数字信号处理实验一信号、-系统及系统响应
数字信号处理实验报告
实验一 信号、系统及系统响应一、实验目的1、熟悉理想采样的性质,了解信号采样前后的频谱变化,加深对时域采样定理的理解。
2、熟悉离散信号和系统的时域特性。
3、熟悉线性卷积的计算编程方法:利用卷积的方法,观察、分析系统响应的时域特性。
4、掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对离散信号、系统及其系统响应进行频域分析。
二、 实验原理1.理想采样序列:对信号x a (t)=A e −αt sin(Ω0t )u(t)进行理想采样,可以得到一个理想的采样信号序列x a (t)=A e −αt sin(Ω0nT ),0≤n ≤50,其中A 为幅度因子,α是衰减因子,Ω0是频率,T 是采样周期。
2.对一个连续时间信号x a (t)进行理想采样可以表示为该信号与一个周期冲激脉冲的乘积,即x ̂a (t)= x a (t)M(t),其中x ̂a (t)是连续信号x a (t)的理想采样;M(t)是周期冲激M(t)=∑δ+∞−∞(t-nT)=1T ∑e jm Ωs t +∞−∞,其中T 为采样周期,Ωs =2π/T 是采样角频率。
信号理想采样的傅里叶变换为X ̂a (j Ω)=1T ∑X a +∞−∞[j(Ω−k Ωs )],由此式可知:信号理想采样后的频谱是原信号频谱的周期延拓,其延拓周期为Ωs =2π/T 。
根据时域采样定理,如果原信号是带限信号,且采样频率高于原信号最高频率分量的2倍,则采样以后不会发生频率混叠现象。
三、简明步骤产生理想采样信号序列x a (n),使A=444.128,α=50√2π,Ω0=50√2π。
(1) 首先选用采样频率为1000HZ ,T=1/1000,观察所得理想采样信号的幅频特性,在折叠频率以内和给定的理想幅频特性无明显差异,并做记录;(2) 改变采样频率为300HZ ,T=1/300,观察所得到的频谱特性曲线的变化,并做记录;(3) 进一步减小采样频率为200HZ ,T=1/200,观察频谱混淆现象是否明显存在,说明原因,并记录这时候的幅频特性曲线。
数字信号处理实验
数字信号处理实验实验一信号、系统及系统响应1、实验目的认真复习采样理论、离散信号与系统、线性卷积、序列的z 变换及性质等有关内容;掌握离散时间序列的产生与基本运算,理解离散时间系统的时域特性与差分方程的求解方法,掌握离散信号的绘图方法;熟悉序列的z 变换及性质,理解理想采样前后信号频谱的变化。
2、实验内容a. 产生长度为500 的在[0,1]之间均匀分布的随机序列,产生长度为500 的均值为0 单位方差的高斯分布序列。
b. 线性时不变系统单位脉冲响应为h(n)=(0.9)nu(n),当系统输入为x(n)=R10(n)时,求系统的零状态响应,并绘制波形图。
c. 描述系统的差分方程为:y(n)-y(n-1)+0.9y(n-2)=x(n),其中x(n)为激励,y(n)为响应。
计算并绘制n=20,30,40,50,60,70,80,90,100 时的系统单位脉冲响应h(n);计算并绘制n=20,30,40,50,60,70,80,90,100 时的系统单位阶跃响应s(n);由h(n)表征的这个系统是稳定系统吗?d. 序列x(n)=(0.8)nu(n),求DTFT[x(n)],并画出它幅度、相位,实部、虚部的波形图。
观察它是否具有周期性?e. 线性时不变系统的差分方程为y(n)=0.7y(n-1)+x(n),求系统的频率响应H(ejω),如果系统输入为x(n)=cos(0.05πn)u(n),求系统的稳态响应并绘图。
f. 设连续时间信号x(t)=e-1000|t|,计算并绘制它的傅立叶变换;如果用采样频率为每秒5000 样本对x(t)进行采样得到x1(n),计算并绘制X1(ejω),用x1(n)重建连续信号x(t),并对结果进行讨论;如果用采样频率为每秒1000 样本对x(t)进行采样得到x2(n),计算并绘制X2(ejω),用x2(n)重建连续信号x(t),并对结果进行讨论。
加深对采样定理的理解。
g. 设X1(z)=z+2+3z-1,X2(z)=2z2+4z+3+5z-1,用卷积方法计算X1(z)X2(z)。
《数字信号处理》实验报告
《数字信号处理》上机实验指导书一、引言“数字信号处理”是一门理论和实验密切结合的课程,为了深入地掌握课程内容,应当在学习理论的同时,做习题和上机实验。
上机实验不仅可以帮助学生深入地理解和消化基本理论,而且能锻炼初学者的独立解决问题的能力。
所以,根据本课程的重点要求编写了四个实验。
第一章、二章是全书的基础内容,抽样定理、时域离散系统的时域和频域分析以及系统对输入信号的响应是重要的基本内容。
由于第一、二章大部分内容已经在前期《信号与系统》课程中学习完,所以可通过实验一帮助学生温习以上重要内容,加深学生对“数字信号处理是通过对输入信号的一种运算达到处理目的” 这一重要概念的理解。
这样便可以使学生从《信号与系统》课程顺利的过渡到本课程的学习上来。
第三章、四章DFT、FFT是数字信号处理的重要数学工具,它有广泛的使用内容。
限于实验课时,仅采用实验二“用FFT对信号进行谱分析”这一实验。
通过该实验加深理解DFT的基本概念、基本性质。
FFT是它的快速算法,必须学会使用。
所以,学习完第三、四章后,可安排进行实验二。
数字滤波器的基本理论和设计方法是数字信号处理技术的重要内容。
学习这一部分时,应重点掌握IIR和FIR两种不同的数字滤波器的基本设计方法。
IIR滤波器的单位冲激响应是无限长的,设计方法是先设计模拟滤波器,然后再通过S~Z平面转换,求出相应的数字滤波器的系统函数。
这里的平面转换有两种方法,即冲激响应不变法和双线性变换法,后者没有频率混叠的缺点,且转换简单,是一种普遍应用的方法。
学习完第六章以后可以进行实验三。
FIR滤波器的单位冲激响应是有限长的,设计滤波器的目的即是求出符合要求的单位冲激响应。
窗函数法是一种基本的,也是一种重要的设计方法。
学习完第七章后可以进行实验四。
以上所提到的四个实验,可根据实验课时的多少恰当安排。
