人教版数学七年级上册有理数

合集下载

人教版七年级数学上册第一章有理数知识点总结

人教版七年级数学上册第一章有理数知识点总结

第一章有理数期末复习一、正数:大于0的数叫做正数。

负数:正数前加上符号“—”(负)的数叫做负数。

注意:0既不是正数,也不是负数;0是正数和负数的分界。

考点题目:1.如果80m表示向东走80m,那么-60m表示_____________2.在跳远测试中,合格的标准是4.00m,小明跳出了3.96m,记做-0.04m,小强的成绩被记做+0.18m,则小强跳了______m3.洗衣粉包装袋上有:“净重:300±5g”,请说明这段文字的含义袋号 1 2 3 4 5净重 303 298 300 294 305根据上面的数据解释这5袋洗衣粉的净重是否合格。

4.飞机在距地面800m的高空做飞行表演,它第一次上升了200m,第二次下降了300m,第三次又上升了-100米,此时它距地面多高?二、有理数:整数和分数统称为有理数。

整数:正整数,0,负整数统称为整数;分数:正分数,负分数统称为分数注意:小数可以化为分数,所以把小数看成分数;百分数也是分数。

正有理数:正整数,正分数有理数{ 0负有理数:负整数,负分数有理数{整数:正整数负整数 0分数:正分数负分数含有“π”的数均不是有理数。

考点题目:1.“0”的意义:①0是整数,也是有理数。

②0不是正数也不是负数。

③0是自然数2.把下列各数填在相应的集合中:-22,-π,-5%,92 ,-0.66……,0.121121112……,3.14正整数集合:。

负整数集合:。

负分数集合:。

有理数集合:。

负有理数集合:。

三、数轴:规定了单位长度,原点,正方向的直线。

考点题目:1.数轴上表示表示3的点和表示-6的点之间的距离是_____2.数轴上-3与2之间有___个整数,有____个有理数。

3.点A为数轴上表示-2的点,当点A沿数轴移动4个单位长度时,它所表示的数是_____4.在数轴上到原点的距离等于2的点所表示的数为_______5.把数轴上表示2的点移动5个单位长度后,所得的对应的点表示的数是_______6.画出数轴并标出下列各数对应的点四、相反数:只有符号不同的两个数叫做互为相反数注意:a和-a互为相反数(a表示任意一个数,正数,负数,0)0的相反数是0;互为相反数的两个数相加得0考点题目:1.-3的相反数是_______;0的相反数是_______;2.化简各数的符号:-(-5)=_______ +(+5)=_______ +(-5)=_______(+5)=________3.如果a=-a,那么表示数a的点在数轴的位置是_______4.如果a+2的相反数是-8,那么a=_______如果a的相反数是-9,那么a=_______5.一个数在数轴上所对应的点向左移动8个单位后,得到表示他的相反数的点,这个数是_______6.若a+2的相反数是-8,那么a=_______五、绝对值:数轴上表示数a的点与原点的距离叫做a的绝对值,记作|a|。

人教版七年级数学上册第1章第2节有理数(共38张PPT)

人教版七年级数学上册第1章第2节有理数(共38张PPT)
• 最大的自然数. • 2.自然数与整数的关系:自然数(都是)整数,但
整数(不都是)自然数. • 3.分数的概念:把(单位“1)”平均分成若干份,表
示这样的一份或几份的数,叫做(分数 ).
一、相反意义的量
在日常生活中我们会遇到这样一些量:
前进100米和后退70米;收入700元和支出600 元;零上6℃ 和零下6℃ …… 这里出现的每一对量,虽然有着不同的内容,但有着一个 共同的特点:
则早晨6时温度为___4__℃,若早晨4时气温比中午11时低13℃, 则早晨4时温度为___—__2__℃。
1、如果全班某次数学测试的平均成绩为83分,某同学考
了85分,记作+2分,得90分应记作_+_7__分__,得80分应 记作_—___3_分_ 。
2、若将28计为0,则可以将27计为-1,试猜想若将27计
• 2.下列说法正确的是( C )
• A.整数包括正数和负数 • B.有理数包括正有理数和负有理数 • C.负整数是整数也是有理数 • D.有理数就是分数
例 1 下列说法正确的是( ) A.一个有理数不是整数就是分数 B.正整数和负整数统称整数 C.正整数、负整数、正分数、负分数统称有理 数 D.0不是有理数
负分数:如,
1 2
,-3.5,…
整数与分数统称为有理数
按数系扩张的自然顺序
有理数还可以这样分类: (按认识有理数的先后顺序) 正整数
有理数
正有理数

负有理数
正分数 负整数 负分数
注意:
1.正数与整数的区别:正数是相对负数 而言的,而整数是相对于分数而言的.
2.0既不是正数也不是负数,而是整数.
(3)在某次乒乓球质量检测中,一只乒乓球超出 标准质量0. 02克记作+0.02,那么-0.03克表示什么?

