勾股定理和平行四边形专题复习

合集下载

平行四边形与勾股定理结合-【微专题】2022-2023学年八年级数学下册常考点微专题提分精练

平行四边形与勾股定理结合-【微专题】2022-2023学年八年级数学下册常考点微专题提分精练

专题26 平行四边形与勾股定理结合1. 如图,BD 垂直平分AC ,交AC 于E ,∠BCD =∠ADF ,FA ⊥AC ,垂足为A ,AF =DF =5,AD =6,则AC 的长为__.2. 如图,已知四边形ABCD 和四边形BCEF 均为平行四边形,∠D =60°,连接AF ,并延长交BE 于点P ,若AP ⊥BE ,AB =3,BC =2,AF =1,则BE 的长为( )A. 53. 如图,四边形ABCD 中,90,1,3A ABC AD BC ︒∠=∠===,E 是边CD 的中点,连接BE 并延长与AD 的延长线相较于点F .(1)求证:四边形BDFC 是平行四边形;(2)若△BCD 是等腰三角形,求四边形BDFC 的面积.4. 已知:如图,在四边形ABCD 中,DE ⊥AC ,BF ⊥AC ,垂足分别为E ,F ,延长DE 、BF ,分别交AB 于点H ,交BC 于点G ,若AD ∥BC ,AE =CF .(1)求证:四边形ABCD 为平行四边形;(2)若∠DAH =∠GBA ,GF =2,CF =4,求AD 的长.5. 已知:如图所示,在平行四边形ABCD 中DE 、BF 分别是∠ADC 和∠ABC 的角平分线,交AB 、CD 于点E 、F(1)求证:四边形DEBF 是平行四边形;(2)若∠A =60°,AE =2EB ,AD =4,求平行四边形ABCD 的面积.6. 如图,四边形ABCD 中,AC ,BD 相交于点O ,点O 是AC 的中点,//AD BC .(1)求证:四边形ABCD 是平行四边形;(2)若4AD BD ==,且90ADB ∠=︒,求AC 的长.7. 如图,四边形ABCD 中,BE ⊥AC 交AD 于点G ,DF ⊥AC 于点F ,已知AF =CE ,AB =CD .(1)求证:四边形ABCD是平行四边形;(2)如果∠GBC=∠BCD,AG=6,GE=2,求AB的长.8. 如图,等边△ABC的边长是4,点D,E分别为AB,AC的中点,延长BC至BC,连接CD和EF.点F,使CF=12(1)求证:DE=CF;(2)求EF的长;(3)求四边形DEFC的面积.9. 如图,在 ABCD中,F是AD的中点,延长BC到点E,使CE=12BC,连结DE,CF.(1)求证:四边形CEDF是平行四边形;(2)若AB=4,AD=6,∠B=60°,求DE的长.10. 如图1,已知平行四边形ABCO,以点O为原点,OC所在的直线为x轴,建立直角坐标系,AB交y轴于点D,AD=2,OC=6,∠A=60°,线段EF所在的直线为OD 的垂直平分线,点P为线段EF上的动点,PM⊥x轴于点M点,点E与E′关于x轴对称,连接BP、E′M.(1)请直接写出点A的坐标为_____,点B的坐标为_____;(2)当BP +PM +ME′的长度最小时,请直接写出此时点P 的坐标为_____;(3)如图2,点N 为线段BC 上的动点且CM=CN ,连接MN ,是否存在点P ,使△PMN 为等腰三角形?若存在,请求出所有满足要求的EP 的值;若不存在,请说明理由.11. 如图,在四边形ABCD 中,//AD BC ,90B ∠=︒,16cm AD =,12cm AB =,20cm BC =,点Q 从点A 出发以2cm/s 的速度向点D 运动,点P 从点B 出发以4cm/s 的速度向点C 运动,P , Q 两点同时出发,当点P 到达点C 时,两点同时停止运动.设运动时间为t s .(1)当2t =时,四边形PCDQ 的面积为 .(2)若以P ,Q ,C ,D 为顶点的四边形是平行四边形,求t 的值;(3)当05t <<时,若DQ DP ≠,则当t 为何值时,DPQ ∆是等腰三角形?12. 已知:直线y=34x+6与x轴、y轴分别相交于点A和点B,点C在线段AO上.将△ABO沿BC折叠后,点O恰好落在AB边上点D处.(1)直接写出A、B两点的坐标:A:_____,B:______;(2)求出OC的长;(3)如图,点E、F是直线BC上的两点,若△AEF是以EF为斜边的等腰直角三角形,求点F的坐标;(4)取AB的中点M,若点P在y轴上,点Q在直线AB上,是否存在以C、M、P、Q为顶点的四边形为平行四边形?若存在,请求出所有满足条件的Q点坐标;若不存在,请说明理由.专题26 平行四边形与勾股定理结合【1题答案】【答案】9.6【解析】【分析】根据线段垂直平分线的性质得到DA =DC ,BA =BC ,根据等腰三角形的性质得到∠DAC =∠DCA ,∠BAC =∠BCA ,证明AB ∥DF ,进而得到四边形AFDB 为平行四边形,根据平行四边形的性质得到BD =AF =5,AB =DF =5,根据勾股定理列出方程,解方程得到答案.【详解】解:∵BD 垂直平分AC ,∴DA =DC ,BA =BC ,∴∠DAC =∠DCA ,∠BAC =∠BCA ,∴∠DAC +∠BAC =∠DCA +∠BCA ,即∠DAB =∠BCD ,∵∠BCD =∠ADF ,∴∠DAB =∠ADF ,∴AB ∥DF ,∵FA ⊥AC ,DB ⊥AC ,∴AF ∥BD ,∴四边形AFDB 为平行四边形,∴BD =AF =5,AB =DF =5,设BE =x ,则DE =5-x ,在Rt △AEB 中,222AB BE AE -=,在Rt △AED 中,222AD DE AE -=,∴2222AB BE AD DE -=-,即()2222565x x -=--,解得:x =75,∴AE 245=,∴AC =2AE =9.6,故AC 的长为9.6,故答案为:9.6.【点睛】本题考查的是平行四边形的判定和性质、线段垂直平分线的性质,掌握垂直平分线上的点到线段两端点的距离相等是解题的关键.【2题答案】【答案】D【解析】【分析】过点D 作DH ⊥BC ,交BC 的延长线于点H ,连接BD ,DE ,先证∠DHC =90º,再证四边形ADEF 是平行四边形,最后利用勾股定理得出结果.【详解】过点D 作DH ⊥BC ,交BC 的延长线于点H ,连接BD ,DE ,∵四边形ABCD 是平行四边形,AB =3,∠ADC =60º,∴CD =AB =3,∠DCH =∠ABC =∠ADC =60º,∵DH ⊥BC ,∴∠DHC =90º,∴∠ADC +∠CDH =90°,∴∠CDH =30°,在Rt △DCH 中,CH =12CD =32,DH ,∴222223(2)192BD BH DH =+=++=,∵四边形BCEF 是平行四边形,∴AD =BC =EF ,AD ∥EF ,∴四边形ADEF 是平行四边形,∴AF ∥DE ,AF =DE =1,∵AF ⊥BE ,∴DE ⊥BE ,∴22219118BE BD DE =-=-=,∴BE =故选D .【点睛】本题考查了平行四边形的判定与性质,勾股定理,解题的关键是熟练运用这些性质解决问题.【3题答案】【答案】(1)见解析;(2)或【解析】【分析】(1)根据平行线的性质和中点的性质证明三角形全等,然后根据对角线互相平分的四边形是平行四边形完成证明;(2)由等腰三角形的性质,分三种情况:①BD=BC,②BD=CD,③BC=CD,分别求四边形的面积.【详解】解:(1)证明:∵∠A=∠ABC=90°,∴AF∥BC.∴∠CBE=∠DFE,∠BCE=∠FDE.∵E是边CD的中点,∴CE=DE.∴△BCE≌△FDE(AAS).∴BE=EF.∴四边形BDFC是平行四边形.(2)若△BCD是等腰三角形,①若BD=BC=3 .在Rt△ABD中,==.∴四边形BDFC的面积为S=;②若BC=DC=3,过点C 作CG ⊥AF 于G ,则四边形AGCB 是矩形,所以,AG=BC=3,所以,DG=AG-AD=3-1=2,在Rt △CDG 中,由勾股定理得, CG ===,∴四边形BDFC 的面积为S=.③BD=CD 时,BC 边上的中线应该与BC 垂直,从而得到BC=2AD=2,矛盾,此时不成立;综上所述,四边形BDFC 的面积是或.【点睛】本题考查了平行四边形的判定与性质,等腰三角形的性质,全等三角形的判定与性质,(1)确定出全等三角形是解题的关键,(2)难点在于分情况讨论.【4题答案】【答案】(1)见解析(2)5【解析】【分析】(1)根据AD ∥BC ,可得DAE BCF ∠=∠,根据,DE ⊥AC ,BF ⊥AC ,可得∠AED =∠CFB =90°,结合AE =CF 即可证明DAE BCF ≌△△,根据全等三角形的性质可得AD BC =,即可得证;(2)勾股定理可得CG =证明四边形DGBH 是平行四边形,可得DG HB =,继而可得AH CG =,勾股定理求得2EH =,在Rt ADE △中勾股定理即可求解.【小问1详解】证明:∵DE ⊥AC ,BF ⊥AC ,∴∠AED =∠CFB =90°,DE BF∥∵AD ∥BC ,∴∠DAE =∠BCF ,在Rt △△DAE 和△BCF 中,90DEA BFC AE CFDAE BCF ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩,∴△DAE ≌△BCF (ASA ),∴AD =CB ,∵AD ∥BC ,∴四边形ABCD 为平行四边形;【小问2详解】DE ⊥AC ,BF ⊥AC ,∴ DH BG ∥,GBA DHA ∴∠=∠,∠DAH =∠GBA ,DAH DHA ∴∠=∠,AD DH =∴,在Rt GCF △中,2,4GF CF ==,CG ∴==, 四边形ABCD 是平行四边形,DC AB ∴∥,AB CD =,DG HB ∴∥,DH GB ∥ ,∴四边形DHBG 是平行四边形,DG HB ∴=,AH CG ∴==Rt AEH △中,4,AE CF AH ===,2EH ∴=,在Rt ADE △中,222AD DE AE =+,()22224AD AD =-+,解得5AD =.【点睛】本题考查了平行四边形的判定与性质,勾股定理,掌握平行四边形的性质是解题的关键.【5题答案】【答案】(1)见解析;(2)【解析】【分析】(1)证明EF 、BD 互相平分,只要证四边形DEBF 是平行四边形;利用两组对边分别平行来证明;(2)根据等边三角形的判定定理得到ADE ∆是等边三角形,求得4DE AE ==,得到2BE GE ==,过D 点作DG AB ⊥于点G ,根据直角三角形的性质得到122AG AD ==,由勾股定理得到DG ===形的面积公式即可得到结论.【详解】(1)证明: 四边形ABCD 是平行四边形,ADC ABC ∴∠=∠.又DE ,BF 分别是ADC ∠,ABC ∠的平分线,ABF CDE ∴∠=∠.//AB CD ,CDE AED ∴∠=∠,ABF AED ∴∠=∠,//DE BF ∴,//DE BF ,//DF BE ,∴四边形DEBF 是平行四边形;(2)解:60A ∠=︒ ,AB //CD ,120ADC ∴∠=︒,∵DE 是∠ADC 的角平分线,60ADE CDE ∠=∠=︒∴,ADE ∴ 为等边三角形,AE AD ∴=,4AD = ,4DE AE ∴==,过D 点作DG AB ⊥于点G ,2AE EB = ,2EB ∴=,在Rt DGE 中60DEG ∠=︒ ,30GDE ∴∠=︒,114222GE DE ∴==⨯=,224BG GE BE ∴=+=+=,在Rt ADG 中,4=AD ,60A ∠=︒,122AG AD ∴==,DG ∴==∴平行四边形ABCD 的面积6AB DG =⋅=⨯=.【点睛】本题考查平行四边形的判定和性质、等边三角形的判定和性质,勾股定理,证得ADE ∆是等边三角形是解题的关键.【6题答案】【答案】(1)见解析;(2)【解析】【分析】(1)由已知条件易证△AOD ≌△COB ,由此可得OD =OB ,进而可证明四边形ABCD 是平行四边形;(2)根据平行四边形的性质得出AC =2OA ,利用勾股定理即可解决问题.【详解】(1)证明:∵O 是AC 的中点,∴OA OC =,∵//AD BC ,∴ADO CBO ∠=∠,在AOD △和COB △中,ADO CBO AOD COB OA OC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴AOD △≌COB △,∴OD OB =,∵OA OC =,∴四边形ABCD 是平行四边形.(2)解:∵四边形ABCD 是平行四边形,∴122OB OD BD ===,2AC OA =,∵90ADB ∠=︒,∴OA ===∴2AC OA ==【点睛】本题考查平行四边形的判定和性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是证明四边形ABCD 是平行四边形,属于中考常考题型.【7题答案】【答案】(1)见解析 (2)9【解析】【分析】(1)先证明Rt △ABE ≌Rt △CDF ,得到AB ∥CD ,即可判定平行四边形;(2)证明AB=GB ,根据勾股定理构造方程,解方程即可求解.【详解】解:(1)∵AF=CE ,∴AF-EF=CE-EF ,∴AE=CF ,∵BE ⊥AC ,DF ⊥AC ,,∴∠AEB=∠CFD=90°,∵AB=CD ,∴Rt △ABE ≌Rt △CDF ,∴∠BAE=∠DCF ,∴AB ∥CD,∵AB=CD ,∴四边形ABCD 是平行四边形;(2)∵四边形ABCD 是平行四边形,∴AD ∥BC ,∠DAB=∠BCD ,∴∠AGB=∠GBC ,∵∠GBC =∠BCD ,∴∠AGB=∠BAG ,∴AB=GB ,设AB=GB=x ,则BE=x-2,∵BG ⊥AC ,∴2222AB BE AG GE -=-,∴()2222262x x --=- ,解得x=9,∴AB =9.【点睛】本题考查了平行四边的判定与性质,勾股定理,等腰三角形判定等知识,综合性较强,熟知相关定理并根据已知条件合理选择定理是解题关键.【8题答案】【答案】(1)见解析;(2)EF=(3).【解析】【分析】(1)利用三角形中位线定理即可解决问题;(2)先求出CD ,再证明四边形DEFC 是平行四边形即可;(3)过点D 作DH ⊥BC 于H ,求出CF 、DH 即可解决问题.【详解】解:(1)在△ABC 中,∵D 、E 分别为AB 、AC 的中点,∴DE 为△ABC 的中位线,∴DE =12BC ,∵CF =12BC ,∴DE =CF ;(2)∵AC=BC,AD=BD,∴CD⊥AB,∵BC=4,BD=2,∴CD∵DE∥CF,DE=CF,∴四边形DEFC是平行四边形,∴EF=CD=(3)过点D作DH⊥BC于H,∵∠DHC=90°,∠DCB=30°,DC,∴DH=12∵DE=CF=2,∴S四边形DEFC=CF•DH==【点睛】本题考查等边三角形的性质、三角形中位线定理、勾股定理、平行四边形的判定和性质等知识,解题的关键是灵活应用这些知识解决问题,记住平行四边形的面积公式,学会添加常用辅助线,属于中考常考题型.【9题答案】【答案】(1)见解析(2【解析】【分析】(1)由“平行四边形的对边平行且相等”的性质推知AD∥BC,且AD=BC;然后根据中点的定义、结合已知条件推知四边形CEDF的对边平行且相等(DF=CE,且DF∥CE),即四边形CEDF是平行四边形;(2)如图,过点D作DH⊥BE于点H,构造含30度角的直角△DCH和直角△DHE.通过解直角△DCH和在直角△DHE中运用勾股定理来求线段ED的长度.【详解】(1)证明:在▱ABCD中,AD BC,且AD=BC∵F是AD的中点AD∴DF=12BC又∵CE=12∴DF=CE,且DF CE∴四边形CEDF是平行四边形;(2)如图,过点D作DH⊥BE于点H.在▱ABCD中,∵∠B=60°,∴∠DCE=60°.∵AB=4,∴CD=AB=4,CD=2,DH∴CH=12AD=3,则EH=1.在▱CEDF中,CE=DF=12∴在Rt△DHE中,根据勾股定理知DE=.视频【10题答案】【答案】(1)(﹣2,,(4,;(2)(2;(3)EP的值为3或6或5.【解析】【分析】(1)由30°直角三角形的性质求出OD的长,再由平行四边形的性质求出BD 的长即可解决问题;(2)首先证明四边形OPME′是平行四边形,可得OP=EM,因为PM是定值,推出PB+ME′=OP+PB的值最小时,BP+PM+ME′的长度最小;(3)分三种情形画出图形分别求解即可解决问题.【详解】解:(1)如图1中,在Rt△ADO中,∵∠A=60°,∴∠AOD=30°.∵AD=2,∴OD A(﹣2,2,∵四边形ABCO是平行四边形,∴AB=OC=6,∴DB=6﹣2=4,∴B(4,;(2)如图1中,连接OP.∵EF垂直平分线段OD,PM⊥OC,∴∠PEO=∠EOM=∠PMO=90°,∴四边形OMPE是矩形,∴PM=OE∵OE=OE′,∴PM=OE′,PM∥OE′,∴四边形OPME′是平行四边形,∴OP=EM,∵PM是定值,∴PB+ME′=OP+PB的值最小时,BP+PM+ME′的长度最小,∴当O、P、B共线时,BP+PM+ME′的长度最小.∵直线OB的解析式为y,∴P(2).故答案为(2).(3)如图2中,当PM=PN时,∵AOCB 是平行四边形,∴∠MCN =∠A =60°.∵MC =CN ,∴△MNC 是等边三角形,∴∠CMN =∠CNM =60°.∵PM ⊥OC ,∴∠PMN =∠PNM =30°,∴∠PNF =30°+60°=90°,∵∠PFN =∠BCO =60°,∴∠NPF =30°,NF =1,∴PF =2NF =2,∵EF =2BD OC =5,∴PE =5﹣2=3.如图3中,当PM =MN 时,∵PM =MN =CM ,∴EP =OM =6如图4中,当点P 与F 重合时,NP =NM ,此时PE =EF =5.综上所述:满足条件的EP 的值为3或65.【点睛】本题考查了四边形综合题、平行四边形的性质、等腰三角形的判定和性质、最短问题等知识,解题的关键是学会利用两点之间线段最短,解决最短问题,学会用分类讨论的首先思考问题,属于中考压轴题.【11题答案】【答案】(1)2144cm ;(2)2t =;(3)83t =或74t =【解析】【分析】(1)当2t =时,算出AQ 、PB 的值,进而求出DQ 、PC 的值,由平行四边形的判定得出四边形PCDQ 为平行四边形,进而求出平行四边形的面积;(2)P 未到达C 点时,要使四边形PCDQ 是平行四边形,由平行四边形的性质得出QD PC =,列出等式解答即可;(3)分PQ PD =,QD QP =两种情况讨论计算,求出时间即可得出答案.【详解】解:(1)∵边形ABCD 中,//AD BC ,90B ∠=︒,16cm AD =,12cm AB =,20cm BC =,点Q 从点A 出发以2cm/s 的速度向点D 运动,点P 从点B 出发以4cm/s 的速度向点C 运动,当2t =时,AQ =4cm ,PB =8cm ,∴DQ =16-2=12cm ,PC =20-8=12cm ,∴DQ =PC ,∴此时四边形PCDQ 为平行四边形,四边形PCDQ 的面积为:1212=⨯2144cm ,故答案为:2144cm ;(2)P 未到达C 点时,要使四边形PCDQ 是平行四边形,则QD PC =,162204t t -=-,解得2t =.∴ 四边形PCDQ 是平行四边形时,t 的值是2.(3)①如图,若PQ PD =,过点P 作PE AD ⊥于点E ,则162QD t =-,11(162)822QE QD t t ==-=-,2(8)8AE AQ QE t t t =+=+-=+,AE BP = ,84t t ∴+=,解得:83t =.②如图,若QD QP =,过Q 作QF BC ⊥于F ,则12QF =,422FP t t t =-=,在Rt QPF ∆中,222QF FP QP +=,()()22122162t t 2∴+=-,解得74t =.∴当83t =或74t =时,DPQ ∆是等腰三角形.【点睛】本题考查了平行四边形的性质和判定,等腰三角形的判定与性质,勾股定理的应用,作辅助线利用等腰三角形三线合一的性质以及勾股定理是解题的关键.【12题答案】【答案】(1)A (-8,0),B (0,6);(2)3;(3)(-2,2)或E (-6,-6);(4)21(1,)4-或27(1,)4或3(7,4-【解析】【分析】(1)在直线364y x =+中,分别令x =0,y =0,可得A ,B 坐标;(2)由翻折不变性可知,OC CD =,6OB BD ==,90ODB BOC ∠=∠=︒,在Rt ADC ∆中,90ADC ∠=︒,利用222AD CD AC +=,即可求解;(3)证明()FMA ANE AAS ∆≅∆,则NE AM =,MF AN =,即可求解;(4)分MC 是边、MC 是对角线两种情况,分别求解即可.【详解】解:(1)对于直线364y x =+,令0x =,得到6y =,(0,6)B ∴,令0y =,得到8x =-,,0()8A ∴-.(8,0)A - .(0,6)B ;(2)由(1)可得:(8,0)A -.(0,6)B ,8OA ∴=,6OB =,90AOB ∠=︒ ,10AB ∴==,由翻折不变性可知,OC CD =,6OB BD ==,90ODB BOC ∠=∠=︒,4AD AB BD ∴=-=,设CD OC x ==,在Rt ADC ∆中,90ADC ∠=︒,222AD CD AC ∴+=,2224(8)x x ∴+=-,解得3x =,3OC ∴=;(3)由点B 、C 的坐标得,直线BC 的表达式为:26y x =+,设点(,26)F m m +、(,26)E n n +,过点A 作y 轴的平行线交过点F 与x 轴的平行线于点M ,交过点E 与x 轴的平行线于点N ,AEF ∆ 为等腰直角三角形,故AE AF =,90NAE MAF ∠+∠=︒ ,90MAF MFA ∠+∠=︒,NAE MFA ∴∠=∠,90FMA ANE ∠=∠=︒ ,AE AF =,()FMA ANE AAS ∴∆≅∆,NE AM ∴=,MF AN =,即268m n --=+,268n m +=+,解得:2m =-,6n =-,故点F 的坐标为(2,2)-、点(6,6)E --;由于E 、F 的位置可能互换,故点E 的坐标为(2,2)-、点(6,6)F --;综上,点F 的坐标为(2,2)-或(6,6)E --;(4)点M 是AB 的中点,则点(4,3)M -,而点(8,0)A -,设点(0,)P n ,点3(,6)4Q m m +,①当MC 是边时,点M 向右平移1个单位向下平移3个单位得到点C ,同样点()P Q 右平移1个单位向下平移3个单位得到点()Q P ,故01m +=且3364n m -=+或01m -=且3364n m +=+,解得:1m =或1-,故点Q 的坐标为21(1,)4Q -或27(1,)4;②当MC 是对角线时,由中点公式得:43m --=且3364n m =++,解得:7m =-,故点Q 的坐标为3(7,)4-;综上,点Q 的坐标为:21(1,4-或27(1,)4或3(7,)4-.【点睛】本题考查的是一次函数综合运用,涉及到一次函数的性质、平行四边形的性质、三角形全等等,其中(4),解题的关键是要注意分类求解,避免遗漏.。