例如:实验一可根据学生在学习《信号与系统》课程后,掌握的程度来确定是否做此实验。
若时间紧,可以在实验三、四之中任做一个实验。
实验一信号系统及系统响应
a. ha(n)=R10(n); b. hb(n)=δ(n)+2.5δ(n-1)+2.5δ(n-2)+δ(n-3)
clc h1=[1,1,1,1,1,1,1,1,1,1,0,0,0,0,0]; subplot(221); stem(h1); h2]; subplot(222); =[1,2.5,2.5,1,0,0,0,0,0,0,0,0,0,0 stem(h2); t=0.001; n=1:15; A=10,a=2,w0=10*pi; x=A*exp(-a*t*n).*sin(w0*t*n); subplot(223); plot(n,x); subplot(224); stem(n,x); figure y1=conv(x,h1);%阶跃响应 subplot(121); stem(y1); y2=conv(x,h2);%冲激响应 subplot(122); stem(y2);
(t)的傅里叶变换
X a (jΩ)为 1 X ( j ) X [( j m ) ] a a s T m
^
(3)
将(2)式代入(1)式并进行傅里叶变换,
X a ( j)
^
[ xa (t ) (t nT )]e jt dt
n
n
xa (t ) (t nT )e jt dt
n
xa (nT )e jt dt
(4)
式中的xa(nT)就是采样后得到的序列x(n), 即
x ( n )x n T ) a(
x(n)的傅里叶变换为
n X ( e ) x ( ne ) j j n
数字信号处理实验报告99939
实验一:信号、系统及系统响应1. 实验目的① 熟悉连续信号经过理想抽样前后的频谱变化关系,加深对时域抽样定理的理解。
② 熟悉时域离散系统的时域特性。
③ 利用卷积方法观察分析系统的时域特性。
④ 掌握序列傅里叶变换的计算机实验方法,利用序列的傅里叶变换对连续信号、离散信号及系统响应进行频域分析。
2. 实验原理与方法(1)对一个连续信号x a (t)进行理想抽样的过程可用(1.1)式表示。
)(ˆt x a = )(t x a δT (t) ,其中)(ˆt xa 为x a (t)的理想抽样,δT (t)为周期冲激脉冲,即∑∞-∞=-=n T nT t t )()(δδ)(ˆt x a 的傅里叶变换)(ˆΩj X a 为)(ˆΩj X a= ∑∞-∞=Ω-Ωk s a k j X T )]([1 下面导出用序列的傅里叶变换来计算)(ˆΩj X a 的公式。
)(ˆΩj X a = ⎰∞∞-Ω-dt et x tj a )(ˆ = dt e nT t nT x t j n a Ω-∞∞-∞-∞=⎰∑⎥⎦⎤⎢⎣⎡-)()(δ=∑⎰∞-∞=∞∞-Ω-⎥⎦⎤⎢⎣⎡-n nTj adt nT t enT x)()(δ = ∑∞-∞=Ω-n nTj a enT x )( 式中的x a (nT)就是采样后得到的序列x(n),即x(n) = x a (nT) x(n)的序列傅里叶变换为X(e j ω) =∑∞-∞=-n nj en x ω)(为了在数字计算机上观察分析各种序列的频域特性,通常对X(e j ω)在[0,2π]上进行M 点采样来观察分析。
对长度为N 的有限长序列x(n),有∑-=-=1)()(N n n j j k ke n x eX ωω其中k Mk πω2=, k = 0,1, …, M-1,通常M 应取得大一些,以便观察谱的细节变化。
取模|)(k j e X ω|可绘出幅频待性曲线。
(2) 一个时域离散线性非移变系统的输入/输出关系为y(n) = x(n) * h(n) =∑∞-∞=-m m n h m x )()(上述卷积运算也可以在频域实现(即卷积定理:时域卷积,频域相乘。
数字信号处理上机实验答案(第三版,第十章)[自己整理完善的]
第十章 上机实验数字信号处理是一门理论和实际密切结合的课程,为深入掌握课程内容,最好在学习理论的同时,做习题和上机实验。
上机实验不仅可以帮助读者深入的理解和消化基本理论,而且能锻炼初学者的独立解决问题的能力。
本章在第二版的基础上编写了六个实验,前五个实验属基础理论实验,第六个属应用综合实验。
实验一 系统响应及系统稳定性。
实验二 时域采样与频域采样。
实验三 用FFT 对信号作频谱分析。
实验四 IIR 数字滤波器设计及软件实现。
实验五 FIR 数字滤波器设计与软件实现实验六 应用实验——数字信号处理在双音多频拨号系统中的应用任课教师根据教学进度,安排学生上机进行实验。
建议自学的读者在学习完第一章后作实验一;在学习完第三、四章后作实验二和实验三;实验四IIR 数字滤波器设计及软件实现在。
学习完第六章进行;实验五在学习完第七章后进行。
实验六综合实验在学习完第七章或者再后些进行;实验六为综合实验,在学习完本课程后再进行。
10.1 实验一: 系统响应及系统稳定性1.实验目的(1)掌握 求系统响应的方法。
(2)掌握时域离散系统的时域特性。
(3)分析、观察及检验系统的稳定性。
2.实验原理与方法在时域中,描写系统特性的方法是差分方程和单位脉冲响应,在频域可以用系统函数描述系统特性。
已知输入信号可以由差分方程、单位脉冲响应或系统函数求出系统对于该输入信号的响应,本实验仅在时域求解。
在计算机上适合用递推法求差分方程的解,最简单的方法是采用MA TLAB 语言的工具箱函数filter 函数。
也可以用MATLAB 语言的工具箱函数conv 函数计算输入信号和系统的单位脉冲响应的线性卷积,求出系统的响应。
系统的时域特性指的是系统的线性时不变性质、因果性和稳定性。
重点分析实验系统的稳定性,包括观察系统的暂态响应和稳定响应。
系统的稳定性是指对任意有界的输入信号,系统都能得到有界的系统响应。
或者系统的单位脉冲响应满足绝对可和的条件。
数字信号处理实验报告一二
