(完整版)初中数学[最短路径问题]典型题型及解题技巧

合集下载

初中数学——最短路径问题常见题型及解题方法

初中数学——最短路径问题常见题型及解题方法

初中数学——最短路径问题常见题型及解题方法
两点在直线同侧的最短路径问题
给出一条直线,A、B两点在直线的同侧,要在直线上找到一个点,使这个点到A点和到B点的距离最短。

步骤:
①找到A(或B)关于直线的对称点P
②连接PB(PA)交直线于O,点O就是所要找的点
造桥选址问题
A、B在一条河的两岸,要在河上造一座桥MN,使A到B的路径AMNB最短。

步骤:
①作出河的宽度M′N′
②将M′N′平移,使M′向A点平移,N′向A′点平移,即AA′=M′N′
③连接A′B与河岸b交于N点
④过N点作直线a的垂线,垂足为M 。

则MN就是桥的位置.
涉及到两个动点的最短路径问题
给出一个正方形,已知两个定点和两个动点,
要在直线上找到这两个动点,使这四个点所围的四边形周长最小。

步骤:
①找到两个定点关于正方形的边的对称点,
②连接两个对称点,和正方形边的两边有两个交点。

③交点就是动点的位置
例题:
(2015,广西玉林、防城港)如图,已知正方形ABCD边长为3,点E在AB边上且BE=1,点P,Q分别是边BC,CD的动点(均不与顶点重合),当四边形AEPQ的周长取最小值时,四边形AEPQ的面积是.
思路:。

初中数学最短路径问题总结

初中数学最短路径问题总结

初中数学最短路径问题总结一、十二个基本问题概述问题一:在直线l 上求一点P,使得PA + PB 值最小 .作法:连接AB,与直线l 的交点即为P 点 .原理:两点之间线段最短 . PA + PB 最小值为AB .问题二:(“将军饮马问题”)在直线l 上求一点P,使得PA + PB 值最小 .作法:作点B 关于直线l 的对称点B',连接AB' 与l 的交点即为点P.原理:两点之间线段最短.PA + PB 最小值为AB' .问题三:在直线l1、l2 上分别求点M、N,使得△PMN 的周长最小.作法:分别作点P 关于两条直线的对称点P' 和P'',连接P'P'',与两条直线的交点即为点M,N.原理:两点之间线段最短.PM + MN + PN 的最小值为线段P'P'' 的长.问题四:在直线l1、l2 上分别求点M、N,使四边形PQMN 的周长最小.作法:分别作点Q 、P 关于直线l1、l2 的对称点Q' 和P' 连接Q'P',与两直线交点即为点M,N.原理:两点之间线段最短.四边形PQMN 周长的最小值为线段Q'P' + PQ 的长.问题五:(“造桥选址问题”)直线m∥n,在m、n 上分别求点M、N,使MN⊥m,且AM + MN + BN 的值最小.作法:将点A 向下平移MN 的长度单位得A',连接A'B,交n 于点N,过N 作NM⊥m 于M .原理:两点之间线段最短 . AM + MN + BN 的最小值为A'B + MN .问题六:在直线l 上求两点M , N (M 在左),使MN = a , 并使AM + MN + NB 的值最小 .作法:将点A 向右平移a 个长度单位得A',作A' 关于直线l 的对称点A'',连接A''B 交直线l 于点N,将N 点向左平移a 个单位得M .原理:两点之间线段最短 . AM + MN + NB 的最小值为A''B + MN .问题七:在l1 上求点A,在l2 上求点B,使PA + AB 值最小 .作法:作点P 关于l1 的对称点P',作P'B⊥l2 于点B,交l1 于点A .原理:点到直线,垂线段的距离最短 . PA + AB 的最小值为线段P'B 的长 .问题八:A 为l1上一定点,B 为l2 上一定点,在l2 上求点M,在l1上求点N,使AM + MN + NB 的值最小 .作法:作点A 关于l2 的对称点A' , 点B 关于l1 的对称点B',连接A'B' 交l2 于点M,交l1 于点N.原理:两点之间线段最短.AM + MN + NB 的最小值为线段A'B' 的长.问题九:在直线l 上求一点P,使| PA - PB | 的值最小.作法:连接AB,作AB 的中垂线与直线l 的交点即为P 点.原理:垂直平分上的点到线段两端点的距离相等.| PA - PB | = 0 .问题十:在直线l 上求一点P,使| PA - PB | 的值最大.作法:作直线AB,与直线l 的交点即为P 点.原理:三角形任意两边之差小于第三边.| PA - PB | ≤AB ,| PA - PB | 的最大值= AB . 问题十一:在直线l 上求一点P,使| PA - PB | 的值最大.作法:作点B 关于直线l 的对称点B' 作直线AB',与直线l 的交点即为P 点.原理:三角形任意两边之差小于第三边.| PA - PB | ≤AB' ,| PA - PB | 的最大值= AB' . 问题十二:(“费马点”)△ABC 中每一内角都小于120°,在△ABC 内求一点P,使得PA + PB + PC 的值最小 .作法:所求点为“费马点”,即满足∠APB = ∠BPC = ∠APC = 120° .以AB 、AC 为边向外作等边△ABD、△ACE,连接CD、BE 相交于点P,点P 即为所求 .原理:两点之间线段最短 . PA + PB + PC 的最小值= CD .二、“费马点”——到三点距离之和最小的点费马点的构造方法:①所给三点的连线构成三角形(△ABC),并且这个三角形的每个内角都小于120°;②如下图所示:A , B , C 是给定的三点,以AC 为边向外作正三角形得到点D , 以BC 为边向外作正三角形得到点E ,连接BD 和AE 交于点O,我们断言点O 就是“费马点” .费马点的证明方法:先证△AEC ≌△DBC .△AEC 绕点C 顺时针旋转60°,可得到△DBC,从而△AEC ≌△DBC .于是∠OBC = ∠OEC,所以O、B、E、C 四点共圆 .拓展知识:四点共圆判定方法若线段同侧二点到线段两端点连线夹角相等,那么这二点和线段二端点四点共圆 .所以∠BOE = ∠BCE = 60°,∠COE = ∠CBE = 60°,于是∠BOC = ∠BOE + ∠COE = 120°,同理可证∠AOC = ∠AOB = 120°,所以∠BOC = ∠AOC = ∠AOB = 120° .将O 点看作是AE 上的点,随着△AEC 一起绕点C 顺时针旋转60°得到点O2 , 所以∠OCO2 = 60°,OC = O2C , OA = O2D ,所以△OCO2 是等边三角形,于是有OO2 = OC .所以BD = OA + OB + OC .。