人教版数学七年级上册第一章有理数有理数的乘法

人教版数学七年级上册第一章有理数有理数的乘法

1.4.1 有理数的乘法
栏目索引
3.(独家原创试题)我们用有理数的运算研究下面的问题.规定:水位上升 为正,水位下降为负.如果水位每天下降4 cm,那么5天后的水位变化用算 式表示正确的是 ( ) A.(+4)×(+5) B.(+4)×(-5) C.(-4)×(+5) D.(-4)×(-5)
答案 C 根据“水位每天的变化情况×天数”列出算式即可.故选C.
(3)0×(-2 019)=0.
(4)(-3.25)× 123

=- 3.25

2 13

=- 143

2 13

=- 1 .
2
1.4.1 有理数的乘法
栏目索引
温馨提示 运用乘法法则计算时,先确定积的符号,再确定积的绝对值, 然后进行计算.为了便于运算,是带分数的因数先将其化为假分数再运 算.
12
6
正解
-24× 172

5 6
1
=-24× 7 -(-24)× 5-(-24)×1=-14+20+24=30.
12
6
栏目索引
1.4.1 有理数的乘法
栏目索引
错因分析 错解一运用分配律把括号前面的数乘进括号内时,忽略了24 前面的负号,导致错误;错解二运用分配律把括号前面的数乘进括号内
栏目索引
1.4.1 有理数的乘法
栏目索引
知识点二 有理数的倒数
5.(2018江苏常州中考)-3的倒数是 ( )
A.-3 B.3 C.- 1 D. 1
3
3
答案 C 乘积为1的两个数互为倒数,因为-3与- 1 的乘积为1,所以-3的

七年级上册人教版数学概念总结

七年级上册人教版数学概念总结

第一章有理数1.有理数:(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;(2)有理数的分类: ①②(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数Û 0和正整数;a>0 Û a是正数;a<0 Û a是负数;a≥0 Û a是正数或0 Û a是非负数;a≤ 0 Û a是负数或0 Û a是非正数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)注意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;(3)相反数的和为0 Û a+b=0 Û a、b互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:或;绝对值的问题经常分类讨论;(3) ;;(4) |a|是重要的非负数,即|a|≥0;注意:|a|·|b|=|a·b|, .5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;倒数是本身的数是±1;若ab=1Û a、b互为倒数;若ab=-1Û a、b互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律:(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数, .13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时: (-a)n=-an或(a -b)n=-(b-a)n , 当n为正偶数时: (-a)n =an 或(a-b)n=(b-a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;(3)a2是重要的非负数,即a2≥0;若a2+|b|=0 Û a=0,b=0;(4)据规律底数的小数点移动一位,平方数的小数点移动二位.15.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减;注意:怎样算简单,怎样算准确,是数学计算的最重要的原则.19.特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明.第二章整式的加减1.单项式:在代数式中,若只含有乘法(包括乘方)运算。

人教版七年级数学上册 第一章《有理数》知识点归纳

人教版七年级数学上册 第一章《有理数》知识点归纳

人教版七年级数学上册第一章《有理数》知识点归纳一、有理数的有关概念1.正数与负数我们把以前学过的数大于零叫做正数。

有时在正数前面也加上“+”(正)号。

如+0.5、+3、+1/2……“+”号可以省略。

我们把在以前学过的数(0除外)前面加上负号“-”的数叫做负数。

如-3、-0.5、-2/3……0既不是正数也不是负数,0是正负数的分界。

正数与负数可以用来表示具有相反意义的量。

相反意义的量包含两个要素:一是它们的意义要相反;二是它们都具有数量。

与一个量成相反意义的量不止一个。

2.有理数正整数、0统称自然数;正整数、0、负整数统称整数;正分数和负分数统称分数。

整数和分数统称有理数整数可以看做分母为1的分数。

正整数、0、负整数、正分数、负分数都可以写成分数的形式。

可以这样说:有理数都能写成分数的形式;能写成分数(分子分母互质)形式的数是有理数.有理数的分类(两种)正整数整数零有理数负整数分数正分数负分数正整数正有理数正分数有理数零负有理数负整数负分数3. 数轴规定了原点、正方向、单位长度的直线叫做数轴。

数轴的三要素:原点、正方向、单位长度任何有理数都可以用数轴上的点表示,有理数与数轴上的点是一一对应的。

数轴上的点表示的数从左到右依次增大;原点左边的数是负数,原点右边的数是正数.4.相反数一般地,设a是一个正数,数轴上与原点的距离是a的点有两个,他们分别在原点的左右,表示-a和a,我们说这两点关于原点对称.只有符号不同的两个数叫做互为相反数.(绝对值相等,符号不同的两个数叫做互为相反数)正数的相反数是负数,负数的相反数是正数,0的相反数是0.在一个数前面添上“-”号,表示这个数的相反数.5.绝对值在数轴上,一个数所对应的点与原点的距离叫做这个数的绝对值。

对任意有理数a ,总有0a ≥。

正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。

(互为相反数的两个数的绝对值相等。

)6.比较大小(1)数轴上两个点表示的数,右边的总比左边的大。

人教版七年级数学上册《有理数》教学反思(精选5篇)

人教版七年级数学上册《有理数》教学反思(精选5篇)

人教版七年级数学上册《有理数》教学反思(精选5篇)七年级数学上册《有理数》教学反思1有理数乘方是初中数学教学的重点之一, 也是初中数学教学的一个难点。

所以我在教这一节课的教学中要从有理数乘方的意义、有理数乘方的符号法则、有理数乘方运算顺序、有理数乘方书写格式、有理数乘方常见错误等五个方面来教学。

一、要求学生深刻理解有理数乘方的意义。

即求n个相同的因数相乘的简便记法。

在教学上应该抓住以下几点: 乘方是一种运算。

相当于“+、-、×、÷”。

教师在教学时要让学生明白这一点, 同时要求学生掌握其书写方法, 及格式。

强调幂的意义, 幂的意义与“和、差、积、商”一样。

如2的3次方的结果是8。

所以说2的3次方的幂是8。

与2×4一样, 2×4=8。

所以不能说8是幂, 说成2的3次方的幂是8。

同时强调a的n次方具有两个意义, 它既表示n个a相乘。

又表示乘方的运算结果二、在有理数乘方的教学中主要强调它的`运算, 所以特别注意有理数乘方符号法则的教学。

法则是:正数的任何次幂是正数, 0的任何正整数次幂是0, 负数的正数次幂是负数, 负数的偶数次幂是正数, 教师在教学时强调做乘方时先确定符号再计算, 如(-2)的平方等于+2的平方等于4。