数字信号处理课程实验报告实验一 离散时间信号和系统响应一. 实验目的1. 熟悉连续信号经理想采样前后的频谱变化关系,加深对时域采样定理的理解2. 掌握时域离散系统的时域特性3. 利用卷积方法观察分析系统的时域特性4. 掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对离散信号及系统响应进行频域分析二、实验原理1. 采样是连续信号数字化处理的第一个关键环节。
对采样过程的研究不仅可以了解采样前后信号时域和频域特性的变化以及信号信息不丢失的条件,而且可以加深对离散傅里叶变换、Z 变换和序列傅里叶变换之间关系式的理解。
对连续信号()a x t 以T 为采样间隔进行时域等间隔理想采样,形成采样信号: 式中()p t 为周期冲激脉冲,()a x t 为()a x t 的理想采样。
()a x t 的傅里叶变换为()a X j Ω:上式表明将连续信号()a x t 采样后其频谱将变为周期的,周期为Ωs=2π/T 。
也即采样信号的频谱()a X j Ω是原连续信号xa(t)的频谱Xa(jΩ)在频率轴上以Ωs 为周期,周期延拓而成的。
因此,若对连续信号()a x t 进行采样,要保证采样频率fs ≥2fm ,fm 为信号的最高频率,才可能由采样信号无失真地恢复出原模拟信号ˆ()()()a a xt x t p t =1()()*()21()n a a a s X j X j P j X j jn T π∞=-∞Ω=ΩΩ=Ω-Ω∑()()n P t t nT δ∞=-∞=-∑计算机实现时,利用计算机计算上式并不方便,因此我们利用采样序列的傅里叶变换来实现,即而()()j j n n X e x n e ωω∞-=-∞=∑为采样序列的傅里叶变换2. 时域中,描述系统特性的方法是差分方程和单位脉冲响应,频域中可用系统函数描述系统特性。
已知输入信号,可以由差分方程、单位脉冲响应或系统函数求出系统对于该输入信号的响应。
数字信号处理实验一
数字信号处理实验一实验目的:掌握利用Matlab产生各种离散时间信号,实现信号的相加、相乘及卷积运算实验函数:参考课本77-19页,注意式(2.11.1)的表达与各matlab子函数间的关系。
1、stem(x,y) % 绘制以x为横轴,y为纵轴的离散序列图形2、[h ,t] = impz(b, a) % 求解数字系统的冲激响应h,取样点数为缺省值[h, t] = impz(b, a, n) % 求解数字系统的冲激响应h,取样点数为nimpz(b, a) % 在当前窗口用stem(t, h)函数出图3、[h ,t] = dstep(b, a) % 求解数字系统的阶跃响应h,取样点数为缺省值[h, t] = dstep (b, a, n) % 求解数字系统的阶跃响应h,取样点数为ndstep (b, a) % 在当前窗口用stairs(t, h)函数出图4、y = filter(b,a,x) % 在已知系统差分方程或转移函数的情况下求系统输出实验原理:一、常用的时域离散信号及其程序1、产生单位抽样函数δ(n)n1 = -5;n2 = 5;n0 = 0;n = n1:n2;x = [n==n0]; % x在n=n0时为1,其余为0stem(n,x,'filled'); %filled:序列圆心处用实心圆表示axis([n1,n2,0,1.1*max(x)])title('单位抽样序列')xlabel('time(n)')ylabel('Amplitude:x(n)')2、产生单位阶跃序列u(n)n1 = -2;n2 = 8;n0 = 0;n = n1:n2;x = [n>=n0]; % x在n>=n0时为1,其余为0stem(n,x,'filled');axis([n1,n2,0,1.1*max(x)])title('单位阶跃序列')xlabel('time(n)')ylabel('Amplitude:x(n)')3、复指数序列复指数序列的表示式为()(),00,0j n e n x n n σω+⎧≥⎪=⎨<⎪⎩,当0ω=时,()x n 为实指数序列;当0σ=时,()x n 为虚指数序列,即()()cos sin j n e n j n ωωω=+,即其实部为余弦序列,虚部为正弦序列。
数字信号处理实验要点提示
实验报告思考题要点提示数字信号处理实验一:信号、系统及系统响应1、简述线性卷积结果y (n)的非零区间与x (n )、h (n )非零区间的关系?激励x (n )延时时输出如何变化?由线性移不变系统特性可知,当激励x (n )延时n 0时,输出y (n )也延时n 0。
2、 简述系统函数零极点分布与系统幅频特性间的对应关系。
(1) 位于原点处的零、极点对幅频特性没有影响,只影响相频特性。
(2) 极点位置主要影响幅频特性峰值的位置及尖锐程度,极点越靠近单位圆,所对应的峰值越尖锐。
(3) 零点位置主要影响幅频特性谷值的位置及形状,零点越靠近单位圆,谷值越小。
3、 y (n )=x (n )*h (n ),当输入x (n )有一时移时y (n )与)e (Y j ω有无变化,并说明为什么?由线性移不变系统特性可知,当激励x (n )延时n 0时,输出y (n )也延时n 0。
所以当输入x (n )有一时移时,y(n )也有同样的时移。
)()]([)()]([00ωωωj j e Y e n n y DTFT DTFT e Y n y DTFT n j -=-=的时移特性可知,由设,即时域位移,频域相移,所以幅频特性)e(Y j ω无变化。
数字信号处理实验二:信号的谱分析1、 描述随着DFT 变换点数N 的增加,X (k )的幅度谱的变化并解释原因。
随着DFT 变换点数N 的增加,X (k )的幅度谱序列间隔越来越密,其包络逐渐逼近x (n )的幅度谱)(ωj e X 。
这是因为M 点有限长序列x (n )的N 点DFT 是对有限长序列x (n )的频谱)(ωj e X 在频域0~2π区间内的N 点等间隔抽样。
即: k Nj e X n x DFT k X πωω2)()]([)(=== 因此变换点数越多,抽样间隔越小。
2、 用DFT 对连续非周期信号进行谱分析,试分析(1)采样点数足够多(即数据截断长度足够长)的情况下,采样频率对谱分析的影响;(2)采样频率足够高(即无明显的频域混叠现象)时,采样点数N (相应地时窗截断长度NT s )对谱分析的影响。
