高考数学高三模拟试卷试题压轴押题普通高中高三教学质量检测理科数学B卷
2024届高三数学仿真模拟卷(全国卷)(理科)(考试版)
2024年高考第三次模拟考试高三数学(理科)(考试时间:120分钟试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上.写在本试卷上无效.4.测试范围:高考全部内容5.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{}24A x x =-≤≤,{}260B x x x =-≥,则A B = ()A .[]2,0-B .[]0,4C .[]2,6-D .[]4,62.已知3i 2z a =(R a ∈,i 是虚数单位),若21322z =,则=a ()A .2B .1C .12D .143.如图,已知AM 是ABC 的边BC 上的中线,若AB a=,AC b = ,则AM 等于()A .()12a b- B .()12a b-- C .()12a b+ D .()12a b-+ 4.已知函数()()πtan 0,02f x x ωϕωϕ⎛⎫=+><< ⎝⎭的最小正周期为2π,直线π3x =是()f x 图象的一条对称轴,则()f x 的单调递减区间为()A .()π5π2π,2πZ 66k k k ⎛⎤-+∈ ⎥⎝⎦B .()5π2π2π,2πZ 33k k k ⎛⎤--∈ ⎥⎝⎦C .()4ππ2π,2πZ 33k k k ⎛⎤--∈ ⎥⎝⎦D .()π2π2π,2πZ 33k k k ⎛⎤-+∈ ⎥⎝⎦5.已知直线l 过点()1,1A 交圆22:4O x y +=于,C D 两点,则“CD =l 的斜率为0”的()A .必要而不充分条件B .充分必要条件C .充分而不必要条件D .即不充分也不必要条件6.甲、乙、丙、丁、戊共5名同学进行唱歌比赛,决出第一名到第五名.丙和丁去询问成绩,回答者对丙说:很遗憾,你和丁都没有得到冠军,对丁说:你当然不会是最差的从这两个回答分析,5人的名次排列方式共有()A .24种B .54种C .96种D .120种7.函数()πln sin 2x x f x x⎛⎫⋅- ⎪⎝⎭=的部分图象大致为()A .B .C.D.8.祖暅是我国南北朝时期伟大的数学家.祖暅原理用现代语言可以描述为“夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的面积总相等,那么这两个几何体的体积相等”.例如,可以用祖暅原理推导半球的体积公式,如图,底面半径和高都为R 的圆柱与半径为R 的半球放置在同一底平面上,然后在圆柱内挖去一个半径为R ,高为R 的圆锥后得到一个新的几何体,用任何一个平行于底面的平面α去截这两个几何体时,所截得的截面面积总相等,由此可证明半球的体积和新几何体的体积相等.若用平行于半球底面的平面α去截半径为R 的半球,且球心到平面α的距离为2R ,则平面α与半球底面之间的几何体的体积是()A3R B3R C3R D3R9.已知函数()21e 3ln ,ln ,ln ,ln 222f x x a f b f c f ⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则()A .a b c <<B .b a c <<C .c<a<bD .a c b<<10.已知数列{}n a 满足1,231,nn n n n a a a a a +⎧⎪=⎨⎪+⎩当为偶数时当为奇数时,若81a =,1a 的所有可能取值构成集合M ,则M 中的元素的个数是()A .7个B .6个C .5个D .4个11.如图,已知双曲线2222:1(0,0)x y C a b a b -=>>的左、右焦点分别为1(,0)F c -,2(,0)F c ,点A 在C 上,点B 在y 轴上,A ,2F ,B 三点共线,若直线1BF1AF的斜率为,则双曲线C 的离心率是()AB .32CD .312.已知()f x ,()g x 都是定义在R 上的函数,对任意x ,y 满足()()()()()f x y f x g y g x f y -=-,且()()210f f -=≠,则下列说法正确的是()A .()01f =B .函数()21g x +的图象关于点()1,0对称C .()()110g g +-=D .若()11f =,则()202311n f n ==∑第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分13.已知数列{}n a 的前n 项和2n S n n =+,当9n nS a +取最小值时,n =.14.若函数()sin 1f x x x ωω=-在[]0,2π上恰有5个零点,且在ππ[,415-上单调递增,则正实数ω的取值范围为.15.已知52345012345(23)x a a x a x a x a x a x +=+++++,则123452345a a a a a -+-+=.(用数字作答)16.已知定义在R 上的函数()f x 满足()4()0f x f x '+>,且(01f =),则下列说法正确的是.①()f x 是奇函数;②(0,),()0x f x ∃∈+∞>;③41(1)e f >;④0x ∀>时,41()e xf x <三、解答题:本大题共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)已知()sin ,5sin 5sin m B A C =+ ,()5sin 6sin ,sin sin n B C C A =--垂直,其中A ,B ,C 为ABC的内角.(1)求cos A 的大小;(2)若BC =ABC 的面积的最大值.18.(12分)2016年10月“蓝瘦香菇”等网络新词突然在网络流行,某社区每月都通过问卷形式进行一次网上调查,现从社区随机抽取了60名居民进行调查.已知上网参与问卷调查次数与参与人数的频数分布如下表:参与调查问卷次数[)0,2[)2,4[)4,6[)6,8[)8,10[]10,12参与调查问卷人数814814106(1)若将参与调查问卷不少于4次的居民称为“关注流行语居民”,请你根据频数分布表,完成22⨯列联表,据此调查你是否有99%的把握认为在此社区内“关注流行语与性别有关”?男女合计关注流行语8不关注流行语合计40(2)从被调查的人中按男女比例随机抽取6人,再从选取的6人中选出3人参加政府听证会,求选出的3人为2男1女的概率.附:参考公式()()()()()22n ad bc K a b c d a c b d -=++++及附表()2P K k ≥0.1000.0500.0100.001k2.7063.8416.63510.82819.(12分)在几何体中,底面ABC 是边长为2的正三角形.⊥AE 平面ABC ,若,5,4,3AE CD BF AE CD BF ===∥∥.(1)求证:平面DEF ⊥平面AEFB ;(2)是否在线段AE 上存在一点P ,使得二面角P DF E --的大小为π3.若存在,求出AP 的长度,若不存在,请说明理由.20.(12分)已知椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2P ⎛⎫ ⎪⎝⎭在椭圆C 上,且PF 垂直于x 轴.(1)求椭圆C 的方程;(2)直线l 斜率存在,交椭圆C 于,A B 两点,,,A B F 三点不共线,且直线AF 和直线BF 关于PF 对称.(ⅰ)证明:直线l 过定点;(ⅱ)求ABF △面积的最大值.21.(12分)已知函数()2,0eax x f x a =>.(1)当2a =时,求函数()f x 的单调区间和极值;(2)当0x >时,不等式()()2cos ln ln 4f x f x a x x ⎡⎤-≥-⎣⎦恒成立,求a 的取值范围.(二)选考题:共10分.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分.选修4-4:坐标系与参数方程22.在平面直角坐标系xOy 中,曲线C 的参数方程为12cos 2sin x y αα=+⎧⎨=⎩(α为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为sin 42πρθ⎛⎫-= ⎪⎝⎭.(1)求C 的普通方程和l 的直角坐标方程;(2)设直线l 与x 轴相交于点A ,动点B 在C 上,点M 满足AM MB =,点M 的轨迹为E ,试判断曲线C与曲线E 是否有公共点.若有公共点,求出其直角坐标;若没有公共点,请说明理由.选修4-5:不等式选讲23.已知()2122f x x x x =-+-+.(1)求()2f x ≥的解集;(2)记()f x 的最小值为t ,且2(0,0)3a b t a b +=>>,求证:11254a b a b ⎛⎫⎛⎫++≥ ⎪⎪⎝⎭⎝⎭.。
高考数学高三模拟试卷试题压轴押题高三年级第二次综合练习数学学科测试理工类
高考数学高三模拟试卷试题压轴押题高三年级第二次综合练习数学学科测试(理工类)第一部分(选择题共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.已知集合}{|230A x x =∈-R ≥,集合}{2|320B x x x =∈-+<R ,则AB =( ).A .3|2x x ⎧⎫⎨⎬⎭⎩≥B .3|22x x ⎧⎫<⎨⎬⎭⎩≤C .}{|12x x <<D .3|22x x ⎧⎫<<⎨⎬⎭⎩解析:}{}{}{23|230=|x ,|320|1<x 22A x x x B x x x x ⎧⎫=∈-∈=∈-+<=∈<⎨⎬⎭⎩R R R R ≥≥考点:集合与常用逻辑用语集合的运算难度系数:3 答案:B2.如果0a b >>,那么下列不等式一定成立的是( ).A .33log log a b <B .11()()44a b >C .11a b< D .22a b <解析:A 以3为底,函数单调递增,错误;B 单调递减,错误;C 正确。
考点:函数与导数基本初等函数与应用对数与对数函数 难度系数:3 答案:C3.执行如右图所示的程序框图,若输出的结果为2,则输入的正整数a 的可能取值的集合是( ).A .}{1,2,3,4,5B .}{1,2,3,4,5,6C .}{2,3,4,5D .}{2,3,4,5,6 解析:先验证a=1,不成立;a=6时,不成立;所以答案C. 考点:算数与框图算法和程序框图 难度系数:3 答案:C4.已知函数π()sin()(0,0,)2f x A x A ωϕωϕ=+>><的部分图像如右图所示,则ϕ=( ).A .π6-B .π6C .π3-D .π3解析:,243124T T ππππϖ=-=∴==,把(,0)3π带入解析式,2sin(2)0,333k k Z πππϕϕπϕ⨯+=∴=-∈∴=,答案D 。
高考数学高三模拟试卷试题压轴押题普通高等学校招生全国统一考试数学理工类
高考数学高三模拟试卷试题压轴押题普通高等学校招生全国统一考试数学(理工类) 本试卷分第一部分(选择题)和第二部分(非选择题)。
第一部分1至2页,第二部分3至4页,共4页.考生作答时,须将答案答在答题卡上及试题卷,草稿纸上答题无效,满分150分,考试时间120分钟。
考试结束后,将本试卷和答题卡一并交回. 参考公式:如果事件A 、B 互斥,那么球的表面积公式 P(A+B) =P(A)+P(B) 24s R π=如果事件A 、B 相互独立,那么其中R 表示球的半径 P(A·B)=P(A)·P(B)球的体积公式如果事件A 在一次试验中发生的概率是p ,那么243v R π=在n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径n ()(1)(0,1,2,...)k kn k n P k C p p k n -=-=第一部分(选择题 共60分)注意事项:1.选择题必须使用2B 铅笔将答案标号填涂在答题卡上对应题目标号的位置上。
2.本部分共12小题,每小题5分,共60分。
一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1、有一个容量为66的样本,数据的分组及各组的频数如下: [11.5,15.5) 2 [15.5,19.5)4 [19.5,23.5) 9 [23.5,27.5) 18 [27.5,31.5) 1l [31.5,35.5) 12 [35.5.39.5) 7 [39.5,43.5) 3 根据样本的频率分布估计,数据落在[31.5,43.5)的概率约是 (A)16(B)13 (C)12(D )23答案:B解析:从31.5到43.5共有22,所以221663P ==。
2、复数1i i-+=(A)2i - (B )12i (C )0 (D )2i答案:A解析:12i i i i i-+=--=-3、1l ,2l ,3l 是空间三条不同的直线,则下列命题正确的是 (A)12l l ⊥,23l l ⊥13l l ⇒ (B )12l l ⊥,23l l ⇒13l l ⊥ (C)233l l l ⇒1l ,2l ,3l 共面 (D )1l ,2l ,3l 共点⇒1l ,2l ,3l 共面 答案:B解析:A 答案还有异面或者相交,C 、D 不一定 4、如图,正六边形ABCDEF 中,BA CD EF ++=(A)0 (B)BE (C)AD (D)CF 答案D解析:BA CD EF BA AF EF BF EF CE EF CF ++=++=+=+= 5、5函数,()f x 在点0x x =处有定义是()f x 在点0x x =处连续的(A)充分而不必要的条件 (B)必要而不充分的条件 (C)充要条件 (D)既不充分也不必要的条件答案:B解析:连续必定有定义,有定义不一定连续。
高考数学高三模拟考试试卷压轴题普通高等学校招生全国统一考试理科数学
高考数学高三模拟考试试卷压轴题普通高等学校招生全国统一考试理科数学一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是复合题目要求的。