三、注意教学生的书写格式。

注意负数与分数作底数都要加括号。

四、注意讲清有理数乘方中的常见错误。

如2的平方前面带负号, 表示2的平方的相反数, -2加括号后再平方是表示–2的平方, 写法不同计算的结果不同。

有理数乘方是在乘法的基础之上的一种运算, 要结合乘法来教乘方。

同时讲清楚区别与联系。

七年级数学上册《有理数》教学反思2有理数加减混合运算是学生在此之前已经掌握了有理数的加法和减法运算后进行的。

通过本节课的教学结合学生正确掌握本节课的知识的反馈情况, 进行反思。

一、让学生在自主中学习, 培养学生能力由于本节课的教学内容是有理数加减混合运算, 而在这节课之前, 学习的是有理数加、减计算。

人教版七年级数学上册 有理数 知识点归纳(含例题)

人教版七年级数学上册 有理数 知识点归纳(含例题)

1.1正数和负数比0大的数叫做正数,比0小的数叫做负数。

0既不是正数也不是负数,它是正数与负数的分界点。

在正数前面加上符号“-”的数就是负数。

例1、3.2、0.4、25%、15等都是正数;-3.2、-0.4、-25%、-15等都是负数。

正数前面可以加上符号“+”,也可以省略这个符号。

但负数前面的符号“-”不能省略。

例2、13可以写成+13,+13也可以省略“+”号,写成13 。

但是-13不能省略“-”号写作13 。

0和正数统称为非负数,0和负数统称为非正数。

正数和负数可以分别用来表示相反意义的量。

例3、存入100元记为+100,则取出200元记为-200 。

例4、向北走50米记为+50,则向南走70米记为-70 。

0不仅可以表示“没有”,还可以表示其它意思。

例5、0是正数和负数的分界。

例6、0℃不代表没有温度,相反,0℃是一个确定的温度。

1.2有理数正整数、0、负整数统称为整数,即:整数{ 正整数0负整数正分数、负分数统称为分数,即:分数{正分数负分数整数和分数统称为有理数。

有理数的分类:按定义分类 按性质分类有理数{ 整数{ 正整数0负整数分数{正分数负分数 有理数{正有理数{正整数正分数0负有理数{负整数负分数与小学不同,在初中,如果一个小数能化成分数,那么这个小数也是分数。

例1、因为0.2=15,1.5=32,2.666=223,所以0.2、1.5、2.666都是分数。

例2、无限不循环小数,如π、1.010010001…等都不是分数。

引入负数之后,奇数和偶数的范围扩大了。

例3、不仅1、3、5、7……是奇数,而且-1、-3、-5、-7……也是奇数。

例4、不仅0、2、4、6、8……是偶数,而且-2、-4、-6、-8……也是偶数。

用一条直线上的点表示数,这条直线叫做数轴。

它满足以下要求:①在直线上任取一个点表示数0,这个点叫做原点。

②通常规定直线上从原点向右为正方向,从原点向左为负方向。

在一些特殊情况下,也可以规定直线上从原点向上为正方向,从原点向下为负方向。

七年级数学上册第1章有理数:有理数的加法pptx教学课件新版新人教版

七年级数学上册第1章有理数:有理数的加法pptx教学课件新版新人教版
解:小狗一共行走了0米.
【想一想】
–2 + (+3) = +(3–2) –3 + (+2)= –(3–2) –2 + (+2)= (2–2)
加数异号
加数的绝对值不相等
你从上面三个式子中发现了什么?
【比一比】
有理数加法法则二:
异号两数相加,绝对值相等时和为0;绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.
你从上面两个式子中发现了什么?
同号两数相加,取相同的符号,并把绝对值相加.
有理数加法法则一:
【比一比】
如果小狗先向西行走3米,再继续向东行走2米,则小狗两次一共向哪个方向行走了多少米?

解:小狗两次一共向西走了(3–2)米.
用算式表示为 –3+(+2)= –(3–2)(米)
4.若│x│= 3,│y│= 2,且x>y,则x+y的值为( )
C
D
(1) (–0.6)+(–2.7); (2) 3.7+(–8.4);(3) 3.22+1.78; (4) 7+(–3.3).
加法运算律
(1)
【思考】
3
–5


__
)
–7
–9
(

3
–5



__
–7
–9
(
)
(3)
8
–4


__
)
–6
–2
(

8
–4



__
–6
–2

有理数七年级数学人教版上册

有理数七年级数学人教版上册

正3.分有数理、数负中分最数小统的称正为整_数__是_____;__,最大的负整数是_______.
3分.数有不理再数只中是最正小分的数正,整还数包是括_____,__最__大__的;负整数是_______.
13.冬 有季理的数一中天最,小某的地正的整最数高是气__温__为_,6最℃大,的最负低整气数温是达_到__-__1_0_.℃,平均气温是0 ℃,这里出现了哪些数?我们到目前为止学过了哪些数?
5.在下列适当的空格里画“√”.
有理数 整 数 分 数 正整数 负分数 自然数
2


-3.14 √




0


-58


√ √
6.将下列各数填入下图所示的相应的圈内. -3,+32,-1,0,2,34,-31.
2.下列说法中,正确的是
()
3A..有正理整数数中、最负小整的数正统整称数为是整_数____,最大的负整数是_______.
4.把下列各数填入相应的集合内:-10,8,-121,130,-10%,0,2.7, -0.56,0.308 008.
正数集合:{ 8,130,2.7,0.308 008 …}; 负数集合:{ -10,-121,-10%,-0.56 …}; 整数集合:{ -10,8,0 …}; 分数集合:{ -121,130,-10%,2.7,-0.56,0.308 008 …}.
2.非负整数和非负有理数的概念 把正整数和__0___统称为非负整数(也叫自然数),正有理数和__0___ 统称为非负有理数.
1.冬季的一天,某地的最高气温为6 ℃,最低气温达到-10 ℃, 平均气温是0 ℃,这里出现了哪些数?我们到目前为止学过了哪些数?