勾股定理重点知识点

勾股定理重点知识点

勾股定理重点知识点2017精选关于勾股定理重点知识点一、勾股定理与逆定理A.勾股定理在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方。

如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2。

1、勾股定理应用的前提条件是在直角三角形中。

2、勾股定理公式a2+b2=c2 的变形有:a2= c2—b2,b2=c2-a2及c2=a2+b2。

3、由于a2+b2=c2>a2 ,所以c>a,同理c>b,即直角三角形的斜边大于该直角三角形中的每一条直角边。

B.勾股定理的逆定理如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形。

说明:①勾股定理的逆定理验证利用了三角形的全等。

②勾股定理的逆定理将数转化为形,作用是判断一个三角形是不是直角三角形。

必须满足较小两边平方的和等于最大边的平方才能做出判断。

(2)运用勾股定理的逆定理解决问题的实质就是判断一个角是不是直角。

然后进一步结合其他已知条件来解决问题。

注意:要判断一个角是不是直角,先要构造出三角形,然后知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是。

面积分割法、构造直角三角形二、实数与数轴1、实数与数轴上的点是一一对应关系。

任意一个实数都可以用数轴上的点表示;反之,数轴上的任意一个点都表示一个实数。

数轴上的任一点表示的数,不是有理数,就是无理数。

2、在数轴上,表示相反数的两个点在原点的两旁,并且两点到原点的距离相等,实数a的绝对值就是在数轴上这个数对应的点与原点的距离。

3、利用数轴可以比较任意两个实数的大小,即在数轴上表示的两个实数,右边的总比左边的大,在原点左侧,绝对值大的反而小。

三、矩形的性质1、矩形的定义:有一个角是直角的平行四边形是矩形。

2、矩形的性质①平行四边形的性质矩形都具有;②角:矩形的四个角都是直角;③边:邻边垂直;④对角线:矩形的对角线相等;⑤矩形是轴对称图形,又是中心对称图形。

专题04 勾股定理常考压轴题汇总(解析版)

专题04 勾股定理常考压轴题汇总(解析版)