1.1212ii+=-() A .4355i --B .4355i -+C .3455i --D .3455i -+2.已知集合(){}223A x y xy x y =+∈∈Z Z ,≤,,,则A 中元素的个数为()A .9B .8C .5D .43.函数()2x xe ef x x --=的图象大致是()4.已知向量a b ,满足,1a =,1a b ⋅=-,则()2a a b ⋅-=()A .4B .3C .2D .05.双曲线()2222100x y a b a b-=>,>的离心力为3,则其渐近线方程为()A .2y x =±B .3y x =±C .2y x =±D .3y x =± 6.在ABC △中,5cos2C =,1BC =,5AC =,则AB =() A .42B .30 C .29 D .257.为计算11111123499100S =-+-+⋅⋅⋅+-,设计了右侧的程序框图,则在空白框中应填入()A .1i i =+B .2i i =+C .3i i =+D .4i i =+8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是() A .112B .114C .115D .1189.在长方体1111ABCD A B C D -中,1AB BC ==,1AA =1AD 与1DB 所成角的余弦值为()A .15BCD10.若()cos sin f x x x =-在[]a a -,是减函数,则a 的最大值是()A .4πB .2πC .43πD .π 11.已知()f x 是定义域为()-∞+∞,的奇函数,满足()()11f x f x -=+.若()12f =,则()()()()12350f f f f +++⋅⋅⋅+=()A .50-B .0C .2D .5012.已知1F ,2F 是椭圆()2222:10x y C a b a b+=>>的左、右焦点交点,A 是C 的左顶点,点P 在过A 且的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为() A .23B .12C .13D .14 二、填空题,本题共4小题,每小题5分,共20分.13.曲线()2ln 1y x =+在点()00,处的切线方程为__________.14.若x y ,满足约束条件25023050x y x y x +-⎧⎪-+⎨⎪-⎩≥≥≤,则z x y =+的最大值为_________.15.已知sin cos 1αβ+=,cos sin 0αβ+=,则()sin αβ+=__________. 16.已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45︒.若SAB △的面积为_________.三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤。
高考数学高三模拟试卷试题压轴押题高三年级期末考试
高考数学高三模拟试卷试题压轴押题高三年级期末考试试卷(理科)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,共150。
考试时间120分钟。
第I 卷(选择題共60分)一、选择题(每小题5分,共60分。
下列每小题拼给选项只有一项符合题意,请将正确答案的序号填涂在答题卡上)1.若复数63ai i +-(其中a ∈R ,i 为虚数単位)的实部与虚部相等,则a= A.3B.6 C.4 D.122.若集合A= {x Z ∈∣2<2x+2≤8} B=(22x x ->0},则A ⋂(R C B )所含的元素个数为()A. 0B. 1C. 2D. 33.已知数列2、6、10、32…..,那么72是这个数列的第()项A. 23B. 25C. 19D. 244.若曲线ax2+by2= l 为焦点在X 轴上的椭圆,则实数a ,b 满足() A.a2>b2 B .1a >1bC. 0<a<bD. 0<b<a 5.已知函数f (x)=sin x+λcos x 的图象的一个对称中心是点(3π,0),则函数 g(x)=Asin xcos x+sin2x 的图象的一条对称轴是直线A. x=56πB. x= 43πC. x = 3πD. x=3π- 6.某程序框图如图所示,若该程序运行后输出的值是7/4,则A. a=3 B a = 4 C.a = 5 D. .a = 67.如图,在∆ABC 中,13AN NC =,P 是BN 上的一点,若AP = mAP +29AC 则实数m 的值为 ( )A. 1 B 1/3 C 1/9 D 38,在(12x)(1+x )5的展开式中,x3的系数是A. 20B. 20C. 10D. 109.如图,棱长为1的正方体ABCD —A1B1C1D1中,P为线段A1B1上的动点,则下列结论错误的是B. 平面DC1丄平面A1APC. ∠APD1的最大值为90°D. AP+PD1的最小值为22+10. 甲、乙、丙3人进行擂台赛,每局2人进行单打比赛,另1人当裁判,每一局的输方当下一局的裁判,由原来裁判向胜者挑战,比赛结束后,经统计,甲共打了5局,乙共打了6局,而丙共当了 2局裁判,那么整个比赛共进行了()A. 9 局B.11 局C.3局D. 18局11. 某几何体的三视图如图所示,三视图是边长为1的等腰直角三角形和边长为1的正方形,则该几何体的体积为()A 16B13. C.12D.2312.已知函数(](]211,1()12,1,3x xf xx x⎧-∈-⎪=⎨--∈⎪⎩,其中m>0,且函数()(4)f x f x=+,若方程3()f x x= 0恰有5个根,则实数m的取值范围是(A 157) B.158)3C.4(7)3D.48(,)33第II卷(非选择題共90分)二、填空题(每题5分,共20分,把答案填在答题纸的横线上)13. 函数:y=log3(2cos x+1),x22,33ππ⎛⎫∈-⎪⎝⎭的值域为。
高考数学高三模拟考试试卷压轴题普通高中高三质量监测三数学理科
高考数学高三模拟考试试卷压轴题普通高中高三质量监测(三)数学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分.考试时间为120分钟,其中第Ⅱ卷22题-24题为选考题,其它题为必考题.考试结束后,将试卷和答题卡一并交回. 注意事项:1. 答题前,考生必须将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内.2. 选择题必须用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚.3. 请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效.4. 保持卡面清洁,不要折叠、不要弄破、不准使用涂改液、刮纸刀.第Ⅰ卷一、选择题(本大题包括12小题,每小题5分,共60分,每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填涂在答题卡上). 1. 已知集合{11}A x x =-≤≤,2{20}B x x x =-≤,则A B =A. [1,0]-B. [1,2]-C. [0,1]D. (,1][2,)-∞+∞2. 设复数1z i =+(i 是虚数单位),则22z z+= A. 1i + B. 1i - C. 1i -- D. 1i -+3. 已知1,2==a b ,且()⊥-a a b ,则向量a 与向量b 的夹角为A. 6πB. 4πC. 3πD. 23π4. 已知ABC ∆中,内角,,A B C 的对边分别为,,a b c ,若222a b c bc =+-,4bc =,则ABC ∆的面积为A. 12B. 1C. 3D. 25. 已知{}2,0,1,3,4a ∈-,{}1,2b ∈,则函数2()(2)f x a x b =-+为增函数的概率是 A.25B.35C.12 D. 3106. 阅读如图所示的程序框图,运行相应的程序. 若输出的S 为1112,则判断框中填写的内容可以是 A. 6n = B. 6n < C. 6n ≤ D. 8n ≤7. 如图,网格纸上小正方形的边长为1,粗线画出的是某多面体的三视图,则该多面体的体积为 A. 323B. 64C.323D. 6438. 在平面直角坐标系中,若(,)P x y 满足44021005220x y x y x y -+⎧⎪+-⎨⎪-+⎩≤≤≥,则2x y +的最大值是A. 2B. 8C. 14D. 169. 已知直线22(1)y x =-与抛物线:C x y 42=交于B A ,两点,点),1(m M -,若0=⋅,则=m22C.21D. 0 10. 对定义在[0,1]上,并且同时满足以下两个条件的函数()f x 称为M 函数:(i) 对任意的[0,1]x ∈,恒有()0f x ≥;(ii) 当12120,0,1x x x x +≥≥≤时,总有1212()()()f x f x f x x ++≥成立. 则下列四个函数中不是M 函数的个数是 ①2()f x x =②2()1f x x =+ ③2()ln(1)f x x =+④()21xf x =- A.1B.2C. 3D. 411. 已知双曲线22221(0,0)x y a b a b-=>>与函数y x =的图象交于点P ,若函数y x =P 处的切线过双曲线左焦点(1,0)F -,则双曲线的离心率是 A. 512B. 522C. 312D. 3212. 若对,[0,)x y ∀∈+∞,不等式2242x y x y ax ee +---++≤恒成立,则实数a 的最大值是 A.14B. 1C. 2D.12第Ⅱ卷本卷包括必考题和选考题两部分,第13题-21题为必考题,每个试题考生都必须作答,第22题-24题为选考题,考生根据要求作答.二、填空题(本大题包括4小题,每小题5分,共20分,把正确答案填在答题卡中的横线上). 13. 函数13sin cos 2y x x =+([0,]2x π∈)的单调递增区间是__________. 14. 61()2x x-的展开式中常数项为__________. 15. 已知定义在R 上的偶函数()f x 在[0,)+∞上单调递增,且(1)0f =,则不等式0(2)f x -≥的解集是__________.16. 底面是正多边形,顶点在底面的射影是底面中心的棱锥叫正棱锥. 已知同底的两个正三棱锥内接于同一个球. 已知两个正三棱锥的底面边长为a ,球的半径为R. 设两个正三棱锥的侧面与底面所成的角分别为α、β,则tan()αβ+的值是.三、解答题(本大题包括6小题,共70分,解答应写出文字说明,证明过程或演算步骤).17. (本小题满分12分)已知数列{}n a 中,11a =,其前n 项的和为n S ,且满足2221n n n S a S =-2()n ≥. ⑴ 求证:数列1n S ⎧⎫⎨⎬⎩⎭是等差数列; ⑵ 证明:当2n ≥时,1231113 (232)n S S S S n ++++<. 18. (本小题满分12分)如图,在四棱锥PABCD 中,底面ABCD 是菱形,∠DAB =60,PD ⊥平面ABCD ,PD=AD=1,点,E F分别为AB 和PD 中点.⑴ 求证:直线AF //平面PEC ;⑵ 求PC 与平面PAB 所成角的正弦值.19. (本小题满分12分)某校甲、乙两个班级各有5名编号为1,2,3,4,5的学生进行投篮训练,每人投10次,投中的次数统计如下表:学生 1号 2号 3号 4号 5号甲班65798乙班 4 8 9 7 7⑴⑵ 若把上表数据作为学生投篮命中率,规定两个班级的1号和2号同学分别代表自己的班级参加比赛,每人投篮一次,将甲、乙两个班两名同学投中的次数之和分别记作X 和Y ,试求X 和Y 的分布列和数学期望.FEB D A P20. (本小题满分12分)已知椭圆C :22221(0)x y a b a b+=>>的上顶点为(0,1),且离心率为32.⑴ 求椭圆C 的方程;⑵ 证明:过椭圆1C :22221(0)x y m n m n+=>>上一点00(,)Q x y 的切线方程为00221x x y ym n+=; ⑶ 从圆2216x y +=上一点P 向椭圆C 引两条切线,切点分别为,A B ,当直线AB 分别与x 轴、y 轴交于M 、N 两点时,求MN 的最小值.21. (本小题满分12分)定义在R 上的函数()f x 满足222(1)()2(0)2x f f x e x f x -'=⋅+-,21()()(1)24x g x f x a x a =-+-+.⑴ 求函数()f x 的解析式; ⑵ 求函数()g x 的单调区间; ⑶如果s 、t 、r 满足||||s r t r --≤,那么称s 比t 更靠近r .当2a ≥且1x ≥时,试比较e x和1x e a -+哪个更靠近ln x ,并说明理由.请考生在22,23,24三题中任选一题作答,如果多做,则按所做的第一题记分. 做答时,用2B 铅笔在答题卡上把所选题目对应的标号涂黑. 22. (本小题满分10分) 选修4-1:几何证明选讲如图所示,AB 为圆O 的直径,CB ,CD 为圆O 的切线, B ,D 为切点.⑴ 求证:OC AD //;⑵ 若圆O 的半径为2,求OC AD ⋅的值.23. (本小题满分10分) 选修4-4:坐标系与参数方程在直角坐标系xOy 中,圆C 的参数方程为⎩⎨⎧+-=+=θθsin 24cos 23y x (θ为参数).⑴以原点为极点、x 轴正半轴为极轴建立极坐标系,求圆C 的极坐标方程; ⑵已知(2,0),(0,2)A B -,圆C 上任意一点),(y x M ,求ABM ∆面积的最大值.24. (本小题满分10分) 选修4-5:不等式选讲⑴ 已知,a b 都是正数,且a b ≠,求证:3322a b a b ab +>+;⑵已知,,a b c 都是正数,求证:222222a b b c c a abc a b c++++≥. 长春市普通高中高三质量监测(三)数学(理科)参考答案及评分参考说明:一、本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二、对解答题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四、只给整数分数,选择题和填空题不给中间分.一、选择题(本大题包括12小题,每小题5分,共60分)1. C2. A3. B4. C5. B6. C7. D8. C9. B 10. A 11. A 12. D. 简答与提示:1. 【命题意图】本小题主要考查集合的计算,是一道常规问题.【试题解析】C ∵[0,2]B =,∴A B =[0,1],故选C.2. 【命题意图】本小题主要考查复数的基本运算,特别是复数的除法和平方运算,对考生的运算求解能力有一定要求.【试题解析】A∵1z i =+,∴i i i i i+=+-=+++121)1(122,故选A. 3. 【命题意图】本小题主要考查平面向量的的位置关系以及平面向量的数量积运算,特别突出对平面向量运算律的考查,另外本题也对考生的分析判断能力进行考查.【试题解析】B∵()⊥-a a b ,∴2()0⋅-=-⋅=a a b a a b ,∴2⋅=a b a ,∵1,2==a b 22cos ,||||||||⋅<>===a b a a b a b a b ,∴向量a 与向量b 的夹角为4π,故选B.4. 【命题意图】本小题主要考查余弦定理在解三角形中的应用,以及三角形面积的求法,对学生的推理论证能力和数形结合思想提出一定要求.【试题解析】C ∵222a b c bc =+-,∴1cos 2A =,∴3A π=,又4bc =,∴ABC ∆的面积为1sin 32bc A = C. 5. 【命题意图】本小题通过一次函数的单调性和系数的关系,考查古典概型的理解和应用,是一道综合创新题.【试题解析】B∵2()(2)f x a x b =-+为增函数,∴22a ->0,又{}2,0,1,3,4a ∈-,∴{}2,3,4a ∈-,又{}1,2b ∈, ∴函数2()(2)f x a x b =-+为增函数的概率是35,故选B. 6. 【命题意图】本小题主要通过程序框图的理解考查学生的逻辑推理能力,同时考查学生对算法思想的理解与剖析.【试题解析】C∵1111124612++=,因此应选择6n =时满足, 而8n =时不满足的条件∴6n ≤,故选C.7. 【命题意图】本小题主要考查立体几何中的三视图问题,并且对考生的空间想象能力及利用三视图还原几何体的能力进行考查,同时考查简单几何体的体积公式. 