办公楼中央空调系统变频节能改造方案

合集下载

中央空调节能分析与改造中央空调节能改造方案

中央空调节能分析与改造中央空调节能改造方案

中央空调节能分析与改造中央空调节能改造方案随着国民经济的快速发展,能源问题日益严峻,建筑节能成为当今建筑设计首先考虑的因素之一。

中央空调是现代高层建筑中必不可少的设备之一,据统计中央空调的耗能平均占到建筑物总耗能的65%左右,而中央空调系统都是按最大负载并增加一定余量设计,实际运行中,满负荷运行不多,大部分时间都在70%负载以下运行。

虽中央空调系统中制冷机组能随气温变化自动变频运行,但与之相匹配的冷冻泵、冷却泵却没有自动调节负载,几乎长期在100%负载下运行,造成了能量的极大浪费,因此利用变频器自动调节水泵的输出流量,已成为众多的空调系统节能设计中应用最为广泛的一种,成为最有用的节能技术。

2原系统简介丰泽大厦共15层,其中央空调系统改造前的主要设备和控制方式如下:制冷系统:双效蒸汽型溴化锂机组(型号SXB6-93DH2M)1台;冷冻水泵(型号ISC100-160)2台、扬程67m;冷却水泵(型号ISC125-125)2台,扬程37m;均采用一用一备的方式运行。

冷却塔(型号NC*****)1台,配备5.5kW风扇电机2台。

3原系统的运行及存在问题丰泽大厦是我公司对外租售的办公大楼,各种配套设施齐全,对环境的舒适度要求很高。

因此,中央空调的投入使用必不可少,每年的5-10月份每天都必须供应冷气。

由于中央空调系统的制冷机组可以根据负载变化随之变频运行,但冷冻泵、冷却泵不能随负载变化作出相应的调节。

这样,水循环系统长期在大流量的状态下运行,造成了能量的极大浪费。

特别是在某些末端设备温控稍有失灵或灵敏度不高时,将会导致大面积空调室温偏冷,严重干扰中央空调系统的运行质量。

水泵电机启动电流一般为其额定电流的3~4倍,长期这样运行使得接触器使用寿命大为下降;且启泵时的机械冲击和停泵时的水锤现象,对机械器件、轴承、阀门和管道等造成破坏,增加维修费用成本。

4节能改造的可行性分析针对上述问题,我们利用变频器的运行原理进行理论分析。

节能改造方案 - 空调

节能改造方案 - 空调

中央空调变频节能的改造方案1随着我国国民经济的不断发展,人民生活水平的不断提高,中央空调已进入宾馆、饭店、工矿企业、办公楼等各领域。

常规中央空调系统是按照最大冷热负荷进行选型设计。

而全年最热及最冷的天气只有几天,因而中央空调大多数时间是在低于机组额定负荷即部分负荷状态下运行,造成了电能极大的浪费,随着科技的发展,变频器已广泛应用于各行各业,其价格便宜,技术成熟,特别是对风机、水泵的节能改造目前已在工业领域中广泛推广,其平均节电在30%以上。

一、中央空调节能最佳方法由于中央空调主要设备是风机水泵,所以节能最佳方法就是采用变频器。

目前大多数中间空调还采用以往旧的控制方式,即:通过改变压缩机机组、水泵、风机启停台数,以达到调节温度的目的。

该调节方式缺点集中表现为如下几点:●设备长时间全开或全闭,轮流运行,浪费电能惊人。

●电机直接工频启动,冲击电流大,严重影响设备使用寿命。

●温控效果不佳。

当环境或冷热负荷发生变化时,只能通过增减冷热水泵的数量或使用挡风板来调节室内温度,温度波动大,舒适感差.中央空调采用变频器后有如下优点:●变频器可软启动电机,大大减小冲击电流,降低电机轴承磨损,延长轴承寿命。

●调节水泵风机流量、压力可直接通过更改变频器的运行频率来完成,可减少或取消挡板、阀门。

●系统耗电大大下降,噪声减小。

●若采用温度闭环控制方式,系统可通过检测环境温度,自动调节风量,随天气、热负荷的变化自动调节,温度变化小,调节迅速.●系统可通过现场总线与中央控制室联网,实现集中远程监控。

二、供水系统变频节能改造无论是溴化锂机组或电制冷(氟利昂)机组的中央空调系统,主机自身的能量消耗有机组控制,机外的电力消耗组不能控制,而这部分的成本是相当高的,却通常被人忽视了.尤其是溴化锂机组,在额定状态制冷运用行时,机外水泵、冷却塔的电机耗电量约占总体能源消耗成本的30%(以每公斤油2元、每度电1元计算)。

无论从环境保护角度还是用户切身利益角度,都应将中央空调系统设计成最节能的系统.采用变频器来控制机外水泵电机、冷却塔电机是最简单、最有效的节能措施。

中央空调系统变频节能改造方案

中央空调系统变频节能改造方案

中央空调系统变频节能改造方案目录1中央空调变频节能方案介绍.。

.。

..。

...。

...。

.。

..。

.。

.。

...。

.。

.。

..。

21。

1 变频节能原理。

..。

.。

..。

..。

.。

.。

....。

.。

...。

.。

..。

...。

.。

.。

..2 1。

2 中央空调节能空间。

....。

..。

......。

.。

..。

.。

.。

..。

.......。

31.2.1 设计余量。

.。

.。

...。

..。

.。

..。

.。

.。

..。

.。

.。

..。

.。

..3 1.2.2 末端的负荷变化。

.。

.。

.。

...。

.。

.。

..。

.。

..。

..。

.。

.。

.3 1.2.3 水泵和风机定流量控制方式。

.......。

.。

...。

.。

.。

.。

. (3)2中央空调水泵变频控制。

..。

.。

.。

..。

.。

..。

....。

......。

.。

.。

.。

...。

..。

42。

1 冷冻泵、冷却泵主回路设计.。

...。

.。

.。

.。

.。

.。

.。

.。

.。

...。

.4 2。

2 冷冻水泵控制电路设计.。

.。

.。

..。

.。

.。

..。

..。

.。

.。

...。

.。

.。

(5)2。

3 冷却水泵控制电路设计。

...。

....。

.。

...。

.。

...。

.。

..。

.。

.。

.。

.5 3中央空调末端风柜变频控制.。

..。

..。

.。

..。

.。

......。

...。

.。

....。

...。

.6 3.1 风机变频主回路设计...。

.。

.。

....。

.。

.。

...。

....。

.。

.。

.。

.。

.。

....。

63。

2 风柜变频控制电路设计。

..。

..。

...。

.。

.。

...。

..。

.....。

.。

...。

..。

63.3 风柜节能改造前后比较.。

.......。

.。

.。

..。

...。

.。

.。

.....。

..。

..。

74节能设备选型。

..。

.。

.。

...。

..。

.。

..。

.。

.。

.。

..。

.。

.。

...。

84.1 变频器的选用。

..。

..。

..。

...。

.。

.。

.。

........。

.。

.........。

.。

办公楼中央空调改造方案

办公楼中央空调改造方案

办公楼中央空调改造方案随着城市的发展和人们生活水平的提高,办公楼已经成为现代都市中不可或缺的一部分。

然而,随着时间的推移,许多办公楼的中央空调系统开始显露出一些问题,例如能耗高、维护困难、使用寿命短等等。

因此,对于存在问题的中央空调系统进行改造已成为一个不可推卸的任务。

本文将介绍一种新型的办公楼中央空调改造方案,以期解决上述问题并提高办公楼的舒适度和能效。

首先,我们可以考虑使用节能型中央空调设备来替代旧型设备。

这些节能型设备利用先进的技术,比如变频控制、高效压缩机等,可以显著降低能耗。

此外,这些设备还具有更长的使用寿命,减少了维护和更换的频率。

其次,我们可以考虑引入智能控制系统来优化中央空调的运行。

智能控制系统可以通过感知室内外温度、湿度等参数,并根据不同的工作时间和人员数量来调整空调的运行模式。

这样可以在不影响舒适度的前提下,进一步降低能耗。

虑加强空气净化功能。

随着人们对空气质量的关注度越来越高,安装空气净化器已经成为一种趋势。

通过在中央空调系统中加入空气净化器,可以有效去除空气中的有害物质和细菌,为办公楼提供更加清新的室内环境。

此外,为了进一步提高能效,可以采用低阻风管系统来改善空气流通。

低阻风管系统采用先进的材料和结构设计,减少了空气流通的阻力,使得空调机组能够更高效地供应冷热空气,从而降低了能耗。

虑引入太阳能供能系统。

太阳能是可再生能源的一种,通过安装太阳能板来将太阳能转化为电能,可以为中央空调系统提供一部分能量。

这不仅可以降低能耗,还可以减少对传统能源的依赖。

总结起来,办公楼中央空调改造方案可以通过替换节能型设备、引入智能控制系统、加强空气净化功能、采用低阻风管系统以及引入太阳能供能系统等手段,来提高办公楼的舒适度和能效。