数字信号处理(第四版)(高西全)章 (10)
x(n) sin(0.014n) sin(0.4n)
第10章 上机实验
4. (1) 如果输入信号为无限长序列,系统的单位脉 冲响应是有限长序列,可否用线性卷积法求系统的响 应? (2) 如果信号经过低通滤波器,把信号的高频分 量滤掉,时域信号会有何变化? 用前面第一个实验结
第10章 上机实验
第10章 上机实验
2. 时域采样定理的要点是: ① 对模拟信号xa(t)以T进行时域等间隔理想采样, 形成的采样信号的频谱 Xˆ ( j会) 以采样角频率Ωs (Ωs=2π/T)为周期进行周期延拓。公式为
Xˆ a
(
j
)ห้องสมุดไป่ตู้
FT[ xˆa
(t)]
1 T
n
Xa
(
j
jns
)
第10章 上机实验
② 采样频率Ωs必须大于等于模拟信号最高频率的 两倍以上,才能使采样信号的频谱不产生频谱混叠。
第10章 上机实验
10.1 实验一: 系统响应及系统稳定性 1. (1) (2) (3)
第10章 上机实验
2. 在时域中,描写系统特性的方法是差分方程和单位脉冲 响应,在频域可以用系统函数描述系统特性。已知输入信号, 可以由差分方程、单位脉冲响应或系统函数求出系统对于该 输入信号的响应,本实验仅在时域求解。在计算机上适合用 递推法求差分方程的解,最简单的方法是采用MATLAB语言的 工具箱函数filter函数。也可以用MATLAB语言的工具箱函数 conv函数计算输入信号和系统的单位脉冲响应的线性卷积,
第10章 上机实验 3. (1) 编制程序,包括产生输入信号、单位脉冲响应序 列的子程序,用filter函数或conv函数求解系统输出响应的
数字信号处理实验一——信号、系统及系统响应
二、 离散信号分析
Discrete time, continuous frequency —— the DiscreteTime Fourier transform(DTFT)
X (e )
j
n
x(n)e jn
1 x ( n) 2
X (e j )e j n d
X ( j) x(t )e jt dt
1 x(t ) 2
X ( j)e jt d
Dt=0.0005; t=0:Dt:0.5; x=exp(-10*t);
%x(t)=exp(-10*t)的产生
%Continuous-time Fourier Transform Wmax=2*pi*200; %角频率W最大值,即频谱 函数自变量的范围 K=500; k=-K:1:K; W=k*Wmax/K; % W为角频 率取值数组 X=x*exp(-j*t'*W)*Dt; %连傅里叶变换定义 X=abs(X); % 取绝对值
三、系统响应分析
实验报告要求:
实验报告格式要求: (1)用A4纸打印,在上方装订; ( 2 )正文字体:宋体;字号:小四;行 距:20磅。 ( 3 )封面应包含:①实验名称②班级、 学号、姓名。
内容要求
(1) 简述实验目的及实验原理。 (2) 按实验要求附上实验过程中编制的MATLAB源程序 (对所编程序中的关键语句进行解释,每一程序中的 解释语句不得少于6条) 。 (3) 附上运行结果图:实验中涉及的所有信号序列的时 域和幅频特性曲线,并对所得结果进行分析和解释。 (4) 结合所学理论知识总结实验中的主要结论。
实验一 数字信号处理
实验一系统响应及系统稳定性一、实验目的(1)掌握求系统响应的方法。
(2)掌握时域离散系统的时域特性。
(3)分析、观察及检验系统的稳定性。
二实验内容及步骤1、给定一个低通滤波器的差分方程为y(n)=0.05x(n)+0.05x(n-1)+0.9y(n-1),输入信号x1(n)=R8(n)x2(n)=u(n)a)分别求出系统对x1(n)=R8(n)和x2(n)=u(n)的响应序列,并画出其波形。
b)求出系统的单位冲响应,画出其波形。
xn1=[1 1 1 1 1 1 1 1 zeros(1,50)];xn2=ones(1,128);xn3=[1,zeros(1,50)];B=[0.05,0.05];A=[1,-0.9];yn1=filter(B,A,xn1);yn2=filter(B,A,xn2);yn3=filter(B,A,xn3);figure(1);n1=0:length(yn1)-1;subplot(2,2,1);stem(n1,yn1,'.');xlabel('n');ylabel('yn1');title('yn1');n2=0:length(yn2)-1;subplot(2,2,2);stem(n2,yn2,'.');xlabel('n');ylabel('yn2');title('yn2');n3=0:length(yn3)-1;subplot(2,2,3);stem(n3,yn3,'.');xlabel('n');ylabel('yn3');title('yn3');2、给定系统的单位脉冲响应为h1(n)=R10(n),h2(n)=δ(n)+2.5δ(n-1)+δ(n-2)+δ(n-3)用线性卷积法分别求系统h1(n)和h2(n)对x1(n)=R8(n)的输出响应,并画出波形。
数字信号处理实验讲义
实验一 离散信号与系统S1 信号、系统及系统响应 1、实验目的(1)掌握几种基本典型数字信号在Matlab 中的实现。
(2)掌握序列的基本操作。
(3)熟悉时域离散系统的基本特征。
(4)利用卷积求线性时不变系统的输出序列。
2、实验器材PC 机;MATLAB 语言环境3、实验原理在数字信号处理中,所有的信号都是离散(时间)信号,数字信号是通过对模拟信号进行取样得到的。
图1-1是模拟信号数字化处理的简化框图。
模拟信号先转换成数字信号,经过一定的处理之后,再还原成模拟信号输出。