(word完整版)初二数学最短路径问题知识归纳+练习,推荐文档

(word完整版)初二数学最短路径问题知识归纳+练习,推荐文档

初二数学最短路径问题【问题概述】最短路径问题是图论研究中的一个经典算法问题,旨在寻找图(由结点和路径组成的)中两结点之间的最短路径.算法具体的形式包括:①确定起点的最短路径问题 - 即已知起始结点,求最短路径的问题.②确定终点的最短路径问题 - 与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题.③确定起点终点的最短路径问题 - 即已知起点和终点,求两结点之间的最短路径.④全局最短路径问题 - 求图中所有的最短路径.【问题原型】“将军饮马”,“造桥选址”,“费马点”.【涉及知识】“两点之间线段最短”,“垂线段最短”,“三角形三边关系”,“轴对称”,“平移”.【出题背景】角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等.【解题思路】找对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查.【问题1】作法图形原理AlB在直线l 上求一点P,使PA+PB 值最小.连AB,与l 交点即为P.AP lB两点之间线段最短.PA+PB 最小值为AB.【问题2】“将军饮马”作法图形原理ABl在直线l 上求一点P,使PA+PB 值最小.作B 关于l 的对称点B'连A B',与l 交点即为P.ABlP两点之间线段最短.PA+PB 最小值为A B'.B'【问题3】作法图形原理l1Pl2在直线l1、l2上分别求点M、N,使△PMN 的周长最小.分别作点P 关于两直线的对称点P'和P'连,P'P''与,两直线交点即为M,N.P' l1MPNl2P''两点之间线段最短.PM+MN+PN 的最小值为线段P'P''的长.【问题4】作法图形原理l1QPl2在直线l1、l2上分别求点M、N,使四边形PQMN 分别作点Q 、P 关于直线l1、l2的对称点Q'和Q'l1M QP两点之间线段最短.四边形PQMN 周长的最P'连Q'P',与两直线交l2N 小值为线段P'P''的长.点即为M,N.P'PE3在直线 l 上求一点 P ,使 直线 l 的交点即为 P .端点的距离相等.PA - PB =0.PA - PB 的值最小.【问题 10】作法图形原理ABl在直线 l 上求一点 P ,使PA - PB 的值最大.作直线 AB ,与直线 l 的交点即为 P .ABPl三角形任意两边之差小于第三边. PA - PB ≤AB .PA - PB 的最大值=AB .【问题 11】作法图形原理AlB在直线 l 上求一点 P ,使PA - PB 的值最大.三角形任意两边之差小于A第三作 B 关于 l 的对称点 B ' 作直线 A B ',与 l 交点B'Pl边. PA - PB ≤AB '.即为 P .BPA - PB 最大值=AB '.【问题 12】“费马点”作法 图形原理A所求点为“费马点”,即满足DBC∠APB =∠BPC =∠APC=120°.以 AB 、AC 为APE两点之间线段最短. PA +PB +PC 最小值△ABC 中每一内角都小于 边向外作等边△ABD 、△ BC=CD .120°,在△ABC 内求一 ACE ,连 CD 、BE 相交于 点 P ,使 PA +PB +PC 值最 P ,点 P 即为所求.小.【精品练习】1. 如图所示,正方形 ABCD 的面积为 12,△ABE 是等边三角形,点 E 在正方形 ABCD 内,在对角线 AC 上有一点 P ,使 PD +PE 的和最小,则这个最小值为( )A. 2B. 2 ADC .3D .BC2. 如图,在边长为 2 的菱形 ABCD 中,∠ABC =60°,若将△ACD 绕点 A 旋转,当 AC ′、AD ′分别与 BC 、CD- 3 -662 EDM3交于点 E 、F ,则△CEF 的周长的最小值为()A .2B . 2C . 2 +D .43. 四边形 ABCD 中,∠B =∠D =90°,∠C =70°,在 BC 、CD 上分别找一点 M 、N ,使△AMN 的周长最小时,∠AMN +∠ANM 的度数为()A .120°B .130°C .110°D .140°A DBNC4. 如图,在锐角△ABC 中,AB =4 ,∠BAC =45°,∠BAC 的平分线交 BC 于点 D ,M 、N 分别是 AD 和AB 上的动点,则 BM +MN 的最小值是 .A5. 如图,Rt △ABC 中,∠C =90°,∠B =30°,AB =6,点 E 在 AB 边上,点 D 在 BC 边上(不与点 B 、C 重合),且 ED =AE ,则线段 AE 的取值范围是 .ACB6. 如图,∠AOB =30°,点 M 、N 分别在边 OA 、OB 上,且 OM =1,ON =3,点 P 、Q 分别在边 OB 、OA 上,则 MP +PQ +QN 的最小值是 .(注“勾股定理”:直角三角形中两直角边的平方和等于斜边的平方,即 Rt △ABC 中,∠C =90°,则有 AC 2 + BC 2 = AB 2 )- 4 -D M33 yABOxyBA OCDx7. 如图,三角形△ABC 中,∠OAB =∠AOB =15°,点 B 在 x 轴的正半轴,坐标为 B ( 6 ,0).OC 平分∠AOB ,点 M 在 OC 的延长线上,点 N 为边 OA 上的点,则 MA +MN 的最小值是.8. 已知 A (2,4)、B (4,2).C 在 y 轴上,D 在 x 轴上,则四边形 ABCD 的周长最小值为,此时 C 、D 两点的坐标分别为.9.已知 A (1,1)、B (4,2).(1)P 为 x 轴上一动点,求 PA +PB 的最小值和此时 P 点的坐标;(2)P 为 x 轴上一动点,求 PA PB 的值最大时 P 点的坐标;(3)CD 为 x 轴上一条动线段,D 在 C 点右边且 CD =1,求当 AC +CD +DB 的最小值和此时 C 点的坐标;10. 点 C 为∠AOB 内一点.(1) 在 OA 求作点 D ,OB 上求作点 E ,使△CDE 的周长最小,请画出图形;(2) 在(1)的条件下,若∠AOB =30°,OC =10,求△CDE 周长的最小值和此时∠DCE 的度数.A- 5 -yBA OxyBA OxCO BAF11.(1)如图①,△ABD 和△ACE 均为等边三角形,BE 、CE 交于 F ,连 AF ,求证:AF +BF +CF =CD ;(2)在△ABC 中,∠ABC =30°,AB =6,BC =8,∠A ,∠C 均小于 120°,求作一点 P ,使 PA +PB +PC 的值最小,试求出最小值并说明理由.DEBC① ①① ①12.荆州护城河在 CC '处直角转弯,河宽相等,从 A 处到达 B 处,需经过两座桥 DD '、EE ',护城河及两桥都是东西、南北方向,桥与河岸垂直.如何确定两座桥的位置,可使 A 到 B 点路径最短?- 6 -- 7 -“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。