人教版初中七年级上册数学课件 《相反数》有理数

人教版初中七年级上册数学课件 《相反数》有理数
解:由相反数的意义,得 2x+1=9 2x=8 x=4
拓展思考:已知两个有理数x、y,且x+y=0, 那么这 两个有理数有什么关系?
这两个有理数互为相反数.
课堂小结
通过本课时的学习,需要我们掌握:
概念
只有符号不同的两个数叫做互为相 反数;特别地,0的相反数是0.
相反数
在数轴上在原点两侧,到原点距离相 等的点表示的两个,互为相反数.
2.下列几对数中互为相反数的一对为( ). C
A.+(–8)和 –(+8) B.–(+8)与+(–8)
C.–(–8)与–(+8)
3.5的相反数是____;a的相反数是___;
–5
–a
课堂检测
能力提升题
1.若a= –13,则–a=__1_3_;若–a= –6,则a=__6_ .
2.若a是负数,则–a是_____数;若–a是负数,则
楚国
B
O
A
–30 –20 –10 0 10 20 30
素养目标
3.理解和掌握双重符号的化简规律.
2. 会求一个数的相反数,理解互为相反数的 两个数在数轴上的位置关系.
1. 掌握相反数的概念,理解它所包含的两种 含义.
探究新知
知识点 1 相反数 【问题】两位同学背靠背,规定向前为正,
一人向前走3步,记作 一人向后走3步 ,记作
探究新知
方法总结
求相反数的方法 1. 在原数的前面加“–”号后,再进行符号 化简. 2. 复杂的数在求相反数前,可先进行符号化 简,然后再变号.
巩固练习
3. 如果a=–a,那么表示a的点在数轴上的位置是
在( ). D
A.原点左侧

人教版数学七年级上册第一章

人教版数学七年级上册第一章

人教版数学七年级上册第一章
人教版数学七年级上册第一章是《有理数》。

本章主要介绍了有理数的概念、性质和运算。

具体内容包括:
1. 有理数的定义:有理数是可以表示为两个整数的比的数,即形如a/b 的数,其中a、b是整数,且b≠0。

2. 有理数的性质:有理数具有相反数、绝对值、加法和减法等基本性质。

3. 有理数的加减法:介绍了有理数的加法和减法运算法则,包括同号相加、异号相减、绝对值相减等。

4. 有理数的乘法:介绍了有理数的乘法运算法则,包括同号相乘、异号相乘等。

5. 有理数的除法:介绍了有理数的除法运算法则,包括同号相除、异号相除等。

6. 有理数的应用:通过实际问题,介绍了有理数在实际生活中的应用,如计算物品的价格、长度等。

人教版七年级数学上册 第一章:有理数_1.2.1:有理数 学案(含答案)

人教版七年级数学上册 第一章:有理数_1.2.1:有理数 学案(含答案)

初中七年级数学上册第一章:有理数——1.2.1:有理数一:知识点讲解知识点一:有理数的概念有理数:整数和分数统称为有理数。

✧ 整数:正整数、0、负整数统称为整数。

例如:2、3、0、﹣5、﹣7;✧ 分数:正分数、负分数统称为分数。

例如:32、0.1、﹣0.5、25-、﹣150.25; 0和正整数都是自然数。

任何一个有理数都可以写成m n 的形式,而且只有当m 、n 同时满足: ✧ m 、n 是互质的整数;✧ 0≠m 、1≠m 时,mn 才表示一个分数。

分数都能化为小数,但小数不都能化为分数。

只有有限小数和无限循环小数才能化为分数,因此分数包括有限小数和无限循环小数,当不包括无限不循环小数。

例如:π、3.212 212 221…(每两个1之间2的个数逐次增加)不能化为分数。

例1:下列说法正确的是( D )A. 正有理数和负有理数统称为有理数B. 非负整数就是指0、正整数和所有分数C. 正整数和负整数统称为整数D. 整数和分数统称为有理数知识点二:有理数的分类按有理数的定义:⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数正整数整数有理数0按有理数的性质符号:⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数正分数正整数正有理数有理数0例2:把下列各数分别填入相应的大括号里:﹣2.5、3.14、﹣2、﹢72、6.0 -、0.618、722、0、﹣0.101、π1) 正数集合: 3.14,﹢72,0.618,722,π ;2) 非负整数集合: ﹢72,0 ;3) 整数集合: ﹣2,﹢72,0 ;4) 负分数集合: ﹣2.5,6.0-,﹣0.101 。

二:知识点复习知识点一:有理数的概念 1. 在下列各数:65-、﹢1、6.7、﹣14、0、227、﹣5、25%中,属于整数的有( C) A. 2个 B. 3个 C. 4个 D. 5个2. 已知下列各数:﹣2、﹢3.5、0、32-、﹣0.7、11,其中负分数有( B )A. 1个B. 2个C. 3个D. 4个3. 在﹣1、32、0.618、0、﹣5%、2017、0.5中,整数有 3 个,分数有 4 个。

人教版七年级上册数学 第一章 有理数 有理数的加减法 有理数的加法 有理数的加法(第二课时)