图1-1对模拟信号x(t)进行采样得到的信号为()t x a ^,其中:()()()t p t x t x a a =^;()()∑∞-∞=-=m nT t t p δ令:()()⎥⎦⎤⎢⎣⎡=Ω^^t x FT j X a a ;()()[]t x FT j X a a =Ω采样定理——采样与重构(1)对连续信号进行等间隔采用形成采样信号,采样信号的频谱是原连续信号的频谱以采样频率为周期进行周期延拓形成的,满足公式(1-1):()()s k a a jk j X T j X Ω-Ω=Ω∑∞-∞=1^(1-1)(2)设连续信号()t x a 为带限信号,其最高截止频率为c Ω,如果采样角频率c s Ω≥Ω2,那么让采样信号()t x a ^通过一个增益为T ,截止频率为2sΩ的理想低通滤波器,可以唯一的恢复出连续信号()t x a ,否则将发生频谱混叠,导致信号失真。
在线性时不变系统中,若系统的输入为x(n),系统的单位脉冲响应为h(n),则系统的输出为:∑∞-∞=-=*=m m n h m x n h n x n y )()()()()(;其对应的频域特性为:()()()jwjwjwe H e X e Y =。
为了在数字计算机上观察分析各种序列的频域特性,通常对()jwe X 在[]π2,0上进行M 点采样来观察分析。
对长度为N 的有限长序列x(n),有:()()∑-=-=10N n njw jwkk em x eX ,其中kM w k π2=,k=0,1,…,M-1通常M 应取大一些,以便观察谱的细节变化。
数字信号处理实验——信号系统及系统响应
实验一信号、系统及系统响应一、实验目的1、熟悉理想采样的性质,了解信号采样前后的频谱变化,加深对采样定理的理解。
2、熟悉离散信号和系统的时域特性。
3、熟悉线性卷积的计算编程方法,利用卷积的方法,观察、分析系统响应的时域特性。
4、掌握序列傅式变换的计算机实现方法,利用序列傅式变换对离散信号、系统及系统响应进行频域分析。
二、实验原理(一)连续时间信号的采样对一个连续时间信号进行理想采样的过程可以表示为该信号的一个周期冲激脉冲的乘积,即x a^(t)=x a(t)M(t)其中x a^(t)是连续信号x a(t)的理想采样,M(t)是周期冲激脉冲δ(t-nT)M(t)=∑+∞-∞(二)有限长序列分析对于长度为N的有限长序列x(n)={f(n),0≤n≤N-10, 其他n一般只需要在0—2π之间均匀地取M个频率点,计算这些点上的序列傅里叶变x(n)e-jWkn w k=2kπ/M,k=0,1……。
换 X(e jWk)=∑+∞-∞(三)信号卷积一个线性时不变离散系统的响应y(n)可以用它的单位冲激响应h(n)和输入信号x(n)的卷积来表示:y(n)=x(n)*h(n)=∑x(m)h(n-m)根据傅里叶变换和Z变换的性质得Y(z)=X(z)H(z)Y(e jw)=X(e jw)H(e jw)卷积运算可以在频域用乘积实现。
三、实验内容及步骤1、分析理想采样信号序列的特性1.产生理想采样信号(采样频率为1000HZ)>> n=0:50;A=444.128;>> a=50*sqrt(2.0)*pi;T=0.001;>> w0=50*sqrt(2.0)*pi;>> subplot(1,1,1);stem(n,x);title('理想采样信号序列');2.产生理想采样信号序列的幅度谱和相位谱(采样频率为1000HZ) >> k=-25:25;W=(pi/12.5)*k;>> f=(1/25)*k*1000;>> X=x*(exp(-j*pi/12.5)).^(n'*k);>> magX=abs(X);>> subplot(2,1,1);stem(f,magX);title('理想采样信号序列的幅度谱'); >> angX=angle(X);>> subplot(2,1,2);stem(f,angX);title('理想采样信号序列的相位谱');3.产生理想采样信号序列(采样频率为300HZ)>> n=0:50;A=444.128;>> a=50*sqrt(2.0)*pi;T=1/300;>> w0=50*sqrt(2.0)*pi;>> subplot(1,1,1);stem(n,x);title('理想采样信号序列');4.产生理想采样信号序列的幅度谱和相位谱(采样频率为300HZ)>> k=-25:25;W=(pi/12.5)*k;>> f=(1/25)*k*300;>> X=x*(exp(-j*pi/12.5)).^(n'*k);>> magX=abs(X);>> subplot(2,1,1);stem(f,magX);title('理想采样信号序列的幅度谱'); >> angX=angle(X);>> subplot(2,1,2);stem(f,angX);title('理想采样信号序列的相位谱');5.产生理想采样信号序列(采样频率为200HZ)>> n=0:50;A=444.128;>> a=50*sqrt(2.0)*pi;T=1/200;>> w0=50*sqrt(2.0)*pi;>> x=A*exp(-a*n*T).*sin(w0*n*T);>> subplot(1,1,1);stem(n,x);title('理想采样信号序列');6.产生理想采样信号序列的幅度谱和相位谱(采样频率为200HZ)>> k=-25:25;W=(pi/12.5)*k;>> f=(1/25)*k*200;>> X=x*(exp(-j*pi/12.5)).^(n'*k);>> magX=abs(X);>> subplot(2,1,1);stem(f,magX);title('理想采样信号序列的幅度谱');>> angX=angle(X);>> subplot(2,1,2);stem(f,angX);title('理想采样信号序列的相位谱');分析实验结果:采样频率为200HZ时产生了频谱混淆现象,产生这种现象的原因是采样频率小于两倍的信号频率最大上限。
数字信号处理实验与课程设计教程
数字信号处理实验与课程设计教程实验一戴虹编班级:15通信A1姓名:马佳音学号:20154820112工学部计算机与信息工程学院2015年12月实验一信号、系统及系统响应一、实验目的1.掌握典型序列的产生方法。
2.掌握DFT的实现方法,利用DFT对信号进行频域分析。
3.熟悉连续信号经采样前后频谱的变化,加深对时域采样定理的理解。
4.分别利用卷积和DFT分析信号及系统的时域和频域特性,验证时域卷积定理。