【试题解析】D 由三视图可知,该多面体是一个四棱锥,且由一个顶点出发的三条侧棱两两垂直,长度都为4,∴其体积为643,故选D. 8. 【命题意图】本小题主要考查二元一次不等式组所表示的可行域的获取以及目标函数的几何意义,是线性规划的一种简单应用,对学生的数形结合思想提出一定要求. 【试题解析】C 根据线性规划的方法可求得最优解为点)6,2(,此时2x y +的值等于14,故选C.9. 【命题意图】本小题主要考查抛物线的定义与基本性质及过焦点的弦的性质. 本题不但对考生的运算求解能力、推理论证能力有较高要求,而且对考生的化归与转化的数学思想也有较高要求.【试题解析】B)2,21(),22,2(-B A ,∵),1(m M -,且0=⋅MB MA ,∴01=+m m 22-22,解得22m =,故选B.10. 【命题意图】本小题通过函数的运算与不等式的比较,另外也可以利用函数在定义域内的变化率、函数图像的基本形式来获得答案,本题对学生的运算求解能力和数形结合思想提出一定要求.【试题解析】A(i)在[0,1]上,四个函数都满足;(ii)12120,0,1x x x x ≥≥+≤;对于①,0222≥=+-+=+-+21212212121)()()]()([)(x x x x x x x f x f x x f ,满足;对于②,22212121212()[()()][()1][(1)(1)]f x x f x f x x x x x +-+=++-+++02<-=121x x ,不满足.对于③,)]1ln()1[ln(]1)ln[()]()([)(212212121+++-++=+-+22x x x x x f x f x x f112ln)1)(1(1)(ln)]1)(1ln[(]1)ln[(212212122212122121221++++++=++++=++-++=2222222x x x x x x x x x x x x x x x x而1212120,0,12x x x x x x ≥≥∴≥+≥,∴41≤21x x ,∴212121x x x x x x 24122≤≤, ∴1222≥++++++11221221212221x x x x x x x x ,∴0222≥++++++112ln21221212221x x x x x x x x ,满足;对于④,)121()]()([)(21212121-+--=+-++x x x x x f x f x x f 21)-(20222≥--=+--=)12)(12(12212121x x x x x x ,满足;故选A.11. 【命题意图】本小题主要考查过曲线外一点作曲线切线的基本方法,结合双曲线的标准方程与离心率,对考生的运算求解能力和推理论证能力提出较高要求.【试题解析】A设),(00x x P ,∴切线的斜率为12x , 又∵在点P 处的切线过双曲线左焦点)0,1(-F ,∴000112x x x =+,解得01x =, ∴(1,1)P ,因此152,22-==a c ,故双曲线的离心率是215+,故选A ; 12. 【命题意图】本小题主要考查基本不等式的应用,以及利用导数求取函数最值的基本方法,本题作为选择的压轴题,属于较难题,对学生的运算求解能力和推理论证能力提出一定要求.【试题解析】D 因为)1(22)(22222+≥++=++------+x y y x y x y x e e e e e e,再由,4)1(22ax e x ≥+-可有x e a x 212-+≤,令xe x g x 21)(-+=,则22(1)1()x e x g x x---'=,可得(2)0g '=,且在),2(+∞上()0g x '>,在)2,0[上()0g x '<,故)(x g 的最小值为1)2(=g ,于是,12≤a 即21≤a ,故选D.二、填空题(本大题包括4小题,每小题5分,共20分) 13. [0,]6π14. 52-15. (,1][3,)-∞+∞16.433R a-简答与提示:13. 【命题意图】本小题主要考查辅助角公式的应用以及三角函数单调区间的求取,属于基本试题.【试题解析】∵13sin cos sin()23y x x x π=+=+, ∴函数的增区间为5[2,2]()66k k k Z ππππ-+∈,又[0,]2x π∈,∴增区间为[0,]6π. 14. 【命题意图】本小题是二项式定理的简单应用,求取二项展开式中某项的系数是考生的一项基本技能.【试题解析】∵61()2x x -的通项为k kk k k k k x x x T C C 2--+-=-=66661)21()21(,令026=-k ,∴3=k ,故展开式中常数项为52-;15. 【命题意图】本小题主要考偶函数的性质以及函数图像的平移变换等,同时对考生的数形结合思想.【试题解析】由已知21x -≥或21x -≤-,∴解集是(,1][3,)-∞+∞.16. 【命题意图】本小题通过对球的内接几何体的特征考查三角函数的计算,对考生的空间想象能力与运算求解能力以及数形结合思想都提出很高要求,本题是一道综合题,属于较难题. 【试题解析】SDBCAPO αβSDAPOαβ如图,右侧为该球过SA 和球心的截面,由于三角形ABC 为正三角形,所以D 为BC 中点,且BC BC BC ⊥⊥⊥MD SD AD ,,,故βα=∠=∠MDA SDA ,.设P ABC 平面SM = ,则点P 为三角形ABC 的重心,且点P 在AD 上,a ==AB ,2R SM ∴333236AD a PA a PD a ===,,,因此 222tan tan tan()1tan tan 1SP MP PD SM PD SMPD PD SP MP PD SP MP PD PA PD PDαβαβαβ++⋅⋅+====--⋅--⋅ 223236.3123RR a a a ⋅==-- 三、解答题17. (本小题满分12分)【命题意图】本小题主要考查有关于数列的基础知识,其中包括数列基本量的求取,数列前n 项和的求取,以及利用放缩法解决数列不等式问题,虽存在着一定的难度,但是与高考考查目标相配合,属于一道中档题,对考生的运算求解能力,化归与转化能力提出一定要求.【试题解析】解:(1)当2n ≥时,21221nn n n S S S S --=-,112n n n n S S S S ---=1112n n S S --=,从而1n S ⎧⎫⎨⎬⎩⎭构成以1为首项,2为公差的等差数列. (6分)(2)由(1)可知,111(1)221n n n S S =+-⨯=-,121n S n ∴=- ∴当2n ≥时,11111111()(21)(22)2(1)21n S n n n n n n n n n=<=⋅=-----从而123111111111313...1(1)2322231222n S S S S n n n n ++++<+-+-++-<-<-. (12分)18. 【命题意图】本小题主要考查立体几何的相关知识,具体涉及到线面的平行关系、线面角的求法及空间向量在立体几何中的应用. 本小题对考生的空间想象能力与运算求解能力有较高要求.【试题解析】解:(1)证明:作FM ∥CD 交PC 于M. ∵点F 为PD 中点,∴CD FM 21=. ∴FM AB AE ==21,∴AEMF 为平行四边形,∴AF ∥EM ,∵AF PEC EM PEC ⊄⊂平面,平面, ∴直线AF //平面PEC.(6分)(2)60DAB∠=,DE DC ∴⊥如图所示,建立坐标系,则 P(0,0,1),C(0,1,0),0,0),12-,0),1,0)2B ∴1(,1)2AP =-,()0,1,0AB =. 设平面PAB 的一个法向量为(),,n x y z =.∵0n AB ⋅=,0n AP ⋅=,∴10220x y z y ⎧-++=⎪⎨⎪=⎩,取1x =,则2z =,∴平面PAB 的一个法向量为3(1,0,2n=. ∵(0,1,1)PC =-,∴设向量n PC θ与所成角为,∴cos 147n PC n PCθ⋅===-, ∴PC 平面PAB 所成角的正弦值为14. (12分)19. 【命题意图】本小题主要考查统计与概率的相关知识,其中包括方差的求法、基本概率的应用以及离散型随机变量的数学期望的求法. 本题主要考查学生的数据处理能力.【试题解析】解:(1)两个班数据的平均值都为7,(2)X 可能取0,1,2211(0)525P X ==⨯=,31211(1)52522P X ==⨯+⨯=,313(2)5210P X ==⨯=,所以X6分数学期望11311012521010EX =⨯+⨯+⨯=8分 Y 可能取0,1,2313(0)5525P Y ==⨯=,342114(1)555525P Y ==⨯+⨯=,248(2)5525P Y ==⨯=,所以Y Y0 1 2P325142582510分数学期望314860122525255EY =⨯+⨯+⨯=.12分20. 【命题意图】本小题主要考查直线与圆锥曲线的综合应用能力,具体涉及到椭圆标准方程的求取,直线与圆锥曲线的相关知识以及圆锥曲线中最值的求取. 本小题对考生的化归与转化思想、运算求解能力都有很高要求.【试题解析】解:(1)1b =,3=2c e a =,2,1a b ∴==, ∴椭圆C 方程为2214x y +=. 2分(2)法一:椭圆1C :22221x y m n +=,当0y >时,221x y n m=-,故2221nx y m x m'=-⋅-,∴当00y >时,20002222000211x n n n k x x y m m m y x n m=-⋅=-=-⋅-. 4分切线方程为()200020x n y y x x m y -=-⋅-,222222220000n x x m y y m y n x m n +=+=,00221x x y y m n +=. 6分同理可证,00y <时,切线方程也为00221x x y ym n +=.当0=0y 时,切线方程为x m =±满足00221x x y ym n+=.综上,过椭圆上一点00(,)Q x y 的切线方程为00221x x y ym n+=. 7分法二:. 当斜率存在时,设切线方程为y kx t =+,联立方程:22221x y m ny kx t ⎧+=⎪⎨⎪=+⎩可得222222()n x m kx t m n ++=,化简可得: 22222222()2()0n m k x m ktx m t n +++-=,①由题可得:42222222244()()0m k t m n m k t n ∆=-+-=, 4分化简可得:2222t m k n =+,①式只有一个根,记作0x ,220222m kt m kx n m k t =-=-+,0x 为切点的横坐标,切点的纵坐标200n y kx t t =+=,所以2020x m ky n =-,所以2020n x k m y =-,所以切线方程为:2000020()()n x y y k x x x x m y -=-=--,化简得:00221x x y ym n+=. 6分当切线斜率不存在时,切线为x m =±,也符合方程00221x x y ym n+=, 综上:22221x y m n +=在点00(,)x y 处的切线方程为00221x x y ym n+=. 7分(3)设点P (,)p p x y 为圆2216x y +=上一点,,PA PB 是椭圆2214x y +=的切线,切点1122(,),(,)A x y B x y ,过点A 的椭圆的切线为1114x xy y +=,过点B 的椭圆的切线为2214x xy y +=.两切线都过P 点,12121,144p pp p x x x x y y y y ∴+=+=. ∴切点弦AB 所在直线方程为14pp xx yy +=. 9分1(0)p M y ∴,,4(,0)pN x ,2222222161161=16p pp p p p x y MN x y x y ⎛⎫+∴=++⋅ ⎪ ⎪⎝⎭22221125=171617161616p p p p x y y x ⎛⎛⎫ ++⋅≥+= ⎪ ⎪ ⎝⎭⎝.当且仅当222216ppp p x y y x =,即226416,55P P x y ==时取等, 54MN ∴≥,MN ∴的最小值为54. 12分21. 【命题意图】本小题主要考查函数与导数的综合应用能力,具体涉及到用导数来描述函数的单调性等情况. 本小题主要考查考生分类讨论思想的应用,对考生的逻辑推理能力与运算求解有较高要求.【试题解析】解:(1)22'()'(1)22(0)x f x f ex f -=+-,所以'(1)'(1)22(0)f f f =+-,即(0)1f =. 又2(1)(0)2f f e -'=⋅,所以2'(1)2f e =,所以22()2x f x e x x =+-.4分(2)22()2x f x e x x =-+,222111()()(1)(1)(1)2444x x x g x f x a x a e x x x a x a e a x ∴=-+-+=+--+-+=--()x g x e a '∴=-.5分①当0a ≤时,()0g x '>,函数()f x 在R 上单调递增;6分 ②当0a >时,由()0x g x e a '=-=得ln x a =,∴(),ln x a ∈-∞时,()0g x '<, ()g x 单调递减;()ln ,x a ∈+∞时,()0g x '>,()g x 单调递增.综上,当0a ≤时,函数()g x 的单调递增区间为(,)-∞+∞;当0a >时,函数()g x 的单调递增区间为()ln ,a +∞,单调递减区间为(),ln a -∞. 8分 (3)解:设1()ln ,()ln x ep x x q x e a x x-=-=+-, 21'()0e p x x x=--<,∴()p x 在[1,)x ∈+∞上为减函数,又()0p e =, ∴当1x e ≤≤时,()0p x ≥,当x e >时,()0p x <.11'()x q x e x -=-,121''()0x q x e x-=+>,∴'()q x 在[1,)x ∈+∞上为增函数,又'(1)0q =,∴[1,)x ∈+∞时,'()0q x ≥,∴()q x 在[1,)x ∈+∞上为增函数, ∴()(1)20q x q a ≥=+>.①当1x e ≤≤时,1|()||()|()()x e p x q x p x q x e a x--=-=--,设1()x e m x e a x -=--,则12'()0x e m x e x -=--<,∴()m x 在[1,)x ∈+∞上为减函数, ∴()(1)1m x m e a ≤=--,2a ≥,∴()0m x <,∴|()||()|p x q x <,∴e x比1x e a -+更靠近ln x . ②当x e >时,11|()||()|()()2ln 2ln x x ep x q x p x q x x e a x e a x---=--=-+--<--,设1()2ln x n x x e a -=--,则12'()x n x e x -=-,122''()0x n x e x-=--<,∴'()n x 在x e >时为减函数,∴12'()'()0e n x n e e e-<=-<,∴()n x 在x e >时为减函数,∴1()()20e n x n e a e -<=--<,∴|()||()|p x q x <,∴ex 比1x e a -+更靠近ln x .