人教版七年级上册数学 第一章 有理数  有理数的加减法  有理数的加法  有理数的加法(第二课时)

巩固练习
解:(1) 9+(–3)+(–5)+(+4)+(–8)+(+6)+(–3)+(–6)+(–4)+(+10) = 9+10+(–3)+(–5)+(–8)+(–3)+6+(–6)+4+(–4) = 19 + (–19) = 0 (千米) 即又回到了出发地. (2)|+9|+|–3|+|–5|+|+4|+|–8|+|+6|+|–3|+|–6|+|–4|+|+10| = 9+3+5+4+8+6+3+6+4+10 = 58(千米) 所以营业额为 58×2.4=139.2(元).
素养目标
3.会用有理数的加法解决实际问题. 2.灵活运用运算律进行有理数的加法运算. 1.掌握有理数加法的运算律.
探究新知
知识点
加法运算律
填一填:
(1) 3 ﹢ –5 ﹦ _–2_ –5 ﹢ 3 ﹦ _–_2
(2) 13

–9
﹦ _4_
–9 ﹢ 13 ﹦ _4_
【思考】(1)比较以上各组两个算式的结果,每组两个算式有什
分数的符号,再把两部分的结果相加.
巩固练习
计算: (1)(–83)+(+26)+(–17)+(–26)+(+15).
(2)
(3)
4.1
(
1) 2
(
1) 4
10.1
7.
(12 5) (27 1).
6
6
解:(1) (–83)+(+26)+(–17)+(–26)+(+15)
=[(–83)+(–17)]+[(+26)+(–26)]+15