专题04勾股定理常考压轴题汇总一.选择题(共23小题)1.我国汉代数学家赵爽证明勾股定理时创制了一幅“勾股圆方图”,后人称之为“赵爽弦图”,它是由4个全等的直角三角形和一个小正方形组成一个大正方形.如图,直角三角形的直角边长为a、b,斜边长为c.若b﹣a=2,c=10,则a+b的值为()A.12B.14C.16D.18【答案】B【解答】解:由图可得,a2+b2=c2,∴且a、b均大于0,解得,∴a+b=6+8=14,故选:B.2.如图,长方体的长为3,宽为2,高为4,一只蚂蚁从点A出发,沿长方体表面到点B处吃食物,那么它爬行最短路程是()A.B.C.D.【答案】B【解答】解:第一种情况:把我们所看到的前面和上面组成一个平面,则这个长方形的长和宽分别是6和3,则所走的最短线段是=3;第二种情况:把我们看到的左面与上面组成一个长方形,则这个长方形的长和宽分别是5和4,所以走的最短线段是=;第三种情况:把我们所看到的前面和右面组成一个长方形,则这个长方形的长和宽分别是7和2,所以走的最短线段是=;三种情况比较而言,第二种情况最短.所以它需要爬行的最短路线的长是,故选:B.3.如图,以Rt△ABC的三条边作三个正三角形,则S1、S2、S3、S4的关系为()A.S1+S2+S3=S4B.S1+S2=S3+S4C.S1+S3=S2+S4D.不能确定【答案】C【解答】解:如图,设Rt△ABC的三条边AB=c,AC=b,BC=a,∵△ACG,△BCH,△ABF是等边三角形,∴S1=S△ACG﹣S5=b2﹣S5,S3=S△BCH﹣S6=a2﹣S6,∴S1+S3=(a2+b2)﹣S5﹣S6,∵S2+S4=S△ABF﹣S5﹣S6=c2﹣S5﹣S6,∵c2=a2+b2,∴S1+S3=S2+S4,故选:C.4.如图,在△ABC中,∠ACB=90°,以△ABC的各边为边作三个正方形,点G落在HI 上,若AC+BC=6,空白部分面积为10.5,则AB的长为()A.3B.C.2D.【答案】B【解答】解:∵四边形ABGF是正方形,∴∠FAB=∠AFG=∠ACB=90°,∴∠FAC+∠BAC=∠FAC+∠ABC=90°,∴∠FAC=∠ABC,在△FAM与△ABN中,,∴△FAM≌△ABN(ASA),=S△ABN,∴S△F AM=S四边形FNCM,∴S△ABC∵在△ABC中,∠ACB=90°,∴AC2+BC2=AB2,∵AC+BC=6,∴(AC+BC)2=AC2+BC2+2AC•BC=36,∴AB2+2AC•BC=36,=10.5,∵AB2﹣2S△ABC∴AB2﹣AC•BC=10.5,∴3AB2=57,解得AB=或﹣(负值舍去).故选:B.5.已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为()A.3cm2B.4cm2C.6cm2D.12cm2【答案】C【解答】解:将此长方形折叠,使点B与点D重合,∴BE=ED.∵AD=9cm=AE+DE=AE+BE.∴BE=9﹣AE,根据勾股定理可知AB2+AE2=BE2.解得AE=4.∴△ABE的面积为3×4÷2=6.故选:C.6.如图,阴影部分表示以Rt△ABC的各边为直径向上作三个半圆所组成的两个新月形,面积分别记作S1和S2.若S1+S2=7,AC=3,则BC长是()A.3.5B.C.4D.5【答案】B【解答】解:以AC为直径的半圆的面积=×π×=π,同理:以BC为直径的半圆的面积=π,以AB为直径的半圆的面积=π,∴S1+S2=π+π+△ABC的面积﹣π,∵∠ACB=90°,∴AC2+BC2=AB2,∴S1+S2=△ABC的面积=AC•BC=7,∵AC=3,∴BC=.故选:B.7.如图,在长方体ABCD﹣EFGH盒子中,已知AB=4cm,BC=3cm,CG=5cm,长为10cm 的细直木棒IJ恰好从小孔G处插入,木棒的一端I与底面ABCD接触,当木棒的端点Ⅰ在长方形ABCD内及边界运动时,GJ长度的最小值为()A.(10﹣5)cm B.3cm C.(10﹣4)cm D.5cm【答案】A【解答】解:当GI最大时,GJ最小,当I运动到点A时,GI最大,此时GI=cm,而AC2=AB2+BC2=42+32=25,∴GI===5(cm),∴GJ长度的最小值为(10﹣5)cm.故选:A.8.勾股定理是几何中的一个重要定理,在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入长方形内得到的,∠BAC=90°,AB=6,BC=10,点D,E,F,G,H,I都在长方形KLMJ的边上,则长方形KLMJ的面积为()A.420B.440C.430D.410【答案】B【解答】解:如图,延长AB交KL于P,延长AC交LM于Q,由题意得,∠BAC=∠BPF=∠FBC=90°,BC=BF,∴∠ABC+∠ACB=90°=∠PBF+∠ABC,∴∠ACB=∠PBF,∴△ABC≌△PFB(AAS),同理可证△ABC≌△QCG(AAS),∴PB=AC=8,CQ=AB=6,∵图2是由图1放入长方形内得到,∴IP=8+6+8=22,DQ=6+8+6=20,∴长方形KLMJ的面积=22×20=440.故选:B.9.国庆假期间,妍妍与同学去玩寻宝游戏,按照藏宝图,她从门口A处出发先往东走9km,又往北走3km,遇到障碍后又往西走7km,再向北走2km,再往东走了4km,发现走错了之后又往北走1km,最后再往西走了1km,就找到了宝藏,则门口A到藏宝点B的直线距离是()A.3km B.10km C.6km D.km【答案】D【解答】解:过点B作BC⊥AC,垂足为C.观察图形可知AC=9﹣7+4﹣1=5(km),BC=3+2+1=6(km),在Rt△ACB中,AB=(km).答:门口A到藏宝点B的直线距离是km,故选:D.10.如图,Rt△ABC中,∠ACB=90°,CD⊥AB,AB=9,BC=6,则BD的长为()A.3B.4C.5D.6【答案】B【解答】解:∵∠ACB=90°,AB=9,BC=6,∴,∵,∴AC•BC=AB•CD,,,∵CD⊥AB,∴∠CDB=90°,∴,故选:B.11.如图,某小区有一块长方形花圃,为了方便居民不用再走拐角,打算用瓷砖铺上一条新路,居民走新路比走拐角近()A.2m B.3m C.3.5m D.4m【答案】D【解答】解:根据勾股定理求得,AB==10(m),∴AC+BC﹣AB=6+8﹣10=4(m),故选:D.12.如图,是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的,若AC=12,BC=7,将四个直角三角形中边长为12的直角边分别向外延长一倍,得到如图所示的“数学风车”,则这个风车的外围周长是()A.148B.100C.196D.144【答案】A【解答】解:设将CA延长到点D,连接BD,根据题意,得CD=12×2=24,BC=7,∵∠BCD=90°,∴BC2+CD2=BD2,即72+242=BD2,∴BD=25,∴AD+BD=12+25=37,∴这个风车的外围周长是37×4=148.故选:A.13.如图,四边形ABCD中,AD⊥CD于点D,BC=2,AD=8,CD=6,点E是AB的中点,连接DE,则DE的最大值是()A.5B.C.6D.【答案】C【解答】解:如图,连接AC,取AC的中点为M,连接DM、EM,∵AD⊥CD,∴∠ADC=90°,∵AD=8,CD=6,∴AC=,∵M是AC的中点,∴DM=AC=5,∵M是AC的中点,E是AB的中点,∴EM是△ABC的中位线,∵BC=2,∴EM=BC=1,∵DE≤DM+EM(当且仅当点M在线段DE上时,等号成立),∴DE≤6,∴DE的最大值为6.故选:C.14.如图,长为8cm的橡皮筋放置在数轴上,固定两端A和B,然后把中点C垂直向上拉升3cm到D点,则橡皮筋被拉长了()A.2cm B.3cm C.4cm D.1cm【答案】A【解答】解:∵点C为线段AB的中点,∴AC=AB=4cm,在Rt△ACD中,CD=3cm;根据勾股定理,得:AD==5(cm);∵CD⊥AB,∴∠DCA=∠DCB=90°,在△ADC和△BDC中,,∴△ADC≌△BDC(SAS),∴AD=BD=5cm,∴AD+BD﹣AB=2AD﹣AB=10﹣8=2(cm);∴橡皮筋被拉长了2cm.故选:A.15.如图的数轴上,点A,C对应的实数分别为1,3,线段AB⊥AC于点A,且AB长为1个单位长度,若以点C为圆心,BC长为半径的弧交数轴于0和1之间的点P,则点P表示的实数为()A.B.C.D.【答案】A【解答】解:由题意可得∠BAC=90°,AB=1,AC=3﹣1=2,则CB==,那么点P表示的实数为3﹣,故选:A.16.“四千年来,数学的道理还是相通的”.运用祖冲之的出入相补原理也可证明勾股定理.若图中空白部分的面积是11,整个图形(连同空白部分)的面积是25,则大正方形的边长是()A.B.C.D.【答案】D【解答】解:如下图,设图中直角三角形的两条直角边长分别为a、b,斜边为c,∵图中空白部分的面积是11,整个图形(连同空白部分)的面积是25,∴可有,解得c2=18,解得或(不合题意,舍去),∴大正方形的边长是.故选:D.17.如图所示的一段楼梯,高BC是3米,斜边AB长是5米,现打算在楼梯上铺地毯,至少需要地毯的长度为()A.5米B.6米C.7米D.8米【答案】C【解答】解:∵△ABC是直角三角形,BC=3m,AB=5m∴AC==4(m),∴如果在楼梯上铺地毯,那么至少需要地毯为AC+BC=7米,故选:C.18.勾股定理是人类早期发现并证明的重要数学定理之一,是数形结合的重要细带.数学家欧几里得利用如图验证了勾股定理.以直角三角形ABC的三条边为边长向外作正方形ACKJ,正方形ABFE,正方形BCIH,连接AH.CF,具中正方形BCIH面积为1,正方形ABFE面积为5,则以CF为边长的正方形面积为()A.4B.5C.6D.10【答案】D【解答】解:过点C作CM⊥EF于点M,交AB于点N,∵正方形ABFE面积为5,正方形BCIH面积为1,∴CN⊥AB,BC=1,AB=MN=,BN=FN,∵△ABC是直角三角形,∠ACB=90°,∴AC===2,∴,即=CN,∴CN=,∴BN=FM===,∴CM=CN+MN==,∴CF=10,∴以CF为边长的正方形面积为10.故选:D.19.如图,Rt△ABC中,∠C=90°.分别以AB、AC、BC为边在AB的同侧作正方形ABEF、ACPQ、BCMN.四块阴影部分的面积如图所示分别记为S、S1、S2、S3,若S=10,则S1+S2+S3等于()A.10B.15C.20D.30【答案】C【解答】解:如图,过E作BC的垂线交ED于D,连接EM.在△ACB和△BDE中,∠ACB=∠BDE=90°,∠CAB=∠EBD,AB=BD,∴△ACB≌△BND(AAS),同理,Rt△GDE≌Rt△HCB,∴GE=HB,∠EGD=∠BHC,∴FG=EH,∴DE=BC=CM,∵DE∥CM,∴四边形DCME是平行四边形,∵∠DCM=90°,∴四边形DCME是矩形,∴∠EMC=90°,∴E、M、N三点共线,∵∠P=∠EMH=90°,∠PGF=∠DGE=∠BHC=∠EHM,∴△PGF≌△MHE(AAS),∵图中S1=S Rt△EMH,S△BHC=S△EGD,∴S1+S3=S Rt△ABC.S2=S△ABC,∴S1+S2+S3=Rt△ABC的面积×2=20.故选:C.20.如图,在Rt△ABC中,∠C=90°,分别以AB、AC、BC为直径向外作半圆,它们的面积分别记作S1、S2、S3,若S1=25,S3=16,则S2为()A.9B.11C.32D.41【答案】A【解答】解:在Rt△ABC中,∠C=90°,∴AB2=AC2+BC2.∵S1=(AB)2π=AB2=25,∴AB2=25×.同理BC2=16×.∴AC2=AB2﹣BC2=25×﹣16×=9×.∴S1=(AC)2π=AC2=×9×=9.故选:A.21.如图,在Rt△ABC中,∠ACB=90°,分别以AB、AC、BC为边在AB的同侧作正方形ABEF、ACPQ、BDMC,记四块阴影部分的面积分别为S1、S2、S3、S4.若已知S△ABC=S,则下列结论:①S4=S;②S2=S;③S1+S3=S2;④S1+S2+S3+S4=2.5S.其中正确的结论是()A.①②③B.①②④C.①③④D.②③④【答案】A【解答】解:由题意有Rt△EBD≌Rt△ABC,∴S4=S;故①正确;过F作AM的垂线交AM于N,由题意,得Rt△ANF≌Rt△ABC,Rt△NFK≌Rt△CAT,所以S2=S,故②正确;连接FP,FQ,由题意,可得△AQF≌△ACB,则F,P,Q三点共线,由Rt△NFK≌Rt△CAT可得Rt△FPT≌Rt△EMK,∴S3=S△FPT,可得Rt△AQF≌Rt△ACB,∴S1+S3=S Rt△AQF=S,故③正确;S1+S2+S3+S4=(S1+S3)+S2+S4+S Rt△ABC+S Rt△ABC=S Rt△ABC×3=S Rt△ABC=3S,故④不正确.故选:A.22.如图,有一个水池,水面是一边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面,这根芦苇的长度为()尺.A.10B.12C.13D.14【答案】C【解答】解:设水深为x尺,则芦苇长为(x+1)尺,根据勾股定理得:x2+()2=(x+1)2,解得:x=12,芦苇的长度=x+1=12+1=13(尺),答:芦苇长13尺.故选:C.23.将四个全等的直角三角形作为叶片按图1摆放成一个风车形状,形成正方形ABCD和正方形EFGH.现将四个直角三角形的较长直角边分别向外延长,且A′E=ME.B′F =NF,C′G=PG,D′H=HQ,得到图2所示的“新型数学风车”的四个叶片,即△A′EF,△B′FG,△C′CH.△D′HE.若FM平分∠BFE,正方形ABCD和正方形EFGH 的边长比为1:5.若”新型数学风车”的四个叶片面积和是m,则正方形EFCH的面积是()A.B.C.3m D.【答案】B【解答】解:∵将四个全等的直角三角形作为叶片按图1摆放成一个风车形状,形成正方形ABCD和正方形EFCH.正方形ABCD和正方形EFGH的边长比为1:5.∴设正方形ABCD的边长为a,则正方形EFGH的边长为5a,设AE=BF=CG=DH=x,在△BEF中,BE2+BF2=EF2,即(x+a)2+x2=(5a)2,x2+ax﹣12a2=0,(x+4a)(x﹣3a)=0,x=﹣4a(舍去)或x=3a,∴BE=4a,BF=3a,EF=5a,∵FM平分∠BFE,∴△EMF边EF上的高为BM,+S△MBF=S△BEF,则S△BMF即,∴,∴BM=,∵A'E=ME=BE﹣BM=4a﹣a,若”新型数学风车”的四个叶片面积和是m,=S△EF A'=m,∴S△EMF∴,∴a m,∴a=∴EF=5a=,=EF=,∴S正方形EFCH故选:B.二.填空题(共14小题)24.如图①,四个全等的直角三角形与一个小正方形,恰好拼成一个大正方形,这个图形是由我国汉代数学家赵爽在为《周髀算经》作注时给出的,人们称它为“赵爽弦图”.如果图①中的直角三角形的长直角边为7cm,短直角边为3cm,连结图②中四条线段得到如图③的新图案,则图③中阴影部分的周长为32cm.【答案】32.【解答】解:由题意得:BD=7cm,AB=CD=3cm,∴BC=7﹣3=4(cm),由勾股定理得:AC==5(cm),∴阴影的周长=4(AB+AC)=4×(3+5)=32(cm).故答案为:32.25.如图,在△ABC中,已知:∠ACB=90°,AB=10cm,AC=6cm,动点P从点B出发,沿射线BC以1cm/s的速度运动,设运动的时间为t秒,连接PA,当△ABP为等腰三角形时,t的值为16或10或.【答案】16或10或.【解答】解:在△ABC中,∠ACB=90°,由勾股定理得:BC=cm,∵△ABP为等腰三角形,当AB=AP时,则BP=2BC=16cm,即t=16;当BA=BP=10cm时,则t=10;当PA=PB时,如图:设BP=PA=x cm,则PC=(8﹣x)cm,在Rt△ACP中,由勾股定理得:PC2+AC2=AP2,∴(8﹣x)2+62=x2,解得x=,∴t=.综上所述:t的值为16或10或.故答案为:16或10或.26.如图,点M,N把线段AB分割成AM,MN和BN,若以AM,MN,BN为边的三角形是一个直角三角形,则称点M,N是线段AB的“勾股分割点”.已知点M,N是线段AB的“勾股分割点”,若AM=4,MN=5,则斜边BN的长为.【答案】.【解答】解:当BN为最大线段时,∵点M,N是线段AB的勾股分割点,∴BN===,故答案为:.27.对角线互相垂直的四边形叫做“垂美”四边形,现有如图所示“垂美”四边形ABCD,对角线AC,BD交于点O,若AB=6,CD=10,则AD2+BC2=136.【答案】136.【解答】解:∵BD⊥AC,∴∠COB=∠AOB=∠AOD=∠COD=90°,∴BO2+CO2=CB2,OB2+OA2=AB2=36,OA2+OD2=AD2,OC2+OD2=CD2=100,∴BO2+CO2+OA2+OB2=36+100,∴AD2+CB2=BO2+CO2+OA2+OB2=136;故答案为:136.28.如图,在平面直角坐标系中,矩形OABC的顶点A、C的坐标分别为(30,0)(0,12),点D是OA的中点,点P在BC上运动,当△ODP是腰长为15的等腰三角形时,点P 的坐标为(9,12)或(3,12)或(24,12).【答案】(9,12)或(6,12)或(24,12).【解答】解:由题意,当△ODP是腰长为15的等腰三角形时,有三种情况:(1)如答图①所示,PD=OD=15,点P在点D的左侧.过点P作PE⊥x轴于点E,则PE=12.在Rt△PDE中,由勾股定理得:DE===9,∴OE=OD﹣DE=15﹣9=6,∴此时点P坐标为(6,12);(2)如答图②所示,OP=OD=15.过点P作PE⊥x轴于点E,则PE=4.在Rt△POE中,由勾股定理得:OE===9,∴此时点P坐标为(9,12);(3)如答图③所示,PD=OD=5,点P在点D的右侧.过点P作PE⊥x轴于点E,则PE=4.在Rt△PDE中,由勾股定理得:DE===9,∴OE=OD+DE=15+9=24,∴此时点P坐标为(24,12).综上所述,点P的坐标为:(9,12)或(6,12)或(24,12);故答案为:(9,12)或(6,12)或(24,12).29.《勾股》中记载了这样一个问题:“今有开门去阃(kǔn)一尺不合2寸,问门广几何?”意思是:如图推开两扇门(AD和BC),门边沿D,C两点到门槛AB的距离是1尺(1尺=10寸),两扇门的间隙CD为2寸,则门槛AB长为101寸.【答案】101.【解答】解:设OA=OB=AD=BC=r寸,如图,过D作DE⊥AB于点E,则DE=10寸,OE=CD=1(寸),AE=(r﹣1)寸,在Rt△ADE中,由勾股定理得:AE2+DE2=AD2,即(r﹣1)2+102=r2,解得:r=50.5,∴2r=101,即门槛AB长为101寸,故答案为:101.30.如图,在某次军事演习中,舰艇1号在指挥中心(O处)北偏西30°的A处,舰艇2号在指挥中心南偏东60°的B处,并且OA=OB.接到行动指令后,舰艇1号向正东方向以60海里/小时的速度前进,舰艇2号沿北偏东60°的方向以m海里/小时的速度前进.1.5小时后,指挥中心观测到两舰艇分别到达点E,F处,若∠EOF=75°,EF=210海里,则m的值为80.【答案】80.【解答】解:延长AE、BF相交于点C,∵∠AOB=30°+90°+30°=150°,∠EOF=75°,∴∠EOF=∠AOB,又∵OA=OB,∠OAC+∠OBC=(90°﹣30°)+(60°+60°)=180°,延长FB至D,使BD=AE,连接OD,∵∠OBD=∠OBC,∴.∠OBD=∠A,∴△OBD≌△OAE(SAS),∴OD=OE,∠BOD=∠AOE,∵∠EOF=∠AOB=∠EOD,∴.∠EOF=∠DOF,又∵OF=OF,∴△EOF≌△DOF(SAS),∴EF=AE+BF,即EF=1.5×(60+m)=210.解得m=80.故答案为:80.31.如图是中国古代数学家赵爽用来证明勾股定理的弦图的示意图,它是由四个全等的直角三角形和一个小正方形EFGH组成,恰好拼成一个大正方形ABCD.连结EG并延长交BC于点M.若AB=5,EF=1,则GM的长为.【解答】解:由图可知∠AED=90°,AB=5,EF=1,∵大正方形ABCD是由四个全等的直角三角形和一个小正方形EFGH组成,故AE=BF=GC=DH,设DE=x,则在Rt△AED中,AD=AB=5,AE=1+x,根据勾股定理,得AD2=DE2+AE2,即52=x2+(1+x)2,解得:x1=3,x2=﹣4(舍去).过点M作MN⊥FB于点N,如图所示.∵四边形EFGH为正方形,EG为对角线,∴△EFG为等腰直角三角形,∴∠EGF=∠NGM=45°,故△GNM为等腰直角三角形.设GN=NM=a,则NB=GB﹣GN=3﹣a,∵MN∥AF,∴△BMN∽△BAF,∴=,将MN=a,AF=3,BN=3﹣a,BF=4代入,得=,解得a=,∴MN=GN=,在Rt△MGN中,由勾股定理,得GM===.32.如图,铁路上A、D两点相距25千米,B,C为两村庄,AB⊥AD于A,CD⊥AD于D,已知AB=15km,CD=10km,现在要在铁路AD上建一个土特产品收购站P,使得B、C 两村到P站的距离相等,则P站应建在距点A10千米.【答案】10.【解答】解:设AP=x千米,则DP=(25﹣x)千米,∵B、C两村到P站的距离相等,∴BP=PC.在Rt△APB中,由勾股定理得BP2=AB2+AP2,在Rt△DPC中,由勾股定理得PC2=CD2+PD2,∴AB2+AP2=CD2+PD2,又∵AB=15km,CD=10km,∴152+x2=102+(25﹣x)2,∴x=10.故答案为:10.33.如图,圆柱形玻璃杯高为14cm,底面周长为32cm,在杯内壁离杯底5cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为20cm(杯壁厚度不计).【答案】见试题解答内容【解答】解:如图:将杯子侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离,A′B===20(cm).故答案为20.34.如图,在△ABC中,AB=AC=10,BC=12,AD=8,AD⊥BC.若P、Q分别是AD和AC上的动点,则PC+PQ的最小值是.【答案】.【解答】解:如图,连接BP,在△ABC中,AB=AC=10,BC=12,AD=8,∴BD=DC,∴BP=PC,∴PC+PQ=BP+PQ=BQ,∴当B,P,Q共线时,PC+PQ的值最小,∴当BQ⊥AC时,BQ的值最小,令AQ'=a,则CQ'=10﹣a,∵BQ'⊥AC,∴AB2﹣AQ'2=BC2﹣CQ'2,即102﹣a2=122﹣(10﹣a)2,解得a=,∴BQ'==,∴PC+PQ的最小值为,故答案为:.35.如图,在△ABC中,∠ABC=45°,AB=,AC=6,BC>4,点E,F分别在BC,AC边上,且AF=CE,则AE+BF的最小值为2.【答案】2.【解答】解:过A点作AG∥BC,截取AG=AC,连接FG,BG,过B作BR⊥AG,交AG的反向延长线于R,则∠RBC=∠BRA=90°,∴∠GAF=∠ACE,在△AFG和△CEA中,,∴△AFG≌△CEA(SAS),∴GF=AE,∴AE+BF的最小值,即为BG的长,∵∠ABC=45°,∴∠RAB=∠EBA=45°,∵AB=4,∴BR=AR=4,∵AC=6,∴AG=AC=6,∴RG=AR+AG=4+6=10,∴BG===2,即AE+BF的最小值为2.故答案为:2.36.如图,在△ABC中,AB=9cm,AC=12cm,BC=15cm,M是BC边上的动点,MD⊥AB,ME⊥AC,垂足分别是D、E,线段DE的最小值是cm.【答案】.【解答】解:∵在△ABC中,AB=9cm,AC=12cm,BC=15cm,∴BC2=AB2+AC2,∴∠A=90°,∵MD⊥AB,ME⊥AC,∴∠A=∠ADM=∠AEM=90°,∴四边形ADME是矩形,∴DE=AM,当AM⊥BC时,AM的长最短,根据三角形的面积公式得:AB•AC=BC•AM,∴9×12=15AM,AM=,即DE的最小值是cm.故答案为:.37.如图,Rt△ABC中,.点P为△ABC内一点,PA2+PC2=AC2.当PB的长度最小时,△ACP的面积是.【答案】.【解答】解:如图所示,取AC中点O,连接PO,BO,∵PA2+PC2=AC2,∴∠APC=90°,∴,∵BP+OP≥OB,∴当B、P、O三点共线时BP+OP有最小值,即此时BP有最小值,∵∠ACB=90°,∴,∴BP=BO﹣OP=2,∴BP=PO,又∠ACB=90°,∴PC=BO=2,∴PC=PO=CO,∴△OPC是等边三角形,∴∠PCO=60°,∠PAC=30°∴AP==2,∴,故答案为:.三.解答题(共4小题)38.如图,∠AOB=90°,OA=9cm,OB=3cm,一机器人在点B处看见一个小球从点A 出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿BC方向匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是多少?【答案】见试题解答内容【解答】解:∵小球滚动的速度与机器人行走的速度相等,运动时间相等,∴BC=CA.设AC为x,则OC=9﹣x,由勾股定理得:OB2+OC2=BC2,又∵OA=9,OB=3,∴32+(9﹣x)2=x2,解方程得出x=5.∴机器人行走的路程BC是5cm.39.如图,在Rt△ABC中,∠ACB=90°,AB=10cm,AC=6cm,动点P从B出发沿射线BC以1cm/s的速度运动,设运动时间为t(s).(1)求BC边的长.(2)当△ABP为等腰三角形时,求t的值.【答案】或10或16.【解答】解:在Rt△ABC中,∠ACB=90°,AB=10cm,AC=6cm,∴BC=,当AP=BP时,如图1,则AP=t,PC=BC﹣BP=8﹣t,在Rt△ACP中,AC2+CP2=AP2,∴62+(8﹣t)2=t2,解得t=;当AB=BP时,如图2,则BP=t=10;当AB=AP时,如图3,则BP=2BC;∴t=2×8=16,综上,t的值为或10或16.40.今年第6号台风“烟花”登陆我国沿海地区,风力强,累计降雨量大,影响范围大,有极强的破坏力.如图,台风“烟花”中心沿东西方向AB由A向B移动,已知点C为一海港,且点C与直线AB上的两点A、B的距离分别为AC=300km,BC=400km,又AB =500km,经测量,距离台风中心260km及以内的地区会受到影响.(1)海港C受台风影响吗?为什么?(2)若台风中心的移动速度为28千米/时,则台风影响该海港持续的时间有多长?【答案】(1)海港C受台风影响,理由见解答过程;(2)台风影响该海港持续的时间为小时.【解答】解:(1)海港C受台风影响,理由:∵AC=300km,BC=400km,AB=500km,∴AC2+BC2=AB2,∴△ABC是直角三角形,∠ACB=90°;过点C作CD⊥AB于D,∵△ABC是直角三角形,∴AC×BC=CD×AB,∴300×400=500×CD,∴CD=240(km),∵以台风中心为圆心周围260km以内为受影响区域,∴海港C受台风影响;(2)当EC=260km,FC=260km时,正好影响C港口,∵ED=(km),∴EF=2ED=200km,∵台风的速度为28千米/小时,∴200÷28=(小时).答:台风影响该海港持续的时间为小时.41.请阅读下列材料:已知:如图(1)在Rt△ABC中,∠BAC=90°,AB=AC,点D、E分别为线段BC上两动点,若∠DAE=45°.探究线段BD、DE、EC三条线段之间的数量关系.小明的思路是:把△AEC绕点A顺时针旋转90°,得到△ABE′,连接E′D,使问题得到解决.请你参考小明的思路探究并解决下列问题:(1)猜想BD、DE、EC三条线段之间存在的数量关系式,直接写出你的猜想;(2)当动点E在线段BC上,动点D运动在线段CB延长线上时,如图(2),其它条件不变,(1)中探究的结论是否发生改变?请说明你的猜想并给予证明;(3)已知:如图(3),等边三角形ABC中,点D、E在边AB上,且∠DCE=30°,请你找出一个条件,使线段DE、AD、EB能构成一个等腰三角形,并求出此时等腰三角形顶角的度数.【答案】见试题解答内容【解答】解:(1)DE2=BD2+EC2;(2)关系式DE2=BD2+EC2仍然成立.证明:将△ADB沿直线AD对折,得△AFD,连FE∴△AFD≌△ABD,∴AF=AB,FD=DB,∠FAD=∠BAD,∠AFD=∠ABD,又∵AB=AC,∴AF=AC,∵∠FAE=∠FAD+∠DAE=∠FAD+45°,∠EAC=∠BAC﹣∠BAE=90°﹣(∠DAE﹣∠DAB)=45°+∠DAB,∴∠FAE=∠EAC,又∵AE=AE,∴△AFE≌△ACE,∴FE=EC,∠AFE=∠ACE=45°,∠AFD=∠ABD=180°﹣∠ABC=135°∴∠DFE=∠AFD﹣∠AFE=135°﹣45°=90°,∴在Rt△DFE中,DF2+FE2=DE2,即DE2=BD2+EC2;解法二:将△EAC绕点A顺时针旋转90°得到△TAB.连接DT.∴∠ABT=∠C=45°,AT=AE,∠TAE=90°,∵∠ABC=45°,∴∠TBC=∠TBD=90°,∵∠DAE=45°,∴∠DAT=∠DAE,∵AD=AD,∴△DAT≌△DAE(SAS),∴DT=DE,∵DT2=DB2+EC2,∴DE2=BD2+EC2;(3)当AD=BE时,线段DE、AD、EB能构成一个等腰三角形.如图,与(2)类似,以CE为一边,作∠ECF=∠ECB,在CF上截取CF=CB,可得△CFE≌△CBE,△DCF≌△DCA.∴AD=DF,EF=BE.∴∠DFE=∠1+∠2=∠A+∠B=120°.若使△DFE为等腰三角形,只需DF=EF,即AD=BE,∴当AD=BE时,线段DE、AD、EB能构成一个等腰三角形,且顶角∠DFE为120°.。

勾股定理.四边形知识概念

勾股定理.四边形知识概念

勾股定理.四边形知识概念一. 勾股定理知识概念1.勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2。

勾股定理逆定理:如果三角形三边长a,b,c满足a2+b2=c2。

,那么这个三角形是直角三角形。

2.定理:经过证明被确认正确的命题叫做定理。

3.我们把题设、结论正好相反的两个命题叫做互逆命题。

如果把其中一个叫做原命题,那么另一个叫做它的逆命题。

(例:勾股定理与勾股定理逆定理)勾股定理是直角三角形具备的重要性质。

本章要求学生在理解勾股定理的前提下,学会利用这个定理解决实际问题。

可以通过自主学习的发展体验获取数的感受二.四边形知识概念1.平行四边形定义:有两组对边分别平行的四边形叫做平行四边形。

2.平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等。

平行四边形的对角线互相平分。

3.平行四边形的判定1.两组对边分别相等的四边形是平行四边形2.对角线互相平分的四边形是平行四边形;3.两组对角分别相等的四边形是平行四边形;4.一组对边平行且相等的四边形是平行四边形。

4.三角形的中位线平行于三角形的第三边,且等于第三边的一半。

5.直角三角形斜边上的中线等于斜边的一半。

6.矩形的定义:有一个角是直角的平行四边形。

7.矩形的性质:矩形的四个角都是直角;矩形的对角线平分且相等。

AC=BD8.矩形判定定理:1.有一个角是直角的平行四边形叫做矩形。

2.对角线相等的平行四边形是矩形。

3.有三个角是直角的四边形是矩形。

9.菱形的定义:邻边相等的平行四边形。

10.菱形的性质:菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。

11.菱形的判定定理:1.一组邻边相等的平行四边形是菱形。

2.对角线互相垂直的平行四边形是菱形。

3.四条边相等的四边形是菱形。

12.S菱形=1/2×ab(a、b为两条对角线)13.正方形定义:一个角是直角的菱形或邻边相等的矩形。

平行四边形勾股定理解直角三角形

平行四边形勾股定理解直角三角形

四边形考点一、四边形的相关概念(3分)1、四边形:在同一平面内,由不在同一直线上的四条线段首尾顺次相接的图形叫做四边形。

2、凸四边形:把四边形的任一边向两方延长,如果其他个边都在延长所得直线的同一旁,这样的四边形叫做凸四边形。

3、对角线:在四边形中,连接不相邻两个顶点的线段叫做四边形的对角线。

4、四边形的不稳定性:三角形的三边如果确定后,它的形状、大小就确定了,这是三角形的稳定性。

但是四边形的四边确定后,它的形状不能确定,这就是四边形所具有的不稳定性,它在生产、生活方面有着广泛的应用。

5、四边形的内角和定理及外角和定理四边形的内角和定理:四边形的内角和等于360°。

四边形的外角和定理:四边形的外角和等于360°。

推论:多边形的内角和定理:n边形的内角和等于180°;多边形的外角和定理:任意多边形的外角和等于360°。

6、多边形的对角线条数的计算公式设多边形的边数为n,则多边形的对角线条数为。

考点二、平行四边形(3~10分)1、平行四边形的概念两组对边分别平行的四边形叫做平行四边形。

平行四边形用符号“□ABCD”表示,如平行四边形ABCD记作“□ABCD”,读作“平行四边形ABCD”。

2、平行四边形的性质(1)平行四边形的邻角互补,对角相等。

(2)平行四边形的对边平行且相等。

推论:夹在两条平行线间的平行线段相等。

(3)平行四边形的对角线互相平分。

(4)若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段以对角线的交点为中点,并且这两条直线二等分此平行四边形的面积。