二、实验环境1.Windows2000操作系统2.MATLAB6.0三、实验原理1.信号采样对连续信号x a(t)=Ae-at sin(Ω0t)u(t)进行采样,采样周期为T,采样点0≤n<50,得采样序列x a(n)= Ae-at sin(Ω0nT)δ(t-nT) 。
2.离散傅里叶变换(DFT)设序列为x(n),长度为N,则X(ej ωk)=DFT[x(n)]=∑-=10N n x(n) e -jωkn,其中ωk =k Mπ2(k=0,1,2,…,M-1),通常M>N,以便观察频谱的细节。
|X(e j ωk )|----x(n)的幅频谱。
4.连续信号采样前后频谱的变化^X a (j Ω)=)]([s m a m j X T 1Ω-Ω∑∞-∞=即采样信号的频谱^X a (j Ω)是原连续信号x a (t)的频谱X a (j Ω)沿频率轴,以周期 Ωs 重复出现,幅度为原来的 1/T 倍。
5. 采样定理由采样信号无失真地恢复原连续信号的条件,即采样定理为:模拟信号经过变换转换为数字信号进行采样,信号采样后其频谱产生了周期延拓,每隔一个采样频率fs ,重复出现一次,由此采样信号无失真地恢复原连续信号。
6.时域卷积定理设离散线性时不变系统输入信号为x(n),单位脉冲响应为h(n),则输出信号y(n)= x(n)*h(n) ;由时域卷积定理,在频域中,Y(e j ω)=FT[y(n)]= FT[x(n)]FT[h(n)] 。
数字信号处理实验指导书
《数字信号处理》实验指导书王莉南京工业大学自动化与电气工程学院2008-04-17目录实验一信号、系统及系统响应 (3)实验二用双线性变换法设计IIR数字滤波器 (6)实验三用窗函数法设计FIR数字滤波器 (10)附录 MATLAB信号处理工具箱函数 (14)实验一 信号、系统及系统响应一.实验目的1. 熟悉时域离散系统的时域特性。
2. 验证时域的卷积定理。
3. 掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对离散信号及系统响应进行频域分析。
二.实验内容1. 观察信号()a x n 和系统()h n 的时域和频域特性,并绘出相应的曲线。
①单位脉冲序列:()(a x n n δ=;②系统单位脉冲响应序列:()() 2.5(1) 2.5(2)(3)h n n n n n δδδδ=+-+-+-。
2. 利用线性卷积求信号()a x n 通过系统()h n 的响应()a y n ,比较所求响应()a y n 和()h n 的时域及频域特性,注意它们之间有无差别,绘图说明,并用所学理论解释所得结果。
3. 卷积定理的验证。
将2中的信号换成0()()sin()()anT b b x n x nT Ae nT u n -==Ω,使a=0.4,0Ω=2.0734,A=1,T=1,重复实验2,求出()b y n ,绘出其频率特性()j b Y e ω曲线;利用公式()()()j j j b Y e X e H e ωωω=,并绘出()j Y e ω的幅频和相频特性曲线,与前面直接对()b y n 进行傅里叶变换所得频率特性曲线进行比较,验证时域卷积定理。
三.实验设备及仪器1. 计算机。
2. Matlab 软件。
四. 实验线路及原理离散信号和系统在时域均可用序列来表示。
序列图形给人以形象直观的印象,它可加深我们对信号和系统的时域特征的理解。
本实验将观察分析几种信号及系统的时域特性。
序列和信号的傅立叶变换是ω的连续函数,而计算机只能计算出有限个离散频率点的函数值。
《数字信号处理》实验指导书
的相角, Ai 就是极点 pi 到单位圆上的点 e jω 的矢量长度(距离),而θ i 就是该矢量 的相角,因此有:
M
∏ B e j(ψ1 +ψ 2 +⋅⋅⋅⋅+ψ M ) j
H (e jω ) =
j =1 N
= H (e jω ) e jϕ (ω )
∏ A e j(θ1+θ2 +⋅⋅⋅⋅+θ N ) i
(1) 设有直流信号 g(t)=1,现对它进行均匀取样,形成序列 g(n)=1。试讨 论若对该序列分别作加窗、补零,信号频谱结构有何变化。 四、实验过程及结果(含程序)
12
13
14
15
16
实验三 IIR 数字滤波器的设计
一、实验目的 (1)掌握双线性变换法及脉冲相应不变法设计 IIR 数字滤波器的具体设计 方法及其原理,熟悉用双线性变换法及脉冲响应不变法设计低通、高通和 带通 IIR 数字滤波器的计算机编程。 (2)观察双线性变换及脉冲响应不变法设计的滤波器的频域特性,了解双 线性变换法及脉冲响应不变法的特点。 (3)熟悉 Butterworth 滤波器、Chebyshev 滤波器和椭圆滤波器的频率特 性
《数字信号处理》
实验指导书
班级: 学号: 姓名: 苏州科技学院 电子教研室
实验一 信号、系统及系统响应
一、实验目的
(1) 熟悉 MATLAB 平台的使用,掌握离散信号、离散系统的 MATLAB 实现。 (2)掌握根据系统函数绘制系统零极点分布图的基本原理和方法。 (3)理解离散系统频率特性分析的基本原理,掌握根据系统函数零极点分布来分 析离散系统频率响应的几何矢量法。
17
变换类型 低通
Байду номын сангаас
数字信号处理实验报告
实验报告课程名称:数字信号处理授课班级:学号:姓名:指导老师:实验一离散时间信号及系统的时域分析实验类别:基础性实验1实验目的:(1)了解MA TLAB 程序设计语言的基本特点,熟悉MA TLAB软件运行环境。
(2)熟悉MA TLAB中产生信号和绘制信号的基本命令,学会用MA TLAB在时域中产生一些基本的离散时间信号,并对这些信号进行一些基本的运算。
(3)通过MA TLAB仿真一些简单的离散时间系统,并研究它们的时域特性。
(4)通过MA TLAB进行卷积运算,利用卷积方法观察分析系统的时域特性。
2. 实验报告要求●简述实验原理及目的。
●结合实验中所得给定典型序列幅频特性曲线,与理论结果比较,并分析说明误差产生的原因以及用FFT作谱分析时有关参数的选择方法。
●记录调试运行情况及所遇问题的解决方法。