最短路径问题例题与讲解

最短路径问题例题与讲解

13.4 课题学习最短路径问题1.最短路径问题(1)求直线异侧的两点与直线上一点所连线段的和最小的问题,只要连接这两点,与直线的交点即为所求.如下图,点A,B分别是直线l异侧的两个点,在l上找一个点C,使CA+CB最短,这时点C是直线l与AB的交点.(2)求直线同侧的两点与直线上一点所连线段的和最小的问题,只要找到其中一个点关于这条直线的对称点,连接对称点与另一个点,则与该直线的交点即为所求.如下图,点A,B分别是直线l同侧的两个点,在l上找一个点C,使CA+CB最短,这时先作点B关于直线l的对称点B′,则点C是直线l与AB′的交点.为了证明点C的位置即为所求,我们不妨在直线上另外任取一点C′,连接AC′,BC′,B′C′,证明AC+CB<AC′+C′B.如下:证明:由作图可知,点B和B′关于直线l对称,所以直线l是线段BB′的垂直平分线.因为点C与C′在直线l上,所以BC=B′C,BC′=B′C′.在△AB′C′中,AB′<AC′+B′C′,所以AC+B′C<AC′+B′C′,所以AC+BC<AC′+C′B.【例1】在图中直线l上找到一点M,使它到A,B两点的距离和最小.分析:先确定其中一个点关于直线l的对称点,然后连接对称点和另一个点,与直线l的交点M即为所求的点.解:如下图:(1)作点B关于直线l的对称点B′;(2)连接AB′交直线l于点M.(3)则点M即为所求的点.点拨:运用轴对称变换及性质将不在一条直线上的两条线段转化到一条直线上,然后用“两点之间线段最短”解决问题.运用轴对称及两点之间线段最短的性质,将所求线段之和转化为一条线段的长,是解决距离之和最小问题的基本思路,不管题目如何变化,运用时要抓住直线同旁有两点,这两点到直线上某点的距离和最小这个核心,所有作法都相同.警误区利用轴对称解决最值问题应注意题目要求根据轴对称的性质、利用三角形的三边关系,通过比较来说明最值问题是常用的一种方法.解决这类最值问题时,要认真审题,不要只注意图形而忽略题意要求,审题不清导致答非所问.3.利用平移确定最短路径选址选址问题的关键是把各条线段转化到一条线段上.如果两点在一条直线的同侧时,过两点的直线与原直线的交点处构成线段的差最大,如果两点在一条直线的异侧时,过两点的直线与原直线的交点处构成的线段的和最小,都可以用三角形三边关系来推理说明,通常根据最大值或最小值的情况取其中一个点的对称点来解决.解决连接河两岸的两个点的最短路径问题时,可以通过平移河岸的方法使河的宽度变为零,转化为求直线异侧的两点到直线上一点所连线段的和最小的问题.在解决最短路径问题时,我们通常利用轴对称、平移等变换把不在一条直线上的两条线段转化到一条直线上,从而作出最短路径的方法来解决问题.【例2】如图,小河边有两个村庄A,B,要在河边建一自来水厂向A村与B村供水.(1)假设要使厂部到A,B村的距离相等,则应选择在哪建厂?(2)假设要使厂部到A,B两村的水管最短,应建在什么地方?分析:(1)到A,B两点距离相等,可联想到“线段垂直平分线上的点到线段两端点的距离相等”,又要在河边,所以作AB的垂直平分线,与EF的交点即为符合条件的点.(2)要使厂部到A村、B村的距离之和最短,可联想到“两点之间线段最短”,作A(或B)点关于EF的对称点,连接对称点与B点,与EF的交点即为所求.解:(1)如图1,取线段AB的中点G,过中点G画AB的垂线,交EF于P,则P到A,B的距离相等.也可分别以A、B为圆心,以大于12AB 为半径画弧,两弧交于两点,过这两点作直线,与EF 的交点P 即为所求.(2)如图2,画出点A 关于河岸EF 的对称点A ′,连接A ′B 交EF 于P ,则P 到A ,B 的距离和最短.【例3】 如图,从A 地到B 地经过一条小河(河岸平行),今欲在河上建一座与两岸垂直的桥,应如何选择桥的位置才能使从A 地到B 地的路程最短?思路导引:从A 到B 要走的路线是A →M →N →B ,如下图,而MN 是定值,于是要使路程最短,只要AM +BN 最短即可.此时两线段应在同一平行方向上,平移MN 到AC ,从C 到B 应是余下的路程,连接BC 的线段即为最短的,此时不难说明点N 即为建桥位置,MN 即为所建的桥.解:(1)如图2,过点A 作AC 垂直于河岸,且使AC 等于河宽.(2)连接BC与河岸的一边交于点N.(3)过点N作河岸的垂线交另一条河岸于点M.则MN为所建的桥的位置.4.生活中的距离最短问题由两点之间线段最短(或三角形两边之和大于第三边)可知,求距离之和最小问题,就是运用等量代换的方式,把几条线段的和想方法转化在一条线段上,从而解决这个问题,运用轴对称性质,能将两条线段通过类似于镜面反射的方式转化成一条线段,如图,AO+BO=AC的长.所以作已知点关于某直线的对称点是解决这类问题的基本方法.【例4】(实际应用题)茅坪民族中学八(2)班举行文艺晚会,桌子摆成如图a所示两直排(图中的AO,BO),AO桌面上摆满了橘子,OB桌面上摆满了糖果,站在C处的学生小明先拿橘子再拿糖果,然后到D处座位上,请你帮助他设计一条行走路线,使其所走的总路程最短?图a 图b解:如图b.(1)作C点关于OA的对称点C1,作D点关于OB的对称点D1,(2)连接C1D1,分别交OA,OB于P,Q,那么小明沿C→P→Q→D 的路线行走,所走的总路程最短.利用轴对称和三角形的三边关系是解决几何中的最大值问题的关键.先做出其中一点关于对称轴的对称点,然后连接对称点和另一个点,所得直线与对称轴的交点,即为所求.根据垂直平分线的性质和三角形中两边之差小于第三边易证明这就是最大值.破疑点解决距离的最值问题的关键运用轴对称变换及三角形三边关系是解决一些距离的最值问题的有效方法.【例5】如下图,A,B两点在直线l的两侧,在l上找一点C,使点C到点A、B的距离之差最大.分析:此题的突破点是作点A(或B)关于直线l的对称点A′(或B′),作直线A′B(AB′)与直线l交于点C,把问题转化为三角形任意两边之差小于第三边来解决.解:如下图,以直线l为对称轴,作点A关于直线l的对称点A′,A′B的连线交l于点C,则点C即为所求.理由:在直线l上任找一点C′(异于点C),连接CA,C′A,C′A′,C′B.因为点A,A′关于直线l对称,所以l为线段AA′的垂直平分线,则有CA=CA′,所以CA -CB=CA′-CB=A′B.又因为点C′在l上,所以C′A=C′A′.在△A′BC′中,C′A-C′B=C′A′-C′B<A′B,所以C′A′-C′B<CA-CB.点拨:根据轴对称的性质、利用三角形的三边关系,通过比较来说明最值问题是常用的一种方法.。