3、平行四边形的判定(1)定义:两组对边分别平行的四边形是平行四边形(2)定理1:两组对角分别相等的四边形是平行四边形(3)定理2:两组对边分别相等的四边形是平行四边形(4)定理3:对角线互相平分的四边形是平行四边形(5)定理4:一组对边平行且相等的四边形是平行四边形4、两条平行线的距离两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线的距离。

初中数学勾股定理与四边形知识点总结

初中数学勾股定理与四边形知识点总结

勾股定理知识点回顾1、勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c +=勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方 2、勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法,用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理常见方法如下:方法一:4EFGH S S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证.cbaHG F EDCBAbacbac cabcaba bcc baE D CBA方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+大正方形面积为222()2S a b a ab b =+=++所以222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证 3、勾股定理的适用范围:只适用于直角三角形4、勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ∆中,90C ∠=︒,则22c a b =+,22b c a =-,22a cb =-②知道直角三角形一边,可得另外两边之间的数量关系 ③可运用勾股定理解决一些实际问题5、勾股定理的逆定理如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形;当△ABC 是锐角三角形时,当△ABC 是钝角三角形时,②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边 6、勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 ③用含字母的代数式表示n 组勾股数:221,2,1n n n -+(2,n ≥n 为正整数);2221,22,221n n n n n ++++(n 为正整数) 2222,2,m n mn m n -+(,m n >m ,n 为正整数) 7、勾股定理的应用在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解. 8、勾股定理逆定理的应用勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在计算过程中,应用两短边的平方和与最长边的平方进行比较,切不加思考的用两边的平方和与第三边的平方比较而得到错误的结论. 9、勾股定理及其逆定理的应用勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整体.通常既要通过逆定理判定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决. 常见图形:ABC30°DCBAADB CCB DA知识运用题型一:直接考查勾股定理例1.在ABC ∆中,90C ∠=︒.⑴已知6AC =,8BC =.求AB 的长 ⑵已知17AB =,15AC =,求BC 的长题型二:应用勾股定理建立方程例2.⑴在ABC ∆中,90ACB ∠=︒,5AB =cm ,3BC =cm ,CD AB ⊥于D ,CD = ⑵已知直角三角形的两直角边长之比为3:4,斜边长为15,则这个三角形的面积为 ⑶已知直角三角形的周长为30cm ,斜边长为13cm ,则这个三角形的面积为DBAC21EDCBA例3.如图ABC ∆中,90C ∠=︒,12∠=∠, 1.5CD =, 2.5BD =,求AC 的长例4.如图Rt ABC ∆,90C ∠=︒3,4AC BC ==,分别以各边为直径作半圆,求阴影部分面积BAC题型三:实际问题中应用勾股定理例5如图,水池中离岸边D 点1.5米的C 处,直立长着一根芦苇,出水部分BC 的长是0.5米,把芦苇拉到岸边,它的顶端B 恰好落到D 点,并求水池的深度AC.例6.如图有两棵树,一棵高8cm ,另一棵高2cm ,两树相距8cm ,一只小鸟从一棵树的树梢飞到另一棵数的树梢,至少飞了 mABCD E题型四:应用勾股定理逆定理,判定一个三角形是否是直角三角形例7.已知三角形的三边长为a ,b ,c ,判定ABC ∆是否为Rt ∆ ① 1.5a =,2b =, 2.5c = ②54a =,1b =,23c =例8.三边长为a ,b ,c 满足10a b +=,18ab =,8c =的三角形是什么形状?题型五:勾股定理与勾股定理的逆定理综合应用例9.已知ABC ∆中,13AB =cm ,10BC =cm ,BC 边上的中线12AD =cm ,求证:AB AC =D CBA四边形知识点回顾知识一:多边形内角和与外角和1.n边形内角和为(n-2)180°,外角和为360°。

勾股定理和平行四边形好题汇总

勾股定理和平行四边形好题汇总

1.完成下面题目图1 图2 图3 图4 图5 图6(2)如图2、3、4,已知,三角形ABC中,CA=CB,∠ACB=90°,D为三角形ABC外一点,且满足∠ADB=90°①如图2所示,求证:DA+DB=ξ2DC。

②如图3所示,猜想DA,DB,DC之间有怎样的数量关系,并证明你的结论。

③如图4所示,过C作CH⊥BD于H,BD=6,AD=3,求CH。

(3)如图5,点D是等边三角形△ABC外一点,若DA=13,DB=5ξ2,DC=7,试求∠BDC的度数。

(4)如图6,△ABC为等边三角形,若D为△ABC外一点,满足∠CDB=30°,求证DC2+DB2=DA2。

2.如图,在Rt△ABC中,∠B=90°,BC=5ξ3,∠C=30°,点D从点C出发沿CA方向以每秒2个单位长的速度向点A匀速运动,同时点E从点A出发沿AB方向以每秒1个单位长的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(t>0).过点D作DF⊥BC于点F,连接DE、EF.当t为何值时,△DEF为直角三角形?请说明理由3.如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB, CD于E、F,连接PB、PD.若AE = 2,PF= 8.则图中阴影部分的面积是什么?4.在矩形ABCD中,点E在BC上,AE = AD,DF⊥AE,垂足为F.①求证:DF = AB;②若∠FDC = 30°,且AB = 4,求AD.5.如图,以△ABC的三边为边在BC的同侧分别作三个等边三角形,即△ABD、△BCE、△ACF,请回答下列问题,并说明理由.①四边形ADEF是什么四边形?②当△ABC满足什么条件时,四边形ADEF是矩形?③当△ABC满足什么条件时,以A、D、E、F为顶点的四边形不存在6.已知,在等腰Rt△OAB中,∠OAB=90°,OA=AB,点A和B在第四象限(1)如图1,若A(1.-3),则OA=__________,点B的坐标为(______,______)(2)如图2,AD⊥y轴于点D,M为OB中点,求证:DO+DA=ξ2DM6.如图,∠AOB=40°,M和N分别在OA,OB上,且OM=2,ON=4,点P和点Q分别在OB和OA上,求MP+PQ+QN的最小值。

2022年人教版中考数学专题复习-勾股定理与四边形

2022年人教版中考数学专题复习-勾股定理与四边形

人教版2022学年中考数学专题复习-勾股定理与四边形一、单选题1.正方形ABCD 的边长为8,点E 、F 分别在边AD 、BC 上,将正方形沿EF 折叠,使点A 落在A '处,点B 落在B '处,A B ''交BC 于G .下列结论不正确的是( )A .当A '为CD 中点时,则34tan DA E '∠= B .当345A D DE A E '='::::时,则163A C '=C .连接AA ',则AA EF '=D .当A '(点A '不与C 、D 重合)在CD 上移动时,A CG '周长随着A '位置变化而变化2.如图,在菱形ABCD 中,60A ∠=︒,点E ,F 分别在边AB ,BC 上,2AE BF ==,DEF 的周长为36,则AD 的长为( )A 6B .3C 31D .31 3.如图,正方形ABCD 的边长为4,E 是BC 上一点,过点E 作EF⊥AE ,交DC 于点F ,连接AF ,则AF 的最小值是( )A .5B 7C .22D .3 4.如图,在矩形ABCD 中,24AB =,25BC =,以点B 为圆心,BC 长为半径画弧,交边AD 于点E ,则四边形ABCE 的周长为( )A .79B .86C .82D .925.如图,在平面直角坐标系中,平行四边形OABC 的顶点()00O ,,点A 在x 轴的正半轴上,⊥COA 的平分线OD 交BC 于点()23D ,,则点C 的坐标为( )A .534⎛⎫- ⎪⎝⎭,B .()313,C .435⎛⎫- ⎪⎝⎭,D .()213, 6.如图所示,正方形ABCD 中, 4AB = ,点E 为BC 中点, BF AE ⊥ 于点G ,交CD 边于点F ,连接DG ,则DG 长为( )A 955B .4C .165D 855 7.如图是 5×5 的方格(每个小方格的边长为 1 个单位长度),图中阴影部分是正方形,则此正方形的边长为( )A .5B 13C 7D .3 8.如图,在边长为4的正方形ABCD 中,点E ,F 分别是边BC , AB 的中点,连接AE ,DF 交于点O ,将⊥ABE 沿AE 翻折,得到⊥AGE ,延长EG 交AD 的延长线于点H ,连接CG .有以下结论:①AE⊥DF ;②AH =EH ;③CG AE ;④S 四边形BEOF :S ⊥AOF =4,其中正确的有( )A .1个B .2个C .3个D .4个 9.如图,正方形ABCD 的边长为a ,点E 在边 AB 上运动(不与点A ,B 重合), 45DAM ∠=︒ ,点F 在射线 AM 上,且 2AF BE CF =, 与 AD 相交于点G ,连接 EC EF EG 、、 .则下列结论:①45ECF ∠=︒ ,②AEG 的周长为 212a ⎛⎫+ ⎪ ⎪⎝⎭ ,③222BE DG EG += ;④当13BE a = 时,G 是线段 AD 的中点,其中正确的结论是( )A .①②③B .①④C .①③④D .①②③④10.矩形ABCD 中,AB =12,BC =8,将矩形沿MN 折叠,使点C 恰好落在AD 边的中点F 处,以矩形对称中心O 点为圆心的圆与FN 相切于点G ,则⊥O 的半径为( )A .3.6B .522C .3.5D .23二、填空题11.如图,四边形ABCD ,对角线AC 平分BAD ∠交BD 于点E ,BC CD =,60ACD ∠=︒,F 是BD 上一点,BF AD =,过点F 作FH BC ⊥于点H ,连结CF ,7CF =,1CH =,则AC 的长为 .12.如图,在平行四边形ABCD 中,对角线AC ,BD 交于点 ,,O AB AC AH BD ⊥⊥ 于点 H ,若 2,3AB BC ==,则AH 的长为13.三国时期,数学家赵爽绘制了“勾股圆方图”,又叫“赵爽弦图”,如图所示,⊥ABH 、⊥BCG 、⊥CDF 和⊥DAE 是四个全等的直角三角形,四边形ABCD 和四边形EFGH 都是正方形,如果EF =2,AH =6,那么四边形ABCD 的面积等于 .14.如图,在平面直角坐标系中,长方形AOBC的边OB、OA分别在x轴、y轴上,点D在边BC上,将该长方形沿AD折叠,点C恰好落在边OB上的E处.若点()0,8A,点()10,0B,则点D的坐标是.15.如图,平面直角坐标系中,点A(1,2)、点C(4,4)是矩形ABCD的两个顶点,AB与x轴平行,则直线362y x=-+与矩形公共部分的线段EF长为.16.如图,在四边形ABCD中,AC=BD,E、F、G、H分别是AB、BC、CD、DA的中点,且EG、FH交于点O.若AC=4,则EG2+FH2=.17.如图1,在矩形纸片ABCD中,AB=12,AD=10,点E是CD的中点.将这张纸片依次折叠两次;如图2,第一次折叠纸片使点A与点E重合,折痕为MN,连接ME 、NE ;如图3,第二次折叠纸片使点N 与点E 重合,点B 落在B '处,折痕为HG ,连接HE ,则tan EHG ∠= .18.如图,正方形ABCD 的边长为10,E 、F 分别是BC 、CD 边上的点,BE CF =,分别连接AE 、BF ,两线段交于一点M ,点G 、H 分别是AE 、BF 边上的中点.(1)当BE =4时,线段GH 的长为 .(2)连结DM ,当5BE =时,GH DM= . 三、解答题19.如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,AC =8,BD =6,OE⊥BC ,垂足为点E ,求OE 的长.20.小亮用11块高度都是2cm 的相同长方体小木块垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个正方形ABCD 木板,截面如图所示.两木墙高分别为AE 与CF ,点B 在EF 上,求正方形ABCD 木板的面积.21.一张圆心角为45°的扇形纸板和圆形纸板按如图方式各剪得一个正方形,边长都为1,求扁形纸板和圆形纸板的面积比.22.如图,菱形ABCD 的两条对角线AC ,BD 交于点O ,BE⊥AD ,垂足为E.当菱形ABCD 的对角线AC =8,BD =6时,求BE 的长.23.如图,四边形 ABCD 中, 20AB = , 15BC = , 7CD = , 24AD = ,∠=︒.D∠=︒,求证:90B9024.如图,四边形ABCD,CDEF,EFGH均是正方形,且B,C,∠+∠的度数为多F,G在同一直线上,连接AF,AG,则AFB AGB少?答案解析部分1.【答案】D2.【答案】C3.【答案】A4.【答案】B5.【答案】A6.【答案】B7.【答案】B8.【答案】D9.【答案】B10.【答案】A11.【答案】1112.【答案】3 313.【答案】100 14.【答案】(10,3)15.213 16.【答案】1617.【答案】5 318.【答案】(1)32(2)2 419.【答案】解:∵四边形ABCD为菱形,∴AC⊥BD,OB=OD=12BD=3,OA=OC=12AC=4,在Rt⊥OBC中,∵OB=3,OC=4,∴223+4=5,∵OE⊥BC,∴12OE•BC=12OB•OC,∴OE=3412=55.故答案为125. 20.【答案】解:因为AE⊥EF ,CF⊥EF , 所以⊥AEB=⊥BFC= 90°.所以⊥EAB+⊥ABE = 90°.因为⊥ABC=90°,所以⊥ABE +⊥CBF = 90°.所以⊥EAB =⊥CBF .因为AB=BC ,所以⊥ABE⊥⊥BCF .所以AE=BF=2×5=10(cm ).又CF=2×6=12(cm ).在Rt⊥BCF 中, 222221012244BC BF CF =+=+= . 所以 ABCD S =正方形 BC 2 =244cm 2, 即正方形ABCD 木板的面积为244cm 2.21.【答案】解:解:连接OD ,∵正方形ABCD ,⊥AOB=45°,∴AB=CD=BC=1,⊥ABC=⊥ABO=⊥DCB=90°, ∴⊥AOB=⊥OAB=45°,∴AB=OB=BC=1∴OC=2 2222215OD OC DC =+=+=; ∴扇形纸板的面积为()245π55π3608=; ∵⊥BMC=90°,MC=MB2BM 2=BC 2=1解之:22BM =∴圆形纸板的面积为22ππ22⎛⎫= ⎪ ⎪⎝⎭∴扁形纸板和圆形纸板的面积比51ππ5:482=:. 答:扁形纸板和圆形纸板的面积比为5:4.22.【答案】解:∵菱形ABCD 的两条对角线AC ,BD 交于点O ,AC =8,BD =6, ∴⊥AOB=90°,AO =4,BO =3,225AB OA OB += ,菱形的面积为 11862422AC BD ⨯=⨯⨯= , ∴24AB BE ⨯= ,245BE = . 23.【答案】解:如图,连接 AC ,90B ∠=︒ , 20AB = , 15BC = ,2222201525AC AB BC ∴=+=+=7CD = , 24AD = ,∴2249576625CD AD +=+= , 2625AC = 222AC CD AD ∴=+ADC ∴ 是直角三角形, AC 是斜边90D ∴∠=︒24.【答案】解:如图,连接 AC ,设正方形 ABCD , CDEF , EFGH 的边长为1, 221,112,2CF AC CG ∴==+== , 45ACB ∠=︒ , 22222AC CF CG CA === , 又 ACF GCA ∴∠=∠ ,ACF GCA ∴∽ ,AFB GAC ∴∠=∠ ,45AFB AGB GAC AGB ACB ∴∠+∠=∠+∠=∠=︒ .。

平行四边形法则与勾股定理

平行四边形法则与勾股定理

平行四边形法则与勾股定理–内积与范数.所谓的范数,就是向量长度这个概念在一般向量空间中的推广。

简单地讲就是从向量空间到数域的一个函数,满足如下条件:1) ,并且当且仅当。

2)3)在一个内积空间中,由内积表达式就可以定义出一个范数,这个范数称为由内积诱导的范数。

不是所有的范数都是由内积诱导出来的。

例如,在中,定义范数,它确实是范数但没有内积可以诱导出这个范数。

因为,内积诱导的范数满足平行四边形法则:即平行四边形四边的平方和等于两对角线的平方和。

而上面举的例子显然不满足这个特性。

那么是不是一个范数只要满足平行四边形法则,它就必然是由某个内积诱导出来的呢?答案是肯定的。

证明见下面。

那么平行四边形法则到底是什么东西?为什么有这么大的魔力,使它成为一个范数是否有内积背景的唯一门槛?如果一个范数是由内积诱导的,也就是存在内积满足,那么它必然带有内积的某些特性,尤其是,内积是个双线性函数(复数空间上是半双线性函数),这就表明内积是个二次式,导致范数的平方本身也应该是个二次式。

更确切地讲,内积的半双线性直接导致余弦定理:但是,这两个公式中依然有一个内积,所以无法用这个来判断某个范数是否由内积诱导的,原因是这个时候还不知道内积为何物。

依照勾股定理的证明,当的时候,我们可以消除内积的身影,即勾股定理的如下形式:当时,这样,这个条件之中完全没有内积的参与,并且它是范数由内积诱导的必要条件。

但是,它是否是充要条件暂且不论,我们在用它判断的时候就可能遇到麻烦。

因为要断定一个范数不是由内积诱导(大多数情况下不是),就需要找到两个向量满足但不满足,这在某些情况下是有困难的。

还有一种从余弦定理中消除内积的方法,就是不管是否有,我们将余弦定理两个式子相加,从而消掉内积得到了平行四边形法则它是一个范数由内积诱导的充要条件。

从平行四边形法则,可知,定义于上的p-范数当且仅当p=2 时是由内积诱导的。

值得注意的是勾股定理、余弦定理、平行四边形法则和内积诱导范数之间的关系,它们在下面的意义下是等价的:命题1:数域包含实数域,在的一个赋范向量空间中,如果范数满足以下条件之一,那么这个范数是由内积诱导的。