3.实验内容:思考题:9.2.1 运行程序P9.2.1,哪个参数控制该序列的增长或衰减:哪个参数控制该序列的振幅?若需产生实指数序列,应对程序作何修改?9.2.2运行程序P9.2.1,该序列的频率是多少?怎样改变它?哪个参数控制该序列的相位?哪个参数可以控制该序列的振幅?该序列的周期是多少?9.2.3 运行程序P9.2.3,对加权输入得到的y(n)与在相同权系数下输出y1(n)和y2(n)相加得到的yt(n)进行比较,这两个序列是否相等?该系统是线性系统吗?9.2.4 假定另一个系统为y(n)=x(n)x(n-1)修改程序,计算这个系统的输出序列y1(n),y2(n)和y(n)。
比较有y(n)和yt(n)。
这两个序列是否相等?该系统是线性系统吗?(提高部分)9.2.5运行程序P9.2.4,并比较输出序列y(n)和yd(n-10)。
这两个序列之间有什么关系?该系统是时不变系统吗?9.2.6 考虑另一个系统:修改程序,以仿真上面的系统并确定该系统是否为时不变系统。
(选做)n = 0:40; D = 10;a = 3.0;b = -2;x = a*cos(2*pi*0.1*n) + b*cos(2*pi*0.4*n);[x1,n1]=sigmult(n,n,x,n)[x2,n2]=sigshift(x,n,1)[y,ny1]= sigadd(x1,n1,x2,n2)[y1,ny11]= sigshift(y,ny1,D)[sx,sn]= sigshift(x,n,D)[sx1,sn1]=sigmult(n,n, sx,sn)[sx2,sn2]=sigshift(sx,sn,1)[y2,ny2]= sigadd(sx1,sn1,sx2,sn2)D= sigadd(y1,ny11,y2,ny22)六、实验心得体会:实验时间批阅老师实验成绩实验二 FFT 实现数字滤波实验类别:提高性实验 1.实验目的(1) 通过这一实验,加深理解FFT 在实现数字滤波(或快速卷积)中的重要作用,更好的利用FFT 进行数字信号处理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数字信号处理实验一信号、-系统及系统响应西安郵電學院数字信号处理课内实验报告书系部名称:计算机系学生姓名:常成娟专业名称:电子信息科学与技术班级:电科0603学号:04062095(22号)时间: 2008-11-23实验一: 信号、 系统及系统响应一. 实验目的(1) 熟悉连续信号经理想采样前后的频谱变化关系, 加深对时域采样定理的理解。
(2) 熟悉时域离散系统的时域特性。
(3) 利用卷积方法观察分析系统的时域特性。
(4) 掌握序列傅里叶变换的计算机实现方法, 利用序列的傅里叶变换对连续信号、 离散信号及系统响应进行频域分析。
二. 实验原理与方法采样是连续信号数字处理的第一个关键环节。
对一个连续信号xa(t)进行理想采样的过程可用(10.3.1)式表示。
(10.3.1)其中 (t)为xa(t)的理想采样, p(t)为周期冲激脉冲, 即(10.3.2)(t)的傅里叶变换 (j Ω)为 (10.3.3)将(10.3.2)式代入(10.3.1)式并进行傅里叶变换,(10.3.4)式中的xa(nT)就是采样后得到的序列x(n), 即x(n)的傅里叶变换为 (10.3.5)比较(10.3.5)和(10.3.4)可知^()()()a a x t x t p t =^x()()n p t t nT δ∞=-∞=-∑^x ^a X 1()[()]a a s m X j X j m T ∞⋅=-∞Ω=Ω-Ω∑^()[()()]()()()j t a a n j t a n j t a n X j x t t nT e dtx t t nT e dtx nT e dt δδ∞∞-Ω-∞=-∞∞∞-Ω-∞=-∞∞-Ω=-∞Ω=-=-=∑⎰∑⎰∑()()a x n x nT =()()j j nn X e x n e ωω∞-=-∞=∑(10.3.6)在数字计算机上观察分析各种序列的频域特性,通常对X(ej ω)在[0, 2π]上进行M 点采样来观察分析。
对长度为N 的有限长序列x(n), 有 (10.3.7)其中一个时域离散线性非移变系统的输入/输出关系为(10.3.8)上述卷积运算也可以在频域实现^()()j a TX j X e ωω=ΩΩ=10()()2,0,1,,1k N j nj k n k X e x m e k k M Mωωπω--====⋅⋅⋅-∑()()()()()m y n x n h n x m h n m ∞=-∞=*=-∑()()()j j j Y e X e H e ωωω=开始调用信号产生子程序,产生信号序列x (n )调用序列傅氏变换数值计算子程序,求X (e )两次调用绘图子程序,分别绘制x (n ),X (e ) 图形j ω改变信号序列否?调用系统单位脉冲响应序列产生子程序,求h (n )调用傅氏变换数值计算子程序,求H (e )j ω两次调用绘图子程序,分别绘制h (n ),H (e ) 图形j ω改变h (n )否?调用卷积子程序,求y (n )=x (n )*h (n )调用傅氏变换数值计算子程序,求Y (e k )jω两次调用绘图子程序,分别绘制y (n ),Y (e k) 图形jω结束YY NN kkk j ωk10.80.60.40.200100200300400500x a (j f )f /Hz图10.3.1 实验一的主程序框图三. 实验内容及步骤 (1) 认真复习采样理论、 离散信号与系统、 线性卷积、 序列的傅里叶变换及性质等有关内容,阅读本实验原理与方法。
(2) 编制实验用主程序及相应子程序。
① 信号产生子程序, 用于产生实验中要用到的下列信号序列: xa(t)=Ae -atsin(Ω0t)u(t) 进行采样, 可得到采样序列xa(n)=xa(nT)=Ae -anT sin(Ω0nT)u(n), 0≤n<50 其中A 为幅度因子, a 为衰减因子, Ω0是模拟角频率,T 为采样间隔。
这些参数都要在实验过程中由键盘输入, 图10.3.2 xa(t)的幅频特性曲线产生不同的xa(t)和xa(n)。