当然,为了确保改造方案的成功实施,我们还需在整个改造过程中充分考虑办公楼的实际使用情况,并与专业的中央空调改造公司合作,共同制定出最佳的改造方案。

通过这些改造措施的实施,我们相信办公楼中央空调系统的问题可以得到有效解决,为办公人员提供一个更加舒适、健康的工作环境。

中央空调系统水泵变频节能改造实施方案

中央空调系统水泵变频节能改造实施方案

中央空调系统水泵变频节能改造方案一、概述中央空调系统在现代企业及生活环境改善方面极为普遍,而且某此生活环境或生产工序中是属必须地,即所谓人造环境,不仅是温度地要求,还有湿度、洁净度等.至所以要中央空调系统,目地是提高产品质量,提高人地舒适度,集中供冷供热效率高,便管理,节省投资等原因,为此几乎企业、高层商厦、商务大楼、会场、剧场、办公室、图书馆、宾馆、商场、超市、酒店、娱乐场、体育馆等中大型建筑上都采用中央空调地,它是现代大型建筑物不可缺少地配套设施之一,电能地消耗非常之大,是用电大户,几乎占了用电量50%以上,日常开支费用很大. 由于中央空调系统都是按最大负载并增加一定余量设计,而实际上在一年中,满负载下运行最多只有十多天,甚至十多个小时,几乎绝大部分时间负载都在70%以下运行.通常中央空调系统中冷冻主机地负荷能随季节气温变化自动调节负载,而与冷冻主机相匹配地冷冻泵、冷却泵却不能自动调节负载,几乎长期在100%负载下运行,造成了能量地极大浪费,也恶化了中央空调地运行环境和运行质量. 随着变频技术地日益成熟,利用变频器、PLC、数模转换模块、温度传感器、温度模块等器件地有机结合,构成温差闭环自动控制系统,自动调节水泵地输出流量;采用变频调速技术不仅能使商场室温维持在所期望地状态,让人感到舒适满意,可使整个系统工作状态平缓稳定,更重要地是其节能效果高达30%以上,能带来很好地经济效益.二、水泵节能改造地必要性中央空调是大厦里地耗电大户,每年地电费中空调耗电占60% 左右,因此中央空调地节能改造显得尤为重要. 由于设计时,中央空调系统必须按天气最热、负荷最大时设计,1 / 15并且留10-20% 设计余量,然而实际上绝大部分时间空调是不会运行在满负荷状态下,存在较大地富余,所以节能地潜力就较大,其中,冷冻主机可以根据负载变化随之加载或减载,冷冻水泵和冷却水泵却不能随负载变化作出相应调节,存在很大地浪费. 水泵系统地流量与压差是靠阀门和旁通调节来完成,因此,不可避免地存在较大截流损失和大流量、高压力、低温差地现象,不仅大量浪费电能,而且还造成中央空调最末端达不到合理效果地情况.为了解决这些问题需使水泵随着负载地变化调节水流量并关闭旁通. 再因水泵采用地是Y- △起动方式,电机地起动电流均为其额定电流地3 ~ 4倍,一台90KW地电动机其起动电流将达到500A ,在如此大地电流冲击下,接触器、电机地使用寿命大大下降,同时,起动时地机械冲击和停泵时水垂现象,容易对机械散件、轴承、阀门、管道等造成破坏,从而增加维修工作量和备品、备件费用. 采用变频器控制能根据冷冻水泵和冷却水泵负载变化随之调整水泵电机地转速,在满足中央空调系统正常工作地情况下使冷冻水泵和冷却水泵作出相应调节,以达到节能目地.水泵电机转速下降,电机从电网吸收地电能就会大大减少. 其减少地功耗△ P=P0 〔 1-(N1/N0)3 〕( 1 )式减少地流量△ Q=Q0 〔 1-(N1/N0) 〕( 2 )式其中N1为改变后地转速, N0为电机原来地转速, P0为原电机转速下地电机消耗功率, Q0为原电机转速下所产生地水泵流量.由上式可以看出流量地减少与转速减少地一次方成正比,但功耗地减少却与转速减少地三次方成正比.如:假设原流量为100个单位,耗能也为100个单位,如果转速降低10个单位,由( 2 )式△ Q=Q0 〔 1-(N1/N0) 〕 =100 *〔 1-(90/100) 〕 =10可得出流量改变了10个单位,但功耗由( 1 )式△ P=P0[1-(N1/N0)3]=100 *〔 1-(90/100)3 〕 =27.1可以得出,功率将减少27.1个单位,即比原来减少27.1% . 再因变频器是软启动方式,采用变频器控制电机后,电机在起动时及运转过程中均无冲击电流,而冲击电流是影响接触器、电机使用寿命最主要、最直接地因素,同时采用变频器控制电机后还可避免水垂现象,因此可大大延长电机、接触器及机械散件、轴承、阀门、管道地使用寿命.三、中央空调系统构成及工作原理2 / 153 / 15图一所示:1、冷冻机组:通往各个房间地循环水由冷冻机组进行“内部热交换”作用,使冷冻水降温为5~7℃.并通过循环水系统向各个空调点提供外部热交换源.内部热交换产生地热量,通过冷却水系统在冷却塔中向空气中排放.内部热交换系统是中央空调地“制冷源”.2、冷冻水塔:用于为冷冻机组提供“冷却水”.3、“外部热交换”系统:由两个循环水系统组成:⑴、冷冻水循环系统由冷冻泵及冷冻管道组成.从冷冻机组流出地冷冻水由冷冻泵加压送入冷冻水管道,在各个房间内进行热交换,带走房间内地热量,使房间内地温度下降. ⑵、冷却水循环系统由冷却泵、冷却水管道及冷却塔组成.冷冻机组进行热交换,使水温冷却地同时,必将释放大量地热量,该热量被冷却水吸收,使冷却水温度升高,冷却泵将升了温地冷却水压入水塔,使之在冷却塔中与大气进行热交换,然后再将降了温地冷却水,送回到冷冻机组,如此不断循环,带走冷冻机组成释放地热量. 4、冷却风机⑴、室内风机:安装于所有需要降温地房间内,用于将由冷冻水冷却了地冷空气吹入房间,加速房间内地热交换;⑵、冷却塔风机用于降低冷却塔中地水温,加速将“回水”带回地热量散发到大气中去. 中央空调系统地四个部分都可以实施节电改造.但冷冻水机组和冷却水机组地改造改造后节电效果最为理想,文章中我们将重点阐述对冷冻机组和冷却机组地变频调速技术改造.四、中央空调变频系统改造方案现将内蒙古某饭店地中央空调系统地变频节能改造方案做一具体介绍. 1.中央空调原系统简介: 1.1该集饭店中央空调系统改造前地主要设备和控制方式:450冷吨冷气主机2台,型号为特灵二极式离心机,两台并联运行;冷冻水泵2台,扬程28米配有功率45KW,冷却水泵有2台,扬程35米,配用功率75KW.均采用两用一备地方式运行.冷却塔2台,风扇电机11KW,并联运行.室内风机4台,5.5KW,并联运行. 1.2原系统地运行及存在问题:该饭店是一家五星饭店,为了给客入营造一个良好地居住环境,饭店大部空间采用全封密地,且饭店大部分空间自然通风效果不好,所以对夏季冷气质量地要求较高.由于中央空调系统设计时必须按天气最热、负荷最大时设计,且留有10%-20%左右地设计余量.其中冷冻主机可以根据负载变化随之加载或减载,冷冻水泵和冷却水泵却不能随负载变化作出相应地调节.这样,冷冻水、冷却水系统几乎长期在大流量、小温差地状态下运行,造成了能量地极大浪费.而且冷冻、冷却水泵采用地均是Y-△起动方式,电机地起动电流均为其额定电流地3-4倍,在如此大地电流冲击下,接触器地使用寿命大大下降;同时,启动时地机械冲击和停泵时地4 / 15水锤现象,容易对机械器件、轴承、阀门和管道等造成破坏,从而增加维修工作量、维修费用、设备也容易老化.另外由于冷冻泵轴输送地冷量不能跟随系统实际负荷地变化,其热力工况地平衡只能由人工调整冷冻主机出水温度,以及大流量小温差来掩盖.这样,不仅浪费能量,也恶化了系统地运行环境、运行质量.特别是在环境温度偏低、某些末端设备温控稍有失灵或灵敏度不高时,将会导致大面积空调室温偏冷,感觉不适,严重干扰中央空调系统地运行质量.因为空调偏冷地问题经常接到客人地投诉,处理这些投诉造成不少人力资源地浪费. 根据实际情况,我们向该饭店负责人提出:利用变频器、人机界面、PLC、数模转换模块、温度模块、温度传感器等构成地温差闭环自动调速系统.对冷冻、冷却水泵进行改造,以节约电能、稳定系统、延长设备寿命. 2.中央空调系统节能改造地具体方案中央空调系统通常分为冷冻(媒)水和冷却水两个系统(如下图,左半部分为冷冻(媒)水系统,右半部分为冷却水系统).根据国内外最新资料介绍,并多处通过对在中央空调水泵系统进行闭环控制改造地成功范例进行考察,现在水泵系统节能改造地方案大都采用变频器来实现.5 / 152.1 、冷冻(媒)水泵系统地闭环控制制冷模式下冷冻水泵系统地闭环控制该方案在保证最末端设备冷冻水流量供给地情况下,确定一个冷冻泵变频器工作地最小工作频率,将其设定为下限频率并锁定,变频冷冻水泵地频率调节是通过安装在冷冻水系统回水主管上地温度传感器检测冷冻水回水温度,再经由温度控制器设定地温度来控制变频器地频率增减,控制方式是:冷冻回水温度大于设定温度时频率无极上调. 该模式是在中中央空调中热泵运行(即制热)时冷冻水泵系统地控制方案.同制冷模式控制方案一样,在保证最末端设备冷冻水流量供给地情况下,确定一个冷冻泵变频器工作地最小工作频率,将其设定为下限频率并锁定,变频冷冻水泵地频率调节是通过安装在冷冻水系统回水主管上地温度传感器检测冷冻水回水温度,再经由温度控制器设定地温度来控制变频器地频率增减.不同地是:冷冻回水温度小于设定温度时频率无极上调,当温度传感检测到地冷冻水回水温越高,变频器地输出频率越低. 2.2 、冷却水系统地闭环控制目前,在冷却水系统进行改造地方案最为常见,节电效果也较为显著.该方案同样在保证冷却塔有一定地冷却水流出地情况下,通过控制变频器地输出频率来调节冷却水流量,当中中央空调冷却水出水温度低时,减少冷却水流量;当中中央空调冷却水出水温度高时,加大冷却水流量,从而达到在保证中中央空调机组正常工作地前提下达到节能增效地目地. 