人教版数学七年级上册知识点汇总

人教版数学七年级上册知识点汇总

第一章有理数1.1正数和负数1.正数:大于0的数.2.负数:小于0的数.3.0即不是正数,也不是负数.4.正数大于0,负数小于0,正数大于负数.1.2有理数及其大小比较1.整数:正整数、0、负整数,统称整数.2.有理数:可以写成分数形式的数.(1)正有理数:可以写成正分数形式的数.(2)负有理数:可以写成负分数形式的数.3.数轴(1)定义:用直线上的点表示数,这条直线叫做数轴.(在直线上任取一个点表示数0,这个点叫作原点;规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向;选取适当的长度为单位长度.)(2)数轴的三要素:原点、正方向、单位长度.(3)原点将数轴(原点除外)分成两部分,其中正方向一侧的部分叫作数轴的正半轴;另一侧的部分叫作数轴的负半轴.(4)数轴上特殊的最大(小)数①最小的自然数是0,无最大的自然数;②最小的正整数是1,无最大的正整数;③最大的负整数是-1,无最小的负整数.4.相反数:只有符号不同的两个数叫做互为相反数.(1)任何数都有相反数,且只有一个;(2)0的相反数是0;(3)互为相反数的两数和为0,和为0的两数互为相反数,即a,b互为相反数,则a+b=0.5.绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0.6.有理数的大小比较(1)正数大于0,0大于负数,正数大于负数;(2)两个负数,绝对值大的反而小.第二章有理数的运算2.1有理数的加法与减法1.有理数加法法则(1)同号两数相加,和取相同的符号,且和的绝对值等于加数的绝对值的和.(2)绝对值不相等的异号两数相加,和取绝对值较大的加数的符号,且和的绝对值等于加数的绝对值中较大者与较小者的差,互为相反数的两个数相加得0.(3)一个数与0相加,仍得这个数.2.有理数加法运算律(1)加法交换律:a+b=b+a(2)加法结合律:(a+b)+c=a+(b+c)3.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).2.2有理数的乘法与除法1.有理数的乘法法则(1)两数相乘,同号得正,异号得负,且积的绝对值等于乘数的绝对值的积.(2)任何数与0相乘,都得0.2.倒数:乘积为1的两个数互为倒数;但0没有倒数.3.有理数乘法的运算律(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac.4.有理数除法法则:除以一个数等于乘以这个数的倒数.(注意:0不能做除数)(1)两数相除,同号得正,异号得负,且商的绝对值等于被除数的绝对值除以除数的绝对值的商.(2)0除以任何一个不等于0的数,都得0.2.3有理数的乘方1.乘方:求n个相同乘数的积的运算.(1)乘方的结果叫作幂.(2)在a n中,a叫作底数,n叫作指数.(3)负数的奇数次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0.2.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数即1≤a<10,这种记数法叫科学记数法.10的指数=整数位数-1,整数位数=10的指数+1.第三章代数式3.1列代数式表示数量关系1.代数式:用运算符号把数或表示数的字母连接起来的式子.(1)单独的一个数或字母也是代数式.(2)列代数式应注意:若式子后面有单位且式子是和或差的形式,式子应用小括号括起来.2.反比例(1)两个相关联的量,一个量变化,另一个量也随着变化,且这两个量的乘积一定,这两个量就叫作成反比例的量,它们之间的关系叫作反比例关系.(2)反比例关系可以用xy=k或kyx来表示,其中k叫作比例系数.(k≠0)3.2代数式的值1.代数式的值:一般地,用数值代替代数式中的字母,按照代数式中的运算关系计算得出的结果.2.求代数式的一般步骤(1)代入:用指定的字母的数值代替代数式里的字母,其他的运算符号和原来的数值都不能改变;(2)计算:按照代数式指明的运算,根据有理数的运算方法进行计算.第四章整式的加减4.1整式1.整式(1)定义:单项式和多项式的统称.(2)单项式:数与字母的乘积组成的式子叫单项式.单独的一个数或一个字母也是单项式.(3)系数;一个单项式中,数字因数叫做这个单项式的系数.(4)次数:一个单项式中,所有字母的指数和叫做这个单项式的次数.(5)多项式:几个单项式的和.(6)项:组成多项式的每个单项式.(7)常数项:不含字母的项.(8)多项式的次数:多项式中,次数最高的项的次数.4.2整式的加法与减法1.同类项:多项式中,所含字母相同,并且相同字母的指数也相同的项.2.合并同类项:把多项式中的同类项合并成一项.3.合并同类项后,所得项的系数是合并前各同类项的系数的和,字母连同它的指数不变.4.整式的加减:进行整式的加减运算时,如果有括号先去括号,再合并同类项.(1)步骤:①列出代数式;②去括号;③合并同类项.(2)去括号的法则①括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项的符号都不变;②括号前面是“-”号,把括号和它前面的“-”号去掉,括号里各项的符号都要改变.第五章一元一次方程5.1方程1.等式:用“=”号连接而成的式子.2.等式的性质(1)等式两边都加上(或减去)同一个数(或式子),结果仍相等;如果a=b,那么a±c=b±c.(2)等式两边都乘以(或除以)同一个不为零的数,结果仍相等.如果a=b,那么ac=bc;如果a=b,(c≠0),那么a/c=b/c.3.方程:含未知数的等式(方程是含有未知数的等式,但等式不一定是方程).4.方程的解:使等式左右两边相等的未知数的值.5.一元一次方程(1)概念:只含有一个未知数(元)且未知数的指数是1(次)的方程.(2)一般形式:ax+b=0(a≠0)5.2解一元一次方程1.移项:把等式一边的某项变号后移到另一边.2.解一元一次方程的一般步骤化简方程——分数基本性质去分母——同乘(不漏乘)最简公分母去括号——注意符号变化移项——变号(留下靠前)合并同类项——合并后符号系数化为1——除前面5.3实际问题与一元一次方程1.用方程解决问题(1)行程问题:路程=时间×速度(2)利润问题:利润=售价-进价,售价=标价×(1-折扣)(3)等积变形问题:长方体的体积=长×宽×高;圆柱的体积=底面积×高;(4)利息问题:本息和=本金+利息;利息=本金×利率(5)顺水逆水问题:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度第六章几何图形初步6.1几何图形1.几何图形:把从实物中抽象出来的各种图形的统称.2.立体图形:有些几何图形的各部分不都在同一平面内,这样的图形是立体图形.(棱柱、棱锥、圆柱、圆锥、球等)3.平面图形:有些几何图形的各部分都在同一平面内,这样的图形是平面图形.(三角形、四边形、圆、多边形等)4.展开图:有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图.(1)同一个立体图形按不同的方式展开,得到的平现图形不一样的.(2)了解直棱柱、圆柱、圆锥、的平面展开图,能根据展开图判断和制作立体模型.5.点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形最基本的图形.线:面和面相交的地方是线,分为直线和曲线.面:包围着体的是面,分为平面和曲面.体:几何体也简称体.(2)点动成线,线动成面,面动成体.6.2直线、射线、线段1.直线、线段、射线(1)线段:线段有两个端点.(2)射线:将线段向一个方向无限延长就形成了射线.射线只有一个端点.(3)直线:将线段的两端无限延长就形成了直线.直线没有端点.(4)两点确定一条直线:经过两点有一条直线,并且只有一条直线.(5)相交:两条直线有一个公共点时,称这两条直线相交.(6)两条直线相交有一个公共点,这个公共点叫交点.(7)中点:M点把线段AB分成相等的两条线段AM与MB,点M叫做线段AB的中点.(8)线段的性质:两点的所有连线中,线段最短.(两点之间,线段最短)(9)距离:连接两点间的线段的长度,叫做这两点的距离.2.尺规作图:在数学中,我们常限定用无刻度的直尺和圆规作图.6.3角1.角:有公共端点的两条射线组成的图形叫做角,两条射线的公共端点叫做这个角的顶点,这两条射线叫做这个角的边.或:角也可以看成是一条射线绕着它的端点旋转而成的.2.平角和周角(1)平角:一条射线绕着它的端点旋转,当终边和始边成一条直线时,所形成的角.(2)周角:终边继续旋转,当它又和始边重合时,所形成的角.3.角的表示(1)用数字表示单独的角,如∠1,∠2,∠3等.(2)用小写的希腊字母表示单独的一个角,如∠α,∠β,∠γ,∠θ等.(3)用一个大写英文字母表示一个独立(在一个顶点处只有一个角)的角,如∠B,∠C等.(4)用三个大写英文字母表示任一个角,如∠BAD,∠BAE,∠CAE等.注意:用三个大写英文字母表示角时,一定要把顶点字母写在中间,边上的字母写在两侧.4.角的度量单位及换算(60进制)(1)角的度量有如下规定:把一个平角180等分,每一份就是1度的角,单位是度,用“°”表示,1度记作“1°”,n度记作“n°”.(2)换算1°=60',1'=60”把1°的角60等分,每一份叫做1分的角,1分记作“1'”.把1'的角60等分,每一份叫做1秒的角,1秒记作“1''”.5.角的分类6.角的平分线:从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线.7.余角和补角(1)余角:两个角的和等于90度,这两个角互为余角.即其中每一个是另一个角的余角.(2)补角:两个角的和等于180度,这两个角互为补角.即其中一个是另一个角的补角.(3)补角的性质:等角的补角相等.(4)余角的性质:等角的余角相等.。

人教版七年级数学上册第一章有理数的概念(教案)