综上:在2,1a x ≥≥时,e x比1x e a -+更靠近ln x .12分22. 【命题意图】本小题主要考查平面几何的证明,具体涉及到圆的切线的性质,三角形相似等内容. 本小题重点考查考生对平面几何推理能力.【试题解析】解:(1)连接CD CB OD BD ,,, 是圆O 的两条切线,OC BD ⊥∴,又AB 为直径,DB AD ⊥∴,//AD OC .5分(2)由//AD OC ,DAB COB ∴∠=∠,BAD Rt ∆∴∽Rt COB ∆,AD AB OB OC=,8AD OC AB OB ⋅=⋅=.10分 23. 【命题意图】本小题主要考查极坐标系与参数方程的相关知识,具体涉及到极坐标方程与平面直角坐标方程的互化、平面内直线与曲线的位置关系等内容. 本小题考查考生的方程思想与数形结合思想,对运算求解能力有一定要求.【试题解析】解:(1)圆C 的参数方程为⎩⎨⎧+-=+=θθsin 24cos 23y x (θ为参数)所以普通方程为4)4()3(22=++-y x .2分 ∴圆C 的极坐标方程:021sin 8cos 62=++-θρθρρ.5分(2)点),(y x M 到直线AB :02=+-y x 的距离为2|9sin 2cos 2|+-=θθd 7分ABM ∆的面积|9)4sin(22||9sin 2cos 2|||21+-=+-=⨯⨯=θπθθd AB S所以ABM ∆面积的最大值为229+10分24. 【命题意图】本小题主要考查不等式证明的相关知识,具体涉及到利用比较法等证明方法. 本小题重点考查考生的逻辑思维能力与推理论证能力.【试题解析】解:(1)证明:33222()()()()a b a b ab a b a b +-+=+-.因为,a b 都是正数,所以0a b +>. 又因为a b ≠,所以2()0a b ->.于是2()()0a b a b +->,即3322()()0a b a b ab +-+> 所以3322a b a b ab +>+;5分(2)证明:因为2222,0b c bc a +≥≥,所以2222()2a b c a bc +≥.①同理2222()2b a c ab c +≥.②2222()2c a b abc +≥.③①②③相加得2222222222()222a b b c c a a bc ab c abc ++≥++ 从而222222()a b b c c a abc a b c ++≥++.由,,a b c 都是正数,得0a b c ++>,因此222222a b b c c a abc a b c++≥++.10分高考模拟题复习试卷习题资料高考数学试卷(理科)(附详细答案)(10)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给处的四个选项中,只有一项是符合题目要求的.1.(5分)在x(1+x)6的展开式中,含x3项的系数为()A.30B.20C.15D.102.(5分)已知集合A={x|x2﹣x﹣2≤0},集合B为整数集,则A∩B=()A.{﹣1,0,1,2}B.{﹣2,﹣1,0,1}C.{0,1}D.{﹣1,0}3.(5分)为了得到函数y=sin(2x+1)的图象,只需把y=sin2x的图象上所有的点()A.向左平行移动个单位长度B.向右平行移动个单位长度C.向左平行移动1个单位长度D.向右平行移动1个单位长度4.(5分)若a>b>0,c<d<0,则一定有()A.>B.<C.>D.<5.(5分)执行如图所示的程序框图,若输入的x,y∈R,那么输出的S的最大值为()A.0B.1C.2D.36.(5分)六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有()A.192种B.216种C.240种D.288种7.(5分)平面向量=(1,2),=(4,2),=m+(m∈R),且与的夹角等于与的夹角,则m=()A.﹣2B.﹣1C.1D.28.(5分)如图,在正方体ABCD﹣A1B1C1D1中,点O为线段BD的中点,设点P在线段CC1上,直线OP与平面A1BD所成的角为α,则sinα的取值范围是()A.[,1]B.[,1]C.[,]D.[,1]9.(5分)已知f(x)=ln(1+x)﹣ln(1﹣x),x∈(﹣1,1).现有下列命题:①f(﹣x)=﹣f(x);②f()=2f(x)③|f(x)|≥2|x|其中的所有正确命题的序号是()A.①②③B.②③C.①③D.①②10.(5分)已知F为抛物线y2=x的焦点,点A,B在该抛物线上且位于x轴的两侧,•=2(其中O为坐标原点),则△ABO与△AFO面积之和的最小值是()A.2B.3C.D.二、填空题:本大题共5小题,每小题5分,共25分11.(5分)复数=.12.(5分)设f(x)是定义在R上的周期为2的函数,当x∈[﹣1,1)时,f(x)=,则f()=.13.(5分)如图,从气球A上测得正前方的河流的两岸B,C的俯角分别为67°,30°,此时气球的高是46m,则河流的宽度BC约等于m.(用四舍五入法将结果精确到个位.参考数据:sin67°≈0.92,cos67°≈0.39,sin37°≈0.60,cos37°≈0.80,≈1.73)14.(5分)设m∈R,过定点A的动直线x+my=0和过定点B的动直线mx﹣y﹣m+3=0交于点P(x,y).则|PA|•|PB|的最大值是.15.(5分)以A表示值域为R的函数组成的集合,B表示具有如下性质的函数φ(x)组成的集合:对于函数φ(x),存在一个正数M,使得函数φ(x)的值域包含于区间[﹣M,M].例如,当φ1(x)=x3,φ2(x)=sinx时,φ1(x)∈A,φ2(x)∈B.现有如下命题:①设函数f(x)的定义域为D,则“f(x)∈A”的充要条件是“∀b∈R,∃a∈D,f(a)=b”;②函数f(x)∈B的充要条件是f(x)有最大值和最小值;③若函数f(x),g(x)的定义域相同,且f(x)∈A,g(x)∈B,则f(x)+g(x)∉B.④若函数f(x)=aln(x+2)+(x>﹣2,a∈R)有最大值,则f(x)∈B.其中的真命题有.(写出所有真命题的序号)三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(12分)已知函数f(x)=sin(3x+).(1)求f(x)的单调递增区间;(2)若α是第二象限角,f()=cos(α+)cos2α,求cosα﹣sinα的值.17.(12分)一款击鼓小游戏的规则如下:每盘游戏都需要击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐:每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得﹣200分).设每次击鼓出现音乐的概率为,且各次击鼓出现音乐相互独立.(1)设每盘游戏获得的分数为X,求X的分布列;(2)玩三盘游戏,至少有一盘出现音乐的概率是多少?(3)玩过这款游戏的许多人都发现.若干盘游戏后,与最初分数相比,分数没有增加反而减少了.请运用概率统计的相关知识分析分数减少的原因.18.(12分)三棱锥A﹣BCD及其侧视图、俯视图如图所示,设M,N分别为线段AD,AB的中点,P为线段BC上的点,且MN⊥NP.(1)证明:P是线段BC的中点;(2)求二面角A﹣NP﹣M的余弦值.19.(12分)设等差数列{an}的公差为d,点(an,bn)在函数f(x)=2x的图象上(n∈N*).(1)若a1=﹣2,点(a8,4b7)在函数f(x)的图象上,求数列{an}的前n项和Sn;(2)若a1=1,函数f(x)的图象在点(a2,b2)处的切线在x轴上的截距为2﹣,求数列{}的前n项和Tn.20.(13分)已知椭圆C:+=1(a>b>0)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.(1)求椭圆C的标准方程;(2)设F为椭圆C的左焦点,T为直线x=﹣3上任意一点,过F作TF的垂线交椭圆C于点P,Q.①证明:OT平分线段PQ(其中O为坐标原点);②当最小时,求点T的坐标.21.(14分)已知函数f(x)=ex﹣ax2﹣bx﹣1,其中a,b∈R,e=2.71828…为自然对数的底数.(1)设g(x)是函数f(x)的导函数,求函数g(x)在区间[0,1]上的最小值;(2)若f(1)=0,函数f(x)在区间(0,1)内有零点,求a的取值范围.高考模拟题复习试卷习题资料高考数学试卷(理科)(附详细答案)(10)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给处的四个选项中,只有一项是符合题目要求的.1.(5分)在x(1+x)6的展开式中,含x3项的系数为()A.30B.20C.15D.10【分析】利用二项展开式的通项公式求出(1+x)6的第r+1项,令x的指数为2求出展开式中x2的系数.然后求解即可.【解答】解:(1+x)6展开式中通项Tr+1=C6rxr,令r=2可得,T3=C62x2=15x2,∴(1+x)6展开式中x2项的系数为15,在x(1+x)6的展开式中,含x3项的系数为:15.故选:C.【点评】本题考查二项展开式的通项的简单直接应用.牢记公式是基础,计算准确是关键.2.(5分)已知集合A={x|x2﹣x﹣2≤0},集合B为整数集,则A∩B=()A.{﹣1,0,1,2}B.{﹣2,﹣1,0,1}C.{0,1}D.{﹣1,0}【分析】计算集合A中x的取值范围,再由交集的概念,计算可得.【解答】解:A={x|﹣1≤x≤2},B=Z,∴A∩B={﹣1,0,1,2}.故选:A.【点评】本题属于容易题,集合知识是高中部分的基础知识,也是基础工具,高考中涉及到对集合的基本考查题,一般都比较容易,且会在选择题的前几题,考生只要够细心,一般都能拿到分.3.(5分)为了得到函数y=sin(2x+1)的图象,只需把y=sin2x的图象上所有的点()A.向左平行移动个单位长度B.向右平行移动个单位长度C.向左平行移动1个单位长度D.向右平行移动1个单位长度【分析】根据 y=sin(2x+1)=sin2(x+),利用函数y=Asin(ωx+φ)的图象变换规律,得【解答】解:∵y=sin(2x+1)=sin2(x+),∴把y=sin2x的图象上所有的点向左平行移动个单位长度,即可得到函数y=sin(2x+1)的图象,故选:A.【点评】本题主要考查函数y=Asin(ωx+φ)的图象变换规律,属于基础题.4.(5分)若a>b>0,c<d<0,则一定有()A.>B.<C.>D.<【分析】利用特例法,判断选项即可.【解答】解:不妨令a=3,b=1,c=﹣3,d=﹣1,则,,∴A、B不正确;,=﹣,∴C不正确,D正确.解法二:∵c<d<0,∴﹣c>﹣d>0,∵a>b>0,∴﹣ac>﹣bd,∴,∴.故选:D.【点评】本题考查不等式比较大小,特值法有效,导数计算正确.5.(5分)执行如图所示的程序框图,若输入的x,y∈R,那么输出的S的最大值为A.0B.1C.2D.3【分析】算法的功能是求可行域内,目标函数S=2x+y的最大值,画出可行域,求得取得最大值的点的坐标,得出最大值.【解答】解:由程序框图知:算法的功能是求可行域内,目标还是S=2x+y的最大值,画出可行域如图:当时,S=2x+y的值最大,且最大值为2.故选:C.【点评】本题借助选择结构的程序框图考查了线性规划问题的解法,根据框图的流程判断算法的功能是解题的关键.6.(5分)六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有()A.192种B.216种C.240种D.288种【分析】分类讨论,最左端排甲;最左端只排乙,最右端不能排甲,根据加法原理可得结论.【解答】解:最左端排甲,共有=120种,最左端只排乙,最右端不能排甲,有=96种,根据加法原理可得,共有120+96=216种.故选:B.【点评】本题考查排列、组合及简单计数问题,考查学生的计算能力,属于基础题.7.(5分)平面向量=(1,2),=(4,2),=m+(m∈R),且与的夹角等于与的夹角,则m=()A.﹣2B.﹣1C.1D.2【分析】由已知求出向量的坐标,再根据与的夹角等于与的夹角,代入夹角公式,构造关于m的方程,解方程可得答案.【解答】解:∵向量=(1,2),=(4,2),∴=m+=(m+4,2m+2),又∵与的夹角等于与的夹角,∴=,∴=,∴=,解得m=2,故选:D.【点评】本题考查的知识点是数量积表示两个向量的夹角,难度中档.8.(5分)如图,在正方体ABCD﹣A1B1C1D1中,点O为线段BD的中点,设点P在线段CC1上,直线OP与平面A1BD所成的角为α,则sinα的取值范围是()A.[,1]B.[,1]C.[,]D.[,1]【分析】由题意可得:直线OP于平面A1BD所成的角α的取值范围是∪.再利用正方体的性质和直角三角形的边角关系即可得出.【解答】解:由题意可得:直线OP于平面A1BD所成的角α的取值范围是∪.不妨取AB=2.在Rt△AOA1中,==.sin∠C1OA1=sin(π﹣2∠AOA1)=sin2∠AOA1=2sin∠AOA1cos∠AOA1=,=1.∴sinα的取值范围是.故选:B.【点评】本题考查了正方体的性质和直角三角形的边角关系、线面角的求法,考查了推理能力,属于中档题.9.(5分)已知f(x)=ln(1+x)﹣ln(1﹣x),x∈(﹣1,1).现有下列命题:①f(﹣x)=﹣f(x);②f()=2f(x)③|f(x)|≥2|x|其中的所有正确命题的序号是()A.①②③B.②③C.①③D.①②【分析】根据已知中函数的解析式,结合对数的运算性质,分别判断三个结论的真假,最后综合判断结果,可得答案.【解答】解:∵f(x)=ln(1+x)﹣ln(1﹣x),x∈(﹣1,1),∴f(﹣x)=ln(1﹣x)﹣ln(1+x)=﹣f(x),即①正确;f()=ln(1+)﹣ln(1﹣)=ln()﹣ln()=ln ()=ln[()2]=2ln()=2[ln(1+x)﹣ln(1﹣x)]=2f(x),故②正确;当x∈[0,1)时,|f(x)|≥2|x|⇔f(x)﹣2x≥0,令g(x)=f(x)﹣2x=ln(1+x)﹣ln(1﹣x)﹣2x(x∈[0,1))∵g′(x)=+﹣2=≥0,∴g(x)在[0,1)单调递增,g(x)=f(x)﹣2x≥g (0)=0,又f(x)≥2x,又f(x)与y=2x为奇函数,所以|f(x)|≥2|x|成立,故③正确;故正确的命题有①②③,故选:A.【点评】本题以命题的真假判断为载体,考查了对数的运算性质,代入法求函数的解析式等知识点,难度中档.10.(5分)已知F为抛物线y2=x的焦点,点A,B在该抛物线上且位于x轴的两侧,•=2(其中O为坐标原点),则△ABO与△AFO面积之和的最小值是()A.2B.3C.D.【分析】可先设直线方程和点的坐标,联立直线与抛物线的方程得到一个一元二次方程,再利用韦达定理及•=2消元,最后将面积之和表示出来,探求最值问题.【解答】解:设直线AB的方程为:x=ty+m,点A(x1,y1),B(x2,y2),直线AB与x轴的交点为M(m,0),由⇒y2﹣ty﹣m=0,根据韦达定理有y1•y2=﹣m,∵•=2,∴x1•x2+y1•y2=2,结合及,得,∵点A,B位于x轴的两侧,∴y1•y2=﹣2,故m=2.不妨令点A在x轴上方,则y1>0,又,∴S△ABO+S△AFO═×2×(y1﹣y2)+×y1,=.当且仅当,即时,取“=”号,∴△ABO与△AFO面积之和的最小值是3,故选B.【点评】求解本题时,应考虑以下几个要点:1、联立直线与抛物线的方程,消x或y后建立一元二次方程,利用韦达定理与已知条件消元,这是处理此类问题的常见模式.。