现有地控制方式大都先确定一个冷却泵变频器工作地最小工作频率,将其设定为:下限频率并锁定,变频冷却水泵地频率是取冷却管进、出水温度差和出水温度信号来调节,当进、出水温差大于设定值时,频率无极上调,当进、出水温差小于设定值时,频率无极下调,同时当冷却水出水温度高于设定值时,频率优先无极上调,当冷却水出水温度低于设定值时,按温差变化来调节频率,进、出水温差越大,变频器地输出频率越高;进、出水温差越小,变频器地输出频率越低. 2.3该中央空调节能系统具体装机清单如表二:机组名称机型品牌数量冷冻水泵 45KW变频柜ABB ACS800 两套冷却水泵 75KW变频柜 ABB ACS800 两套风机组 11KW变频柜 ABB ACS800 两套室内风机5.5KW变频柜 ABB ACS800 四套配件 PLC 西门子S7300 一台人机界面西门子一台温度传感器丹佛斯两6 / 157 / 15个 温度模块 欧姆龙 两个 数字转换模块 欧姆龙 两个 2.4介绍变频节电原理: 变频节能原理:由流体传输设备(水泵、风机)地工作原理可知:水泵、风机地流量(风量)与其转速成正比;水泵、风机地压力(扬程)与其转速地平方成正比,而水泵、风机地轴功率等于流量与压力地乘积,故水泵、风机地轴功率与其转速地三次方成正比(即与电源频率地三次方成正比).变频器节能地效果是十分显著地,这种节能回报是看到见地.特别是调节范围大、启动电流大地系统及设备,通过图三可以直观地看出在流量变化时只要对转速(频率)稍作改变就会使水泵轴功率有更大程度上地改变,就因此特点使得变频调速装置成为一种趋势,而且不断深入并应用于各行各业地调速领域. 根据上述原理可知:改变水泵、风机地转速就可改变水泵、风机地输出功率. 图中阴影部分为同一台水泵地工频运行状态与变频运行状态在随着流量变化所耗功率差.2.5介绍系统电路设计和控制方式 根据中央空调系统冷却水系统地一般装机,建议在冷却水系统和冷冻水系统各装两套ABB ACS800一体化变频调速控制柜,其中冷却变频调速控制柜供两台冷却水泵切换(循环)使用,冷冻变频调速控制柜供两台冷冻水泵切换(循环)使用.变频节能调速系统是在保留原工频系统地基础上加装改装地,变频节能系统地联动控制功能与原工频系统地联动控制功能相同,变频节能系统与原工频系统之间设置了联锁保护,以确保系统工作安全.利用变频器、人机界面、PLC、数模转换模块、温度传感器、温度模块等器件地有机结合,构成温差闭环自动控制系统,自动调节水泵地输出流量,为了达到节能目地提供了可靠地技术条件.如图四所示:8 / 159 / 152.6系统主电路地控制设计 根据具体情况,同时考虑到成本控制,原有地电器设备尽可能地利用.冷冻水泵及冷却水泵均采用一用一备地方式运行,因备用泵转换时间与空调主机转换时间一致,均为一个月转换一次,切换频率不高,决定将冷冻水泵和冷却水泵电机地主备切换控制利用原有电器设备,通过接触器、启停按钮、转换开关进行电气和机械互锁.确保每台水泵只能由一台变频器拖动,避免两台变频器同时拖动同一台水泵造成交流短路事故;并且每台变频器任何时间只能拖动一台水泵,以免一台变频器同时拖动两台水泵而过载. 2.7系统功能控制方式上位机监控系统主要通过人机界面完成对工艺参数地检测、各机组地协调控制以及数据地处理、分析等任务,下位机PLC主要完成数据采集,现场设备地控制及连锁等功能.具体工作流程:开机:开启冷水及冷却水泵,由PLC控制冷水及冷却水泵地启停,由冷水及冷却水泵地接触器向制冷机发出联锁信号,开启制冷机,由变频器、温度传感器、温度模块组成地温差闭环控制电路对水泵进行调速以控制工作流量,同时PLC控制冷却塔根据温度传感器信号自动选择开启台数.当过滤网前后压差超出设定值时,PLC发出过滤堵塞报警信号.送风机转速地快慢是由回风温度与系统设定值相比较后,用PID方式控制变频器,从而调节风机地转速,达到调节回风温度地目地.停机:关闭制冷机,冷水及冷却水泵以及冷却塔延时十五分钟后自动关闭.保护:由压力传感器控制冷水及冷却水地缺水保护,压力偏低时自动开启补水泵补水. 2.8介绍系统节能改造原理10 / 151、对冷冻泵进行变频改造控制原理说明如下:PLC控制器通过温度模块及温度传感器将冷冻机地回水温度和出水温度读入控制器内存,并计算出温差值;然后根据冷冻机地回水与出水地温差值来控制变频器地转速,调节出水地流量,控制热交换地速度;温差大,说明室内温度高系统负荷大,应提高冷冻泵地转速,加快冷冻水地循环速度和流量,加快热交换地速度;反之温差小,则说明室内温度低,系统负荷小,可降低冷冻泵地转速,减缓冷冻水地循环速度和流量,减缓热交换地速度以节约电能;2、对冷却泵进行变频改造由于冷冻机组运行时,其冷凝器地热交换量是由冷却水带到冷却塔散热降温,再由冷却泵送到冷凝器进行不断循环地. 冷却水进水出水温差大,说明冷冻机负荷大,需冷却水带走地热量大,应提高冷却泵地转速,加大冷却水地循环量;温差小,则说明,11 / 15冷冻机负荷小,需带走地热量小,可降低冷却泵地转速,减小冷却水地循环量,以节约电能.3、冷却塔风机变频控制通过检测冷却塔水温度对冷却塔风机进行变频调速闭环控制,使冷却塔水温度恒定在设定温度,可以有效地节省风机地电能额外损耗,能达到最佳节电效果. 4、室内风机组变频控制通过检测冷房温度对变风机组地风机进行变频调速闭环控制,实现冷房温度恒定在设定温度.室内风机组变频控制后可达到理想地节电效果,并且空调效果较佳. 2.5系统流量、压力保障本方案地调节方式采用闭环自动调节控制,冷却水泵系统和冷冻水泵系统地调节方式基本相同,用温度传感器对冷却(冷冻)水在主机上地出口水温进行采样,转换成电量信号后送至温控器将该信号与设定值进行比较运算后输出一类比信号(一般为4-20MA、0-10V等)给PLC,由PLC、数模转换模块、温度传感器、温度模块进行温差闭环控制,手动/自动切换和手动频率上升、下降由PLC控制,最后把数据传关到上位机人机界面实行监视控制.变频器根据PLC发出地类比信号决定其输出频率,以达到改变水泵转速并调节流量地目地. 冷却(冷冻)水系统地变频节能系统在实际使用中要考虑水泵地转速与扬程地平方成正比地关系,以及水泵地转速与管损平方成正比地关系;在水泵地扬程随转速地降低而降低地同时管道损失也在降低,因此,系统对水泵扬程地实际需求一样要降低;而通过设定变频器下限频率地方法又可保证系统对水泵扬程地最低需求.供水压力地稳定和调节量可以通过PID参数地调整.当供水需求量减少时,管道压力逐渐升高,内部PID调节器输出频率降低,当变频器输出频率低至0HZ时,而管道在一设定时间内还高于设定压力,变频器切断当前变频控制泵,转而控制下一个原工频控制泵,变频器在水泵控制转换过程中,逐渐轮换使用水泵,使每个水泵地利用率均等,增加系统、管道压力地稳定性和可靠性.五、中央空调系统进行变频改造地优点变频节能改造后除了可以节省大量地电能外还具有以下优点: 1 、只需在中中央空调冷却管出水端安装一个温度传感器(如图,安装在冷却水系统中中央空调冷却水出水主管上地B处),简单可靠. 2 、当冷却水出水温度高于温度上限设定值时,频率直接优先上调至上限频率. 3 、12 / 15当冷却水出水温度低于温度下限设定值时,频率直接优先下调至下限频率.而采用冷却管进、出水温度差来调节很难达到这点. 4 、当冷却水出水温度介于温度下限设定值与温度上限设定值时,通过对冷却水出水温度及温度上、下限设定值进行PID计算,从而达到对频率进行无极调速,闭环控制迅速准确. 5 、节能效果更为明显.当冷却水出水温度低于温度上限设定值时,采用冷却管进、出水温度差来调节方式没有将出水温度低这一因素加入节能考虑范围,而仅仅由温度差来对频率进行无极调速,而采用上、下限温度来调节方式充分考虑这一因素,因而节能效果更为明显,通过对多家用户市场调查,平均节电率要提高5 %以上,节电率达到20 %以上. 额定电流变化,减小了大电流对电机地冲击;六、ABB ACS800系列一体化变频器地优点 1.采用独特地空间矢量(SVPWM)调制方式; 2.操作简单,具有键盘锁定功能,防止误操作; 3.内置PID功能,可接受多种给定、反遗信号; 4.具有节电、市电和停止三位锁定开关,便于转换及管理; 5.保护功能完善,可远程控制; 6.超静音优化设计,降低电机噪声;7.安装比较方便,不用破坏原有地配电设施及环境;8.稳定整个系统地正常运行,抗干扰能力强;9.具有过载、过压、过流、欠压、电源缺相等自动保护功能及声光报警功能.七、结束语在科技日新月异地今天,积极推广变频调速节能技术地应用,使其转化为社会生产力,是我们工程技术人员应尽地社会责任.对落后地设备生产工艺进行技术革新,不仅可以提高生产质量、生产效率,创造可观地经济效益.对节能、环保等社会效益同样有着重要地意义.随着变频器应用普及时代地来临,我公司已将变频器地应用扩展到传统中央空调改造地领域,不仅扩大了变频器地应用市场,而且为中央空调应用也提出了新地课题.预计在不久地将来,由于变频调速技术地介入,中央空调系统将真正地进入经济运行时代,希望上述工作对于同仁们在传统地电气传动设备技术改造和推进高新技术产品地普及应用工作中能有所启示和借鉴.13 / 15版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理.版权为个人所有This article includes some parts, including text, pictures, and design. Copyright is personal ownership.b5E2R。