(完整)初中数学最短路径问题典型题型复习.doc

(完整)初中数学最短路径问题典型题型复习.doc

初中数学《最短路径问题》典型题型知识点:“两点之间线段最短” ,“垂线段最短”,“点关于线对称”,“线段的平移”。

“饮马问题”,“造桥选址问题”。

考的较多的还是“饮马问题”,出题背景变式有角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等。

解题总思路:找点关于线的对称点实现“折”转“直” ,近两年出现“三折线”转“直”等变式问题考查。

一、两点在一条直线异侧例:已知:如图, A,B 在直线 L 的两侧,在 L 上求一点 P,使得 PA+PB 最小。

解:连接 AB, 线段 AB 与直线 L 的交点 P ,就是所求。

(根据:两点之间线段最短 .)二、两点在一条直线同侧例:图所示,要在街道旁修建一个奶站,向居民区 A、B 提供牛奶,奶站应建在什么地方,才能使从 A、B 到它的距离之和最短.解:只有 A、C、B 在一直线上时,才能使AC+ BC 最小.作点 A关于直线“街道”的对称点 A ′,然后连接A ′B,交“街道”于点C,则点 C 就是所求的点.三、一点在两相交直线内部例:已知:如图 A 是锐角∠ MON内部任意一点,在∠ MON的两边OM,ON上各取一点 B,C,组成三角形,使三角形周长最小 .解:分别作点 A 关于 OM ,ON 的对称点 A ′, A ″;连接 A ′, A ″,分别交 OM ,ON 于点B 、点 C,则点 B、点C 即为所求分析:当 AB 、 BC 和 AC 三条边的长度恰好能够体现在一条直线上时,三角形的周长最小例:如图, A.B 两地在一条河的两岸,现要在河上建一座桥MN,桥造在何处才能使从 A 到 B 的路径 AMNB最短?(假设河的两岸是平行的直线,桥要与河垂A·直)解: 1.将点 B 沿垂直与河岸的方向平移一个河宽到E,2.连接 AE 交河对岸与点M,则点 M 为建桥的位置,MN 为所建的桥。

证明:由平移的性质,得BN ∥ EM且BN=EM, MN=CD, BD∥CE, BD=CE,MNEB所以 A.B 两地的距 :AM+MN+BN=AM+MN+EM=AE+MN, 若桥的位置建在 CD 处,连接 AC.CD.DB.CE, 则 AB 两地的距离为:AC+CD+DB=AC+CD+CE=AC+CE+MN,在△ ACE 中,∵ AC+CE >AE, ∴ AC+CE+MN > AE+MN, 即 AC+CD+DB > AM+MN+BN所以桥的位置建在CD 处, AB 两地的路程最短。

初中数学《最短路径问题》典型题型复习

初中数学《最短路径问题》典型题型复习

初中数学《最短路径问题》典型题型知识点:“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”。

“饮马问题”,“造桥选址问题”。

考的较多的还是“饮马问题”,出题背景变式有角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等。

解题总思路:找点关于线的对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查。

一、两点在一条直线异侧例:已知:如图,A,B在直线L的两侧,在L上求一点卞P,使得最小。

二解:连接,线段与直线L的交点P,就是所求。

(根据:两点之间线段最短.)二、两点在一条直线同侧例:图所示,要在街道旁修建一个奶站,向居民区 A B提供牛奶,奶站应建在什么地方,才能使从A、B到它的距离之和最短.KRI?< 4解:只有A C B在一直线上时,才能使最小.作点A关于直线“街道”的对称点A,然后连接A B,交“街道”于点C,则点C就是所求的点.三、一点在两相交直线内部例:已知:如图A是锐角/内部任意一点,在/的两边,上各取一点B, C,组成三角形,使三角形周长最小.o解:分别作点A关于,的对称点A , A〃;连接A , A〃,分别交,于点B、点C,则点B、点C即为所求分析:当、和三条边的长度恰好能够体现在一条直线上时,三角形的周长最小例:如图,两地在一条河的两岸,现要在河上建一座桥,桥造在何处才能使从A到B的路径最短?(假设河的两岸是平行的直线,桥要与河垂直)解:1•将点B沿垂直与河岸的方向平移一个河宽到E,2. 连接交河对岸与点M,则点M为建桥的位置,为所建的桥。