勾股定理专题训练试题精选(一)附答案

勾股定理专题训练试题精选(一)附答案

勾股定理专题训练试题精选(一)一. 选择题(共30小题)1.(2014•十堰)如图, 在四边形ABCD中, AD∥BC, DE⊥BC, 垂足为点E, 连接AC交DE于点F, 点G为AF的中点, ∠ACD=2∠ACB.若DG=3, EC=1, 则DE的长为()A.2B.C.2D.2. (2014•吉林)如图, △ABC中, ∠C=45°, 点D在AB上, 点E在BC上. 若AD=DB=DE, AE=1, 则AC的长为()A.B.2C.D.3. (2014•湘西州)如图, 在Rt△ABC中, ∠ACB=90°, CA=CB, AB=2, 过点C作CD⊥AB, 垂足为D, 则CD的长为()A.B.C.1D.24. (2013•和平区二模)如图, 线段AB的长为2, C为AB上一个动点, 分别以AC.BC为斜边在AB的同侧作两个等腰直角三角形△ACD和△BCE, 那么DE长的最小值是()A.B.1C.D.5. (2012•威海)如图, a∥b, 点A在直线a上, 点C在直线b上, ∠BAC=90°, AB=AC, 若∠1=20°, 则∠2的度数为()A.25°B.65°C.70°D.75°6. (2011•衢州)一个圆形人工湖如图所示, 弦AB是湖上的一座桥, 已知桥AB长100m, 测得圆周角∠ACB=45°, 则这个人工湖的直径AD为()A.B.C.D.7. (2011•惠山区模拟)梯形ABCD中AB∥CD, ∠ADC+∠BCD=90°, 以AD.AB.BC为斜边向外作等腰直角三角形, 其面积分别是S1.S2.S3, 且S1+S3=4S2, 则CD=()A.2.5AB B.3AB C.3.5AB D.4AB8. (2011•白下区二模)如图, △A1A2B是等腰直角三角形, ∠A1A2B=90°, A2A3⊥A1B, 垂足为A3, A3A4⊥A2B, 垂足为A4, A4A5⊥A3B, 垂足为A5, …, An+1An+2⊥AnB, 垂足为An+2(n为正整数), 若A1A2=A2B=a, 则线段An+1An+2的长为()A.B.C.D.9. (2010•西宁)矩形ABCD中, E, F, M为AB, BC, CD边上的点, 且AB=6, BC=7, AE=3, DM=2, EF⊥FM, 则EM 的长为()A.5B.C.6D.10.A.B.C.D.2(2010•鞍山)正方形ABCD中, E、F两点分别是BC.CD上的点.若△AEF是边长为三角形,则正方形ABCD的边长为()11. (2010•鼓楼区二模)小明将一张正方形包装纸, 剪成图1所示形状, 用它包在一个棱长为10的正方体的表面(不考虑接缝), 如图2所示. 小明所用正方形包装纸的边长至少为()A.40 B.30+2C.20D.10+1012.A.132 B.121 C.120 D.以上答案都不对(2009•鄞州区模拟)直角三角形有一条直角边的长是11, 另外两边的长都是自然数, 那么它的周长是()A.有一个内角等于60°的等腰三角形是等边三角形13.(2009•宝安区一模)下列命题中,是假命题的是()B.在直角三角形中, 斜边上的高等于斜边的一半C.在直角三角形中, 最大边的平方等于其他两边的平方和D.三角形两个内角平分线的交点到三边的距离相等14. (2008•江西模拟)已知△ABC是腰长为1的等腰直角三角形, 以Rt△ABC的斜边AC为直角边, 画第二个等腰Rt△ACD, 再以Rt△ACD的斜边AD为直角边, 画第三个等腰Rt△ADE, …, 依此类推, 第n个等腰直角三角形A.2n﹣2B.2n﹣1C.2n D.2n+115. (2007•台湾)以下是甲、乙两人证明+ ≠的过程:(甲)因为>=3, >=2, 所以+ >3+2=5且=<=5所以+>5>故+≠(乙)作一个直角三角形, 两股长分别为、利用商高(勾股)定理()2+()2=15+8得斜边长为因为、、为此三角形的三边长所以+>故+≠A.两人都正确B.两人都错误C.甲正确, 乙错误D.甲错误, 乙正确对于两人的证法,下列哪一个判断是正确的()16. (2007•宁波二模)如图, A.B是4×5网格中的格点, 网格中的每个小正方形的边长都是1, 图中使以A.B.C为顶点的三角形是等腰三角形的格点C有()A.2个B.3个C.4个D.5个17.A.1B .C .D.(2006•郴州)在△ABC中, ∠C=90°,AC, BC的长分别是方程x2﹣7x+12=0根, △ABC内一点P到三边的距离都相等. 则PC为()18. (2002•南宁)如图, 直角三角形三边上的半圆面积从小到大依次记为S1.S2.S3, 则S1.S2.S3之间的关系是()A.S l+S2>S3B.S l+S2<S3C.S1+S2=S3D.S12+S22=S3219. (2001•广州)已知点A和点B(如图), 以点A和点B为其中两个顶点作位置不同的等腰直角三角形, 一共可作出()A.2个B.4个C.6个D.8个20. 设直角三角形的A.2B.3C.4D.5三边长分别为a、b、c, 若c﹣b=b﹣a>0,则=()21. (1999•A.4B.6C.8D.温州)已知△ABC中,AB=AC=10,BD是AC边上的高线,DC=2, 那么BD等于()22. 如图, 在四边形ABCD中, ∠B=135°, ∠C=120°, AB= , BC= , CD= , 则AD边的长为()A.B.C.D.A.16 B.18 C.12D.1223. 在△ABC中,∠A=15°,AB=12,则△ABC的面积等于()24. 如图, 在Rt△ABC中, ∠C=90°, DE⊥AB, AC=BE=15, BC=20. 则四边形ACED的面积为()A.54 B.75 C.90 D.9625. 如图, 在△ABC中, 分别以AB.BC为直径的⊙O1.⊙O2交于AC上一点D, 且⊙O1经过点O2, AB.DO2的延长线交于点E, 且BE=BD. 则下列结论不正确的是()A.A B=AC B.∠BO2E=2∠E C.A B=BE D.E O2=BE26. 如图, 在正方形网格中, cosα的值为()A.1B.C.D.27. 直角A.10 B.2C.4或10 D.10或2三角形一边长为8,另一条边是方程x2﹣2x﹣24=0的一解, 则此直角三角形的第三条边长是()28. 如图是2002年在北京召开的国际数学家大会的会徽, 它由4个相同的直角三角形拼成, 已知直角三角形的两条直角边长分别为3和4, 则大正方形ABCD和小正方形EFGH的面积比是()A.1:5 B.1: 25 C.5:1 D.25: 129. 如图, 已知△ABC中, AB=AC, ∠BAC=90°, 直角∠EPF的顶点P是BC中点, 两边PE、PF分别交AB.AC于点E、F, 给出以下四个结论:①AE=CF;②△EPF是等腰直角三角形;③S四边形AEPF=S△ABC;④当∠EPF在△ABC内绕顶点P旋转时(点E不与A.B重合)BE+CF=EF.上述结论中始终正确的有()A.1个B.2个C.3个D.4个30. 如图, △ABC中, AC=BC, ∠ACB=90°, AE平分∠BAC交BC于E, BD⊥AE于D, DM⊥AC于M, 连CD. 下列结论: ①AC+CE=AB;②;③∠CDA=45°;④=定值.其中正确的有()A.1个B.2个C.3个D.4个勾股定理专题训练试题精选(一)参考答案与试题解析一. 选择题(共30小题)1.(2014•十堰)如图, 在四边形ABCD中, AD∥BC, DE⊥BC, 垂足为点E, 连接AC交DE于点F, 点G为AF的中点, ∠ACD=2∠ACB.若DG=3, EC=1, 则DE的长为()A.2B.C.2D.考点:勾股定理;等腰三角形的判定与性质;直角三角形斜边上的中线. 菁优网版权所有专题:几何图形问题.分析:根据直角三角形斜边上的中线的性质可得DG=AG, 根据等腰三角形的性质可得∠GAD=∠GDA, 根据三角形外角的性质可得∠CGD=2∠GAD, 再根据平行线的性质和等量关系可得∠ACD=∠CGD, 根据等腰三角形的性质可得CD=DG, 再根据勾股定理即可求解.解答:解: ∵AD∥BC, DE⊥BC,∴DE⊥AD, ∠CAD=∠ACB, ∠ADE=∠BED=90°,又∵点G为AF的中点,∴DG=AG,∴∠GAD=∠GDA,∴∠CGD=2∠CAD,∵∠ACD=2∠ACB=2∠CAD,∴∠ACD=∠CGD,∴CD=DG=3,在Rt△CED中, DE= =2 .故选:C.故选: C.故选:C.点评:综合考查了勾股定理, 等腰三角形的判定与性质和直角三角形斜边上的中线, 解题的关键是证明CD=DG=3.2. (2014•吉林)如图, △ABC中, ∠C=45°, 点D在AB上, 点E在BC上. 若AD=DB=DE, AE=1, 则AC的长为()A.B.2C.D.考点:等腰直角三角形;等腰三角形的判定与性质. 菁优网版权所有专题:几何图形问题.分析:利用AD=DB=DE, 求出∠AEC=90°, 在直角等腰三角形中求出AC的长.解答:解: ∵AD=DE,∴∠DAE=∠DEA,∵DB=DE,∴∠B=∠DEB,∴∠AEB=∠DEA+∠DEB= ×180°=90°,∴∠AEC=90°,∵∠C=45°, AE=1,∴AC= .故选:D.故选: D.故选:D.点评:本题主要考查等腰直角三角形的判定与性质, 解题的关键是利用角的关系求出∠AEC是直角.3. (2014•湘西州)如图, 在Rt△ABC中, ∠ACB=90°, CA=CB, AB=2, 过点C作CD⊥AB, 垂足为D, 则CD的长为()A.B.C.1D.2考点:等腰直角三角形. 菁优网版权所有分析:由已知可得Rt△ABC是等腰直角三角形, 得出AD=BD= AB=1, 再由Rt△BCD是等腰直角三角形得出CD=BD=1.解答:解: ∵∠ACB=90°, CA=CB,∴∠A=∠B=45°,∵CD⊥AB,∴AD=BD= AB=1, ∠CDB=90°,∴CD=BD=1.故选:C.故选: C.故选:C.点评:本题主要考查了等腰直角三角形, 解题的关键是灵活运用等腰直角三角形的性质求角及边的关系.4. (2013•和平区二模)如图, 线段AB的长为2, C为AB上一个动点, 分别以AC.BC为斜边在AB的同侧作两个等腰直角三角形△ACD和△BCE, 那么DE长的最小值是()A.B.1C.D.考点:等腰直角三角形;垂线段最短;平行线之间的距离. 菁优网版权所有分析:利用等腰直角三角形的特点知道AD=CD, CE=BE, ∠ACD=∠A=45°, ∠ECB=∠B=45°, ∠DCE=90°.利用勾股定理得出DE的表达式, 利用函数的知识求出DE的最小值.解答:解: 在等腰RT△ACD和等腰RT△CBE中AD=CD, CE=BE, ∠ACD=∠A=45°, ∠ECB=∠B=45°∴∠DCE=90°∴AD2+CD2=AC2, CE2+BE2=CB2∴CD2= AC2, CE2= CB ,∵DE2=DC2+EC2,∴DE===∴当CB=1时, DE的值最小, 即DE=1.故选:B.故选: B.故选:B.点评:此题考察了等腰直角三角形的特点及二次函数求最值的方法.5. (2012•威海)如图, a∥b, 点A在直线a上, 点C在直线b上, ∠BAC=90°, AB=AC, 若∠1=20°, 则∠2的度数为()A.25°B.65°C.70°D.75°考点:等腰直角三角形;平行线的性质. 菁优网版权所有专题:计算题.分析:根据等腰直角三角形性质求出∠ACB, 求出∠ACE的度数, 根据平行线的性质得出∠2=∠ACE, 代入求出即可.解答:解: ∵∠BAC=90°, AB=AC,∴∠B=∠ACB=45°,∵∠1=20°,∴∠ACE=20°+45°=65°,∴∠2=∠ACE=65°,故选B.点评:本题考查了三角形的内角和定理、等腰直角三角形、平行线的性质, 关键是求出∠ACE的度数.6. (2011•衢州)一个圆形人工湖如图所示, 弦AB是湖上的一座桥, 已知桥AB长100m, 测得圆周角∠ACB=45°, 则这个人工湖的直径AD为()A.B.C.D.考点:等腰直角三角形;圆周角定理. 菁优网版权所有专题:证明题.分析:连接OB.根据圆周角定理求得∠AOB=90°;然后在等腰Rt△AOB中根据勾股定理求得⊙O的半径AO=OB=50 m, 从而求得⊙O的直径AD=100 m.解答:解: 连接OB.∵∠ACB=45°, ∠ACB= ∠AOB(同弧所对的圆周角是所对的圆心角的一半),∴∠AOB=90°;在Rt△AOB中, OA=OB(⊙O的半径), AB=100m,∴由勾股定理得, AO=OB=50 m,∴AD=2OA=100m;故选B.点评:本题主要考查了等腰直角三角形、圆周角定理.利用圆周角定理求直径的长时, 常常将直径置于直角三角形中, 利用勾股定理解答.7. (2011•惠山区模拟)梯形ABCD中AB∥CD, ∠ADC+∠BCD=90°, 以AD.AB.BC为斜边向外作等腰直角三角形, 其面积分别是S1.S2.S3, 且S1+S3=4S2, 则CD=()A.2.5AB B.3AB C.3.5AB D.4AB考点:勾股定理;等腰直角三角形;相似三角形的判定与性质. 菁优网版权所有专题:计算题;证明题;压轴题.分析:过点B作BM∥AD, 根据AB∥CD, 求证四边形ADMB是平行四边形, 再利用∠ADC+∠BCD=90°, 求证△MBC为Rt△, 再利用勾股定理得出MC2=MB2+BC2, 在利用相似三角形面积的比等于相似比的平方求出MC即可.解答:解: 过点B作BM∥AD,∵AB∥CD, ∴四边形ADMB是平行四边形,∴AB=DM, AD=BM,又∵∠ADC+∠BCD=90°,∴∠BMC+∠BCM=90°, 即△MBC为Rt△,∴MC2=MB2+BC2,∵以AD.AB.BC为斜边向外作等腰直角三角形,∴△AED∽△ANB, △ANB∽△BFC,= , = ,即AD2= , BC2= ,∴MC2=MB2+BC2=AD2+BC2= += = ,∵S1+S3=4S2,∴MC2=4AB2, MC=2AB,CD=DM+MC=AB+2AB=3AB.故选B.点评:此题涉及到相似三角形的判定与性质, 勾股定理, 等腰直角三角形等知识点, 解答此题的关键是过点B作BM∥AD, 此题的突破点是利用相似三角形的性质求得MC=2AB, 此题有一定的拔高难度, 属于难题.8. (2011•白下区二模)如图, △A1A2B是等腰直角三角形, ∠A1A2B=90°, A2A3⊥A1B, 垂足为A3, A3A4⊥A2B, 垂足为A4, A4A5⊥A3B, 垂足为A5, …, An+1An+2⊥AnB, 垂足为An+2(n为正整数), 若A1A2=A2B=a, 则线段An+1An+2的长为()A.B.C.D.考点:等腰直角三角形;勾股定理. 菁优网版权所有专题:计算题;规律型.分析:先根据勾股定理及等腰三角形的性质求出A2A3及A3A4的长, 找出规律即可解答.解答:解: ∵△A1A2B是直角三角形, 且A1A2=A2B=a, A2A3⊥A1B,∴A1B= = a,∵△A1A2B是等腰直角三角形,∴A2A3⊥A1B,∴A2A3=A1A3= A1B= = ,同理, A4A5= ×= ,∴线段An+1An+2的长为.故选B.故选B.点评:此题属规律性题目, 涉及到等腰三角形及直角三角形的性质, 解答此题的关键是求出A2A3及A3A4的长找出规律.灵活运用等腰直角三角形的性质, 得到等腰直角三角形的斜边是直角边的倍, 从而准确得出结论.9. (2010•西宁)矩形ABCD中, E, F, M为AB, BC, CD边上的点, 且AB=6, BC=7, AE=3, DM=2, EF⊥FM, 则EM 的长为()A.5B.C.6D.考点:勾股定理;矩形的性质. 菁优网版权所有专题:压轴题.分析:过E作EG⊥CD于G, 利用矩形的判定可得, 四边形AEGD是矩形, 则AE=DG, EG=AD, 于是可求MG=DG ﹣DM=1, 在Rt△EMG中, 利用勾股定理可求EM.解答:解: 过E作EG⊥CD于G,∵四边形ABCD是矩形,∴∠A=∠D=90°,又∵EG⊥CD,∴∠EGD=90°,∴四边形AEGD是矩形,∴AE=DG, EG=AD,∴EG=AD=BC=7, MG=DG﹣DM=3﹣2=1,∵EF⊥FM,∴△EFM为直角三角形,∴在Rt△EGM中, EM= = = =5 .故选B.点评:本题考查了矩形的判定、勾股定理等知识, 是基础知识要熟练掌握.10.A.B.C.D.2(2010•鞍山)正方形ABCD中, E、F两点分别是BC.CD上的点.若△AEF是边长为的等边三角形,则正方形ABCD的边长为()考点:勾股定理;全等三角形的判定与性质;等边三角形的性质;正方形的性质. 菁优网版权所有分析:根据正方形的各边相等和等边三角形的三边相等, 可以证明△ABE≌△ADF, 从而得到等腰直角三角形CEF, 求得CF=CE=1.设正方形的边长是x, 在直角三角形ADF中, 根据勾股定理列方程求解.解答:解: ∵AB=AD, AE=AF,∴Rt △ABE≌Rt△ADF.∴BE=DF.∴CE=CF=1.设正方形的边长是x.在直角三角形ADF中, 根据勾股定理, 得x2+(x﹣1)2=2,解, 得x= (负值舍去).即正方形的边长是.故选A.点评:此题综合运用了正方形的性质、等边三角形的性质、全等三角形的判定和性质以及勾股定理.11. (2010•鼓楼区二模)小明将一张正方形包装纸, 剪成图1所示形状, 用它包在一个棱长为10的正方体的表面(不考虑接缝), 如图2所示. 小明所用正方形包装纸的边长至少为()A.40 B.30+2C.20D.10+10考点:等腰直角三角形. 菁优网版权所有分析:所求正方形的边长即为AB的长, 在等腰Rt△ACF、△CDE中, 已知了CE、DE、CF的长均为10, 根据等腰直角三角形的性质, 即可求得AC、CD的长, 由AB=AC+CD+BD即可得解.解答:解: 如图;连接AB, 则AB必过C.D;Rt△ACF中, AC=AF, CF=10;则AC=AF=5;同理可得BD=5;Rt△CDE中, DE=CE=10, 则CD=10 ;所以AB=AC+CD+BD=20 ;故选C.点评:理清题意, 熟练掌握直角三角形的性质是解答此题的关键.A.132 B.121 C.120 D.以上答案都不对12.(2009•鄞州区模拟)直角三角形有一条直角边的长是11, 另外两边的长都是自然数, 那么它的周长是()考点:勾股定理. 菁优网版权所有分析:假设另外两边后, 根据勾股定理适当变形, 即可解答.解答:解: 设另外两边是a、b(a>b)则根据勾股定理, 得:a2﹣b2=121∵另外两边的长都是自然数∴(a+b)(a﹣b)=121=121×1即另外两边的和是121,故三角形的周长是132.故选A.故选A.点评:注意熟练进行因式分解和因数分解, 根据另外两边的长都是自然数分析结论.A.有一个内角等于60°的等腰三角形是等边三角形13.(2009•宝安区一模)下列命题中,是假命题的是()B.在直角三角形中, 斜边上的高等于斜边的一半C.在直角三角形中, 最大边的平方等于其他两边的平方和D.三角形两个内角平分线的交点到三边的距离相等考点:勾股定理;角平分线的性质;等边三角形的判定;直角三角形斜边上的中线. 菁优网版权所有专题:计算题;证明题.分析:A.根据等腰三角形的性质求解;B.根据直角三角形的面积计算方法求斜边的高;C、根据勾股定理求解;D、求证角平分线和过角平分线交点作垂线所分的3对小三角形全等即可.C.根据勾股定理求解;D、求证角平分线和过角平分线交点作垂线所分的3对小三角形全等即可.C、根据勾股定理求解;D.求证角平分线和过角平分线交点作垂线所分的3对小三角形全等即可.C、根据勾股定理求解;D、求证角平分线和过角平分线交点作垂线所分的3对小三角形全等即可.解答:解: A.等腰三角形底角相等, 若底角为60°, 则顶角为180°﹣60°﹣60°=60°, 若顶角为60°, 则底角为=60°, 所以有一个角为60°的等腰三角形即为等边三角形, 故A选项正确;B.直角三角形中斜边的中线等于斜边的一半, 只有在等腰直角三角形中斜边的高与斜边的中线才会重合,故B选项错误;C.在直角三角形中, 最大的边为斜边, 根据勾股定理可知斜边长的平方的等于两直角边长平方的和, 故C选项正确;D.过三角形角平分线的交点作各边的垂线, 则三角形分成3对小三角形, 其中各顶点所在的两个直角三角形全等, 即过角平分线作的高线相等, 故D选项正确;即B选项中命题为假命题,故选B.故选B.点评:本题考查了全等三角形的证明, 考查了直角三角形中勾股定理的运用, 考查了等腰三角形的性质, 考查了直角三角形中斜边上的中线等于斜边长一半的性质.14. (2008•江西模拟)已知△ABC是腰长为1的等腰直角三角形, 以Rt△ABC的斜边AC为直角边, 画第二个等腰Rt△ACD, 再以Rt△ACD的斜边AD为直角边, 画第三个等腰Rt△ADE, …, 依此类推, 第n个等腰直角三角形的面积是()A.2n﹣2B.2n﹣1C.2n D.2n+1考点:等腰直角三角形. 菁优网版权所有专题:规律型.分析:根据△ABC是边长为1的等腰直角三角形分别求出Rt△ABC、Rt△ACD、Rt△ADE的面积, 找出规律即可.解答:解: ∵△ABC是边长为1的等腰直角三角形,∴S△ABC=×1×1==21﹣2;AC= = , AD= =2…,∴S△ACD=××=1=22﹣2;S△ADE=×2×2=1=23﹣2…∴第n个等腰直角三角形的面积是2n ﹣2.故选A.故选A.点评:此题属规律性题目, 解答此题的关键是分别计算出图中所给的直角三角形的面积, 找出规律即可.15. (2007•台湾)以下是甲、乙两人证明+ ≠的过程:(甲)因为>=3, >=2, 所以+ >3+2=5且=<=5所以+>5>故+≠(乙)作一个直角三角形, 两股长分别为、利用商高(勾股)定理()2+()2=15+8得斜边长为因为、、为此三角形的三边长所以+>故+≠对于两人A.两人都正确B.两人都错误C.甲正确, 乙错误D.甲错误, 乙正确的证法,下列哪一个判断是正确的()考点:勾股定理;实数大小比较;三角形三边关系. 菁优网版权所有专题:压轴题;阅读型.分析:分别对甲乙两个证明过程进行分析即可得出结论.解答:解: 甲的证明中说明+ 的值大于5, 并且证明小于5, 一个大于5的值与一个小于5的值一定是不能相等的.乙的证明中利用了勾股定理, 根据三角形的两边之和大于第三边.故选A.故选A.点评:本题解决的关键是正确理解题目中的证明过程, 阅读理解题是中考中经常出现的问题.16. (2007•宁波二模)如图, A.B是4×5网格中的格点, 网格中的每个小正方形的边长都是1, 图中使以A.B.C为顶点的三角形是等腰三角形的格点C有()A.2个B.3个C.4个D.5个考点:勾股定理;等腰三角形的判定. 菁优网版权所有专题:探究型.分析:先根据勾股定理求出AB的长, 再根据等腰三角形的性质分别找出以AB为腰和以AB为底边的等腰三角形即可.解答:解: ∵A.B是4×5网格中的格点,∴AB= = ,同理可得, AC=BD=AC= ,∴所求三角形有:△ABD, △ABC, △ABE.故选B.点评:本题考查的是勾股定理及等腰三角形的性质, 先根据勾股定理求出AB的长是解答此题的关键.17.A.1B.C.D.(2006•郴州)在△ABC中, ∠C=90°,AC, BC的长分别是方程x2﹣7x+12=0的两个根, △ABC内一点P到三边的距离都相等. 则PC为()考点:勾股定理;解一元二次方程-因式分解法;三角形的内切圆与内心. 菁优网版权所有专题:压轴题.分析:根据AC、BC的长分别是方程x2﹣7x+12=0的两个根, 根据根与系数的关系求出.解答:解: 根据“AC, BC的长分别是方程x2﹣7x+12=0的两个根”可以得出:AC+BC=7, AC•BC=12,AB2=AC2+BC2=25,AB=5,△ABC内一点P到三边的距离都相等, 即P为△ABC内切圆的圆心,设圆心的半径为r, 根据三角形面积表达式:三角形周长×内切圆的半径÷2=三角形的面积,可得出, AC•BC÷2=(AC+BC+AB)×r÷2,12÷2=(7+5)×r÷2,r=1,根据勾股定理PC= = ,故选B.故选B.点评:本题中考查了勾股定理和一元二次方程根与系数的关系. 本题中三角形内心与三角形周长和面积的关系式是本题中的一个重点.18. (2002•南宁)如图, 直角三角形三边上的半圆面积从小到大依次记为S1.S2.S3, 则S1.S2.S3之间的关系是()A.S l+S2>S3B.S l+S2<S3C.S1+S2=S3D.S12+S22=S32考点:勾股定理. 菁优网版权所有专题:压轴题.分析:依据半圆的面积公式, 以及勾股定理即可解决.解答:解: 设直角三角形三边分别为a, b, c, 则三个半圆的半径分别为, ,由勾股定理得a2+b2=c2, 即()2+()2=()2两边同时乘以π得π()2+π()2=π()2即S1.S2.S3之间的关系是S1+S2=S3故选C.故选C.点评:根据勾股定理, 然后变形, 得出三个半圆之间的关系.19. (2001•广州)已知点A和点B(如图), 以点A和点B为其中两个顶点作位置不同的等腰直角三角形, 一共可作出()A.2个B.4个C.6个D.8个考点:等腰直角三角形. 菁优网版权所有专题:压轴题.分析:利用等腰直角三角形的性质来作图, 要注意分不同的直角顶点来讨论.解答:解: 此题应分三种情况:①以AB为腰, 点A为直角顶点;可作△ABC1.△ABC2, 两个等腰直角三角形;②以AB为腰, 点B为直角顶点;可作△BAC3.△BAC4, 两个等腰直角三角形;③以AB为底, 点C为直角顶点;可作△ABC5.△ABC6, 两个等腰直角三角形;综上可知, 可作6个等腰直角三角形, 故选C.点评:等腰直角三角形两腰相等, 顶角为直角, 据此可以构造出等腰直角三角形.关键是以AB为腰和以AB为底来讨论.A.2B.3C.4D.520. 设直角三角形的三边长分别为a、b、c,若c﹣b=b﹣a>0, 则=()考点:勾股定理. 菁优网版权所有分析:根据已知条件判断c是斜边, 并且得到c+a=2b, 然后根据勾股定理得到c2﹣a2=b2, 然后因式分解可以求出c﹣a, 代入要求的式子可以求出结果了.解答:解: ∵c﹣b=b﹣a>0∴c>b>a, c+a=2b根据勾股定理得, c2﹣a2=b2, (c+a)(c﹣a )=b2,∴c﹣a= b∴=4故选C.故选C.点评:此题主要利用了勾股定理和因式分解解题, 题目式子的值不能直接求出, 把它的分子分母分别用b表示才能求出.A.4B.6C .8D.21. (1999•温州)已知△ABC中,AB=AC=10,BD是AC边上的高线,DC=2, 那么BD等于()考点:勾股定理. 菁优网版权所有分析:由CD的长, 可求得AD的值, 进而可在Rt△ABD中, 由勾股定理求得BD的长.解答:解: 如图;△ABC中, AB=AC=10, DC=2;∴AD=AC﹣DC=8;Rt△ABD中, AB=10, AD=8;由勾股定理, 得:BD= =6;故选B.点评:此题主要考查了等腰三角形的性质及勾股定理的应用.22. 如图, 在四边形ABCD中, ∠B=135°, ∠C=120°, AB= , BC= , CD= , 则AD边的长为()A.B.C.D.考点:勾股定理. 菁优网版权所有专题:计算题.分析:作AE⊥BC, DF⊥BC, 构建直角△AEB和直角△DFC, 根据勾股定理计算BE, CF, DF, 计算EF的值, 并根据EF求AD.解答:解: 如图, 过点A, D分别作AE, DF垂直于直线BC, 垂足分别为E, F.由已知可得BE=AE= , CF= , DF=2 ,于是EF=4+ .过点A作AG⊥DF, 垂足为G.在Rt△ADG中, 根据勾股定理得AD= = = = = .故选D.点评:本题考查了勾股定理的正确运用, 本题中构建直角△ABE和直角△CDF是解题的关键.A.16 B.18 C.12D.1223. 在△ABC中,∠C=90°,∠A=15°,AB=12,则△ABC的面积等于()考点:勾股定理;三角形的面积. 菁优网版权所有专题:计算题.分析:作∠ABD=∠A=15°, 则∠BDC=30°;设BC=x, 则BD=2x, CD= x, 计算AC=AD+CD=(2+ )x, BC=x, AB=12, 根据勾股定理计算AC, BC的长度, △ABC的面积为根据•BC•AC计算可得.解答:解: 如图, 作∠ABD=∠A=15°BD交AC于D, 则∠DBC=75°﹣15°=60°在Rt△BCD中, 因为∠BDC=90°﹣∠DBC=30°所以BD=2BC, CD= BC设BC=x,所以BD=2x, CD= x因为∠A=∠ABD, 所以AD=BD=2x所以AC=AD+DC=(2+)x在Rt △ABC中AC2+BC2=AB2∴∴,故选B.点评:本题考查了勾股定理在直角三角形中的运用, 考查了直角三角形面积的计算, 本题中设BC=x, 根据直角△ABC求x的值, 是解题的关键.24. 如图, 在Rt△ABC中, ∠C=90°, DE⊥AB, AC=BE=15, BC=20. 则四边形ACED的面积为()A.54 B.75 C.90 D.96考点:勾股定理;相似三角形的判定与性质. 菁优网版权所有分析:先利用勾股定理求出AB的长, 再根据相似三角形对应边成比例求出DE、BD的长, 然后代入面积公式即可求解.解答:解: ∵∠BDE=∠C=90°, ∠B=∠B∴△BDE∽△BCA∴BE: BA=BD: BC∵AC=BE=15, BC=20∴AB==25∴15: 25=BD: 20∴BD=12∴DE=9∴S△BDE=×12×9=54;S△ABC=×15×20=150∴四边形ACED的面积=S△ABC﹣S△BDE=150﹣54=96故选D.故选D.点评:此题主要考查了学生对相似三角形的性质及勾股定理的运用.25. 如图, 在△ABC中, 分别以AB.BC为直径的⊙O1.⊙O2交于AC上一点D, 且⊙O1经过点O2, AB.DO2的延长线交于点E, 且BE=BD. 则下列结论不正确的是()A.A B=AC B.∠BO2E=2∠E C.A B=BE D.E O2=BE考点:勾股定理;对顶角、邻补角;三角形内角和定理;等腰三角形的性质;圆周角定理. 菁优网版权所有专题:证明题;压轴题.分析:根据等腰三角形的性质证出∠BO2E=2∠BDE, 即可得出答案B错误, 假设A成立证出C也正确, 即可判断A、C都错误, 即可选出选项.解答:解: A.∵∠ABC+∠EDA=180°, ∠ADB=90°,∴∠EDB+∠ABC=90°.∵∠BDE+∠EDC=90°, 且∠EDC=∠BCA.∴∠ABC=∠BCA.∴AB=AC. 正确, 故本选项错误;B.∵O2B=O2D,∴∠DBO2=∠EDB,∴∠BO2E=2∠BDE,∵BE=BD,∴∠BDE=∠E,∴∠BO2E=2∠E, 正确, 故本选项错误;C.∵AC=AB,∴∠C=∠ABC,∵∠BO2E=2∠BDE, ∠ABC=∠BO2E+∠E,∴∠ABC=3∠E,∵BC为⊙O2的直径,∴∠CDB=90°,∴4∠E=90°,∠E=22.5°∴∠C=∠ABC=67.5°,∴∠A=180°﹣2×67.5°=45°,在Rt△ABD中由勾股定理得:AB= BD= BE, 正确, 故本选项错误;D.故本选项正确;故选D.故选D.点评:本题主要考查了勾股定理, 三角形的内角和定理, 等腰三角形的性质, 圆周角定理, 对顶角, 邻补角等知识点, 综合运用性质进行证明是解此题的关键.26. 如图, 在正方形网格中, cosα的值为()A .1B .C .D.考点:勾股定理;锐角三角函数的定义. 菁优网版权所有专题:网格型.分析:cosα的值可以转化为直角三角形的边的比的问题, 先根据勾股定理求出AB的长, 再在Rt△ABC中根据三角函数的定义求解.解答:解: 在Rt△ABC中, BC=3, AC=4,则AB= =5,则cosα= = .故选D.点评:本题考查勾股定理和锐角三角函数的概念:在直角三角形中, 正弦等于对边比斜边;余弦等于邻边比斜边;正切等于对边比邻边.27. 直角A.10 B.2C.4或10 D.10或2三角形一边长为8,另一条边是方程x2﹣2x﹣24=0的一解, 则此直角三角形的第三条边长是()考点:勾股定理;解一元二次方程-因式分解法. 菁优网版权所有专题:分类讨论.分析:先解方程x2﹣2x﹣24=0, 得x1=6, x2=﹣4, 所以另一条边是6, 再分两种情况考虑:①若8为斜边, 则用勾股定理得第三条边长是2 ;②若8和6是两条直角边, 再用勾股定理求斜边得10.解答:解: 根据题意得解方程x2﹣2x﹣24=0, 得x1=6, x2=﹣4,所以另一条边是6,①若8为斜边, 则用勾股定理得第三条边长是=2 ;②若8和6是两条直角边, 则此直角三角形的第三条边长是=10.故选:D.故选: D.故选:D.点评:本题考查了勾股定理、解方程. 解题的关键是要注意分情况讨论.28. 如图是2002年在北京召开的国际数学家大会的会徽, 它由4个相同的直角三角形拼成, 已知直角三角形的两条直角边长分别为3和4, 则大正方形ABCD和小正方形EFGH的面积比是()A.1:5 B.1: 25 C.5:1 D.25: 1考点:勾股定理的证明. 菁优网版权所有分析:根据勾股定理可得大正方形ABCD的边长, 再根据和差关系得到小正方形EFGH的边长, 根据正方形的面积公式可得大正方形ABCD和小正方形EFGH的面积, 进一步即可求解.解答:解: 如图, 设大正方形的边长为xcm,由勾股定理得32+42=x2,解得:x=5,则大正方形ABCD的面积为: 52=25;∵小正方形的边长为: 4﹣3=1,∴小正方形EFGH的面积为: 12=1.则大正方形ABCD和小正方形EFGH的面积比是25:1.故选:D.故选: D.故选:D.点评:本题考查勾股定理及正方形的面积公式, 比较容易解答, 关键是求出大小正方形的边长.29. 如图, 已知△ABC中, AB=AC, ∠BAC=90°, 直角∠EPF的顶点P是BC中点, 两边PE、PF分别交AB.AC于点E、F, 给出以下四个结论:①AE=CF;②△EPF是等腰直角三角形;。