中央空调节能改造方案(变频)

中央空调节能改造方案(变频)

中央空调节能改造方案(变频)1.中央空调工作原理中央空调系统主要由制冷机、冷却水循环系统、冷冻水循环系统、风机盘管系统和散热水塔组成,其系统结构如:(图1所示)制冷机通过压缩机将制冷剂压缩成液态后送蒸发器中与冷冻水进行热交换,将冷冻水制冷,冷冻水泵将冷冻水送到各风机风中的冷却盘管中,由风机吹送冷风达到降温的目的。

经蒸发后制冷剂在冷凝器中释放出热量,与冷却循环水进行热交换,由冷却水泵将带来热量的冷却水泵到散热水塔上由水塔风扇对其进行喷淋冷却,与大气之间进行热交换,将热量散发到大气中去。

2.中央空调应用背景中央空调系统是一个庞大的设备群体,大量的统计结果表明,空调系统所消耗的电能,约占楼宇电耗的40~60%。

就任何建筑物来说,选用空调系统都是按当地最热天气时所需的最大制冷量来选取择机型的,且留有10%~15%的余量,各配套系统按最大负载量配置,这种选择不是最合理的。

在组成空调系统的各种设备中,水泵所消耗的电能约占整个空调系统的四分之一左右。

早期空调的水泵普遍采用定流量工作,能源浪费非常严重。

而实际运行时,中央空调的冷负荷总是在不断变化的,冷负荷变化时所需的冷媒水、冷却水的流量也不同,冷负荷大时所需的冷媒水、冷却水的流量也大,反之亦然。

我们根据中央空调机组运行状态的数据分析,中央空调机组90%的运行时间处于非满负荷运行状态。

而冷冻水泵、冷却水泵以及风机在此90%的时间内仍处于100%的满负荷运行状态。

这样就导致了“大流量小温差”的现象,使大量的电能白白浪费。

3. 中央空调节能原理我们知道中央空调的水循环系统主要由冷却水泵和冷冻水泵组成。

从水泵的工作原理可知:水泵流量与水泵(电机)转速的一次方成正比,水泵扬程与水泵(电机)转速的两次方成正比,水泵轴功率与水泵转速的三次方成正比(既水泵的轴功率与供电频率的三次方成正比)。

根据上述原理可知只要改变水泵的转速就可改变水泵的功率。

例如:将供电频率由50Hz降为45Hz,功率只有原来的72.9%。

中央空调的节能改造

中央空调的节能改造

中央空调的节能改造中央空调的节能改造我公司综合办公大楼中央空调系统,主机选用上海开利公司生产的30H-225型冷水机组,冷冻、冷却水循环均采用有30m3中间水箱的开式循环系统。

正式投人运行以来,系统运转正常,总体性能良好。

但是,由于该系统总功率达330kW,耗电多,运行费用高,因此,必须进行节能改造,以实现经济运行的目的。

一、耗电高的原因中央空调系统耗电高的主要原因是水循环方式设计不合理。

冷冻水和冷却水循环均采用开式循环系统,虽然中间水箱可以保证系统的稳定供水,但是,经过10层楼的循环水返回地下室水箱后,压力将从0.5MPa下降为0,造成静压损失,下次循环需重新泵送,增加了输出功率。

另外,30m3的冷冻水箱换热面积大,保温措施不当,造成冷冻水冷量损失大,增加了冷水机组压缩机的数量。

二、节能改造方案据此,我们决定对水循环系统进行节能改造,将开式水循环系统改为闭式水循环系统,不改变中央空调系统设计的基本参数。

为减少投资,尽可能利用现有管路及设施。

改造方案如下(见图1):图1 水循环系统流程图1.冷冻水循环系统的节能改造(1)取消原30m3的玻璃钢冷冻水箱,系统的回水直接经水泵加压后进人水循环系统,以避免静压损失,将冷冻水循环系统改为闭式循环。

(2)为容纳系统的水因膨胀而增加的体积,同时也是为了稳定系统压力,增加一套膨胀水箱补水装置。

膨胀水箱容积取400L,并分别设置用浮球阀控制的自动补水管和由闸阀控制的急速补水管,水箱的自动补水高度为250mm。

(3)为消除系统内空气,在总供水管和总回水管的最高点分别设置一个ZP-Ⅱ型DN15自动空气排放阀。

冷冻水循环系统中其它管路、阀门、压力表、温度计等均可利用。

新增管路及膨胀水箱按设计规范进行保温处理。

(4)冷冻水泵的改型冷水机组冷冻水设计额定流量为120m3/h,进水冷却塔自来水箱膨胀水箱压力为0.5~0.7MPa,最高冷冻水循环高度为38m。

根据设计规范,水泵的流量为额定流量的1.1~1.2倍,扬程H为供回水管最不利环路的总水压降的1.1~1.2倍。

中央空调节能改造方案

中央空调节能改造方案

中央空调节能改造方案1. 引言中央空调系统在商业和工业建筑中起着重要作用。

然而,传统的中央空调系统耗能较高,对环境和资源造成负面影响。

为了应对气候变化和能源紧缺问题,节能改造中央空调系统变得迫切而重要。

本文将介绍中央空调节能改造方案,以减少能源消耗和碳足迹。

2. 能效评估改造中央空调系统之前,首先需要进行能效评估。

评估目的是确定系统的能效水平,并识别潜在的改进空间。

常用的方法包括能源消耗测量、设备性能检测和建筑能效模拟等。

通过能效评估,我们可以了解当前系统的能源利用情况,并为改造计划奠定基础。

3. 设备升级中央空调系统的设备升级可以大幅度提高系统的能效。

以下是一些常见的设备升级方案:3.1 高效压缩机传统空调系统中使用的压缩机效率较低,耗电量大。

替换成高效压缩机可以降低能耗,并提高系统的性能。

3.2 水冷却系统传统的空调系统中,空气冷却往往效率较低。

改用水冷却系统可以提高冷却效率,从而降低能源消耗。

水冷却系统还可以与其他系统集成,如太阳能热水系统,进一步提高能效。

3.3 变频驱动装置传统的空调系统在启动时会产生较大的能耗峰值。

安装变频驱动装置可以使系统平稳启动,并且根据实际需要自动调节能耗,实现能耗优化。

3.4 高效换热器传统的换热器热效率较低,热量损失较大。

替换成高效换热器可以提高热回收效率,减少能源浪费,达到节能的目的。

4. 风管系统改善风管系统在中央空调系统中起着重要的传输和分配作用。

通过改善风管系统,可以降低系统的能耗和能效提高。

以下是一些常见的改善方法:4.1 风管隔热通过对风管进行隔热处理,可以减少热量的损失。

隔热风管可以有效地保持风管内空气的温度,避免能量浪费。

4.2 风管密封风管系统的密封性直接影响空调系统的效能。

通过定期检查和修复风管系统的漏洞和缺陷,可以减少能源浪费,并提高系统的工作效率。

4.3 风量调节优化风量调节装置,可以根据需要调节送风量,避免过度冷却和能耗浪费。

5. 智能控制系统智能控制系统可以提高中央空调系统的能效。

某大厦中央空调制冷站节能改造措施方案

某大厦中央空调制冷站节能改造措施方案

某大厦中央空调制冷站节能改造措施方案1、某大厦中央空调系统制冷站介绍作为空调系统的冷源部分,中央空调系统制冷站是用于提供空调制冷效果的核心设备,主要由制冷机组、冷却水泵、冷冻水泵和冷却塔等设备组成。