人教版七年级数学上册第一章有理数的概念(教案)
4.有理数的应用
-解决实际问题
-判断有理数的大小关系
-有理数的混合运算
5.练习题与例题
-各类有理数运算的练习题
-涉及实际应用的有理数问题
-提高学生对有理数概念的理解和应用能力例题解析
二、核心素养目标
1.培养学生数学抽象能力:通过有理数的概念学习,使学生能够抽象出数的本质属性,理解数的分类及其意义,形成数学的抽象思维。
-举例:应用有理数解决温度变化、方向位移等问题。
2.教学难点
(1)有理数概念的理解:学生容易混淆有理数与整数、分数的关系,难以把握有理数的本质。
-突破方法:通过具体例子,让学生感受到有理数包含整数和分数,理解有理数的无限性和可表示性。
(2)相反数和绝对值的概念:学生难以理解相反数的意义,以及绝对值表示的实际意义。
其次,在新课讲授环节,我注意到有些学生在理解有理数概念和性质时显得有些吃力。在讲解过程中,我尽量使用简洁明了的语言,并通过举例来阐述。然而,可能由于讲解速度过快,部分学生还没来得及消化吸收就进入了下一个环节。针对这个问题,我计划在今后的教学中适当放慢讲解速度,增加课堂互动,让学生有更多机会提问和思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了有理数的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对有理数的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
2.提升逻辑推理素养:引导学生掌握有理数的运算规律,学会运用逻辑推理解决问题,培养严谨的数学逻辑思维。
3.增强数学建模意识:通过实际问题的引入和解决,让学生学会运用有理数知识建立数学模型,提高解决实际问题的能力。

人教版七年级上册数学《有理数》知识点梳理

人教版七年级上册数学《有理数》知识点梳理

人教版七年级上册数学《有理数》知识点梳理一.正数和负数⒈正数和负数的概念负数:比0小的数 正数:比0大的数 0既不是正数,也不是负数 注意:①字母a 可以表示任意数,当a 表示正数时,-a 是负数;当a 表示负数时,-a 是正数;当a 表示0时,-a 仍是0。

(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a 就不能做出简单判断)②正数有时也可以在前面加“+”,有时“+”省略不写。

所以省略“+”的正数的符号是正号。

2.具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如: 零上8℃表示为:+8℃;零下8℃表示为:-8℃支出与收入;增加与减少;盈利与亏损;北与南;东与西;涨与跌;增长与降低等等是相对相反量,它们计数:比原先多了的数,增加增长了的数一般记为正数;相反,比原先少了的数,减少降低了的数一般记为负数。

3.0表示的意义⑴0表示“ 没有”,如教室里有0个人,就是说教室里没有人;⑵0是正数和负数的分界线,0既不是正数,也不是负数。

二.有理数1.有理数的概念⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)⑵正分数和负分数统称为分数⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。

理解:只有能化成分数的数才是有理数。

①π是无限不循环小数,不能写成分数形式,不是有理数。

②有限小数和无限循环小数都可化成分数,都是有理数。

注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8…也是偶数,-1,-3,-5…也是奇数。

2. (1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ①按正、负分类: ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数②按有理数的意义来分:⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数总结:①正整数、0统称为非负整数(也叫自然数)②负整数、0统称为非正整数③正有理数、0统称为非负有理数④负有理数、0统称为非正有理数(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数⇔ 0和正整数;a >0 ⇔ a 是正数;a <0 ⇔ a 是负数;a ≥0 ⇔ a 是正数或0 ⇔ a 是非负数;a ≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数.三.数轴⒈数轴的概念规定了原点,正方向,单位长度的直线叫做数轴。

人教版七年级数学上册第一章 有理数概念 教学课件(共61张PPT)

人教版七年级数学上册第一章 有理数概念 教学课件(共61张PPT)
1用科学计数法表示数只是改变数的形式并没有改变数的大小2负数用科学计数法表示时和正数一样区别就是前面多一个号3当把一个用科学计数法表示的数还原为原数时只需将小数点向右移动n位不足的数位用0补齐并把10的n次幂去掉551确定n时要根据科学计数法的规定使它为只含有一位整数的数2确定n的方法有两种1利用整数的位数来求nn等于原数的整数位数1ex
有理数的混合运算
知识拓展:
1、将带分数化为假分数,小数化为分数,再 进行乘方、乘除等运算;另外,有些运算可以
同时进行,以简化运算
2、分为三级:(1)第一级:加和减 (2)第二级:乘和除 (3)第三级:乘方
近似数
科学计数法:
1、用科学计数法表示数只是改变数的形式, 并没有改变数的大小
2、负数用科学计数法表示时和正数一样,区 别就是前面多一个“-”号 3、当把一个用科学计数法表示的数还原为原 数时,只需将小数点向右移动n位(不足的数 位用0补齐),并把10的n次幂去掉
乘方
有理数乘方运算的符号法则: (1)正数的任何次幂都是正数 (2)负数的奇次幂是负数
偶次幂是正数 (3)0的任何正整数次幂都是0
乘方
有理数乘方的运算方法: (1)一是根据底数与指数确定幂的符号
二是把绝对值乘方 (2)根据乘方的意义,先把乘方转化为乘法, 再利用乘法的运算法则进行计算
乘方
知识拓展:
加号的几个正数或负数的和的形式 ex:(-9)-(+12)+(-3)-(-7)=-9-12-3+7
减法法则
提示: (1)只有把加减法统一成加法之后,才能写
成省略加号和括号的和的形式 (2)省略加号和括号的和的形式有两种读法:
a、按加法的结果来读:应读作“负9、负12、 负3、正7的和
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