b. 单位脉冲序列: xb(n)=δ(n)c. 矩形序列: xc(n)=RN(n), N=10② 系统单位脉冲响应序列产生子程序。
本实验要用到两种FIR 系统。
a. ha(n)=R10(n);b. hb(n)=δ(n)+2.5δ(n-1)+2.5δ(n-2)+δ(n-3)③ 有限长序列线性卷积子程序, 用于完成两个给定长度的序列的卷积。
可以直接调用MATLAB 语言中的卷积函数conv 。
conv 用于两个有限长度序列的卷积, 它假定两个序列都从n=0 开始。
调用格式如下: y=conv (x, h)(3) 调通并运行实验程序, 完成下述实验内容: ① 分析采样序列的特性。
a. 取采样频率fs=1 kHz, 即T=1 ms 。
b. 改变采样频率, fs=300 Hz , 观察|X(ej ω)|的变化, 并做记录(打印曲线); 进一步降低采样频率, fs=200 Hz , 观察频谱混叠是否明显存在, 说明原因, 并记录(打印)这时的|X(ej ω)|曲线。
源程序: A=444.128;a=50*sqrt(2)*pi; w=50*sqrt(2)*pi; n=0:49; fs=1000;x=A*exp((-a)*n/fs).*sin(w*n/fs); k=-200:200; w=(pi/100)*k;y=x*(exp(-j*pi/100)).^(n'*k);%y=fft(x)subplot(1,2,1);stem(n,x);axis([0,50,-50,150]);xlabel('n');ylabel('Xa(n)');title('fs=1000');subplot(1,2,2);plot(w/pi,abs(y))axis([-2,2,0,1000]);xlabel('w/pi');ylabel('/Xa(ejw)/');A=444.128;a=50*sqrt(2)*pi;w=50*sqrt(2)*pi;n=0:49;fs=500;x=A*exp((-a)*n/fs).*sin(w*n/fs); k=-200:200;w=(pi/100)*k;y=x*(exp(-j*pi/100)).^(n'*k);%y=fft(x)subplot(1,2,1);stem(n,x);axis([0,50,-50,150]);xlabel('n');ylabel('Xa(n)');title('fs=500');subplot(1,2,2);plot(w/pi,abs(y))axis([-2,2,0,500]);xlabel('w/pi');ylabel('/Xa(ejw)/');A=444.128;a=50*sqrt(2)*pi;w=50*sqrt(2)*pi;n=0:49;fs=200;x=A*exp((-a)*n/fs).*sin(w*n/fs);k=-200:200;w=(pi/100)*k;y=x*(exp(-j*pi/100)).^(n'*k);%y=fft(x)subplot(1,2,1);stem(n,x);axis([0,50,-50,150]);xlabel('n');ylabel('Xa(n)');title('fs=200');subplot(1,2,2);plot(w/pi,abs(y))axis([-2,2,80,180]);xlabel('w/pi');ylabel('/Xa(ejw)/');结果分析:时域采样定理要求采样频率大于折叠频率fs/2=500Hz,频谱才不至于出现混叠。
从仿真图中可以看出当fs=200Hz时,频谱出现严重失真(出现混叠);而当fs=1000Hz时,频谱没有失真;fs=500Hz时,频谱刚好处于临界状态。
②时域离散信号、系统和系统响应分析。
a. 观察信号xb(n)和系统hb(n)的时域和频域特性;利用线性卷积求信号xb(n)通过系统hb(n)的响应y(n),比较所求响应y(n)和hb(n)的时域及频域特性,注意它们之间有无差别,绘图说明,并用所学理论解释所得结果。
原程序:函数调用部分:function[x,n]=impesq(n0,n1,n2)n=[n1:n2];x=[(n-n0)==0];n=0:3;xb=impesq(0,0,3);Hb=impesq(0,0,3)+2.5*impesq(1,0,3)+2.5*impesq(2,0,3)+impesq(3,0,3); k=-200:200;w=(pi/100)*kaa=xb*(exp(-j*pi/100)).^(n'*k);bb=Hb*(exp(-j*pi/100)).^(n'*k);n=0:3subplot(3,2,1);stem(n,xb);axis([-2 2 0 2]);xlabel('n');ylabel('xb(n)');title('xb(n)');subplot(3,2,2);plot(w/pi,abs(aa));axis([-2 2 0 2]);xlabel('w/pi');ylabel('xb(|(jw)|');title('[xb(ejw)]');subplot(3,2,3);stem(n,Hb);axis([0 4 0 3]);xlabel('n');ylabel('Hb');title('Hb(n)');subplot(3,2,4);plot(w/pi,abs(bb));axis([-2 2 0 8]);xlabel('w/pi');ylabel('Hb(|(jw)|');title('[Hb(ejw)]');n=0:6y=conv(xb,Hb);yy=y*(exp(-j*pi/100)).^(n'*k);subplot(3,2,5);stem(n,y);axis([0 7 0 3]);xlabel('n');ylabel('y(n)');title('xb*Hb');subplot(3,2,6);plot(w/pi,abs(yy));axis([-2 2 0 8]);xlabel('w/pi');ylabel('|Y(jw)|');title('[Y(ejw)]');结果分析:单位冲击序列和任意序列卷积等于任意序列,从仿真图中可以直接看出卷积后的频谱Y/(ejw)/和任意序列的频谱Hb/(ejw)/相同。