证明:由平移的性质,得 //且,,// ,, 所以两地的距,若桥的位置建在处,连接则两地的距离为:在△中,•••> , •••> ,即 >所以桥的位置建在处,两地的路程最短例:如图,A B是两个蓄水池,都在河流a的同侧,为了方便灌溉作物,?要在河边建一个抽水站,将河水送到A、B两地,问该站建在河边什么地方,?可使所修的渠道最短,试在图中确定该点作法:作点B 关于直线a 的对称点点C,连接交直线a 于点D,则点D 为建 抽水站的位置。

(完整版)初中数学[最短路径问题]典型题型及解题技巧

(完整版)初中数学[最短路径问题]典型题型及解题技巧

(完整版)初中数学[最短路径问题]典型题型及解题技巧初中数学[最短路径问题]典型题型及解题技巧最短路径问题中,关键在于,我们善于作定点关于动点所在直线的对称点,或利用平移和展开图来处理。

这对于我们解决此类问题有事半功倍的作用。

理论依据:“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”“立体图形展开图”。

教材中的例题“饮马问题”,“造桥选址问题”“立体展开图”。

考的较多的还是“饮马问题”。

知识点:“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”。

“饮马问题”,“造桥选址问题”。

考的较多的还是“饮马问题”,出题背景变式有角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等。

解题总思路:找点关于线的对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查。

一、两点在一条直线异侧例:已知:如图,A,B在直线L的两侧,在L上求一点P,使得PA+PB最小。

解:连接AB,线段AB与直线L的交点P ,就是所求。

(根据:两点之间线段最短.)二、两点在一条直线同侧例:图所示,要在街道旁修建一个奶站,向居民区A、B提供牛奶,奶站应建在什么地方,才能使从A、B到它的距离之和最短.解:只有A、C、B在一直线上时,才能使AC+BC最小.作点A 关于直线“街道”的对称点A′,然后连接A′B,交“街道”于点C,则点C 就是所求的点.三、一点在两相交直线内部例:已知:如图A是锐角∠MON内部任意一点,在∠MON的两边OM,ON上各取一点B,C,组成三角形,使三角形周长最小.解:分别作点A关于OM,ON的对称点A′,A″;连接A′,A″,分别交OM,ON于点B、点C,则点B、点C即为所求分析:当AB、BC和AC三条边的长度恰好能够体现在一条直线上时,三角形的周长最小例:如图,A.B两地在一条河的两岸,现要在河上建一座桥MN,桥造在何处才能使从A到B的路径AMNB最短?(假设河的两岸是平行的直线,桥要与河垂直)解:1.将点B沿垂直与河岸的方向平移一个河宽到E,2.连接AE交河对岸与点M,则点M为建桥的位置,MN为所建的桥。

(完整版)初二数学最短路径问题知识归纳+练习

(完整版)初二数学最短路径问题知识归纳+练习

初二数学最短路径问题【问题概述】最短路径问题是图论研究中的一个经典算法问题,旨在寻找图(由结点和路径组成的)中两结点之间的最短路径.算法具体的形式包括:①确定起点的最短路径问题 - 即已知起始结点,求最短路径的问题.②确定终点的最短路径问题 - 与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题.③确定起点终点的最短路径问题 - 即已知起点和终点,求两结点之间的最短路径.④全局最短路径问题 - 求图中所有的最短路径.【问题原型】“将军饮马”,“造桥选址”,“费马点”.【涉及知识】“两点之间线段最短”,“垂线段最短”,“三角形三边关系”,“轴对称”,“平移”.【出题背景】角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等.【解题思路】找对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查.在直线l 上求一点P ,使PB PA -的值最大.作直线AB ,与直线l 的交点即为P .三角形任意两边之差小于第三边.PB PA -≤AB .PB PA -的最大值=AB .【问题11】 作法图形 原理在直线l 上求一点P ,使PB PA -的值最大.作B 关于l 的对称点B '作直线A B ',与l 交点即为P .三角形任意两边之差小于第三边.PB PA -≤AB '. PB PA -最大值=AB '.【问题12】“费马点” 作法图形 原理△ABC 中每一内角都小于120°,在△ABC 内求一点P ,使P A +PB +PC 值最小.所求点为“费马点”,即满足∠APB =∠BPC =∠APC =120°.以AB 、AC 为边向外作等边△ABD 、△ACE ,连CD 、BE 相交于P ,点P 即为所求.两点之间线段最短. P A +PB +PC 最小值=CD .【精品练习】1.如图所示,正方形ABCD 的面积为12,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD +PE 的和最小,则这个最小值为( )A .3B .26C .3D 62.如图,在边长为2的菱形ABCD 中,∠ABC =60°,若将△ACD 绕点A 旋转,当AC ′、AD ′分别与BC 、CD 交于点E 、F ,则△CEF 的周长的最小值为( ) A .2B .32C .32+D .4lBAlPABl ABlBPAB'ABCPEDCBAADEPB C3.四边形ABCD 中,∠B =∠D =90°,∠C =70°,在BC 、CD 上分别找一点M 、N ,使△AMN 的周长最小时,∠AMN +∠ANM 的度数为( )A .120°B .130°C .110°D .140°4.如图,在锐角△ABC 中,AB =42,∠BAC =45°,∠BAC 的平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点,则BM +MN 的最小值是 .5.如图,Rt △ABC 中,∠C =90°,∠B =30°,AB =6,点E 在AB 边上,点D 在BC 边上(不与点B 、C 重合), 且ED =AE ,则线段AE 的取值范围是 .6.如图,∠AOB =30°,点M 、N 分别在边OA 、OB 上,且OM =1,ON =3,点P 、Q 分别在边OB 、OA 上,则MP +PQ +QN 的最小值是_________.(注“勾股定理”:直角三角形中两直角边的平方和等于斜边的平方,即Rt △ABC 中,∠C =90°,则有222AB BC AC =+)7.如图,三角形△ABC 中,∠OAB =∠AOB =15°,点B 在x 轴的正半轴,坐标为B (36,0).OC 平分∠AOB ,点M 在OC 的延长线上,点N 为边OA 上的点,则MA +MN 的最小值是______. DEABCD MABMN8.已知A (2,4)、B (4,2).C 在y 轴上,D 在x 轴上,则四边形ABCD 的周长最小值为 ,此时 C 、D 两点的坐标分别为 .9.已知A (1,1)、B (4,2).(1)P 为x 轴上一动点,求PA +PB 的最小值和此时P 点的坐标;(2)P 为x 轴上一动点,求PB PA 的值最大时P 点的坐标;(3)CD 为x 轴上一条动线段,D 在C 点右边且CD =1,求当AC +CD +DB 的最小值和此时C 点的坐标;10.点C 为∠AOB 内一点.(1)在OA 求作点D ,OB 上求作点E ,使△CDE 的周长最小,请画出图形;(2)在(1)的条件下,若∠AOB =30°,OC =10,求△CDE 周长的最小值和此时∠DCE 的度数.图①12.荆州护城河在CC'处直角转弯,河宽相等,从A处到达B处,需经过两座桥DD'、EE',护城河及两桥都是东西、南北方向,桥与河岸垂直.如何确定两座桥的位置,可使A到B点路径最短?。