勾股定理四边形专题

勾股定理四边形专题

勾股定理1.如图,Rt △ABC 中,∠C=90°,AD 平分∠CAB ,DE ⊥AB 于E ,若AC=6,BC=8,CD=3. (1)求DE 的长;(2)求△ADB 的面积.2. 已知四边形ABCD 是边长为2的菱形,∠BAD=60°,对角线AC 与BD 交于点O ,过点O 的直线EF 交AD 于点E ,交BC 于点F .(1)求证:△AOE ≌△COF ;(2)若∠EOD=30°,求CE 的长.3. 若直角三角形的两直角边长为a 、b ,且满足,则该直角三角形的斜边长为 .4. 如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,点D 在BC 上,以AC 为对角线的 □ADCE 中,DE 最小的值是( )A .2B.3 C .4 D .55.如图,折叠矩形纸片ABCD ,使B 点落在AD 上一点E 处,折痕的两端点分别在AB 、BC 上(含端点),且AB=6,BC=10。

设AE=x ,则x 的取值范围是 .6.在平面直角坐标系中,已知点A (﹣,0),B (,0),点C 在坐标轴上,且AC+BC=6,写出满足条件的所有点C 的坐标7. 如图1,点E 在正方形ABC D 内,满足,AE =6,BE =8,则阴影部分的面积是A .B .C .D .80 8. 如图,D 是△ABC 内一点,BD ⊥CD ,AD=6,BD=4,CD=3,E 、F 、G 、H 分别是AB 、AC 、CD 、BD 的中点,则四边形EFGH 的周长是 .9. 在△ABC 中,∠BAC=90°,AB=3,AC=4.AD 平分∠BAC交BC 于D ,则BD 的长为 . 90AEB ∠=︒486076图1A四边形专题1.已知:如图,四边形ABCD 中,对角线AC 、BD 相交于点E ,BD DC ⊥,45ABD ∠=︒,30ACD ∠=︒,23AD CD ==,求AC 和BD 的长.2.已知:如图,在四边形ABCD 中,AD DC ⊥,△D B C 是等边三角形,︒=∠45ABD ,2=AD .求四边形ABCD 的周长.3.如图,平行四边形ABCD 的对角线AC 、BD 交于点O , AC ⊥AB ,AB =2,且AC ︰BD =2︰3.(1) 求AC 的长; (2) 求△AOD 的面积.4.已知:如图,四边形ABCD 中,90A ∠=︒,120D ∠=︒,E 是AD 上一点, ∠BED=135°,22BE =,23DC =,23DE =-.求(1)点C 到直线AD 的距离; (2)线段BC 的长.5.如图,在矩形ABCD 中,AB =3,BC DCE 是等边三角形,DE 交AB 于点F , 求△BEF 的周长.6.如图,已知菱形ABCD ,AB=AC ,E 、F 分别是BC 、AD 的中点,连接AE 、CF(1)证明:四边形AECF 是矩形;(2)若AB=8,求菱形的面积。