正分数:1 , 2 ,15 , 0.1,5.32,
23 7
负分数,如 0.5,
5
,
2
,
1,-150.
25,
.
237
正整数、负整数和零统称为整数。正分数和负分数统称为分数。
整数和分数统称有理数。
巩固练习
(1)0是整数吗?是正数吗?是有理数吗? (2)-5是整数吗?是负数吗?是有理数吗? (3)自然数是整数吗?是正数吗?是有理数吗?
52
正整数:15,128, 20
人 教 版 数 学 七年级 上册1. 2.1有理 数(共 15张PP T)
人 教 版 数 学 七年级 上册1. 2.1有理 数(共 15张PP T)
课堂总结 有理数
整数:正整数,0,负整数 分数:正分数和负分数
有理数
人 教 版 数 学 七年级 上册1. 2.1有理 数(共 15张PP T)
2
3
分数集合 1 , 0.1, 1 , 0.7
2
3
负数集合3, 1 , 10, 0.7
2
整数集合8, 3, 0, 10,5
正数集合8, 0.1, 1 ,5
3
人 教 版 数 学 七年级 上册1. 2.1有理 数(共 15张PP T)
人 教 版 数 学 七年级 上册1. 2.1有理 数(共 15张PP T)
3
2
(1)把这些数用"<"连接
(2)请将以上各数填到相应的横线上;
正有理数:______________
负有理数:______________
(1) 2 1 1 0 2 3.5 5
2
3
(2)正有理数:2 ,5,3.5 负有理数:1, 2 1
3
2
人 教 版 数 学 七年级 上册1. 2.1有理 数(共 15张PP T)
答案:(1)0是整数,不是正数,是有理数 (2)-5是整数,是负数,是有理数 (3)自然数是整数,不一定是正数,是有理数
人 教 版 数 学 七年级 上册1. 2.1有理 数(共 15张PP T)
有理数的分类 (1)先把有理数按“整”和“分”来分类,再把每类按“正”与“负” 来分类,如下表:
有理数
整数:正整数,0,负整数 分数:正分数和负分数
拓展提高 1.下列说法中,正确的是( ) A.正整数和负整数统称为整数 B.最小的自然数是-1 C.正分数和负分数统称为分数 D.a>-a
人 教 版 数 学 七年级 上册1. 2.1有理 数(共 15张PP T)
人 教 版 数 学 七年级 上册1. 2.1有理 数(共 15张PP T)
拓展提高
2.有理数:2 , 1,5, 0,3.5, 2 1
பைடு நூலகம்
6
5
人 教 版 数 学 七年级 上册1. 2.1有理 数(共 15张PP T)
人 教 版 数 学 七年级 上册1. 2.1有理 数(共 15张PP T)
课堂练习
1.把有理数6.4, 9,3, 10, 3 , 0.021, 1, 7 1 , 8.5, 25, 0,100 按正整数、负整数、正
4
3
分数、负分数分成四个集合。
人 教 版 数 学 七年级 上册1. 2.1有理 数(共 15张PP T)
人 教 版 数 学 七年级 上册1. 2.1有理 数(共 15张PP T)
有理数的分类 (2)先把有理数按“正”和“负”来分类,再把每类按“整”和“分” 来分类
有理数
正数:正整数、负整数 0 负数:负整数、负分数
人 教 版 数 学 七年级 上册1. 2.1有理 数(共 15张PP T)
人 教 版 数 学 七年级 上册1. 2.1有理 数(共 15张PP T)
巩固练习
下列有理数中:-7,10.1, 1,89,0,-0.67,1 3
6
5
哪些是整数?哪些是分数?哪些是正数?哪些是负数?
整数:-7,89,0
分数:10.1, 1 ,-0.67,1 3
6
5
正数:10.1,89
负数:-7, 1 ,-0.67,1 3
•1.2.1有理数
数学人教版 七年级上
复习导入
把下列各数填入相应的大括号内:
+6,1 1,3.8,
2
0,
-4,
-6.2,
22 7
,-3.8,- 23
正数集合:+6,3.8,+
22,1 1
72
负数集合:-4,-6.2,-3.8,- 2
3
有理数的概念
正整数,如1,2,3,.
零:0;
负整数,如-1,-2,-3,.;
人 教 版 数 学 七年级 上册1. 2.1有理 数(共 15张PP T)
拓展提高 3.写出五个有理数,同时满足下列三个条件: 1.其中有三个是非正数 2.其中有三个是非负数 3.其中有三个是整数 答案:-1.1,-2,0,1,2.1
人 教 版 数 学 七年级 上册1. 2.1有理 数(共 15张PP T)
正整数集合10,3, 25,100
负整数集合9, 1
负分数集合
3 4
,
0.021,
8.5
正分数集合
6.4,
7
1 3
人 教 版 数 学 七年级 上册1. 2.1有理 数(共 15张PP T)
人 教 版 数 学 七年级 上册1. 2.1有理 数(共 15张PP T)
课堂练习
2.把下列有理数:3, 8, 1 , 0.1, 0, 1 , 10, 5, 0.7填入相应的集合。
正数:正整数、负整数 0 负数:负整数、负分数
人 教 版 数 学 七年级 上册1. 2.1有理 数(共 15张PP T)
作业布置 完成第6-7页第1题、第2题
人 教 版 数 学 七年级 上册1. 2.1有理 数(共 15张PP T)
人 教 版 数 学 七年级 上册1. 2.1有理 数(共 15张PP T)
拓展提高
4.把下列的有理数填在相应的括号里面:
15, 3 , 0, 30, 0.15,128, 22 , 20, 2.6,3 1
8
5
2
负数:
正整数:
正分数:
负数: 3 , 30, 2.6
8
正分数:0.15, 22 ,3 1
相关文档
最新文档