初中数学最短路径题型解题方法分析

初中数学最短路径题型解题方法分析

初中数学最短路径题型解题方法分析1. 确定起点的最短路径问题:即已知起始结点,求最短路径的问题;2. 确定终点的最短路径问题:与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题;3. 确定起点终点的最短路径问题:即已知起点和终点,求两结点之间的最短路径;4. 全局最短路径问题:求图中所有的最短路径。

问题原型“将军饮马”,“造桥选址”,“费马点”。

涉及知识:“两点之间线段最短”,“垂线段最短”,“三角形三边关系”,“轴对称”,“平移”。

出题背景角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等。

解题思路找对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查。

12个基本问题例题一:已知在平面直角坐标系中,A(2,-3),B(4,-1).(1) 若点P(x,0)是X轴上的动点,当三角形PAB的周长最短时,求X的值。

(2) 若点C、D是X轴上的两个动点,且D(a,0),当四边形ABCD的周长最短时,求a 的值;(3) 设M、N分别为X轴、Y轴的动点。

问是否存在这样的点(m,0)和N(0,n)使得四边形ABMN的周长最短?若存在,请求出m、n。

若不存在,请说明理由。

例题二:让大脑放松的小窍门伸个懒腰、闭眼眯一会儿、深呼吸几次……这些短暂的休息,能让高速运转的大脑得到充分休息。

抽10分钟就够了如果学校没有午休时间,那就抽出10分钟午睡。

这样做就能使人保持至少2小时以上精神活跃。

如何用10分钟时间,打造一个完美的小憩?选对时间。

这10分钟最好在饭后,而且在11:00—13:00之间。

睡前设闹钟。

许多人因担心睡过头,结果很难入睡,而设好闹钟会使人消除这一担忧。

听着“白噪音”。

为了完美的午睡,应该找一个黑暗、安静的场所。

如果必要的话,可以使用眼罩、耳塞,或者下载一些海浪声、风声等“白噪声”来排除干扰。

认真伸一个懒腰伸懒腰能增加对心、肺的挤压,促进心脏泵血,增加全身的供氧,还有利于全身肌肉的收缩和呼吸加深。

八年级数学几何中的最短路径问题(一)

八年级数学几何中的最短路径问题(一)

八年级数学几何中的最短路径问题(一)一、最短路径问题:最短路径问题是图论研究中的一个经典算法问题,旨在寻找图(由结点和路径组成的)中两结点之间的最短路径。

二、涉及知识:“两点之间线段最短”,“垂线段最短”,“三角形三边关系”,“轴对称”,“平移”。

通常出题点结合角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等知识点中出现。

三、解题思路:找对称点实现化“折” 为“直” 。

四、十二个基本问题(前6个):问题1、如图,在直线 L 上求一点 P , 使 PA + PB 值最小。

图1作法:如图,连接 AB ,与 L 交点即为 P 。

图2原理:两点之间线段最短,PA + PB 最小值为 AB 。

问题2(将军饮马)、如图,在直线 L 上求一点 P , 使 PA + PB 值最小。

图3作法:作点 B 关于 L 的对称点 B' ,连接 AB' ,与 L 交点即为P 。

图4原理:两点之间线段最短,PA+PB 最小值为 A B'。

问题3、如图,在直线 Ll 、L2 上分别求点 M、N,使△PMN 的周长最小。

图5作法:分别作点 P 关于两直线的对称点 P' 和P “,连P'P“,与两直线交点即为 M,N 。

图6原理:两点之间线段最短 , PM + MN + PN 的最小值为线段 P'P'' 的长。

问题4、如图,在直线L1 、L2 上分别求点M、N,使四边形PQMN 的周长最小。

图7作法:分别作点 Q 、P 关于直线 Ll , L2 的对称点 Q'和 P',连Q'P',与两直线交点即为 M,N 。

图8原理:两点之间线段最短,四边形PQMN 周长的最小值为线段QP + Q'P' 的长。

问题5(造桥选址)、如图,直线m ∥ n ,在m 、 n ,上分别求点 M、N,使MN⊥m,且 AM+MN+BN 的值最小。

图9作法:将点 A 向下平移 MN 的长度单位得 A',连 A'B,交 n 于点 N,过点 N 作NM⊥m 于点 M 。

初二数学培优专题 (4)——最短路径问题(答案详解)

初二数学培优专题 (4)——最短路径问题(答案详解)

.
【变式 2】(2016-2017 上青羊初二期末)
如图,一次函数 y 1 x 2 的图象分别与 x 轴、 y 轴交于点 A、B,以线段 AB 为边在第二象限 2
内作等腰 Rt△ABC,∠BAC=90°.
(1)求线段 AB 的长;
(2)过 B、C 两点的直线对应的函数表达式.
(3)点 D 是 BC 中点,在直线 AB 上是否存在一点 P,使得 PC PD 有最小值.若存在,则
- 14 -
初二数学培优专题(4)
答案 例 5 如图,圆柱形玻璃杯展开(沿点 A 竖直剖开)后,侧面是一个长 18 cm,宽 12 cm 的长方形,作点 A 关于杯上沿 MN 的对称点 B,连接 BC 交 MN 于点 P,连接 BM,过点 C 作 AB 的垂线交剖开线 MA 于点 D.
由轴对称的性质和三角形三边关系知 AP+PC 为蚂蚁到达蜂蜜的最短距离,且 AP=BP. 由已知和长方形的性质,得 DC=9,BD=12.
C
【变式 2】两动两定
O
B
如图,∠AOB=30°,点 M、N 分别在边 OA、OB 上,且 OM=1,ON=3,点 P、Q 分别
在边 OB、OA 上,则 MP+PQ+QN 的最小值是_________.
-4-
Hale Waihona Puke 初二数学培优专题(4)答案 【例 2】解:
【变式 1】10,120° 【变式 2】
-5-
初二数学培优专题(4)
最短路径问题
——将军饮马及拓展、胡不归问题、立体图形的展开图问题
(一)“两点之点线段最短”问题(对称求最短路径)
1.“两定点,一个动点”——“将军饮马”
当题中只出现一个动点时,可作其中一定点关于动点所在直线的对称点,利用两点之间线 段最短,或三角形两边之和小于第三边求出最值 【例 1】(2015 内江中考)如图所示,正方形 ABCD 的面积为 12,△ABE 是等边三角形,点