高考数学高三模拟试卷试题压轴押题检测试卷高三数学理科
高考数学高三模拟试卷试题压轴押题检测试卷高三数学(理科)本试卷共4页,满分150分,考试时间120分钟第Ⅰ卷(选择题)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1. 已知全集U R =,{|1}A x x =<-,{|1}B x x =>,则()U C A B ⋃=( ) A.{|1}x x >B .{|-1}x x ≤C .{|1x x >或1}x <- D .{|11}x x -≤≤2. 下列函数是奇函数,并且在定义域上是增函数的是( ) A. x y 1-= B. ln ||y x = C. sin y x = D. 1,01,0x x y x x +>⎧=⎨-<⎩3. 设sin 393,cos55,tan50a b c =︒=︒=︒,则,,a b c 的大小关系为( )A. a b c << B .c b a << C .b a c << D .a c b << 4. 执行右边的程序框图,当输入25时, 则该程序运行后输出的结果是( ) A.4B.5C.6D.75. 在边长为2的正方形ABCD 中,,E F 分别为BC 和DC 的中点,则DE BF ⋅=( ) A.52 B .32C .4D .2 6.“b a >”是“ba 23>”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7. 一个几何体的三视图如图所示, 那么这个几何体的体积为( ) A.16π B.6π(7题图)侧视图主视图俯视图C.4πD.88. 有四张卡片,每张卡片有两个面,一个面写有一个数字,另一个面写有一个英文字母.现规定:当卡片的一面为字母P 时,它的另一面必须是数字2. 如图,下面的四张卡片的一个面分别写有,,2,3P Q ,为检验此四张卡片是否有违反规定的写法,则必须翻看的牌是( )A.第一张,第三张B.第一张,第四张C.第二张,第四张D.第二张,第三张第Ⅱ卷(非选择题)二、填空题共6个小题,每小题5分,共30分. 9. 复数(1)(1)2i i z i+-=在复平面上对应的点的坐标为.10. 有三个车队分别有2辆、3辆、4辆车,现分别从其中两个车队各抽调两辆车执行 任务,则不同的抽调方案共有种.11. 如图,AB 是半圆O 的直径,P 在AB 的延长线上,PD 与半圆O 相切于点C ,AD PD ⊥.若4PC =,2PB =,则圆O 的半径为,CD =.12.已知1,0x y ≥≥,集合{(,)|4}A x y x y =+≤,{(,)|1}B x y y kx ==-,如果A B φ⋂≠,则k 的取值范围是.13. 曲线2||30x y y +-=的对称轴方程是,y 的取值范围是.14.ABCD 是矩形,4AB =,3AD =,沿AC 将ADC ∆折起到AD C '∆,使平面AD C '⊥平面ABC ∆,F 是AD '的中点,E 是AC 上的一点,给出下列结论:① 存在点E ,使得//EF 平面BCD '② 存在点E ,使得EF ⊥平面ABD ' ③ 存在点E ,使得D E '⊥平面ABC ④ 存在点E ,使得AC ⊥平面BD E '其中正确结论的序号是.(写出所有正确结论的序号)三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 15.(本小题满分13分)ABC ∆中,2=BC ,θ=∠ABC .(Ⅰ)若5522cos=θ,5=AB ,求AC 的长度; Q P2 3(Ⅱ)若6π=∠BAC ,)(θf AB =,求)(θf 的最大值.16.(本小题满分14分)如图1,在边长为12的正方形11A A A A ''中,111////AA CC BB ,且3AB =,且 4BC =,1A A '分别交11,CC BB 于点Q P ,,将该正方形沿11,CC BB 折叠,使得1A A ''与1AA 重合,构成图2所示的三棱柱111C B A ABC -,在图2中.(Ⅰ)求证:PQ AB ⊥;(Ⅱ)求直线BC 与平面APQ所成角的正弦值; (Ⅲ)在底边AC 上有一点M ,使得//BM 平面APQ ,求MCAM的值. 17.(本小题满分13分)某普通高中为了了解学生的视力状况,随机抽查了100名高二年级学生和100名高三年级学生,对这些学生配戴眼镜的度数(简称:近视度数)进行统计,得到高二学生的频数分布表和高三学生频率分布直方图如下:将近视程度由低到高分为4个等级:当近视度数在0100时,称为不近视,记作0;当近视度数在100200时,称为轻度近视,记作1;当近视度数在200400时,称为中度近视,记作2;当近视度数在400以上时,称为高度近视,记作3.(Ⅰ)从该校任选1名高二学生,估计该生近视程度未达到中度及以上的概率; (Ⅱ)设0.0024a =,从该校任选1名高三学生,估计该生近视程度达到中度或中度以上的概率;(Ⅲ)把频率近似地看成概率,用随机变量,X Y 分别表示高二、高三年级学生的近视程度,若EX EY =,求b . 18.(本小题满分13分)A ′BA 1′CB 1A 1C 1P Q(图1)(图CA C 10.001ab已知函数ln ()xf x x a=+(a 为常数)在点(1,(1))f 处的切线的斜率为12,(Ⅰ)求实数a 的值;(Ⅱ)若函数()f x 在区间[,)()t t Z +∞∈上有极值,求t 的取值范围. 19.(本小题满分14分) 已知椭圆G的离心率为2,其短轴的 两端点分别为(01),(01)A B -,,. (Ⅰ)求椭圆G 的方程;(Ⅱ)若,C D 是椭圆G 上关于y 轴对称的两个不同点,直线,AC BD 与x 轴分别交于点,M N .试判断以MN 为直径的圆是否过定点,如经过,求出定点坐标;如不过定点,请说明理由.20.(本小题满分13分)对于集合M ,定义函数⎩⎨⎧∉∈-=Mx Mx x f M ,1,1)(,对于两个集合M ,N ,定义集合}.1)()(|{-=⋅=⊗x f x f x N M N M 已知}6,5,4,3,2,1{=A ,}81,27,9,3,1{=B .(Ⅰ)写出)2(A f 与)2(B f 的值,并用列举法写出集合B A ⊗; (Ⅱ)用)(M Card 表示有限集合M 所含元素的个数, 求)()(B X Card A X Card ⊗+⊗的最小值;(Ⅲ)求有多少个集合对),(Q P 满足)(,B A Q P ⋃⊆, 且B A B Q A P ⊗=⊗⊗⊗)()(.延庆县—度一模统一考试高三数学(理科答案) 3月一、选择题:)0485('=⨯'1.D 2. D 3. A 4. B 5. C 6. D 7. C 8. B二、填空题:本大题共6小题,每小题5分,共30分.9. (0,1)- ; 10. 27 ; 11. 123,5; 12. 1[,4]4 ; 13. 0,[0,3]x =; 14. ①③ ;三、解答题:)0365('=⨯' 15. (本小题满分13分) 解:(Ⅰ)cos2θ=,∴223cos 2cos 12125θθ=-=⨯-=…………………2分17=……………………5分∴AC =……………………6分(Ⅱ) 5,,66BAC ABC BCA ππθθ∠=∠=∴∠=-………………7分 2451sin()sin662AB BC ππθ∴===-……………………9分 54sin()6AB πθ∴=-,55()4sin(),(0,)66f ππθθθ∴=-∈……………………10分55(0,)66ππθ-∈, ∴当 562ππθ-=时,即3πθ=时()f θ的最大值为4…………………………13分16.(本小题满分14分)(Ⅰ)证明:∵111////BB AA CC ,且11AA A A ''是正方形, ∴1BB AB ⊥, ………………1分 又∵3,4,5AB BC AC ===∴AB BC ⊥, ………………2分∴AB ⊥平面11B BCC ………………3分 ∴AB PQ ⊥………………4分 (Ⅱ)∵11,,BB AB BB BC AB BC ⊥⊥⊥,以1,,AB BC BB 分别为x 轴、y 轴、z 轴,建立空间直角坐标系B xyz -, ………………5分∴(0,0,0)B ,(3,0,0)A ,(0,4,0)C ,(0,0,3)P ,(0,4,7)Q(0,4,0)BC =, (3,0,3)AP =-, (0,4,4)PQ =设平面APQ 的法向量),,(z y x m =,则0,0m AP m PQ ⋅=⋅=∴330,440x z y z -+=+=令1x =,则1,1z y ==-∴(1,1,1)m =-………………7分∴·cos ,||||3m BC m BC m BC <>===分∴BC 与平面APQ ………………10分 (Ⅲ) 过M 作MR AC ⊥与AQ 交于R ,连PR ,则////MR QC PB …………………11分∵//BM 平面APQ , ∴//BM PR , …………………12分 ∴PBMR 为矩形, ∴3PB RM ==, …………………13分 ∴37RM AM QC AC ==, ∴34AM MC =. …………………14分 17. (本小题满分13分)解:(Ⅰ)设该生近视程度未达到中度及中度以上为事件A ………………1分则304070()0.7100100P A +===………………3分 (Ⅱ)设该生近视程度达到中度或中度以上为事件B ………………4分则()10.30.240.46P B =--=………………8分法2:设该生近视程度未达到中度及中度以上为事件A ………………4分∵0.0024a =,∴(0.000520.0010.00240.003)1001b +⨯+++⨯=, ∴0.0026b =, ………………6分∴()0.260.10.050.050.46P B =+++=………………8分(Ⅲ)00.310.420.3301,EX =⨯+⨯+⨯+⨯=………………10分010.32(1000.1)30.12000.8,EY a b b =⨯+⨯+⨯⨯++⨯=+………12分∵EX EY =, ∴2000.81b +=,∴0.001b =. ………………13分 18. (本小题满分13分)解: (Ⅰ)2ln ()()x axx f x x a +-'=+, ………………2分 2111(1)(1)12a f a a +'===++ , ………………3分 ∴1a =………………4 分(Ⅱ)∵ln ()1x f x x =+, 2211ln 1ln ()(1)(1)x x xx x f x x x +-+-'==++, ∴令()0f x '=, 则11ln x x+=, 令()0f x '>, 则11ln x x +>, 令()0f x '<, 则11ln x x+<, 令1()1ln g x x x=+-, 则()g x 在(0,)+∞上为减函数, 当2x =时,1()1ln 202g x =+->当3x =时,4()ln 33g x =-,∵423636273e >=>=, ∴(3)0g >………………4 分 当4x =时,5()ln 44g x =-, ∵55432432564e <=<=, ∴(4)0g <………………4 分 ∴存在0(3,4)x ∈,使得0()0g x =,即:0()0f x '=, 并且当00x x <<时,()0f x '>,当0x x >时,()0f x '<, ∴当0x x =时,)(x f 取得极大值………8 分∴t 的取值范围是{0,1,2,3}. ………………13 分19. (本小题满分14分)(Ⅰ)1b =,2c a =,222a c =, ∴21c =,∴222,1a b ==,…………3分∴ 椭圆方程为2212x y +=…………5分 (Ⅱ)设00(,)C x y ,则00(,)D x y -,001AC y k x -=, 001BD y k x +=-, 000011:1,:1,y y AC y x BD y x x x -+=+=--……………………7分 令0y =,则0000,,11M N x x x x y y -==-+……………………8分 设MN 的中点为E ,则的坐标为)0,211(0000y x y x +-+-,即:)0,1(2000y yx E -, 半径为20000001|||11|212||y x y x y x MN -=++-=, ∴ 圆E 的方程为⊗-=+-- 22020222000)1()1(y x y y y x x ,………10分 ∵21202x y =- ,∴⊗化为2022004)2(x y x y x =+-⊗' 令20-=x ,则00=y ,代入⊗得:222=+y x , …①………11分令10=x ,则220±=y ,代入⊗得:22222=-+x y x ,…②…12分 由①②得:2,0±==y x ,代入⊗'得:左===+=+20202020202042424x x x y x y 右 ………………13分∴ 圆E 恒过定点)2,0(±………………14分 20. (本小题满分13分) (Ⅰ)(2)1,(2)1A B f f =-=,{2,4,5,6,9,27,81}A B ⊗=………3分(Ⅱ)根据题意可知,对于集合,C X ,①若a C ∈且a X ∉,则(({}))()1Card C X a Card C X ∆⋃=∆-, ②若a C ∉且a X ∉,则(({}))()1Card C X a Card C X ∆⋃=∆+, ∴要使()()Card X A Card X B ∆+∆的值最小,1,3一定属于集合X ,2,4,5,6,9,27,81是否属于集合X 不影响()()Card X A Card X B ∆+∆的值;集合X 不能含有A B ⋃之外的元素.∴当X 为集合{2,4,5,6,9,27,81}的子集与集合{1,3}的并集时,()()Card X A Card X B ⊗+⊗取到最小值7. ………………8分(Ⅲ) 因为{|()()1}A B A B x f x f x ⊗=⋅=-,∴A B B A ⊗=⊗,由定义可知:()()()}A B A B f x f x f x ⊗=⋅∴对任意元素x ,()()()()()()()A B C A B C A B C f x f x f x f x f x f x ⊗⊗⊗=⋅=⋅⋅ ∴()()()()A B C A B C f x f x ⊗⊗⊗⊗=, ∴()()A B C A B C ⊗⊗=⊗⊗, 由()()P A Q B A B ⊗⊗⊗=⊗知:()()P Q A B A B ⊗⊗⊗=⊗, ∴()()()()()P Q A B A B A B A B ⊗⊗⊗⊗⊗=⊗⊗⊗, ∴()P Q φφ⊗⊗=, ∴P Q φ⊗=, ∴P Q =, ∴,P Q A B ⊆⋃而}81,27,9,6,5,4,3,2,1{=⋃B A ∴满足题意的集合对(,)P Q 的个数为92512=个 ………………13分高考理科数学试题及答案(考试时间:120分钟试卷满分:150分)一、选择题:本题共12小题,每小题5分,共60分。
高考数学高三模拟试卷试题压轴押题模块质量评估B卷