中央空调系统运行过程中,首先通过压缩机将制冷剂的低压气体压缩为高压气体,进入冷凝器中换热,此时制冷剂的高压液态经过节流装置调整为低压低温液态进入蒸发器,该过程是完成制冷的关键步骤。

同时,高温冷冻回水经冷冻水泵被送入蒸发器盘管,使之与低温低压制冷剂进行热交换,变成低温冷冻水,并通过冷冻水泵作用将其送至各风机盘管,由冷却盘管吸收热量,降低空气温度,最后通过风机向功能间送风,完成循环制冷过程。

通过以上循环过程,中央空调系统制冷站可以将热气体转化成冷气体,以达到调节室内温度的目的。

1.1 设备使用现状某大厦的中央空调机房位于负一层,配备了 2 台定频螺杆式冷水机组、3台冷冻水泵(2用1备)、3台冷却水泵(2用1备)和2台横流冷却塔。

其中,空调冷冻水管系统采用一次泵变流量系统,冷却水系统为变流量并联式系统,冷却塔位于大厦的设备层。

目前,该系统存在以下使用问题:第一,冷水机组于2007年12月投入使用,运行时间过长,制冷效果较差,使用的冷媒为已被国家列入淘汰的冷媒 R22,具有产量少、价格高的缺点。

第二,原空调冷冻水管系统采用一次泵变流量系统,其冷却水系统为变流量并联式系统。

原有的冷冻泵和冷却水泵配置的流量比冷水机组要求的小,加上管网的水阻力大,导致实际运行 1 台冷水机组需要运行2台冷冻水泵和2台冷却水泵,增加了系统的运行能耗。

水泵电机为国家要求淘汰的Y2系列型号。

第三,针对位于设备层的 2 台侧出风的横流冷却塔,每台冷却塔由2台水量为150 m3/h的冷却塔组成,总电机功率为5.5×2 kW。

现场勘查发现电机已锈蚀严重,换热填充剂老化,部分补水管也已锈蚀,导致系统能效降低,运行成本增加,不利于建筑的绿色环保运行。

中央空调节能改造方案

中央空调节能改造方案

中央空调节能改造方案中央空调节能改造方案概述中央空调系统在现代建筑中起到至关重要的作用,但由于其高能耗特性,对环境和能源的消耗带来了一定的负面影响。

因此,为了提高中央空调系统的能效,降低能源消耗,一个可行的解决方案是进行中央空调的节能改造。

本文将介绍中央空调节能改造方案的一些关键措施和实施步骤,旨在实现更高效、更节能的中央空调系统。

方案一:系统优化1. 定期维护和清洁定期对中央空调系统进行维护和清洁是保持其高效运行的重要举措。

清洁空调滤芯、冷凝器和蒸发器可以确保系统的畅通,并减少能耗。

此外,定期检查和更换系统中的磨损部件,如风扇和压缩机,可以提高系统的效率。

2. 优化控制策略通过优化控制策略,可以有效降低中央空调系统的能耗。

例如,根据实际需求调整送风温度和湿度,合理控制风机和泵的运行时间,以及优化冷热负荷分配等。

这些措施可以有效降低能源消耗,并提高系统的效率。

3. 使用高效设备更新和更换中央空调系统中的设备也是节能改造的重要一步。

选择高效的压缩机、风机和变频器等设备可以降低能源消耗,并提高系统的效率。

此外,使用节能型的控制器和传感器,可以实时监测和控制系统运行状态,进一步提高能效。

方案二:热回收利用中央空调系统在制冷过程中会产生大量的废热,而这部分废热通常被直接排出。

通过热回收利用技术,可以将废热转换成有用的热能,以供其他用途或再利用。

1. 空气能热泵系统空气能热泵系统可以通过回收空调排风中的废热来供暖或热水使用。

该系统通过热泵循环原理,将废热转移到热水箱或供暖设备中,提供额外的热能,减少其他供暖设备的能源消耗。

2. 温度回收系统温度回收系统可以利用空调排风中的废热,将其转移到冷却水中,用于加热其他冷却水循环系统。

这样可以减少冷却水的能耗,并提高整体能效。

方案三:建筑绝热改善中央空调系统的能效不仅与其本身的设计和运行有关,还与建筑的绝热性能密切相关。

通过改善建筑绝热性能,可以减少室内外温度差异,降低空调系统的负荷,从而达到节能的目的。

中央空调变频节能改造

中央空调变频节能改造

变频技术的选择和应用需要根 据具体场景和需求进行评估和 选择,以达到最佳的节能效果

改造后需要定期维护和保养, 确保系统的长期稳定运行。
THANKS FOR WATCHING
感谢您的观看
冷冻水泵将冷冻水输送到末端设备,通过风机盘管、新风机 组等将冷空气送至室内。同时,冷却水泵将冷却水输送到制 冷机组,帮助制冷机组散热。
中央空调系统的能耗分析
01
中央空调系统在运行过程中需要 消耗大量的电能,其中制冷机组 、冷冻水泵、冷却水泵等设备是 主要的能耗设备。
02
中央空调系统的能耗受到多种因 素的影响,如室内外温差、空调 区域的大小和人数、设备维护状 况等。
05 案例分析与实践
某商场的中央空调变频节能改造案例
商场原有空调系统运行效率低下,能 耗高,需要改造。
改造后,商场的空调系统运行效率提 高,能耗降低,节省了能源成本。
采用了变频技术对冷冻水泵和冷却水 泵进行改造,实现电机转速的自动调 节。
某写字楼的中央空调变频节能改造案例
写字楼原有空调系统存在能耗高、 噪音大等问题。
维护成本。
03 中央空调变频节能改造方 案
改造前的准备工作
现场勘查
对中央空调系统进行全面检查,了解 设备运行状况、能耗情况及存在的问 题。
制定改造计划
根据现场勘查结果,制定详细的改造 计划,包括改造目标、时间安排、预 算等。
准备改造材料
根据改造计划,准备相应的变频器、 传感器、电缆等改造所需材料。
中央空调变频节能改造
目录
• 中央空调系统概述 • 变频节能技术原理 • 中央空调变频节能改造方案 • 改造后的运行维护与优化 • 案例分析与实践
01 中央空调系统概述

办公楼中央空调系统变频节能改造方案

办公楼中央空调系统变频节能改造方案

摘要在我国经济快速发展的大背景下,能源(水、电、油)的消耗在企业中所占的比重越来越高,也受到愈来愈大的重视。

同时由于房地产的快速发展需求,中央空调的市场需求呈现强劲的增长趋势。

在市场容量不断增大的吸引下,越来越多的厂家加入到商用中央空调的领域。

变频技术应用于中央空调系统,对提升中央空调自动化水平、降低能耗、减少对电网的冲击、延长机械及管网的使用寿命,都具有重要的意义。

关键字中央空调系统;水泵;风机;变频器AbstractKeywords1 概述中央空调系统在现代企业及生活环境改善方面极为普遍,而且是某些生活环境或生产工序中所必须配备的,即所谓人造环境,不仅是温度的要求,还有湿度、洁净度等。

之所以要求配置中央空调系统,目的在于提高产品质量,提高人的舒适度,而且集中供冷供热效率高,便于管理,节省投资等。

为此,几乎所有企业、高层商厦、商务大楼、会场、剧场、办公室、图书馆、宾馆、商场、超市、酒店、娱乐场、体育馆等中大型建筑上都采用中央空调,它是现代大型建筑物不可缺少的配套设施之一,但由于它的电能消耗非常之大,是用电大户,几乎占了用电量的50%以上,因此其日常开支费用很大。

中央空调系统都是按最大负载并增加一定余量设计的,而实际上在一年中,满负载下运行最多只有十多天,甚至十多个小时,绝大部分时间负载都在70%以下运行。

通常,中央空调系统中冷冻主机的负荷能随季节气温变化自动调节负载,而与冷冻主机相匹配的冷冻泵、冷却泵却不能自动调节负载,几乎长期在100%负载下运行,造成了能量的极大浪费,也恶化了中央空调的运行环境和运行质量。

随着变频技术的日益成熟,利用变频器、PLC、D/A转换模块、温度传感器、温度模块等部件的有机结合,可构成温差闭环自动控制系统,自动调节水泵的输出流量。

采用变频调速技术不仅能使商场室温维持在所期望的状态,让人感到舒适满意,使整个系统工作状态平缓稳定,更重要的是其节能效果高达30%以上,能带来很好的经济效益。

中央空调变频节能改造措施

中央空调变频节能改造措施

中央空调变频节能改造措施摘要:本文主要针对中央空调变频节能改造措施展开探讨,结合具体的工程实例,对原中央空调系统概况作了详细阐述,并对变频节能改造和系统节能改造设计作了系统的分析,以期能为有关方面的需要提供有益的参考和借鉴。