初中数学最短路径问题(经典版)分析

初中数学最短路径问题(经典版)分析

最短路径问题(经典版)
【问题概述】最短路径问题是图论研究中的一个经典算法问题,旨在寻找图(由结点和路径组成的)中两结点之间的最短路径.算法具体的形式包括:
①确定起点的最短路径问题- 即已知起始结点,求最短路径的问题.
②确定终点的最短路径问题- 与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题.
③确定起点终点的最短路径问题- 即已知起点和终点,求两结点之间的最短路径.
④全局最短路径问题- 求图中所有的最短路径.
【问题原型】“将军饮马”,“造桥选址”,“费马点”.
【涉及知识】“两点之间线段最短”,“垂线段最短”,“三角形三边关系”,“轴对称”,“平移”.【出题背景】角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等.
【解题思路】找对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查.
【十二个基本问题】。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学[最短路径问题]典型题型及解题技巧最短路径问题中, 关键在于,我们善于作定点关于动点所在直线的对称点,或利用平移和展开图来处理。

这对于我们解决此类问题有事半功倍的作用。

理论依据:“两点之间线段最短” ,“垂线段最短”,“点关于线对称”,“线段的平移”“立体图形展开图”。

教材中的例题“饮马问题”,“造桥选址问题”“立体展开图”。

考的较多的还是“饮马问题” 。

知识点:“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”。

“饮马问题”,“造桥选址问题”。

考的较多的还是“饮马问题” ,出题背景变式有角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等。

解题总思路:找点关于线的对称点实现“折”转“直” ,近两年出现“三折线”转“直”等变式问题考查。

一、两点在一条直线异侧例:已知:如图,A,B在直线L的两侧,在L上求一点P,使得PA+PB 最小。

解:连接AB,线段AB 与直线L 的交点P ,就是所求。

(根据:两点之间线段最短.)二、两点在一条直线同侧例:图所示,要在街道旁修建一个奶站,向居民区A 、B 提供牛奶,奶站应建在什么地方,才能使从A、B 到它的距离之和最短.解:只有A、C 、B在一直线上时,才能使AC +BC最小.作点A 关于直线“街道”的对称点A′,然后连接A ′B,交“街道”于点C,则点C 就是所求的点.、一点在两相交直线内部例:已知:如图A 是锐角∠ MON 内部任意一点,在∠ MON 的两边OM ,ON 上各取一点B,C ,组成三角形,使三角形周长最小.解:分别作点A 关于OM ,ON 的对称点A ′,AOM ,ON 于点B、点C ,则点B、点C 即为所求分析:当AB 、BC 和AC 三条边的长度恰好能够体现在一条直线上时,三角形的周长最小例:如图,A.B 两地在一条河的两岸,现要在河上建一座桥MN ,桥造在何处才能使从A 到B 的路径AMNB 最短?(假设河的两岸是平行的直线,桥要与河垂直)解:1.将点B 沿垂直与河岸的方向平移一个河宽到E,2.连接AE 交河对岸与点M,则点M 为建桥的位置,MN 为所建的桥证明:由平移的性质,得BN∥EM 且BN=EM, MN=CD, BD ∥CE, BD=CE,所以A.B 两地的距:AM+MN+BN=AM+MN+EM=AE+MN,若桥的位置建在CD 处,连接AC.CD.DB.CE, 则AB 两地的距离为:AC+CD+DB=AC+CD+CE=AC+CE+MN,在△ACE 中,∵ AC+CE >AE, ∴AC+CE+MN >AE+MN, 即AC+CD+DB >AM+MN+BN 所以桥的位置建在CD 处,AB 两地的路程最短。

例:如图,A、B 是两个蓄水池,都在河流a 的同侧,为了方便灌溉作物,?要在河边建一个抽水站,将河水送到A、B 两地,问该站建在连接A ′,A ″,分别交B河边什么地方,?可使所修的渠道最短,试在图中确定该点。

作法:作点B关于直线a 的对称点点C,连接AC 交直线a于点D,则点D为建抽水站的位置。

证明:在直线a 上另外任取一点E,连接AE.CE.BE.BD,∵点B.C 关于直线a 对称,点D.E 在直线a 上,∴ DB=DC,EB=EC,∴AD+DB=AD+DC=AC,AE+EB=AE+EC在△ACE 中,AE+EC>AC, 即AE+EC > AD+DB所以抽水站应建在河边的点D 处,例:某班举行晚会,桌子摆成两直条(如图中的AO ,BO),AO 桌面上摆满了桔子,OB 桌面上摆满了糖果,坐在C 处的学生小明先拿桔子再拿糖果,然后回到座位,请你帮助他设计一条行走路线,使其所走的总路程最短?作法:1.作点C 关于直线OA 的对称点点D,2. 作点C 关于直线OB 的对称点点E,3.连接DE 分别交直线OA.OB 于点M.N ,则CM+MN+CN 最短例:如图:C 为马厩,D 为帐篷,牧马人某一天要从马厩牵出马,DAOCDB先到草地边某一处牧马,再到河边饮马,然后回到帐篷,请你帮他确定这一天的最短路线作法:1.作点C 关于直线OA 的对称点点F,2. 作点D 关于直线OB 的对称点点E,3.连接EF分别交直线OA.OB 于点G.H ,则CG+GH+DH 最短四、求圆上点,使这点与圆外点的距离最小的方案设计在此问题中可根据圆上最远点与最近点和点的关系可得最优设计方案。