高考数学高三模拟试卷试题压轴押题模块质量评估(B卷)(第一至第四章)(120分钟150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项符合题目要求)1.若长方体从一个顶点出发的三条棱长分别为3,4,5,则该长方体的外接球表面积为()A.50πB.100πC.150πD.200π2.已知直线l过点P(,1),圆C:x2+y2=4,则直线l与圆C的位置关系是()A.相交B.相切C.相交或相切D.相离3.一几何体的三视图如图所示,则该几何体的体积为()A.200+9πB.200+18πC.140+9πD.140+18π4.已知直线l1经过两点(1,2),(1,4),直线l2经过两点(2,1),(x,6),且l1∥l2,则x=()A.2B.2C.4D.15.(·潍坊高一检测)直线x+ky=0,2x+3y+8=0和xy1=0交于一点,则k的值是()A. B. C.2D.26.(·郑州高一检测)圆:x2+y24x+6y=0和圆:x2+y26x=0交于A,B两点,则AB的垂直平分线的方程是()A.x+y+3=0B.2xy5=0C.3xy9=0D.4x3y+7=07.已知过点P(2,2)的直线与圆(x1)2+y2=5相切,且与直线axy+1=0垂直,则a=()A. B.1 C.2 D.8.设球的体积为V1,它的内接正方体的体积为V2,下列说法中最合适的是()A.V1比V2大约多一半B.V1比V2大约多两倍半C.V1比V2大约多一倍D.V1比V2大约多一倍半9.如图,在四面体ABCD中,E,F分别是AC与BD的中点,若CD=2AB=4,EF⊥BA,则EF与CD所成的角为()A.90°B.45°C.60°D.30°10.设α,β为不重合的平面,m,n为不重合的直线,则下列命题正确的是()A.若α⊥β,α∩β=n,m⊥n,则m⊥αB.若m⊂α,n⊂β,m∥n,则α∥βC.若m∥α,n∥β,m⊥n,则α⊥βD.若n⊥α,n⊥β,m⊥β,则m⊥α11.(·全国卷Ⅱ)已知三点A(1,0),B(0,),C(2,),则△ABC外接圆的圆心到原点的距离为()A. B. C.D.12.(·聊城高一检测)过点(3,1)作圆(x1)2+y2=1的两条切线,切点分别为A,B,则直线AB的方程为()A.2x+y3=0B.2xy3=0C.4xy3=0D.4x+y3=0二、填空题(本大题共4个小题,每小题5分,共20分.把答案填在题中的横线上)13.圆x2+(y+1)2=3绕直线kxy1=0旋转一周所得的几何体的表面积为.14.设a,b,c是空间的三条直线,下面给出四个命题:①若a⊥b,b⊥c,则a∥c;②若a,b是异面直线,b,c是异面直线,则a,c也是异面直线;③若a和b相交,b和c相交,则a和c也相交;④若a和b共面,b和c共面,则a和c也共面.其中真命题的个数是.15.(·大庆高一检测)如图,将边长为1的正方形ABCD沿对角线AC折起,使得平面ADC⊥平面ABC,在折起后形成的三棱锥DABC中,给出下列三种说法:①△DBC是等边三角形;②AC⊥BD;③三棱锥DABC的体积是.其中正确的序号是(写出所有正确说法的序号).16.(·杭州高一检测)已知直线l经过点P(4,3),且被圆(x+1)2+(y+2)2=25截得的弦长为8,则直线l的方程是.三、解答题(本大题共6个小题,共70分,解答时写出必要的文字说明、证明过程或演算步骤)17.(10分)有一块扇形铁皮OAB,∠AOB=60°,OA=72cm,要剪下来一个扇环形ABCD,作圆台容器的侧面,并且在余下的扇形OCD内能剪下一块与其相切的圆形使它恰好作圆台容器的下底面(大底面).试求:(1)AD应取多长?(2)容器的容积为多大?18.(12分)(·兰州高一检测)已知△ABC的顶点A为(3,1),AB边上的中线所在直线方程为6x+10y59=0,∠B的平分线所在直线方程为x4y+10=0,求BC边所在直线的方程.19.(12分)(·郑州高一检测)已知圆的半径为,圆心在直线y=2x上,圆被直线xy=0截得的弦长为4,求圆的方程.20.(12分)(·北京高一检测)某几何体的三视图如图所示,P是正方形ABCD对角线的交点,G是PB 的中点.(1)根据三视图,画出该几何体的直观图.(2)在直观图中,①证明:PD∥平面AGC;②证明:平面PBD⊥平面AGC.21.(12分)如图,四棱锥PABCD的底面为正方形,侧面PAD⊥底面ABCD,PA⊥AD,E,F,H分别为AB,PC,BC的中点.(1)求证:EF∥平面PAD.(2)求证:平面PAH⊥平面DEF.22.(12分)(·长春高一检测)已知点(0,1),(3+2,0),(32,0)在圆C上.(1)求圆C的方程.(2)若圆C与直线xy+a=0交于A,B两点,且OA⊥OB,求a的值.答案解析1.A设该长方体的外接球半径为R,则4R2=32+42+52,即R=,故S球=4πR2=50π.2.C因为直线l过点P(,1),而点P在圆C:x2+y2=4上,故直线l和圆相交或相切.3.A由三视图可知该几何体上面是一个半圆柱,下面是一个长方体,因此该几何体的体积为V=·π·32×2+10×4×5=200+9π.【补偿训练】(·辽宁高考)某几何体的三视图如图所示,则该几何体的体积为()A.82πB.8πC.8D.8【解题指南】结合三视图的特点可知,该几何体是由一个正方体在相对的两个角上各割去四分之一个圆柱后剩下的.B截得该几何体的原正方体的体积为2×2×2=8;截去的圆柱(部分)底面半径为1,母线长为2,截去的两部分体积为(π×12×2)×2=π,故该几何体的体积为8π.4.A因为直线l1经过两点(1,2),(1,4),所以直线l1的倾斜角为.而l1∥l2,所以,直线l2的倾斜角也为,又直线l2经过两点(2,1),(x,6),所以,x=2.5.【解题指南】将直线2x+3y+8=0与xy1=0的交点坐标代入直线x+ky=0,即可求出k的值.B解方程组得则点(1,2)在直线x+ky=0上,得k=.6.C AB的垂直平分线即是两圆连心线所在的直线,两圆的圆心为(2,3),(3,0),则所求直线的方程为=,即3xy9=0.7.【解题指南】根据圆的切线的性质确定切线的斜率,再由两直线垂直求a的值.C因为点P(2,2)为圆(x1)2+y2=5上的点,由圆的切线性质可知,圆心(1,0)与点P(2,2)的连线与过点P(2,2)的切线垂直.因为圆心(1,0)与点P(2,2)的连线的斜率k=2,故过点P(2,2)的切线斜率为,所以直线axy+1=0的斜率为2,因此a=2.8.D设正方体的棱长为a,则正方体的体积为V2=a3,则球半径为a,球体积V1=πa3,则V1V2=πa3a3=a3≈1.72a3.9.D取BC的中点H,连接EH,FH,则∠EFH为所求,可证△EFH为直角三角形,EH⊥EF,FH=2,EH=1,从而可得∠EFH=30°.10.D选项A的已知条件中加上m⊂β,那么命题就是正确的,也就是面面垂直的性质定理.选项B 错误,容易知道两个平面内分别有一条直线平行,那么这两个平面可能相交也可能平行.选项C错误,因为两个平面各有一条与其平行的直线,如果这两条直线垂直,并不能保证这两个平面垂直.选项D正确,由n⊥α,n⊥β,可得α∥β,又因为m⊥β,所以m⊥α.11.B圆心在直线BC的垂直平分线即x=1上,设圆心D(1,b),由DA=DB得|b|=,解得b=,所以圆心到原点的距离为d==.12.A根据平面几何知识,直线AB一定与点(3,1),(1,0)的连线垂直,这两点连线的斜率为,故直线AB的斜率一定是2,只有选项A中直线的斜率为2.13.【解析】由题意,圆心为(0,1),又直线kxy1=0恒过点(0,1),所以旋转一周所得的几何体为球,球心即为圆心,球的半径即是圆的半径,所以S=4π()2=12π.答案:12π14.【解析】因为a⊥b,b⊥c,所以a与c可能相交、平行、异面,故①错.因为a,b异面,b,c异面,则a,c可能异面、相交、平行,故②错.由a,b相交,b,c相交,则a,c可能异面、相交、平行,故③错.同理④错,故真命题个数为0.答案:015.【解析】取AC的中点E,连接DE,BE,则DE⊥AC,BE⊥AC,且DE⊥BE.又DE=EC=BE,所以DC=DB=BC,故△DBC是等边三角形.又AC⊥平面BDE,故AC⊥BD.又VDABC=S△ABC·DE=××1×1×=,故③错误.答案:①②16.【解析】因为(4+1)2+(3+2)2=10<25,所以点P在圆内.当l的斜率不存在时,l的方程为x=4,将x=4代入圆的方程,得y=2或y=6.此时弦长为8.当l的斜率存在时,设l的方程为y+3=k(x+4),即kxy+4k3=0,当弦长为8时,圆心到直线的距离为=3,则=3,解得k=.则直线l的方程为y+3=(x+4),即4x+3y+25=0.答案:4x+3y+25=0或x=4【补偿训练】若点P(1,1)为圆(x3)2+y2=9的弦MN的中点,则弦MN所在直线的方程为.【解析】由题意知,圆心坐标为C(3,0),则kPC=,由于MN与PC垂直,故MN的斜率为k=2,故弦MN所在的直线方程为y1=2(x1),即2xy1=0.答案:2xy1=017.【解析】(1)如图,设圆台上、下底面半径分别为r,R,AD=xcm,则OD=(72x)cm.由题意得所以R=12,r=6,x=36,所以AD=36cm.(2)圆台所在圆锥的高H==12,圆台的高h==6,小圆锥的高h'=6,所以V容=V大锥V小锥=πR2Hπr2h'=504π.18.【解析】设B(4y110,y1),由AB中点在6x+10y59=0上,可得:6·+10·59=0,y1=5,所以B(10,5).设A点关于x4y+10=0的对称点为A'(x',y'),则有⇒A'(1,7),因为点A'(1,7),B(10,5)在直线BC上,所以=,故BC边所在直线的方程为2x+9y65=0.19.【解析】设圆的方程是(xa)2+(yb)2=10.因为圆心在直线y=2x上,所以b=2a.①解方程组得2x22(a+b)x+a2+b210=0,所以x1+x2=a+b,x1·x2=.由弦长公式得·=4,化简得(ab)2=4.②解①②组成的方程组,得a=2,b=4,或a=2,b=4.故所求圆的方程是(x2)2+(y4)2=10,或(x+2)2+(y+4)2=10.20.【解析】(1)该几何体的直观图如图所示.(2)如图,①连接AC,BD交于点O,连接OG,因为G为PB的中点,O为BD的中点,所以OG∥PD.又OG⊂平面AGC,PD⊄平面AGC,所以PD∥平面AGC.②连接PO,由三视图,PO⊥平面ABCD,所以AO⊥PO.又AO⊥BO,BO∩PO=O,所以AO⊥平面PBD.因为AO⊂平面AGC,所以平面PBD⊥平面AGC.21.【证明】(1)取CD中点N,连接FN,EN.因为在△CPD中,F,N为中点,所以FN∥PD.因为正方形ABCD中,E,N为中点,所以EN∥AD,因为EN⊂平面EFN,FN⊂平面EFN,EN∩FN=N,PD⊂平面PAD,AD⊂平面PAD,PD∩AD=D,所以平面EFN∥平面PAD,因为EF⊂平面EFN,所以EF∥平面PAD.(2)因为侧面PAD⊥底面ABCD,PA⊥AD,侧面PAD∩底面ABCD=AD,所以PA⊥底面ABCD,因为DE⊂底面ABCD,所以DE⊥PA,因为E,H分别为正方形ABCD边AB,BC的中点,所以Rt△ABH≌Rt△DAE,则∠BAH=∠ADE,所以∠BAH+∠AED=90°,则DE⊥AH,因为PA⊂平面PAH,AH⊂平面PAH,PA∩AH=A,所以DE⊥平面PAH,因为DE⊂平面EFD,所以平面PAH⊥平面DEF.22.【解析】(1)由题意可设圆C的圆心为(3,t),则有32+(t1)2=(2)2+t2,解得t=1.则圆C的圆心为(3,1),半径长为=3.所以圆C的方程为(x3)2+(y1)2=9.(2)由消去y,得2x2+(2a8)x+a22a+1=0,此时判别式Δ=5616a4a2.设A(x1,y1),B(x2,y2),则有①由于OA⊥OB,可得x1x2+y1y2=0,又y1=x1+a,y2=x2+a,所以2x1x2+a(x1+x2)+a2=0,②由①②得a=1,满足Δ>0,故a=1.高考理科数学试题及答案(考试时间:120分钟试卷满分:150分)一、选择题:本题共12小题,每小题5分,共60分。
高考数学高三模拟试卷试题压轴押题教学质量检测考试理科数学
高考数学高三模拟试卷试题压轴押题教学质量检测考试理科数学本试卷分为选择题和非选择题两部分,共5页,满分150分.考试时间120分钟. 注意事项:1.答题前,考生务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号、县区和科类填写在答题卡上和试卷规定的位置上.2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上.3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第I 卷(选择题共50分)一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的.1.设i 是虚数单位,复数7412i i+=+ A.32i + B.32i - C.23i + D.23i - 2.集合{}{}20,2A x x a B x x =-≥=<,若R C A B ⊆,则实数a 的取值范围是A.(],4-∞B.[]0,4C.(),4-∞D.()0,43.若随机变量()()~1,4,00.1X N P x ≤=,则()02P x <<=A.0.4B.0.45C.0.8D.0.9 4.下列四个结论:①若0x >,则sin x x >恒成立; ②命题“若sin 0,0x x x -==则”的逆命题为“若0sin 0x x x ≠-≠,则”;③“命题p q ∨为真”是“命题p q ∧为真”的充分不必要条件;④命题“,ln 0x R x x ∀∈->”的否定是“000,ln 0x R x x ∃∈-≤”.其中正确结论的个数是A.1个B.2个C.3个D.4个 5.设01a <<,则函数11x y a =-的图象大致为6.已知某几何体的三视图,则该几何体的体积是A.12B.24C.36D.487.直线10x my ++=与不等式组30,20,20x y x y x +-≥⎧⎪-≥⎨⎪-≤⎩表示的平面区域有公共点,则实数m 的取值范围是 A.14,33⎡⎤⎢⎥⎣⎦B.41,33⎡⎤--⎢⎥⎣⎦ C.3,34⎡⎤⎢⎥⎣⎦D.33,4⎡⎤--⎢⎥⎣⎦8.已知向量()()0,sin ,1,2cos a x b x ==,函数()()2237,22f x a b g x a b =⋅=+-,则()f x 的图象可由()g x 的图象经过怎样的变换得到A.向左平移4π个单位长度 B.向右平移4π个单位长度 C.向左平移2π个单位长度 D. 向右平移2π个单位长度 9.已知抛物线28y x =的准线与双曲线()222210,0x y a b a b-=>>相交于A 、B 两点,双曲线的一条渐近线方程是433y x =,点F 是抛物线的焦点,且△FAB 是等边三角形,则该双曲线的标准方程是 A.221366x y -= B.221163x y -= C.221632x y -= D.221316x y -=10.对于函数()x f x ae x =-,若存在实数,m n ,使得()0f x ≤的解集为[](),m n m n <,则实数a 的取值范围是A.