关键词:中央空调;变频器;节能改造1 引言安装中央空调已经成为现代工厂、办公大楼、商厦、酒店等常用设备,尤其是在高层建筑中是必不可少的。

但是由于中央空调的耗能大,在如今倡导节能降耗主题的社会,对中央空调进行节能改造已是不可避免。

基于此,本文就中央空调变频节能改造措施进行了探讨,相信对有关方面的需要能有一定的帮助。

2 原中央空调系统概况2.1 系统组成某商贸大厦中央空调机组系统,主要由冷冻水循环系统、冷却水循环系统及主机3部分组成。

其主要设备为两台200kW水冷冷水机组,冷却水循环系统及主机3 部分组成。

单机制冷量400USRT、25kW 冷冻水泵2 台、35kW冷却泵2台,电动机均采用星形-三角形减压启动。

冷却塔3座,每座配有风机1台,电动机额定功率为5.0kW,采用直接启动。

2.2 系统运行状况该大厦冷却泵和冷冻泵电动机全年均以恒速运行,冷却水和冷冻水回出水温差都约为2℃,采用继电-接触器控制。

原系统的最大负载是按最不利状况(即天气最热、负荷最大的条件)来确定的,并留有一定的余量,但实际上系统很少在这种极限条件下运行,1年中只有几十天时间中央空调处于最大负荷。

这样中央空调系统大部分时间都是运行在部分负荷状态下,也会增加系统的电能消耗。

由于原系统采用传统的继电-接触器控制,水泵在启动和停止时,会出现水锤现象,对管网产生较大的冲击,容易对管道、阀门等造成破坏,额外增加了设备维修量和费用。

3 变频节能改造措施3.1 水泵变频调速的节能原理由流体力学可知,水泵的流量Q与其转速n成正比,扬程H(输出压力)与其转速n的二次方成正比,输出功率P与其转速n的三次方成正比。

由电机学可知,电动机的转速与电源的频率成正比,在不考虑机械传动部分能量损耗的条件下,可以推出水泵的输出功率P与电源频率f的三次方成正比。

办公楼维修改造施工方案空调系统改善与能耗降低

办公楼维修改造施工方案空调系统改善与能耗降低

办公楼维修改造施工方案空调系统改善与能耗降低办公楼维修改造施工方案:空调系统改善与能耗降低为了提高办公楼的舒适度和节能效果,我们制定了以下维修改造施工方案,重点关注空调系统的改善与能耗降低。

本方案旨在提供一个整洁美观、通畅流畅的工作环境,同时最大限度地减少能源消耗,实现可持续发展。

1. 空调系统改善1.1 设备升级根据实际需求,我们将对办公楼内的空调设备进行升级。

采用高效节能的新型空调设备,同样的制冷效果下能够减少能源消耗,并且以空气过滤和负离子技术来提高空气质量,创造更健康舒适的办公环境。

1.2 系统调整通过对现有空调系统的调整,我们将优化系统配置以提高效率。

例如,合理设置冷却水温度和冷凝水温度,减少制冷负荷;优化送风和回风路径,提高空气流通效果;采用智能控制系统,实时监测室内温度和湿度,根据需求智能调整空调工作状态等。

2. 能耗降低2.1 绝缘改善在施工过程中,我们将对办公楼内外的建筑进行绝缘改善工作。

通过增加外墙和屋顶的保温材料,减少能量损失。

对玻璃窗进行改进,选用具有隔热功能的玻璃材料,阻挡太阳辐射,减轻空调系统的负荷。

同时,修补门窗密封,防止冷、热气借由门窗缝隙外流或进入,进而减少能源的消耗。

2.2 照明系统改良照明系统也是能耗的重要组成部分。

我们将更换为节能灯具,如LED灯,其能效高、寿命长、亮度可调,不仅能提供良好照明效果,还能降低能耗。

同时,我们还将通过智能化控制系统,将照明与使用者的活动相结合,定时开关照明,使其在无人的情况下自动关闭,尽量减少不必要的能源浪费。

3. 安全与环保3.1 垃圾分类施工过程中,我们将建立起垃圾分类制度,确保废弃材料和其他废弃物得到正确处理和回收利用。

这将有助于减少对环境的污染,并提高资源的再利用率。

3.2 环保材料我们将选择使用环保材料进行施工,减少有害物质的释放和对环境的损害。

比如,在装修材料的选择上,优先选用符合环保标准的材料;在粉刷工程中,选择水性无毒漆料,减少对室内空气质量的影响。

湖南某商业广场中央空调系统节能改造方案(高效水泵更换、变频改造)

湖南某商业广场中央空调系统节能改造方案(高效水泵更换、变频改造)

XXXXXXX空调系统优化改造报告1.目前空调系统状况湖南某大楼空调面积约79000m2,是湖南省最高端的百货商场之一。

主机配置:麦克维尔离心机3516kW*4台和1台制冷量1792kW螺杆机。

水泵配置:冷水泵 110kW × 5台+ 55kW × 2台;冷却水泵 132kW × 5台+ 75kW × 2台。

目前运行状况:因水泵选型过大,水泵基本上都处于靠关小出口阀门开度来保证运行的状态。

在目前大楼冷量浪费较大,气温达40℃的情况下,运行2台300万大卡和1台150万大卡主机基本能满足使用要求。

2.设计分析与能耗2.1目前空调输配系统水泵基本上都处于靠关小出口阀门开度来保证运行的状态,设计师考虑系统长期运行,管路堵塞(忽视设备管理)等因素,在水泵选型上留有很大余量,根据远大多年空调系统管理技术和经验,只要定期对系统进行规范的保养,寿命期内水系统的阻力是不可能增加的,更不是靠放大水泵选型,增加电耗来弥补管理上的不足。

2.2空调系统自正式运行以来,能耗居高不下,5月份运行362h,电耗(276640KWh);6月份运行507h,电耗(419760 KWh);7月份运行705h(7月份湘潭气温高于35℃的天数为14天),电耗(594800KWh)。

(备注开1台3516kW离心机为1小时,对应开132kw冷却水泵,1台110kw冷水泵,2台冷却风机)。

2.3空调系统5、6、7月的平均耗电为820kw/h,其中主机耗电约564kw/h(按能源效率98%计算),冷却塔风机耗电为22kw/h,输配系统耗电为234 kw/h。

3.现有系统技术改进方向3.1冷却水系统的不足从设计角度考虑,冷却水的流量是按照主机最大负荷所需散热量(即环境气温最高,且所有空调主机满负荷运行)选择,并取一定安全系数来确定的。

而实际使用情况完全不同,由于季节和昼夜气温变化,负荷变化在30%~100%之间,因此决定了主机运行数量的不同,因此绝大部分时间里,实际所需的散热量远小于设计值。

中央空调变频节能的改造方案

中央空调变频节能的改造方案

中央空调变频节能的改造方案一、概述在中央空调系统中,冷冻水泵和冷却水泵的容量是根据建筑物最大设计热负荷选定的,且留有一定的设计余量。

在没有使用调速的系统中,水泵一年四季在工频状态下全速运行,只好采用节流或回流的方式来调节流量,产生大量的节流或回流损失,且对水泵电机而言,由于它是在工频下全速运行,因此造成了能量的大大浪费。

由于四季的变化,阴晴雨雪及白天与黑夜时,外界温度不同,使得中央空调的热负荷在绝大部分时间里远比设计负荷低。

也就是说,中央空调实际大部分时间运行在低负荷状态下。

据统计,67%的工程设计热负荷值为94-165W/m2,而实际上83%的工程热负荷只有58-93 W/m2,满负荷运行时间每年不超过10-20小时。

实践证明,在中央空调的循环系统(冷却泵和冷冻泵)中接入变频系统,利用变频技术改变电机转速来调节流量和压力的变化用来取代阀门控制流量,能取得明显的节能效果。

二、节能原理由流体传输设备水泵、风机的工作原理可知:水泵、风机的流量(风量)与其转速成正比;水泵、风机的压力(扬程)与其转速的平方成正比,而水泵、风机的轴功率等于流量与压力的乘积,故水泵、风机的轴功率与其转速的三次方成正比(即与电源频率的三次方成正比)根据上述原理可知:降低水泵、风机的转速就,水泵、风机的功率可以下降得更多。

例如:将供电频率由50Hz降为45Hz,则P45/P50=(45/50)3=0.729,即P45=0.729P50(P为电机轴功率);将供电频率由50Hz 降为40Hz,则P40/P50=(40/50)3=0.512,即P40=0.512P50(P为电机轴功率)。

由以上内容可以看出,用变频器进行流量(风量)控制时,可节约大量电能。

中央空调系统在设计时是按现场最大冷量需求量来考虑的,其冷却泵,冷冻泵按单台设备的最大工况来考虑的,在实际使用中有90%多的时间,冷却泵、冷冻泵都工作在非满载状态下。

而用阀门、自动阀调节不仅增大了系统节流损失,而且由于对空调的调节是阶段性的,造成整个空调系统工作在波动状态;而通过在冷却泵、冷冻泵上加装变频器则可一劳永逸地解决该问题,还可实现自动控制,并可通过变频节能收回投资。

中央空调变频改造节能方案

中央空调变频改造节能方案

XX 大厦中央空调变频节能改造方案深圳市康灿科技有限公司地址:深圳市光明新区圳美公常路雅盛科技工业园B2—6楼电话:2 、传真:6网址:电邮:XX中央空调变频节能改造方案一、概况XX大厦有3台中央空调。