2020-2021中考数学—平行四边形的综合压轴题专题复习

2020-2021中考数学—平行四边形的综合压轴题专题复习

2020-2021 中考数学—平行四边形的综合压轴题专题复习一、平行四边形1.四边形 ABCD是正方形, AC 与 BD,订交于点 O,点 E、 F 是直线 AD 上两动点,且AE=DF, CF 所在直线与对角线 BD 所在直线交于点 G,连结 AG,直线 AG 交 BE 于点 H.(1)如图 1,当点 E、 F 在线段 AD 上时,①求证:∠ DAG=∠ DCG;② 猜想 AG 与 BE 的地点关系,并加以证明;(2)如图 2,在( 1)条件下,连结HO,试说明HO 均分∠ BHG;(3)当点 E、 F 运动到如图 3 所示的地点时,其余条件不变,请将图形增补完好,并直接写出∠ BHO 的度数.【答案】( 1)①证明看法析;②AG⊥ BE.原因看法析;(2)证明看法析;(3)∠B HO=45 .°【分析】试题剖析:( 1)①依据正方形的性质得 DA=DC,∠ ADB=∠CDB=45°,则可依据“SAS证”明△ADG≌ △ CDG,所以∠ DAG=∠ DCG;② 依据正方形的性质得AB=DC,∠BAD=∠ CDA=90 ,°依据“ SAS证明”△ABE≌△ DCF,则∠ ABE=∠ DCF,因为∠ DAG=∠DCG,所以∠ DAG=∠ ABE,而后利用∠ DAG+∠ BAG=90°获得∠ ABE+∠ BAG=90°,于是可判断AG⊥BE;(2)如答图 1 所示,过点 O 作 OM ⊥ BE 于点 M, ON⊥AG 于点 N,证明△ AON≌△ BOM,可得四边形 OMHN 为正方形,所以 HO 均分∠ BHG 结论建立;(3)如答图 2 所示,与( 1)同理,能够证明AG⊥ BE;过点 O 作 OM⊥ BE 于点 M,ON⊥ AG 于点 N,结构全等三角形△ AON≌ △ BOM,进而证明 OMHN 为正方形,所以 HO 均分∠ BHG,即∠BHO=45°.试题分析:( 1)① ∵四边形 ABCD为正方形,∴DA=DC,∠ADB=∠CDB=45 ,°在△ ADG 和△CDG 中,∴△ ADG≌ △CDG( SAS),∴∠ DAG=∠ DCG;②AG ⊥ BE.原因以下:∵四边形 ABCD为正方形,∴AB=DC,∠ BAD=∠CDA=90 ,°在△ ABE 和△ DCF中,∴△ ABE≌ △ DCF( SAS),∴∠ ABE=∠ DCF,∵∠ DAG=∠ DCG,∴∠ DAG=∠ ABE,∵∠ DAG+∠ BAG=90 ,°∴∠ ABE+∠ BAG=90 ,°∴∠ AHB=90 ,°∴AG⊥ BE;(2)由( 1)可知 AG⊥BE.如答图 1 所示,过点O 作 OM ⊥ BE 于点 M , ON⊥ AG 于点 N,则四边形OMHN 为矩形.∴∠ MON=90 °,又∵ OA⊥ OB,∴∠ AON=∠ BOM .∵∠ AON+∠ OAN=90 ,° ∠ BOM+∠ OBM=90 °,∴∠ OAN=∠ OBM .在△ AON 与△BOM 中,∴△ AON≌△ BOM( AAS).∴OM=ON ,∴矩形 OMHN 为正方形,∴HO 均分∠ BHG.(3)将图形增补完好,如答图 2 示,∠ BHO=45°.与( 1)同理,能够证明AG⊥ BE.过点O 作 OM ⊥ BE 于点M, ON⊥ AG 于点N,与( 2)同理,能够证明△ AON≌△ BOM,可得OMHN为正方形,所以HO 均分∠ BHG,∴∠ BHO=45 .°考点:1、四边形综合题;2、全等三角形的判断与性质;3、正方形的性质2.如图①,在等腰RtVABC中,BAC90o,点E在AC上(且不与点A、C重合),在△ABC 的外面作等腰 Rt△CED ,使CED90o,连结AD,分别以AB,AD为邻边作平行四边形 ABFD,连结 AF.1 请直接写出线段AF,AE的数目关系;2 ①将VCED绕点C逆时针旋转,当点 E 在线段 BC 上时,如图②,连结 AE,请判断线段 AF, AE 的数目关系,并证明你的结论;②若 AB 2 5 ,CE 2,在图②的基础大将 VCED 绕点C持续逆时针旋转一周的过程中,当平行四边形 ABFD 为菱形时,直接写出线段AE 的长度.AF2AE ② 4 2 或 2 2 .【答案】( 1)证明看法析;(2)①【分析】【剖析】1 如图①中,结论: AF2AE,只需证明 VAEF 是等腰直角三角形即可;2 ①如图②中,结论:AF2AE,连结 EF, DF 交 BC 于 K,先证明VEKF ≌ VEDA 再证明 VAEF 是等腰直角三角形即可;②分两种情况a、如图③中,当AD AC 时,四边形ABFD是菱形.b、如图④中当AD AC 时,四边形ABFD是菱形.分别求解即可.【详解】1 如图①中,结论: AF2AE .原因: Q 四边形ABFD是平行四边形,AB DF ,Q AB AC ,AC DF ,Q DE EC ,AE EF ,Q DEC AEF90o,VAEF 是等腰直角三角形,AF2AE.故答案为AF2AE .2 ①如图②中,结论: AF2AE .原因:连结EF, DF 交 BC于 K.Q 四边形ABFD是平行四边形,AB/ /DF ,DKE ABC45o,EKF180o DKE135o,EK ED,Q ADE180o EDC180o45o135o,EKF ADE ,Q DKCC , DKDC ,Q DF ABAC ,KF AD ,在 VEKF 和 VEDA 中,EK EDEKF ADE ,KF ADVEKF ≌ VEDA ,EF EA ,KEF AED ,FEABED90o ,VAEF 是等腰直角三角形, AF2AE .② 如图 ③ 中,当 AD AC 时,四边形 ABFD 是菱形,设 AE 交 CD 于 H ,易知EHDHCH2 ,AH(2 5) 2( 2) 2 3 2 ,AE AH EH 42,如图 ④ 中当 AD AC 时,四边形 ABFD 是菱形,易知 AE AH EH3 22 2 2,4 2 或 2 2 .综上所述,知足条件的AE 的长为【点睛】本题考察四边形综合题、全等三角形的判断和性质、等腰直角三角形的判断和性质、平行四边形的性质、勾股定理等知识,解题的重点是娴熟掌握全等三角形的判断和性质,找寻全等的条件是解题的难点,属于中考常考题型.3.已知:在菱形ABCD中, E, F 是 BD 上的两点,且AE∥ CF.求证:四边形AECF是菱形.【答案】看法析【分析】【剖析】由菱形的性质可得 AB∥ CD, AB= CD,∠ADF=∠ CDF,由“SAS”可证△ ADF≌ △ CDF,可得AF= CF,由△ABE≌ △CDF,可得 AE=CF,由平行四边形的判断和菱形的判断可得四边形AECF是菱形.【详解】证明:∵四边形 ABCD是菱形∴AB∥ CD, AB= CD,∠ADF=∠ CDF,∵AB= CD,∠ADF=∠ CDF, DF=DF∴△ ADF≌ △ CDF(SAS)∴A F= CF,∵AB∥ CD, AE∥ CF∴∠ ABE=∠ CDF,∠ AEF=∠ CFE∴∠ AEB = ∠ CFD , ∠ ABE = ∠ CDF , AB = CD∴△ ABE ≌ △ CDF ( AAS )∴AE = CF ,且 AE ∥CF∴四边形 AECF 是平行四边形又∵ AF = CF ,∴四边形 AECF 是菱形【点睛】本题主要考察菱形的判断定理,第一要判断其为平行四边形,这是菱形判断的基本判断.4.已知 AD 是△ ABC 的中线 P 是线段 AD 上的一点(不与点 A 、 D 重合),连结 PB 、 PC ,E 、 F 、 G 、 H 分别是 AB 、AC 、 PB 、 PC 的中点, AD 与 EF 交于点 M ;(1)如图 1,当 AB =AC 时,求证:四边形EGHF 是矩形;(2)如图 2,当点 P 与点 M 重合时,在不增添任何协助线的条件下,写出全部与 △BPE 面积相等的三角形(不包含△ BPE 自己).【答案】( 1)看法析;( 2) △APE 、 △ APF 、 △ CPF 、△ PGH .【分析】【剖析】(1)由三角形中位线定理得出EG ∥ AP , EF ∥ BC , EF=1 BC , GH ∥ BC , GH= 1BC ,推出22EF ∥ GH , EF=GH ,证得四边形 EGHF 是平行四边形,证得 EF ⊥ AP ,推出 EF ⊥ EG ,即可得出结论;(2)由 △ APE 与△ BPE 的底 AE=BE ,又等高,得出 S △ APE =S △BPE ,由 △ APE 与 △APF 的底EP=FP ,又等高,得出 S △ APE =S △ APF ,由 △APF 与 △ CPF 的底 AF=CF ,又等高,得出S △APF =S △CPF ,证得 △ PGH 底边 GH 上的高等于 △ AEF 底边 EF 上高的一半,推出1 S △PGH = S △AEF =S △ APF ,即可得出结果.2【详解】(1)证明: ∵ E 、 F 、 G 、H 分别是 AB 、 AC 、 PB 、 PC 的中点,∴EG ∥ AP , EF ∥BC , EF = 1 BC ,GH ∥ BC , GH = 1BC ,22∴ E F ∥ GH , EF =GH ,∴四边形 EGHF 是平行四边形,∵AB = AC ,∴AD⊥ BC,∴EF⊥ AP,∵EG∥ AP,∴E F⊥ EG,∴平行四边形EGHF是矩形;(2)∵ PE 是△APB 的中线,∴△ APE与△ BPE的底 AE= BE,又等高,∴S△APE=S△BPE,∵AP 是△ AEF的中线,∴△ APE与△ APF的底 EP= FP,又等高,∴S△APE=S△APF,∴S△APF= S△BPE,∵PF 是△APC的中线,∴△ APF 与△ CPF的底 AF= CF,又等高,∴S△APF= S△CPF,∴S△CPF= S△BPE,∵E F∥ GH∥ BC,E、 F、 G、H 分别是 AB、 AC、 PB、PC的中点,∴△ AEF底边 EF 上的高等于△ABC 底边 BC 上高的一半,△ PGH底边 GH 上的高等于△ PBC 底边 BC上高的一半,∴△ PGH底边 GH上的高等于△ AEF底边 EF上高的一半,∵GH= EF,1∴S△PGH=S△AEF= S△APF,2综上所述,与△ BPE面积相等的三角形为:△ APE、△ APF、△CPF、△ PGH.【点睛】本题考察了矩形的判断与性质、平行四边形的判断、三角形中位线定理、平行线的性质、三角形面积的计算等知识,娴熟掌握三角形中位线定理是解决问题的重点.5.如图,在正方形ABCD中, E 是边 AB 上的一动点,点 F 在边 BC 的延伸线上,且 CFAE ,连结 DE, DF, EF. FH 均分EFB交 BD 于点 H.(1)求证:DE DF;(2)求证:DH DF:(3)过点 H 作HM⊥EF于点 M ,用等式表示线段 AB, HM 与 EF之间的数目关系,并证明 .【答案】( 1)详看法析;(2)详看法析;(3)EF 2 AB 2HM ,证明详看法析.【分析】【剖析】(1)依据正方形性质,CF AE 获得DE DF .(2)由△AED≌△CFD,得DE DF 由ABC90,BD均分ABC,.得DBF45.因为FH均分EFB,所以EFH BFH.因为DHF DBF BFH45BFH ,DFH DFE EFH45EFH ,所以 DH DF .(3)过点H作HN BC 于点 N ,由正方形 ABCD 性质,得BD AB2AD 22AB .由FH均分EFB , HM EF , HN BC ,得HM HN .因为HBN45 , HNB90,所以 BHHN2HN2HM . sin 45由 EFDF2DF2DH ,得 EF2AB2HM . cos45【详解】(1)证明:∵四边形ABCD是正方形,∴ AD CD ,EAD BCD ADC90 .∴EAD FCD90 .∵CF AE 。

勾股定理与平行四边形的关系

勾股定理与平行四边形的关系

勾股定理与平行四边形的关系勾股定理是初中数学中一个非常重要的定理,它描述了直角三角形斜边平方等于两个直角边平方和的关系。

而平行四边形则是几何学中常见的一个图形,具有一些独特的性质和特点。

本文将探讨勾股定理与平行四边形之间的关系。

一、勾股定理的基本原理勾股定理是古希腊数学家毕达哥拉斯在公元前6世纪提出的。

它的数学表达形式为:在一个直角三角形中,斜边的平方等于两个直角边平方和。

即a² + b² = c²,其中a、b为直角边,c为斜边。

勾股定理的运用非常广泛,不仅可以解决直角三角形的问题,也可以应用于其他几何图形。

在研究平行四边形的性质时,勾股定理也起到了重要的作用。

二、平行四边形的定义和性质平行四边形是指具有两组对边平行的四边形。

它的定义包含了两个重要的要素:对边和平行。

对边是指四边形的两组相对的边,平行是指对边之间的边是平行的。

平行四边形有一些重要的性质:1. 对角线相等:平行四边形的对角线相等,即AC = BD。

2. 对边平行:平行四边形的对边是平行的,即AB // CD,BC // AD。

3. 对边比例相等:平行四边形的对边之间的比例相等,即AB/BC = AD/CD。

4. 内角和为180度:平行四边形的内角和等于180度。

三、在研究平行四边形时,勾股定理可以用来推导得到一些有关边长的关系。

首先,考虑一个平行四边形ABCD,如图所示:A _______ B| || || |D|_______|C由平行四边形的性质可知,AB // CD,BC // AD,AC = BD。

设AB = a,BC = b,BD = c,则有AD = c - a。

根据勾股定理,可以得到:AB² + AD² = BD²将AB、AD和BD的长度代入,得到:a² + (c - a)² = c²化简可得:a² + c² - 2ac + a² = c²化简再整理,得到:2a² - 2ac = 0再整理可得:a(a - c) = 0由于a不等于0,因此有:a - c = 0即:a = c这个结论表明,平行四边形的相对边长是相等的。

八年级数学下册期中专题复习学案(二次根式,勾股定理,平行四边形)(有答案)【精品】

八年级数学下册期中专题复习学案(二次根式,勾股定理,平行四边形)(有答案)【精品】

《第十六章二次根式》专题复习知识结构图重难点 1 二次根式有意义的条件例1.若式子m+1+(m-2)0有意义,则实数m的取值范围是( ) A.m>-2 B.m>-2且m≠1C.m≥-1 D.m≥-1且m≠2【方法指导】1.使得式子x4-x有意义的x的取值范围是( )A.x≥4 B.x>4 C.x≤4 D.x<42.要使式子x+3x-1+(x-2)0有意义,则x的取值范围为.3.使代数式1x+3+4-3x有意义的整数x有.重难点2 二次根式的非负性例2. 若a-1+b2-4b+4=0,则ab的值等于( )A.-2 B.0 C.1 D.2【方法指导】这类问题主要利用非负数的和为0,进而得出每一个非负数的式子为0,从而构造方程求未知数的值,通常利用的非负数有:(1)||x≥0; (2)x2≥0; (3)x≥0.针对练习:4.若a +b +5+|2a -b +1|=0,则(b -a )2 020=( ) A .-1 B .1 C .-52 020 D .52 0205.已知y =x -4+4-x +2,则 xy的值为 .6.已知|a -5|+b +3=0,那么点P (a ,b )在第 象限. 7.已知实数a ,b 在数轴上的位置如图所示,化简:()()b a b a ---++22123.重难点3 二次根式的运算例3.计算:()22331312-+⨯-【方法指导】二次根式的运算中,多项式乘法法则、除法法则以及乘法公式仍然适用. 针对练习: 8.计算: (1)4821319125+- (2)()()2222336-++- (3)()()362546322÷++-重难点 4 与二次根式有关的化简求值例4. 先化简,再求值:⎪⎪⎭⎫⎝⎛+⋅⎪⎪⎭⎫ ⎝⎛++÷--y x x y xy x xy x x y 1122222,其中32,32-=+=y x .将二次根式的运算与分式的化简求值相结合考查,是最常见的考查形式.当未知数的值是无理数时,求值时就用到二次根式的运算. 针对练习:9.先化简,再求值:12212122++-÷⎪⎭⎫⎝⎛+---a a a a a a aa ,其中2=a .重难点 5 与二次根式有关的规律探究例5.先阅读,再解答:由()()()()235353522=-=-⋅+可以看出,两个含有二次根式的代数式相乘,积可能不含有二次根式.在进行二次根式计算时,可以利用这种运算规律化去分母中的根号,例如:()()23232323231-=-+-=+,根据以上运算请完成下列问题:(1)2019-2017(填“>”或“<”); (2)利用你发现的规律计算下面式子的值:()12019201820191341231121+⋅⎪⎭⎫ ⎝⎛++⋅⋅⋅++++++.针对练习:10.观察下列各式:514513,413412,312311=+=+=+,…,请你将发现的规律用含自然数n(n ≥1)的代数式表示出来: .《第十七章 勾股定理》专题复习。

平行四边形法则与勾股定理

平行四边形法则与勾股定理

平行四边形法则与勾股定理–内积与范数.所谓的范数,就是向量长度这个概念在一般向量空间中的推广。

简单地讲就是从向量空间到数域的一个函数,满足如下条件:1) ,并且当且仅当。

2)3)在一个内积空间中,由内积表达式就可以定义出一个范数,这个范数称为由内积诱导的范数。

不是所有的范数都是由内积诱导出来的。

例如,在中,定义范数,它确实是范数但没有内积可以诱导出这个范数。

因为,内积诱导的范数满足平行四边形法则:即平行四边形四边的平方和等于两对角线的平方和。

而上面举的例子显然不满足这个特性。

那么是不是一个范数只要满足平行四边形法则,它就必然是由某个内积诱导出来的呢?答案是肯定的。

证明见下面。

那么平行四边形法则到底是什么东西?为什么有这么大的魔力,使它成为一个范数是否有内积背景的唯一门槛?如果一个范数是由内积诱导的,也就是存在内积满足,那么它必然带有内积的某些特性,尤其是,内积是个双线性函数(复数空间上是半双线性函数),这就表明内积是个二次式,导致范数的平方本身也应该是个二次式。

更确切地讲,内积的半双线性直接导致余弦定理:但是,这两个公式中依然有一个内积,所以无法用这个来判断某个范数是否由内积诱导的,原因是这个时候还不知道内积为何物。

依照勾股定理的证明,当的时候,我们可以消除内积的身影,即勾股定理的如下形式:当时,这样,这个条件之中完全没有内积的参与,并且它是范数由内积诱导的必要条件。

但是,它是否是充要条件暂且不论,我们在用它判断的时候就可能遇到麻烦。

因为要断定一个范数不是由内积诱导(大多数情况下不是),就需要找到两个向量满足但不满足,这在某些情况下是有困难的。

还有一种从余弦定理中消除内积的方法,就是不管是否有,我们将余弦定理两个式子相加,从而消掉内积得到了平行四边形法则它是一个范数由内积诱导的充要条件。

从平行四边形法则,可知,定义于上的p-范数当且仅当p=2 时是由内积诱导的。

值得注意的是勾股定理、余弦定理、平行四边形法则和内积诱导范数之间的关系,它们在下面的意义下是等价的:命题1:数域包含实数域,在的一个赋范向量空间中,如果范数满足以下条件之一,那么这个范数是由内积诱导的。