()1,00,e ⎛⎫-∞⋃ ⎪⎝⎭B.()1,00,e ⎛⎤-∞⋃ ⎥⎝⎦C.10,e ⎛⎫ ⎪⎝⎭D.10,e ⎛⎤ ⎥⎝⎦第II 卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分.把正确答案填写在答题卡给定的横线上.11.为了解某校教师使用多媒体辅助教学的情况,采用简单随机抽样的方法,从该校200名授课教师中抽取20名教师,调查了解他们上学期使用多媒体辅助教学的次数,结果用茎叶图表示(如图),据此可估计该校上学期200名教师中,使用多媒体辅助教学不少于30次的教师人数为_________.12.执行如图所示的程序,则输出的结果为________.13.若函数()()2221f x x x a g x x x a =++=-++与有相同的最小值,则()1af x dx =⎰___________. 14.已知,a b 为正实数,直线0x y a ++=与圆()()2212x b y -+-=相切,则21a b +的取值范围是___________. 15.对于函数()1x f x x=+,给出下列结论: ①等式()()0f x f x x R -+=∈在时恒成立;②函数()f x 的值域为()1,1-;③函数()()g x f x x =-在R 上有三个零点;④若()()1212120f x f x x x x x -≠>-,则; ⑤若()()12121222f x f x x x x x f ++⎛⎫<< ⎪⎝⎭,则 其中所有正确结论的序号为______________.三、解答题:本大题共6小题,共75分,解答应写出文字说明,证明过程或演算步骤.16.(本小题满分12分)在△ABC 中,角A ,B ,C 所对的边分别为()()(),,,2sin cos sin a b c f x x A x B C =-++()x R ∈,函数()f x 的图象关于点,06π⎛⎫⎪⎝⎭对称. (I )当0,2x π⎛⎫∈ ⎪⎝⎭时,求()f x 的值域;(II )若7a =且sin sin 14B C +=,求△ABC 的面积.17.(本小题满分12分)已知数列{}{}n n a b 和满足122nb n n a a a -⋅⋅⋅=,若{}n a 为等比数列,且1211,2a b b ==+. (I )求n n a b 与;(II )设()11n n nc n N a b *=-∈,求数列{}n c 的前n 项和n S .18.(本小题满分12分)在“出彩中国人”的一期比赛中,有6位歌手(1~6)登台演出,由现场的百家大众媒体投票选出最受欢迎的出彩之星,各家媒体独立地在投票器上选出3位出彩候选人,其中媒体甲是1号歌手的歌迷,他必选1号,另在2号至6号中随机的选2名;媒体乙不欣赏2号歌手,他必不选2号;媒体丙对6位歌手的演唱没有偏爱,因此在1至6号歌手中随机的选出3名.(I )求媒体甲选中3号且媒体乙未选中3号歌手的概率;(II )X 表示3号歌手得到媒体甲、乙、丙的票数之和,求X 的分布列及数学期望.19.(本小题满分12分)如图,在多面体111ABC A B C -中,四边形11ABB A 是正方形,1A CB ∆是等边三角形,11111,//,2AC AB B C BC BC B C ===.(I )求证:111//AB AC C 平面;(II )若点M 是边AB 上的一个动点(包括A,B 两端点),试确定点M 的位置,使得平面11CA C 和平面11MAC 所成的角(锐角)的余弦值是3.3 20.(本小题满分13分) 已知函数()22,0,ln ,0,x x a x f x a x x ⎧++<=⎨>⎩其中是实数,设()()()()1122,,,A x f x B x f x 为该函数图象上的两点,且12x x <.(I )当0x <时,讨论函数()()()x g x f x f e =⋅的单调性;(II )若函数()f x 的图象在点A,B 处的切线重合,求a 的取值范围.21.(本小题满分14分) 已知圆22:0C x y x y +--=经过椭圆()2222:10x y E a b a b +=>>的右焦点F 和上顶点D.(I )求椭圆E 的方程;(II )过点()2,0P -作斜率不为零的直线l 与椭圆E 交于不同的两点A,B ,直线AF,BF 分别交椭圆E 于点G,H ,设()1212AF FG BF FH.R λλλλ==∈,,(i )求12λλ+的取值范围;(ii )是否存在直线l ,使得AF GF BF HF ⋅=⋅成立?若存在,求l 的方程;若不存在,请说明理由.高考理科数学试卷普通高等学校招生全国统一考试注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合{1,}A =2,3,{|(1)(2)0,}B x x x x =+-<∈Z ,则A B =(A ){1}(B ){12},(C ){0123},,,(D ){10123}-,,,, (2)已知(3)(1)i z m m =++-在复平面内对应的点在第四象限,则实数m 的取值范围是(A )(31)-,(B )(13)-,(C )(1,)∞+(D )(3)∞--,(3)已知向量(1,)(3,2)m =-,=a b ,且()⊥a +b b ,则m=(A )-8(B )-6 (C )6 (D )8(4)圆2228130x y x y +--+=的圆心到直线10ax y +-=的距离为1,则a= (A )43-(B )34-(C )3(D )2 (5)如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为(A )24 (B )18(C )12 (D )9(6)右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为(A )20π(B )24π(C )28π(D )32π(7)若将函数y=2sin 2x 的图像向左平移π12个单位长度,则评议后图象的对称轴为 (A )x=kπ2–π6 (k ∈Z) (B )x=kπ2+π6 (k ∈Z) (C )x=kπ2–π12 (k ∈Z) (D )x=kπ2+π12(k ∈Z) (8)中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的x=2,n=2,依次输入的a 为2,2,5,则输出的s=(A )7 (B )12 (C )17 (D )34(9)若cos(π4–α)=35,则sin 2α= (A )725(B )15(C )–15(D )–725(10)从区间[]0,1随机抽取2n 个数1x ,2x ,…,n x ,1y ,2y ,…,n y ,构成n 个数对()11,x y ,()22,x y ,…,(),n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为(A )4n m (B )2n m (C )4m n (D )2mn (11)已知F1,F2是双曲线E 22221x y a b-=的左,右焦点,点M 在E 上,M F1与x 轴垂直,sin 2113MF F ∠=,则E 的离心率为(AB )32(CD )2 (12)已知函数学.科网()()f x x ∈R 满足()2()f x f x -=-,若函数1x y x+=与()y f x =图像的交点为1122(,),(,),,(,),m m x y x y x y ⋅⋅⋅则1()mi i i x y =+=∑(A )0 (B )m (C )2m (D )4m第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共3小题,每小题5分(13)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若cos A=45,cos C=513,a=1,则b=. (14)α、β是两个平面,m 、n 是两条直线,有下列四个命题:(1)如果m ⊥n ,m ⊥α,n ∥β,那么α⊥β.(2)如果m ⊥α,n ∥α,那么m ⊥n.(3)如果α∥β,m ⊂α,那么m ∥β. (4)如果m ∥n ,α∥β,那么m 与α所成的角和n 与β所成的角相等.其中正确的命题有.(填写所有正确命题的编号)(15)有三张卡片,分别写有1和2,1和3,2和3。
高考数学高三模拟试卷试题压轴押题普通高中毕业班综合测试理科数学
高考数学高三模拟试卷试题压轴押题普通高中毕业班综合测试理科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名和考生号、试室号、座位号填写在答题卡上,并用铅笔在答题卡上的相应位置填涂考生号。
2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)已知集合{}1A x x =<,{}20B x x x =-≤,则AB =(A ){}11x x -≤≤(B ){}01x x ≤≤(C ){}01x x <≤(D ){}01x x ≤<(2)已知复数3i1iz +=-,其中i 为虚数单位,则复数z 的共轭复数z 所对应的点在 (A )第一象限(B )第二象限(C )第三象限(D )第四象限 (3)执行如图所示的程序框图,如果输入3x =,则输出k 的值为(A )6(B )8(C )10(D )12(4)如果函数()sin 6f x x ωπ⎛⎫=+ ⎪⎝⎭()0ω>的相邻两个零点之间的距离为6π,则ω的值为(A )3(B )6(C )12(D )24(5)设等差数列{}n a 的前n 项和为n S ,且271224a a a ++=,则13S =(A )52(B )78 (C )104(D )208(6)如果1P ,2P ,…,n P 是抛物线C :24y x =上的点,它们的横坐标依次为1x ,2x ,…,n x ,F 是抛物线C 的焦点,若1210n x x x +++=,则12n PF P F P F +++=(A )10n +(B )20n +(C )210n +(D )220n + (7)在梯形ABCD 中,ADBC ,已知4AD =,6BC =,若CD mBA nBC =+(),m n ∈R ,则mn= (A )3-(B )13-(C )13(D )3 (8)设实数x ,y 满足约束条件10,10,1x y x y x --≤⎧⎪+-≤⎨⎪≥-⎩, 则()222x y ++的取值范围是(A )1,172⎡⎤⎢⎥⎣⎦(B )[]1,17(C )⎡⎣(D)⎣(9)一个六棱柱的底面是正六边形,侧棱垂直于底面,所有棱的长都为1,顶点都在同一个球面上,则该球的体积为(A )20π(B C )5π(D (11)已知下列四个命题:1p :若直线l 和平面α内的无数条直线垂直,则l α⊥;2p :若()22x x f x -=-,则x ∀∈R ,()()f x f x -=-;3p :若()11f x x x =++,则()00,x ∃∈+∞,()01f x =; 4p :在△ABC 中,若A B >,则sin sin A B >.其中真命题的个数是(A )1(B )2(C )3(D )4(11)如图,网格纸上小正方形的边长为1,粗线画出的是某个四面体的三视图,则该四面体的表面积为(A )88246+(B )88226+(C )2226+D )126224+(12)以下数表的构造思路源于我国南宋数学家杨辉所著的《详解九章算术》一书中的“杨辉三角形”.1 2 3 4 5 …3 5 7 9 ………… 4027 4029 4031 8 12 16 ………………… 8056 8060 20 28 ………………………… 16116 …………………………………………该表由若干行数字组成,从第二行起,每一行中的数字均等于其“肩上”两数之和,表中最后一行仅有一个数,则这个数为 (A )201520172⨯(B )201420172⨯(C )201520162⨯(D )201420162⨯第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答. 二.填空题:本大题共4小题,每小题5分.(13)一个总体中有60个个体,随机编号0,1,2,…,59,依编号顺序平均分成6个小组,组号依次为1,2,3,…,6.现用系统抽样方法抽取一个容量为6的样本,若在第1组随机抽取的号码为3,则在第5组中抽取的号码是.(14)已知双曲线C :22221x y a b-=()0,0a b >>的左顶点为A ,右焦点为F ,点()0,B b ,且0BA BF =,则双曲线C 的离心率为.(15)()422x x --的展开式中,3x 的系数为.(用数字填写答案)(16)已知函数()211,1,42,1x x f x x x x ⎧-+<⎪=⎨-+≥⎪⎩,则函数()()22xg x f x =-的零点个数为个.三.解答题:解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分)如图,在△ABC 中,点D 在边AB 上,CD BC ⊥,AC =,5CD =,2BD AD =.(Ⅰ)求AD 的长; (Ⅱ)求△ABC 的面积.(18)(本小题满分12分)从某企业生产的某种产品中抽取100件,测量这些产品的质量指标值,由测量结果得到如图所示的频率分布直方图,质量指标值落在区间[)55,65,[)65,75,[]75,85内的频率之比为4:2:1.(Ⅰ)求这些产品质量指标值落在区间[]75,85内的频率;(Ⅱ)若将频率视为概率,从该企业生产的这种产品中随机抽取3件,记这3件产 品中质量指标值位于区间[)45,75内的产 品件数为X ,求X 的分布列与数学期望.(19)(本小题满分12分)如图,四棱柱1111ABCD A B C D -的底面ABCD 是菱形,AC BD O =,1A O ⊥底面ABCD ,21==AA AB .(Ⅰ)证明:平面1ACO ⊥平面11BB D D(Ⅱ)若60BAD ∠=,求二面角1B OB -(20)(本小题满分12分)已知椭圆C 的中心在坐标原点,焦点在x 轴上,左顶点为A ,左焦点为()120F -,,点(B 在椭圆C 上,直线()0y kx k =≠与椭圆C 交于E ,F 两点,直线AE ,AF 分别与y 轴交于点M ,N .(Ⅰ)求椭圆C 的方程;(Ⅱ)以MN 为直径的圆是否经过定点?若经过,求出定点的坐标;若不经过,请说明理由.(21)(本小题满分12分)已知函数+3()ex mf x x =-,()()ln 12g x x =++.(Ⅰ)若曲线()y f x =在点()()00f ,处的切线斜率为1,求实数m 的值; (Ⅱ)当1m ≥时,证明:()3()f x g x x >-.请考生在第22、23、24题中任选一题做答,如果多做,则按所做的第一题计分.做答时请写清题号.(22)(本小题满分10分)选修4-1:几何证明选讲如图所示,△ABC 内接于⊙O ,直线AD 与⊙O 相切于点A ,交BC 的延长线于点D ,过点D 作DECA 交BA 的延长线于点E .(Ⅰ)求证:2DE AE BE =;(Ⅱ)若直线EF 与⊙O 相切于点F ,且4EF =,2EA =,求线段AC 的长.