其中2台开利螺杆式冷水机组,型号均为30HXC400B,制冷剂为R134a,制冷量为1366KW(),蒸发器流量235M3/H,冷凝器的流量为284M3/H,主机电机功率为288KW ;配套3台45 KW冷冻泵,流量315 M3/H,扬程32米,采用1用2备的工作方式,冷冻水温差一般3℃;配套3台37KW冷却泵,流量350 M3/H,扬程24米, 采用1 用2备的工作方式,冷却水温差一般3℃;另外1台大金螺杆式冷水机组,型号为CUW200D5Y,制冷量为680KW();蒸发器流量117M3/H,冷凝器的流量为141.7M3/H,主机电机功率为144KW;配套2台30 KW冷冻泵,流量200 M3/H,扬程32米,采用1用1备的工作方式;配套2台30KW冷却泵,流量200 M3/H,扬程32米, 采用1 用1备的工作方式;空调系统全年开机10个月,大机组(开利机组)从早上8:00~下午6:00,小机组(大金机组)从下午6:00~凌晨3:00 ,每天这样循环开机,每天运行19小时,每月570小时,空调系系统全年共计运行 5700 小时。

从现场调查的数据可以看到,该空调的运行工况偏离最佳工况点运行,主机能耗、水泵能耗增大,对冷冻和冷却水泵进行变频节能改造,合理调节水系统流量,使主机运行在最佳工况,保证中央空调系统在制冷负荷变化时,自动跟随、动态调节,可以有效实现系统和水泵的整体节能。

二、中央空调系统的设计依据一般来说,中央空调系统的最大负载能力是按照天气最热,负荷最大的条件来设计的,存在着很大宽裕量,但实际上系统极少在这些极限条件下工作,根据有关资料统计,空调设备97%的时间运行在70%负荷以下波动,所以实际负荷总不能达到满负荷,特别是冷气需求量少的情况下,主机负荷量低,为了保证有较好的运行状态和较高的运行效率,主机能在一定范围根据负载的变化加载和卸载,但与之相配套的冷却水泵和冷冻水泵却仍在高负荷状态下运行,(泵功率是按峰值冷负荷对应水流量的倍选配)这样会带来以下一系列问题:1.水流量过大使冷水系统进水和回水温差降低,恶化了主机的工作条件、引起主机热交换效率下降,造成额外的电能损失。

大厦空调节能改造方案技术标

大厦空调节能改造方案技术标

投资大厦空调节能改造方案技术标目录第1章中央空调节系统改造前的工况 (3)第2章节能方案分析 (4)2.1中央空调系统大致构成 (4)2.1.1 冷冻主机与冷却水塔 (4)2.1.2 “外部热交换”系统 (4)3.1 中央空调系统的运行参数 (7)3.1.1 变频节能功能: (7)3.1.2软启动功能: (8)3.2 空调水泵变频改造方案 (8)3.2.1冷却水系统的变频调速 (8)3.5 改造清单 (12)3.5.1 水泵部分改造清单 (12)3.5.2 冷却塔散热风机部分改造清单 (13)第4章变频系统投资回报估算 (13)4.1 空调水泵部分 (13)4.1.1 估算参数设定(以下数据来源于调查登记表) (13)4.1.2 水泵部分节电分析 (13)4.2 冷却塔散热风机部分 (14)4.2.1 冷却塔散热风机部分节电分析 (15)第5章计费标准与节能效益分配方案 (16)5.1 计费标准 (16)5.1.1 计费依据 (16)5.1.2 计费标准 (16)5.2节能效益分配方案 (16)第六章、售后服务 (18)6.1建立客户档案 (18)6.2免费质保期 (18)6.3及时维修 (18)6.4多种培训方式: (18)第1章中央空调节系统改造前的工况在中央空调系统设计时,冷冻泵、冷却泵的电机容量是根据建筑物的最大设计热负荷选定的,都留有一定设计余量。

由于四季气候及昼夜温差变化,中央空调工作时的热负荷总是不断变化。

下图2为一民用建筑物的平均热负荷情况:如上图所示,该中央空调一年中负荷率在50%以下的时间超过了全部运行时间的50%。

通常冷却水管路的设计温差为5~6℃,而实际应用表明大部分时间里冷却水管路的温差仅为2~4℃,这说明制冷所需的冷冻水、冷却水流量通常都低于设计流量,这样就形成了中央空调低温差、低负荷、大工作流量的工况。

在没有使用节能系统前,工频供电下的水泵始终全速运行,管道中的供水流量只能通过阀门或回流方式调节,这必会产生大量的节流及回流损失,同时也增加了电机的负荷,白白消耗了许多电能。

中央空调系统节能改造工程方案

中央空调系统节能改造工程方案

中央空调系统节能改造工程方案一、前言为了应对气候变化和能源危机,节能减排已成为世界各国的共同责任。

其中,建筑能源消耗占全球总能源消耗的40%以上,而其中的中央空调系统更是建筑能耗的重要组成部分。

因此,对中央空调系统进行节能改造,具有重要的意义和价值。

本文在分析了中央空调系统能耗及存在问题的基础上,提出了中央空调系统节能改造的方案,并对改造后的节能效果和经济效益进行了分析和评估。

二、中央空调系统能耗与存在问题分析1. 中央空调系统能耗分析中央空调系统是建筑物内的核心设备之一,它的运行对建筑物的室内环境和舒适度产生着重要影响。

然而,由于中央空调系统的运行需求大量的电能,因此在高温季节,中央空调系统的用电量会呈现出明显的增长趋势,而在冷季节,则会相对减少。

据统计,在大型商业办公楼中,中央空调系统的用电量占整个建筑物的用电量的30%-60%不等,而在工业厂房中,这一比例更是高达70%-80%。

这使得中央空调系统在建筑能耗中占据着相当重要的位置。

2. 中央空调系统存在的问题尽管中央空调系统的用电量巨大,但由于长期以来,我国对节能理念的重视程度不高,导致中央空调系统在设计、选型、运行和维护等环节存在着一系列的问题,主要包括以下几点:(1)设备选型不合理。

在建筑物的规划和设计阶段,由于对建筑能耗的重视不够,对中央空调系统的选型也比较随意,造成了设备的质量和能效参差不齐。

(2)系统设计不合理。

在中央空调系统的设计阶段,缺乏对室内环境的合理评估和需求分析,导致系统设计的匹配性不足,从而增大了系统的运行负荷。

(3)运行管理不规范。

在系统的运行和维护管理中,由于缺乏专业的管理人员和技术人才,对系统的运行状态和能耗情况了解不足,从而使得系统的能耗水平较高。

(4)技术水平偏低。

由于我国对中央空调系统技术水平的重视程度不高,导致技术人员的技能储备和应用能力偏低,对中央空调系统的运行优化和节能改造也无法有效地开展。

三、中央空调系统节能改造方案基于对中央空调系统能耗和存在问题的分析,在我国大力推动建筑节能的背景下,对中央空调系统进行节能改造已成为一项非常紧迫的任务。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

摘要在我国经济快速发展的大背景下,能源(水、电、油)的消耗在企业中所占的比重越来越高,也受到愈来愈大的重视。

同时由于房地产的快速发展需求,中央空调的市场需求呈现强劲的增长趋势。

在市场容量不断增大的吸引下,越来越多的厂家加入到商用中央空调的领域。

变频技术应用于中央空调系统,对提升中央空调自动化水平、降低能耗、减少对电网的冲击、延长机械及管网的使用寿命,都具有重要的意义。

关键字中央空调系统;水泵;风机;变频器AbstractKeywords1 概述中央空调系统在现代企业及生活环境改善方面极为普遍,而且是某些生活环境或生产工序中所必须配备的,即所谓人造环境,不仅是温度的要求,还有湿度、洁净度等。

之所以要求配置中央空调系统,目的在于提高产品质量,提高人的舒适度,而且集中供冷供热效率高,便于管理,节省投资等。

为此,几乎所有企业、高层商厦、商务大楼、会场、剧场、办公室、图书馆、宾馆、商场、超市、酒店、娱乐场、体育馆等中大型建筑上都采用中央空调,它是现代大型建筑物不可缺少的配套设施之一,但由于它的电能消耗非常之大,是用电大户,几乎占了用电量的50%以上,因此其日常开支费用很大。

中央空调系统都是按最大负载并增加一定余量设计的,而实际上在一年中,满负载下运行最多只有十多天,甚至十多个小时,绝大部分时间负载都在70%以下运行。

通常,中央空调系统中冷冻主机的负荷能随季节气温变化自动调节负载,而与冷冻主机相匹配的冷冻泵、冷却泵却不能自动调节负载,几乎长期在100%负载下运行,造成了能量的极大浪费,也恶化了中央空调的运行环境和运行质量。

随着变频技术的日益成熟,利用变频器、PLC、D/A转换模块、温度传感器、温度模块等部件的有机结合,可构成温差闭环自动控制系统,自动调节水泵的输出流量。

采用变频调速技术不仅能使商场室温维持在所期望的状态,让人感到舒适满意,使整个系统工作状态平缓稳定,更重要的是其节能效果高达30%以上,能带来很好的经济效益。

2 中央空调系统构成及工作原理如图1所示,中央空调系统主要由以下几个部分组成。

2.1 冷冻机组通往各个房间的循环水经由冷冻机组进行“内部热交换”作用,使冷冻水降温为5~7℃。

并通过循环水系统向各个空调点提供外部热交换源。

内部热交换产生的热量,通过冷却水系统在冷却塔中向空气中排放。

内部热交换系统是中央空调的“制冷源”。

2.2 冷冻水塔用于为冷冻机组提供“冷却水”。

2.3 “外部热交换”系统此系统由两个循环水系统组成:1)冷冻水循环系统由冷冻泵及冷冻管道组成。

从冷冻机组流出的冷冻水由冷冻泵加压送入冷冻水管道,在各个房间内进行热交换,带走房间内的热量,使房间内的温度下降;2)冷却水循环系统由冷却泵、冷却水管道及冷却塔组成。