勾股定理和平行四边形专题复习

勾股定理和平行四边形专题复习

第17章勾股定理单元检测题一﹑选择题.1. △ABC 中,AB=15,AC=13,高AD=12,则△ABC 的周长为( ) A . 42 B . 32 C . 42或32 D . 37或332.如图,由4个相同的直角三角形与中间的小正方形拼成一个大正方形,若大正方形面积是9,小正方形面积是1,直角三角形较长直角边为a ,较短直角边为b ,则ab 的值是( ) A . 4 B . 6 C . 8 D . 103. 将直角三角形的三条边长同时扩大同一倍数, 得到的三角形是( ) A. 钝角三角形 B. 锐角三角形 C. 直角三角形 D. 等腰三角形4. 如图,小方格都是边长为1的正方形,则四边形ABCD 的面积是( ) A . 25 B . 12.5C . 9 D . 8.55. 适合下列条件的△ABC 中, 直角三角形的个数为( ) ①;51,41,31===c b a ②,6=a ∠A=450; ③∠A=320, ∠B=580; ④;25,24,7===c b a ⑤.4,2,2===c b aA. 2个B. 3个C. 4个D. 5个6. 在⊿ABC 中,若1,2,122+==-=n c n b n a ,则⊿ABC 是( )A . 锐角三角形B . 钝角三角形C . 等腰三角形D . 直角三角形7. 直角三角形斜边的平方等于两条直角边乘积的2倍, 这个三角形有一个锐角是( ) A. 15° B. 30° C. 45° D. 60°8.已知,如图2,长方形ABCD 中,AB=3cm ,AD=9cm ,将此长方形折叠,使点B 与点D 重合,折痕为EF ,则△ABE 的面积为( )A .6cm 2B .8cm 2C .10cm 2D 12cm 29.已知,如图3,,一轮船以16海里/时的速度从港口A 出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A 出发向东南方向航行,离开港口2小时后,则两船相距( ) A .25海里 B .30海里 C .35海里 D .40海里10.在下列长度的各组线段中,能构成直角三角形的是( )A .3,5,9B .4,6,8C .1,3,2 D.3,5,611.如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为( )A.90°B.60°C. 45°D.30° 13.下列各组数据中,不可以构成直角三角形的是( )A .7,24,25B .1.5,2,2.5C .,1,D .40,50,6014.已知a ,b ,c 为△ABC 的三边长,且满足a 2c 2-b 2c 2=a 4-b 4,判断△ABC 的形状( )A.等腰三角形 B .直角三角形 C.等腰直角三角形 D .等腰三角形或直角三角形 二﹑填空题ABEFDC(图2)北 南 A东(图3)2.若三角形三条边的长分别为7,24,25,则这个三角形的最大内角是 度.3.将一根长为15cm 的筷子置于底面直径为5cm ,高为12cm 的圆柱形水杯中,设筷子露在杯子外面的长为hcm ,则h 的取值范围是 .4.若直角三角形的两边长为6和8,则第三边长为 .5.一个三角形的三边长的比为3:4:5,且其周长为60cm ,则其面积为 .6.已知直角三角形斜边长为(263+)cm ,一直角边长为(623+)cm ,则这个直角三角形的面积是 cm 2.7.直角三角形两直角边长分别为5和12,则它斜边上的高为 . 三、 解答题1.如图,A 城气象台测得台风中心在A 城正西方向320km 的B 处,以每小时40km 的速度向北偏东60°的BF 方向移动,距离台风中心200km 的范围内是受台风影响的区域.(1) A 城是否受到这次台风的影响?为什么?(2) 若A 城受到这次台风影响,那么A 城遭受这次台风影响有多长时间?2.如图,在四边形ABCD 中,AB=3cm ,BC=4cm ,CD=12cm ,DA=13cm ,∠B=90°.求四边形ABCD 的面积.3.如图,一个梯子AB 长2.5 米,顶端A 靠在墙AC 上,这时梯子下端B 与墙角C 距离为1.5米,梯子滑动后停在DE 的位置上,测得BD 长为0.5米,求梯子顶端A 下落了多少米?4.已知m ,n ,d 为一个直角三角形的三边长,且有5m -=8n ﹣n 2﹣16,求三角形三边长分别为多少?5.如图,RA⊥AB,QB⊥AB,P 是AB 上的一点,RP=PQ=a ,RA=h ,QB=k ,∠RPA=75°,∠QPB=45°,求AB 的长度. 东北FEA B6.如图,在四边形ABCD中,AB=AD=8cm,∠A=60°,∠ADC=150°,已知四边形ABCD的周长为32cm,求△BCD的面积.7.如图,在Rt△ABC中,∠ACB=90°,AC=BC,CD是∠ACB的角平分线,点E、F分别是边AC、BC上的动点.AB=,设AE=x,BF=y.(1)AC的长是;(2)若x+y=3,求四边形CEDF的面积;(3)当DE⊥DF时,试探索x、y的数量关系.第十八章《四边形》单元测试卷一、选择题2.在平行四边形、矩形、菱形、正方形中是轴对称图形的有()个A.1 B.2 C.3 D.43.已知菱形的两条对角线长分别是4和8,则菱形的面积是()A.32B.64C.16D.324.如图,在平行四边形ABCD中,对角线AC、BD相交于点O,如果AC=10,BD=8,AB=x,则x的取值范围是()A.1<x<9B.2<x<18C.8<x<10D.4<x<55.某中学新科技馆铺设地面,已有正三角形形状的地砖,现打算购买另一种不同形状的正多边形地砖,与正三角形地砖在同一顶点处作平面镶嵌,则该学校不应该购买的地砖形状是()(A)正方形(B)正六边形(C)正八边形(D)正十二边形6.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线EF交对角线A C于点F、E为垂足,连结DF,则∠CDF等于()A.80°B.70°C.65°D.60°7.如图,能判定四边形ABCD为平行四边形的条件是().A,AB∥CD,AD=BC; B,∠A=∠B,∠C=∠D; C,AB=CD,AD=BC; D,AB=AD,CB=CD第8题图FED C BAA.3B.6C.12D.1510.如图,矩形ABCD 的边长AB =6,BC =8,将矩形沿EF 折叠,使 C 点与A 点重合,则折痕EF 的长是( )A.7.5B.6C.10D.5 二、填空题11、已知菱形两条对角线长分别是4cm 和8cm ,则它的边长为_________.12.平行四边形的周长为cm 24,相邻两边长的比为1:3,那么这个平行四边形较短的边长为 cm . 13.矩形的两条对角线的夹角为60,较短的边长为cm 12,则对角线长为 cm .14.如图,在正方形ABCD 中,延长BC 到点E ,使CE=AC ,则∠BAE= .16.如图,在△ABC 中,∠ACB=900,E 为AB 的中点,CD 垂直平分BE,则∠ACE= _________. 17.在四边形ABCD 中,∠C=60°AD ∥BC,AD=DC=8,E 、F 分别为AB 和DC 的中点,则EF 的长为_______.一、选择题1.已知平行四边形ABCD 的周长为32,AB=4,则BC 的长为( ) A .4 B .12 C .24 D .283. 如图,矩形ABCD 中,DE ⊥AC 于E ,且∠ADE :∠EDC=3:2,则∠BDE 的度数为( )A .36°B .9°C .27°D .18°4.平行四边形ABCD 中,对角线AC 、BD 交于点O ,点E 是BC 的中点.若OE=3 cm ,则AB 的长为 ( )A .3 cmB .6 cmC .9 cmD .12 cm5、如图,平行四边形ABCD 中,∠A 的平分线AE 交CD 于E , AB=5,BC=3,则EC 的长( ) A.1 B.1.5 C.2 D.36、能够判定一个四边形是矩形的条件是( )A .对角线互相平分且相等 B.对角线互相垂直平分 C.对角线相等且互相垂直 D.对角线互相垂直 7.如图,平行四边形ABCD 中,AB=3,BC=5,AC 的垂直平分线交AD 于E ,则△CDE 的周长是( )A .6B .8C .9D .10 8.如图,矩形ABCD 沿AE 折叠,使D 点落在BC 边上的F 点处,如果∠BFA =30°,那么∠CEF 等于( )A. 20°B. 30°C. 45°D. 60°9.如图菱形ABCD 中,AB=AC ,点E 、F 分别为边AB 、BC 上的点,且AE=BF ,连接CE 、AF 交于点H ,连接DH 交AG 于点O .则下列结论①△ABF≌△CAE ,②∠AHC=120°,③AH+CH=DH 中,正确的是( )第3题 第4题 第5题图A BCD E 第2题 第7题 第9题 第10题第11题A.①②④ B .①②③C .②③④D .①②③④10.如图,在▱ABCD 中,E 是BC 的中点,且∠AEC=∠DCE ,则下列结论不正确的是( ) A.S △AFD =2S △EFB B.BF=12DF C.四边形AECD 是等腰梯形 D.∠AEB=∠ADC11.如图,周长为16的菱形ABCD 中,点E ,F 分别在AB ,AD 边上,AE=1,AF=3,P 为BD 上一动点,则线段EP+FP 的长最短为( )A .3B .4C .5D .612.如图,在矩形ABCD 中,BC=6,CD=3,将△BCD 沿对角线BD 翻折,点C 落在点C 1处,BC 1交AD 于点E ,则线段DE 的长为( ) A .3 B .C .5D .二、填空题2.如图一个含有30°角的直角三角形的两个顶点放在一个矩形的对边上,若∠1=25°,则∠2= . 3.▱ABCD 的周长是30,AC 、BD 相交于点O ,△OAB 的周长比△OBC 的周长大3,则AB= .2题 3题 4题 5题 6题4.如图,正方形ABCD 的对角线长为82,E 为AB 上一点,若EF ⊥AC 于F ,EG ⊥BD 于G ,则EF+EG= . 5. ▱ABCD 周长为36,对角线AC ,BD 相交于点O .点E 是CD 的中点,BD=12,则△DOE 的周长为 . 6. 如图,平面直角坐标系中,矩形OABC 的顶点A 、C 的坐标分别为(10,0),(0,4),点D 是OA 的中点,点P 在BC 上运动,当△ODP 是腰长为5的等腰三角形时,点P 的坐标为 . 三、解答题1.如图,矩形ABCD 中,AC 与BD 交于O 点,BE ⊥AC 于E ,CF ⊥BD 于F .求证:BE =CF .2.已知:如图,ABCD Y中,E 、F 分别是AB 、CD 上的点,AE CF ,M 、N 分别是DE 、BF 的中点。

勾股定理与平行四边形的面积关系

勾股定理与平行四边形的面积关系

勾股定理与平行四边形的面积关系勾股定理是数学中十分重要的定理之一,常被用于解决与直角三角形有关的问题。

而在几何学中,平行四边形是一种特殊的四边形,具有一些独特的性质。

本文将探讨勾股定理与平行四边形的面积关系。

1. 勾股定理简介勾股定理是古希腊数学家毕达哥拉斯所发现的,它表明在直角三角形中,直角边的平方和等于斜边的平方。

即对于一个直角三角形,设直角边的长度分别为a和b,斜边的长度为c,则有a² + b² = c²。

2. 平行四边形的基本概念平行四边形是一种具有两组对边平行的四边形。

它的性质包括对边相等、对角线互相平分和对角线交点连线平分平行四边形。

设平行四边形的底边长为b,高为h,则其面积可以表示为S = b * h。

3. 勾股定理与平行四边形的关系在直角三角形中,我们可以观察到一个有趣的现象:如果我们以直角边为底边,斜边为高,构造一个平行四边形,那么这个平行四边形的面积和直角三角形的面积之间存在着一定的关系。

以直角三角形ABC为例,如下图所示:A|\| \h | \ c| \|____\B a C在该直角三角形中,以边AC为底边,高为h,可以构造一个平行四边形ABCD。

根据平行四边形的面积公式,平行四边形ABCD的面积为S = b * h。

而直角三角形ABC的面积可以表示为S' = (1/2) * a * b。

由勾股定理可得 a² + b² = c²,整理得 b² = c² - a²。

这样,我们就可以将平行四边形的面积表示为S = b * h = (c² - a²) * h。

进一步化简,得到S = c²h - a²h。

因此,直角三角形ABC的面积 S' = (1/2) * a * b 可以表示为S' = ((1/2) * a * b) = (1/2)(c²h - a²h) = (1/2)(c² - a²)h,从而我们可以看出,直角三角形ABC的面积与构造的平行四边形ABCD的面积之间存在着这样的关系:直角三角形的面积是平行四边形面积的一半乘以高。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

勾股定理和平行四边形专题复习————————————————————————————————作者: ————————————————————————————————日期:ﻩ第17章勾股定理单元检测题一﹑选择题.1. △A BC 中,A B=15,AC=13,高AD=12,则△A BC 的周长为( ) A . 42 B. 32ﻩC. 42或32ﻩD.ﻩ37或33 2.如图,由4个相同的直角三角形与中间的小正方形拼成一个大正方形,若大正方形面积是9,小正方形面积是1,直角三角形较长直角边为a,较短直角边为b,则ab 的值是( ) ﻩA. 4 B .ﻩ6 C.ﻩ8 D. 10 3. 将直角三角形的三条边长同时扩大同一倍数, 得到的三角形是( ) A. 钝角三角形 B. 锐角三角形 C. 直角三角形 D . 等腰三角形 4. 如图,小方格都是边长为1的正方形,则四边形ABCD 的面积是( ) ﻩA . 25 B .ﻩ12.5C. 9ﻩD .ﻩ8.5 5. 适合下列条件的△ABC 中, 直角三角形的个数为( )①;51,41,31===c b a ②,6=a ∠A=450; ③∠A=320, ∠B=580;④;25,24,7===c b a ⑤.4,2,2===c b aA. 2个 B . 3个 C. 4个 D . 5个6. 在⊿ABC 中,若1,2,122+==-=n c n b n a ,则⊿ABC 是( )A . 锐角三角形B . 钝角三角形C . 等腰三角形D . 直角三角形7. 直角三角形斜边的平方等于两条直角边乘积的2倍, 这个三角形有一个锐角是( ) A. 15° B . 30° C . 45° D. 60°8.已知,如图2,长方形A BC D中,AB=3c m,AD=9cm ,将此长方形折叠,使点B 与点D 重合,折痕为EF ,则△ABE 的面积为( )A.6cm 2 B.8cm 2 ﻩC.10cm 2ﻩ D 12cm 29.已知,如图3,,一轮船以16海里/时的速度从港口A 出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A 出发向东南方向航行,离开港口2小时后,则两船相距( ) A .25海里 B.30海里 C .35海里 D.40海里10.在下列长度的各组线段中,能构成直角三角形的是( )A .3,5,9 B.4,6,8 C.1,3,2 D.3,5,611.如图,每个小正方形的边长为1,A 、B 、C是小正方形的顶点,则∠ABC 的度数为( )A.90° B.60° C. 45° D.30°13.下列各组数据中,不可以构成直角三角形的是( )A.7,24,25 B.1.5,2,2.5 C.,1, D.40,50,6014.已知a ,b ,c 为△ABC的三边长,且满足a2c 2-b 2c 2=a 4-b 4,判断△AB C的形状( )A.等腰三角形 B.直角三角形 C.等腰直角三角形 D.等腰三角形或直角三角形A BEFD C(图2)北 南A东(图3)二﹑填空题1. 若长为5cm ,12cm,a c m的三条线段首尾顺次连接恰好围成一个直角三角形,则a的值是 . 2.若三角形三条边的长分别为7,24,25,则这个三角形的最大内角是度.3.将一根长为15cm 的筷子置于底面直径为5c m,高为12cm 的圆柱形水杯中,设筷子露在杯子外面的长为hcm,则h 的取值范围是 .4.若直角三角形的两边长为6和8,则第三边长为 .5.一个三角形的三边长的比为3:4:5,且其周长为60cm,则其面积为 .6.已知直角三角形斜边长为(263+)cm,一直角边长为(623+)cm,则这个直角三角形的面积是 cm 2.7.直角三角形两直角边长分别为5和12,则它斜边上的高为 . 三、 解答题1.如图,A城气象台测得台风中心在A城正西方向320km 的B处,以每小时40k m的速度向北偏东60°的BF 方向移动,距离台风中心200km 的范围内是受台风影响的区域.(1) A 城是否受到这次台风的影响?为什么?(2) 若A 城受到这次台风影响,那么A 城遭受这次台风影响有多长时间?2.如图,在四边形ABCD 中,A B=3c m,BC=4cm ,CD =12cm ,DA=13cm ,∠B=90°.求四边形ABCD 的面积.3.如图,一个梯子AB 长2.5 米,顶端A靠在墙AC 上,这时梯子下端B 与墙角C 距离为1.5米,梯子滑动后停在DE 的位置上,测得BD 长为0.5米,求梯子顶端A 下落了多少米?4.已知m,n,d 为一个直角三角形的三边长,且有5m -=8n ﹣n 2﹣16,求三角形三边长分别为多少?东北FEA B5.如图,RA⊥AB,QB⊥AB,P是AB上的一点,RP=PQ=a,RA=h,QB=k,∠RPA=75°,∠QPB=45°,求AB的长度.6.如图,在四边形ABCD中,AB=AD=8cm,∠A=60°,∠ADC=150°,已知四边形ABCD的周长为32cm,求△BCD的面积.7.如图,在Rt△ABC中,∠ACB=90°,AC=BC,CD是∠ACB的角平分线,点E、F分别是边AC、BC上的动点.AB=,设AE=x,BF=y.(1)AC的长是;(2)若x+y=3,求四边形CEDF的面积;(3)当DE⊥DF时,试探索x、y的数量关系.第十八章《四边形》单元测试卷一、选择题2.在平行四边形、矩形、菱形、正方形中是轴对称图形的有()个A.1 B.2 C.3D.43.已知菱形的两条对角线长分别是4和8,则菱形的面积是()A.32 B.64 C.16D.324.如图,在平行四边形ABCD中,对角线AC、BD相交于点O,如果AC=10,BD=8,AB=x,则x的取值范围是( )A.1<x<9 B.2<x<18 C.8<x<10 D.4<x<55.某中学新科技馆铺设地面,已有正三角形形状的地砖,现打算购买另一种不同形状的正多边形地砖,与正三角形地砖在同一顶点处作平面镶嵌,则该学校不应该购买的地砖形状是()(A)正方形(B)正六边形(C)正八边形(D)正十二边形6.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线EF交对角线A C于点F、E为垂足,连结DF,则∠CDF等于()A.80°B.70° C.65°D.60°7.如图,能判定四边形A BCD 为平行四边形的条件是( ).A,AB ∥C D,AD =BC ; B,∠A=∠B,∠C=∠D ; C,AB=CD ,AD=B C; D,AB=A D,C B=C D8.如图,D 、E在△ABC 的边AB 、AC 上,且AB =4AD ,AC=4A E,DE=3,则BC=( ) A.3 B.6 C.12 D.1510.如图,矩形ABCD 的边长AB =6,BC=8,将矩形沿EF 折叠,使 C 点与A 点重合,则折痕EF 的长是( )A.7.5 B.6 C.10 D.5 二、填空题11、已知菱形两条对角线长分别是4cm 和8c m,则它的边长为_________.12.平行四边形的周长为cm 24,相邻两边长的比为1:3,那么这个平行四边形较短的边长为cm . 13.矩形的两条对角线的夹角为60,较短的边长为cm 12,则对角线长为 cm .14.如图,在正方形ABC D中,延长BC 到点E,使CE=AC,则∠BAE= .16.如图,在△ABC 中,∠ACB=900,E 为AB 的中点,CD 垂直平分B E,则∠ACE= _________. 17.在四边形A BCD 中,∠C=60°A D∥BC,A D=DC=8,E 、F 分别为AB 和DC 的中点,则EF 的长为_______.一、选择题1.已知平行四边形AB CD 的周长为32,AB=4,则BC 的长为( ) A.4 B .12 C.24 D .283. 如图,矩形ABC D中,DE ⊥A C于E,且∠ADE:∠E DC =3:2,则∠BDE的度数为( )A.36° B .9° C .27° D.18°4.平行四边形ABCD 中,对角线AC 、BD 交于点O,点E 是BC 的中点.若OE=3 cm ,则AB 的长为 ( )A .3 cmB .6 cm C.9 cm D .12 cm5、如图,平行四边形ABCD 中,∠A 的平分线A E交C D于E, A B=5,BC=3,则EC 的长( ) A.1 B .1.5 C.2 D.3 6、能够判定一个四边形是矩形的条件是( )A .对角线互相平分且相等 B.对角线互相垂直平分 C .对角线相等且互相垂直 D.对角线互相垂直7.如图,平行四边形ABCD 中,AB=3,B C=5,AC 的垂直平分线交AD 于E ,则△CDE 的周长是( )A .6 B.8 C.9 D.10第3题 第4题 第5题图ABCDE第2题 第7题第8题图FED C BA8.如图,矩形A BCD沿AE 折叠,使D 点落在BC 边上的F 点处,如果∠BFA =30°,那么∠CEF 等于( )A.ﻩ20° B. 30° C. 45° D. 60°9.如图菱形AB CD中,AB=A C,点E、F 分别为边AB 、BC 上的点,且AE=BF,连接CE 、AF 交于点H ,连接DH交AG 于点O.则下列结论①△ABF≌△CAE,②∠A HC=120°,③AH+CH=DH 中,正确的是( ) A.①②④ B.①②③ C .②③④ D .①②③④10.如图,在▱ABC D中,E 是BC 的中点,且∠AEC=∠DC E,则下列结论不正确的是( ) A.S △AFD =2S △EFB B.BF =12DF C .四边形AECD 是等腰梯形 D .∠A EB=∠AD C11.如图,周长为16的菱形ABCD 中,点E,F 分别在AB,AD 边上,AE=1,AF =3,P 为BD 上一动点,则线段EP+FP 的长最短为( )A .3B .4C .5 D.612.如图,在矩形ABCD 中,BC =6,CD=3,将△BCD 沿对角线BD 翻折,点C 落在点C 1处,BC 1交AD 于点E,则线段DE 的长为( ) A.3 B .C.5 D .二、填空题2.如图一个含有30°角的直角三角形的两个顶点放在一个矩形的对边上,若∠1=25°,则∠2= . 3.▱A BCD 的周长是30,AC 、BD 相交于点O ,△OAB 的周长比△OBC 的周长大3,则A B= .2题 3题 4题 5题6题4.如图,正方形A BCD的对角线长为82,E为AB 上一点,若E F⊥AC 于F ,EG ⊥BD 于G ,则EF+EG = .5. ▱AB CD 周长为36,对角线AC,BD 相交于点O.点E是CD 的中点,BD =12,则△DOE 的周长为 .6. 如图,平面直角坐标系中,矩形OABC 的顶点A 、C的坐标分别为(10,0),(0,4),点D 是OA 的中点,点P 在BC 上运动,当△ODP 是腰长为5的等腰三角形时,点P 的坐标为 . 三、解答题1.如图,矩形ABC D中,AC 与BD交于O 点,BE ⊥AC 于E,CF ⊥BD 于F .求证:BE =C F.ABCDE FO第9题 第10题第11题EFODCBA2.已知:如图,ABCD 中,E 、F 分别是AB 、CD 上的点,AE CF =,M 、N 分别是DE 、BF 的中点。

相关文档
最新文档