …(5分) 整理得)4)(1)(1(2)(+-++=s s s s s L …(7分) x x x e e e x y 3818341)(---+-= …(10分) 六、(本题6分)求1101)(>≤⎩⎨⎧=t t t f 的傅立叶变换,并由此证明: 解: )()(dt t f e F t i ⎰+∞∞--=ωω dt e F t i ⎰--=11)(ωω -------2分 sin 2 11ωωωωωωω=-=-=---i i t i e e i i e ----- 4分)(21)(ωωπωd F e t f t i ⎰+∞∞-=----------- 5分 )(2cos sin t f d t πωωωω=+∞=111042>=<⎪⎩⎪⎨⎧t t t ππ --------------6分。