冷冻机组进行热交换,使水温冷却的同时,必将释放大量的热量,该热量被冷却水吸收,促使冷却水温度升高,冷却泵将升了温的冷却水压入水塔,使之在冷却塔中与大气进行热交换,然后再将降了温的冷却水,送回到冷冻机组,如此不断循环,带走冷冻机组所释放的热量。

2.4 冷却风机1)室内风机安装于所有需要降温的房间内,用于将由冷冻水冷却了的冷空气吹入房间,加速房间内的热交换。

2)冷却塔风机用于降低冷却塔中的水温,加速将“回水”带回的热量散发到大气中去。

中央空调系统的四个部分都可以实施节电改造,但冷冻水机组和冷却水机组改造后的节电效果最为理想。

因此我们将重点阐述对冷冻机组和冷却机组的变频调速技术改造,次要说明冷却风机的变频调速技术改造。

3 中央空调系统变频改造的具体方案现将淅江省嘉兴市某集团公司办公楼的中央空调系统的变频节能改造方案做一具体介绍。

3.1 中央空调原系统存在的问题该集团中央空调系统改造前的主要设备和控制方式:1)450 t冷气主机2台,型号为特灵二极式离心机,两台并联运行;2)冷冻水泵2台,扬程28 m,配用功率45 kW;3)冷却水泵有2台,扬程35m,配用功率75 kW,冷冻水泵与冷却水泵均采用一用一备的方式运行;4)冷却塔2台,风扇电机11 kW,并联运行,室内风机4台,5.5 kW,并联运行。

该集团是一家合资企业,为了给员工营造一个良好的工作环境,办公楼大部分空间采用全封密的模式,因此公司大部分空间自然通风效果不好,所以对夏季冷气质量的要求较高。

除了一些节假日外,其它时间中央空调都是全开的。

由于中央空调系统设计时按天气最热、负荷最大时设计,且留有10%~20%的设计余量。

其中冷冻主机可以根据负载变化随之加载或减载,冷冻水泵和冷却水泵却不能随负载变化作出相应的调节。

这样,冷冻水、冷却水系统几乎长期在大流量、小温差的状态下运行,造成了能量的极大浪费。

原系统中冷冻、冷却水泵采用的均是Y-△起动方式,电机的起动电流均为其额定电流的3~4 倍,在如此大的电流冲击下,接触器的使用寿命大大下降;同时,启动时的机械冲击和停泵时的水锤现象,容易对机械部件、轴承、阀门和管道等造成破坏,从而增加维修工作量、维修费用,设备也容易老化。

另外,由于冷冻泵轴输送的冷量不能跟随系统实际负荷的变化,其热力工况的平衡只能由人工调整冷冻主机出水温度,结果只能是用大流量获得小温差。

这样,不仅浪费能量,也恶化了系统的运行环境与运行质量。

特别是在环境温度偏低、某些末端设备温控稍有失灵或灵敏度不高时,将会导致大面积空调室温偏冷,感觉不适,严重干扰中央空调系统的运行质量。

针对上述实际情况,对该集团的中央空调系统实施了利用变频器、人机界面、PLC、数模转换模块、温度模块、温度传感器等构成的温差闭环自动调速系统的方案。

主要对冷冻、冷却水泵进行了变频调速技术改造,达到节约电能、稳定系统、延长设备寿命,提高环境舒适度的目的。

3.2 中央空调系统节能改造的具体方案对该中央空调节能系统进行变频节能改造的具体装机清单如表1所列。

3.2.1 变频节电原理由流体传输设备(水泵、风机)的工作原理可知:水泵、风机的流量(风量)与其转速成正比;水泵、风机的压力(扬程)与其转速的平方成正比;而水泵、风机的轴功率等于流量与压力的乘积,故水泵、风机的轴功率与其转速的三次方成正比(即与电源频率的三次方成正比)。

变频器节能的效果是十分显著的,这种节能回报是看得见的。

特别是调节范围大、启动电流大的系统及设备,通过图2 可以直观地看出在流量变化时只要对转速(频率)稍作改变就会使水泵轴功率有更大程度上的改变,此特点使得使用变频器进行调速成为一种趋势,而且不断深入并应用于各行各业的调速领域。

根据上述原理可知:改变水泵、风机的转速就可改变水泵、风机的输出功率。

图中阴影部分为同一台水泵的工频运行状态与变频运行状态在随着流量变化所消耗的功率差。

3.2.2 系统电路设计和控制方式根据中央空调系统冷却水系统的一般装机形式,建议在冷却水系统和冷冻水系统各装两套传动之星SD-YP 系列一体化变频调速控制柜,其中冷却变频调速控制柜供两台冷却水泵切换(循环)使用,冷冻变频调速控制柜供两台冷冻水泵切换(循环)使用。

变频节能调速系统是在保留原工频系统的基础上改装的,变频节能系统的联动控制功能与原工频系统的联动控制功能相同,变频节能系统与原工频系统之间设置了联锁保护,以确保系统工作安全。

利用变频器、人机界面、PLC、数模转换模块、温度传感器、温度模块等器件的有机结合,构成温差闭环自动控制系统,自动调节水泵的输出流量,为达到节能的目的提供了可靠的技术条件。

如图3所示,给出了主电路具体的改造方案。

3.2.3 系统主电路的控制设计根据具体情况,同时考虑到成本控制,尽可能地利用原有的电器设备。

冷冻水泵及冷却水泵均采用一用一备的运行方式,因备用泵转换时间与空调主机转换时间一致,切换频率不高,所以冷冻水泵和冷却水泵电机的主备切换控制利用原有电器设备,通过接触器、启停按钮、转换开关进行电气和机械互锁。

确保每台水泵只能由一台变频器拖动,避免两台变频器同时拖动同一台水泵造成交流短路事故;并且每台变频器任何时间只能拖动一台水泵,以免一台变频器同时拖动两台水泵而过载。

3.2.4 系统功能控制方式上位机监控系统主要通过人机界面完成对工艺参数的检测,各机组的协调控制以及数据的处理、分析等任务;下位机PLC主要完成数据采集,现场设备的控制及联锁等功能。

具体工作过程中,开机时,开启冷水及冷却水泵,由PLC控制冷水及冷却水泵的启停,由控制冷水及冷却水泵的接触器向制冷机发出联锁信号,开启制冷机,由变频器、温度传感器、温度模块组成的温差闭环控制电路对水泵进行调速以控制工作流量,同时PLC控制冷却塔根据温度传感器信号自动选择开启台数;当过滤网前后压差超出设定值时,PLC发出过滤堵塞报警信号;送风机转速的快慢是由回风温度与系统设定值相比较后,用PID 方式控制变频器,从而调节风机的转速,达到调节回风温度的目的。

停机时,关闭制冷机,冷水及冷却水泵以及冷却塔延时15 min 后自动关闭。

保护时,由压力传感器控制冷水及冷却水的缺水保护,压力偏低时自动开启补水泵补水。

3.3 系统节能改造原理变频节能系统示意图如图4所示。

1)对冷冻泵进行变频改造PLC控制器通过温度模块及温度传感器将冷冻机的回水温度和出水温度读入控制器内存,并计算出温差值;然后根据冷冻机的回水与出水的温差值来控制变频器的转速,调节出水的流量,控制热交换的速度。

温差大,说明室内温度高系统负荷大,应提高冷冻泵的转速,加快冷冻水的循环速度,加大流量,加快热交换的速度;反之温差小,则说明室内温度低,系统负荷小,可降低冷冻泵的转速,减缓冷冻水的循环速度,减小流量,降低热交换的速度以节约电能。

2)对冷却泵进行变频改造由于冷冻机组运行时,其冷凝器的热交换量是由冷却水带到冷却塔散热降温,再由冷却泵送到冷凝器进行不断循环的。

冷却水进水出水温差大,说明冷冻机负荷大,需冷却水带走的热量大,应提高冷却泵的转速,加大冷却水的循环量;温差小,则说明,冷冻机负荷小,需带走的热量小,可降低冷却泵的转速,减小冷却水的循环量,以节约电能。

3)冷却塔风机变频控制通过检测冷却塔水的温度对冷却塔风机进行变频调速闭环控制,使冷却塔水温恒定在设定温度,可以有效地节省风机的电能额外损耗,能达到最佳节电效果。

4)室内风机组变频控制通过检测冷房温度对变风机组的风机进行变频调速闭环控制,实现冷房温度恒定在设定温度。

室内风机组变频控制后可达到理想的节电效果,并且使空调效果更佳。

3.4 系统流量、压力保障本方案的调节方式采用闭环自动调节控制,冷却水泵系统和冷冻水泵系统的调节方式基本相同,用温度传感器对冷却(冷冻)水在主机上的出口水温进行采样,转换成电量信号后送至温控器将该信号与设定值进行比较运算后输出一模拟信号(一般为4~20 mA、0~10 V等)给PLC,由PLC、D/A转换模块、温度传感器、温度模块进行温差闭环控制,手动/自动切换和手动频率上升、下降由PLC控制,最后把数据传送到上位机人机界面实行监视控制。

相关文档
最新文档