例:一点到圆上的点的最大距离为9,最短距离为1,则圆的半径为多少?四、点在圆柱中可将其侧面展开求出最短路程将圆柱侧面展成长方形,圆柱体展开的底面周长是长方形的长,圆柱的高是长方形的宽.可求出最短路程例:如图所示,是一个圆柱体,ABCD 是它的一个横截面,一只蚂蚁,要从A 点爬行到C 点,那么,最近的路程长为(A .7 B.C.D.5分析:要求蚂蚁爬行的最短距离,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果.解:将圆柱体展开,连接A、C ,∵ = = ?π?=4 ,BC=3 根据两点之间线段最短,AC= =5 .故选D .五、在长方体(正方体)中,求最短路程1)将右侧面展开与下底面在同一平面内,求得其路程2)将前表面展开与上表面在同一平面内,求得其路程3)将上表面展开与左侧面在同一平面内,求得其路程了然后进行比较大小,即可得到最短路程例:有一长、宽、高分别是5cm ,4cm ,3cm 的长方体木块,一只蚂蚁要从长方体的一个顶点A 处沿长方体的表面爬到长方体上和A 相对的顶点B处,则需要爬行的最短路径长为()A .5 cm B.cm C .4 cm D.3 cm 分析:把此长方体的一面展开,在平面内,两点之间线段最短.利用勾股定理求点A 和B点间的线段长,即可得到蚂蚁爬行的最短距离.在直角三角形中,一条直角边长等于长方体的高,另一条直角边长等于长方体的长宽之和,利用勾股定理可求得.解:因为平面展开图不唯一,故分情况分别计算,进行大、小比较,再从各个路线中确定最短的路线.(1)展开前面、右面,由勾股定理得AB2=(5+4)2+32=90 ;(2)展开前面、上面,由勾股定理得AB2=(3+4)2+52=74 ;3)展开左面、上面,由勾股定理得AB2=(3+5)2+42=80 ;所以最短路径长为cm .一个长4m ,宽3m ,高2m 的有盖仓库,在其内壁的A处(长有一只壁虎,B 处(宽的三等分)有一只蚊子,则壁虎爬到蚊子处最短距离为()A .4.8 B.C.5 D.分析:先将图形展开,再根据两点之间线段最短可知.解:有两种展开方法:①将长方体展开成如图所示,连接A 、B,根据两点之间线段最短,AB= = ;②将长方体展开成如图所示,连接A 、B,则AB= =5< ;所以最短距离5例:有一棵9 米高的大树,树下有一个在距地面4 米处折断(未完全折断),之外才是安全的.1 米高的小孩,如果大树则小孩至少离开大树分析:根据题意构建直角三角形ABC ,利用勾股定理解答.解:如图,BC 即为大树折断处4m 减去小孩的高1m,则BC=4 ﹣1=3m ,AB=9﹣4=5m ,在Rt △ ABC中,AC= = =4.例:如图,在一个长为2 米,宽为1 米的矩形草地上,如图堆放着一根长方体的木块,它的棱长和场地宽AD 平行且> AD ,木块的正视图是边长为0.2 米的正方形,一只蚂蚁从点A 处,到达C 处需要走的最短路例:如图是分析: 解答此题要将木块展开,然后根据两点之间线段最短解答. 解:由题意可知,将木块展开,相当于是 ∴长为 2+0.2 ×2=2.4 米;宽为1 米. 于是最短路径为: =2.60 米.例:如图, AB 为⊙O 直径, AB=2 ,OC 为半径, OC ⊥AB,D 为AC 等分点,点 P 为OC 上的动点,求 AP+PD 的最小值。

分折:作 D 关于 OC 的对称点 D ',于是有 PA+PD '≥ AD ', (当且仅当 P 运动到 P o 处,等号成立,易求 AD '= 3 。

六、在圆锥中,可将其侧面展开求出最短路程 将圆锥侧面展开,根据同一平面内的问题可求出最优设计方案 例:如图, 一直圆锥的母线长为 QA=8 ,底面圆的半径 r=2,若一只小蚂蚁从 A 点出发,绕圆锥的侧面爬行一周后又回到 A 点,则蚂蚁爬行的最短路线长是 (结果保留根式)根据题意可得出: 2nπ.π.rO=A,/180 则,则 n ×π×8, 180由勾股定理求得它的弦长 AA一、题中出现一个动点。

当题中只出现一个动点时 , 可作定点关于动点所在直线的对称点 或三角形两边之和小于第三边求出最值 . 例:如图,在正方形 ABCD 中,点 E 为 AB 上一定点, 且 BE=10,CE=14,P 为 BD 上一动点,求 PE+PC 最小值。

AB+2 个正方形的宽, 小虫爬行的最短路线的长是圆锥的展开图的扇形的弧所 2×π× 2=解得: n=90,利用两点之间线段最分析:作E关于BD对称点E',E'在AB上,有PE+PC=PE'+PC≥E'C 易求E'C=26 。

、题中出现两个动点当题中出现两个定点和两个动点时,应作两次定点关于动点所在直线的对称点.利用两点之间线段最短求出最值。

例:如图,在直角坐标系中有四个点, A(-8,3),B(-4,5)C(0 ,n),D(m,0), 当四边形ABCD 周长最短时,求m。

n分折:因AB 长为定值,四边形周长最短时有BC+CD+DA 最短,作B关于y轴对称点B',A 关于x 轴对称点A ' ,DA+DC+BC=DA '+DC+B'C≥B'A'(当D,C 运动到AB 和2 7 7 7 m xx轴y轴的交点时等号成立),易求直线A'B'解折式y= 3 + 3 ,C0(0, 3 ),D0(-2 ,0),此时n=-23三、题中出现三个动点时在求解时应注意两点:(1)作定点关于动点所在直线的对称点(2) 同时要考虑点点,点线,线线之间的最短问题例:如图,在菱形ABCD 中,AB=2, ∠BAD=60,E,F,P 分别为AB,BC,AC上动点,求PE+PF最小值分折:作E关于AC 所直线的对称点E',于是有,PE+PF=PF+PE'≥E'F,又因为E 在AB 上运动,故当EF和AD,BC 垂直时,E0F 最短,易求E0F= 3。

例:如图,∠ AOB=45 ,角内有一动点P ,PO=10 ,在AO ,BO 上有两动点Q ,R,求△ PQR 周长的最小值。

相关文档
最新文档