(23)(本小题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为θρsin 2=,[)0,2θ∈π. (Ⅰ)求曲线C 的直角坐标方程;(Ⅱ)在曲线C 上求一点D ,使它到直线l:32x y t ⎧=⎪⎨=-+⎪⎩(t 为参数,t ∈R )的距离最短,并求出点D 的直角坐标.(24)(本小题满分10分)选修4-5:不等式选讲设函数()f x x x =+- (Ⅰ)当1a =时,求不等式()12f x ≥的解集; (Ⅱ)若对任意[]0,1a ∈,不等式()f x b ≥的解集为空集,求实数b 的取值范围.绝密 ★ 启用前广州市普通高中毕业班综合测试(一) 理科数学试题答案及评分参考评分说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制订相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数.选择题不给中间分. 一.选择题(1)D (2)D (3)C (4)B (5)C (6)A(7)A (8)A (9)D (10)B (11)A (12)B 二.填空题(13)43(14(15)40- (16)2 三.解答题(17)(Ⅰ) 解法一: 在△ABC 中,因为2BD AD =,设AD x =()0x >,则2BD x =.在△BCD 中,因为CD BC ⊥,5CD =,2BD x =, 所以cos CD CDB BD ∠=52x=.………………………………………………………2分在△ACD 中,因为AD x =,5CD =,AC =由余弦定理得2222225cos 225AD CD AC x ADC AD CD x +-+-∠==⨯⨯⨯⨯. ………4分因为CDB ADC ∠+∠=π, 所以cos cos ADC CDB ∠=-∠,即22255252x x x+-=-⨯⨯.………………………………………………………5分 解得5x =.所以AD 的长为5. …………………………………………………………………6分解法二: 在△ABC 中,因为2BD AD =,设AD x =()0x >,则2BD x =.在△BCD 中,因为CD BC ⊥,5CD =,2BD x =,所以BC =所以cos 2BCCBD BD x∠==.……………………………………………2分在△ABC 中,因为3AB x =,BC AC =,由余弦定理得2222cos 2AB BC AC CBA AB BC +-∠==⨯⨯…………4分所以2x =2………………………………………………5分解得5x =.所以AD 的长为5. …………………………………………………………………6分(Ⅱ)解法一:由(Ⅰ)求得315AB x ==,BC ==.………………8分所以cos 2BC CBD BD ∠==,从而1sin 2CBD ∠=.…………………………10分 所以1sin 2ABC S AB BC CBA ∆=⨯⨯⨯∠111522=⨯⨯=……………………………………………12分解法二:由(Ⅰ)求得315AB x ==,BC ==.………………8分因为AC =,所以△ABC 为等腰三角形.因为cos BC CBD BD ∠==,所以30CBD ∠=.……………………………10分所以△ABC 底边AB 上的高12h BC ==. 所以12ABC S AB h ∆=⨯⨯115224=⨯⨯=.……………………………………………12分解法三:因为AD 的长为5, 所以51cos ==22CD CDB BD x ∠=,解得3CDB π∠=.……………………………8分所以12sin 23ADC S AD CD ∆π=⨯⨯⨯=.1sin 232BCD S BD CD ∆π=⨯⨯⨯=.……………………………………10分所以4ABC ADC BCD S S S ∆∆∆=+=.……………………………………………12分(18)解:(Ⅰ)设区间[]75,85内的频率为x ,则区间[)55,65,[)65,75内的频率分别为4x 和2x .…………………………1分 依题意得()0.0040.0120.0190.0310421x x x +++⨯+++=,………………3分 解得0.05x =.所以区间[]75,85内的频率为0.05.………………………………………………4分(Ⅱ)从该企业生产的该种产品中随机抽取3件,相当于进行了3次独立重复试验,所以X 服从二项分布(),B n p ,其中3n =.由(Ⅰ)得,区间[)45,75内的频率为0.30.2+0.1=0.6+,将频率视为概率得0.6p =.………………………………………………………5分 因为X 的所有可能取值为0,1,2,3,…………………………………………6分且0033(0)C 0.60.40.064P X ==⨯⨯=,1123(1)C 0.60.40.288P X ==⨯⨯=,2213(2)C 0.60.40.432P X ==⨯⨯=,3303(3)C 0.60.40.216P X ==⨯⨯=.所以X 的分布列为:X0 1 2 3P0.0640.2880.4320.216所以X 的数学期望为00.06410.28820.43230.216 1.8EX =⨯+⨯+⨯+⨯=. (或直接根据二项分布的均值公式得到30.6 1.8EX np ==⨯=)……………12分(19)(Ⅰ)证明:因为1AOBD ⊂平面ABCD ,所以1A O BD ⊥.………………1分因为ABCD 是菱形, 所以CO BD ⊥.因为1AO CO O =,所以BD ⊥平面1A CO .……………………………………………………………3分因为BD ⊂平面11BB D D ,所以平面11BB D D ⊥平面1A CO .…………………………………………………4分(Ⅱ)解法一:因为1AO ⊥平面ABCD ,CO BD ⊥,以O 为原点,OB ,OC ,1OA 方 向为x ,y ,z 轴正方向建立如图所示空间直角坐标系.………………………5分 因为12AB AA ==,60BAD ∠=,………………………10分所以1OB OD ==,OA OC ==11OA ==.………………6分则()1,0,0B,()C,()0,A ,()10,0,1A ,所以()11BB AA ==1,设平面1OBB 的法向量为n 因为()1,0,0OB =,11,OB =所以0,0.x x z =⎧⎪⎨+=⎪⎩令1=y ,得(0,1,=n .…………………………………………………………9分同理可求得平面1OCB 的法向量为()1,0,1=-m .………………………………10分所以cos ,4<>==n m .…………………………………………………11分 因为二面角1B OB C --的平面角为钝角,所以二面角1B OB C --的余弦值为4……………………………………12分解法二:由(Ⅰ)知平面连接11A C 与11B D 交于点连接1CO ,1OO ,因为11AA CC =,1//AA所以11CAAC 为平行四边形.因为O ,1O 分别是AC ,11A C 的中点,所以11OA O C 为平行四边形.且111O C OA ==.因为平面1ACO 平面11BB D D 1OO =,过点C 作1CH OO ⊥于H ,则CH ⊥平面11BB D D .过点H 作1HK OB ⊥于K ,连接CK ,则1CK OB ⊥.所以CKH ∠是二面角1B OB C --的平面角的补角.……………………………6分在1Rt OCO ∆中,1122O C OC CH OO ⨯===.………………………………7分在1OCB ∆中,因为1A O ⊥11A B,所以1OB == 因为11A B CD =,11//A B CD ,所以11B C A D === 因为22211B C OC OB +=,所以1OCB ∆为直角三角形.……………………………8分所以11CB OC CK OB ===⨯…………………………………………9分所以KH =.…………………………………………………10分所以cos 4KH CKH CK∠==.……………………………………………………11分所以二面角1B OB C --的余弦值为4……………………………………12分(20)(Ⅰ)解法一:设椭圆C 的方程为22221(0)x y a b a b+=>>,因为椭圆的左焦点为()120F -,,所以224a b -=.……………………………1分设椭圆的右焦点为()220F ,,已知点(2B 在椭圆C 上, 由椭圆的定义知122BF BF a +=,所以2a ==………………………………………………………2分所以a =2b =.………………………………………………………3分所以椭圆C 的方程为22184x y +=.………………………………………………4分 解法二:设椭圆C 的方程为22221(0)x y a b a b+=>>,因为椭圆的左焦点为()120F -,,所以224a b -=. ①…………………1分因为点(2B 在椭圆C 上,所以22421a b+=. ②…………………2分由①②解得,a =2b =.…………………………………………………3分所以椭圆C 的方程为22184x y +=.………………………………………………4分(Ⅱ)解法一:因为椭圆C 的左顶点为A ,则点A 的坐标为()-.…………5分因为直线(0)y kx k =≠与椭圆22184x y +=交于两点E ,F , 设点()00,E x y (不妨设00x >),则点()00,F x y --.联立方程组22,184y kx x y =⎧⎪⎨+=⎪⎩消去y 得22812x k =+.所以0x =0y .所以直线AE的方程为y x =+.……………………………6分因为直线AE ,AF 分别与y 轴交于点M ,N ,令0x =得y =,即点M ⎛⎫⎝.……………………7分同理可得点N ⎛ ⎝.…………………………………………………8分所以MN ==…………………9分设MN的中点为P ,则点P 的坐标为0,P k ⎛⎫- ⎪ ⎪⎝⎭.…………………………10分 则以MN 为直径的圆的方程为22x y k ⎛++= ⎝⎭2,即224x y y ++=.…………………………………………………………11分 令0y =,得24x =,即2x =或2x =-.故以MN 为直径的圆经过两定点()12,0P ,()22,0P -.………………………12分 解法二:因为椭圆C 的左端点为A ,则点A 的坐标为()-.……………5分因为直线(0)y kx k =≠与椭圆22184x y +=交于两点E ,F , 设点00(,)E x y ,则点00(,)F x y --.所以直线AE的方程为y x =+.………………………………6分因为直线AE 与y 轴交于点M ,令0x =得y =M ⎛⎫⎝.……………………………7分同理可得点N ⎛⎫⎝.……………………………………………………8分所以020168y MN x ==-.因为点00(,)E x y 在椭圆C 上,所以2200184x y +=. 所以08MN y =.……………………………………………………………………9分 设MN 的中点为P ,则点P的坐标为000,P y ⎛⎫-⎪ ⎪⎝⎭.………………………10分 则以MN为直径的圆的方程为220x y ⎛+= ⎝⎭2016y .即22+x y y y +=4.………………………………………………………11分 令0y =,得24x =,即2x =或2x =-.故以MN 为直径的圆经过两定点()12,0P ,()22,0P -.………………………12分解法三:因为椭圆C 的左顶点为A ,则点A 的坐标为()-.……………5分因为直线(0)y kx k =≠与椭圆22184x y +=交于两点E ,F ,设点(),2sin E θθ(0θ<<π),则点(),2sin F θθ--.所以直线AE 的方程为y x =+.………………………6分因为直线AE 与y 轴交于点M ,令0x =得2sin cos 1y θθ=+,即点2sin 0,cos 1M θθ⎛⎫⎪+⎝⎭.………………………………7分同理可得点2sin 0,cos 1N θθ⎛⎫⎪-⎝⎭.………………………………………………………8分所以2sin 2sin 4cos 1cos 1sin MN θθθθθ=-=+-.………………………………………9分设MN 的中点为P ,则点P 的坐标为2cos 0,sin P θθ⎛⎫-⎪⎝⎭.………………………10分 则以MN 为直径的圆的方程为222cos sin x y θθ⎛⎫++= ⎪⎝⎭24sin θ, 即224cos 4sin x y y θθ++=.………………………………………………………11分 令0y =,得24x =,即2x =或2x =-.故以MN 为直径的圆经过两定点()12,0P ,()22,0P -.………………………12分(21)(Ⅰ)解:因为+3()ex mf x x =-,所以+2()e3x mf x x '=-.……………………………………………………………1分 因为曲线()y f x =在点()()00f ,处的切线斜率为1,所以()0e 1m f '==,解得0m =.…………………………………………………2分(Ⅱ)证法一:因为+3()ex mf x x =-,()()ln 12g x x =++,所以()3()f x g x x >-等价于()+e ln 120x m x -+->. 当1m ≥时,()()+1e ln 12e ln 12x m x x x +-+-≥-+-. 要证()+e ln 120x m x -+->,只需证明1eln(1)20x x +-+->.………………4分以下给出三种思路证明1eln(1)20x x +-+->.思路1:设()()1e ln 12x h x x +=-+-,则()11e 1x h x x +'=-+. 设()11e 1x p x x +=-+,则()()121e 01x p x x +'=+>+. 所以函数()p x =()11e 1x h x x +'=-+在()1+-∞,上单调递增.…………………6分 因为121e 202h ⎛⎫'-=-< ⎪⎝⎭,()0e 10h '=->,所以函数()11e 1x h x x +'=-+在()1+-∞,上有唯一零点0x ,且01,02x ⎛⎫∈- ⎪⎝⎭. ………………………………8分因为()00h x '=,所以0+101e1x x =+,即()()00ln 11x x +=-+.………………9分当()01,x x ∈-时,()0h x '<;当()0,x x ∈+∞时,()0h x '>, 所以当0x x =时,()h x 取得最小值()0h x .………………………………………10分所以()()()0100=e ln 12x h x h x x +≥-+-()0011201x x =++->+. 综上可知,当1m ≥时,()3()f x g x x >-. ……………………………………12分思路2:先证明1e2x x +≥+()x ∈R .……………………………………………5分设()1e 2x h x x +=--,则()+1e 1x h x '=-.因为当1x <-时,()0h x '<,当1x >-时,()0h x '>,所以当1x <-时,函数()h x 单调递减,当1x >-时,函数()h x 单调递增. 所以()()10h x h ≥-=.所以1e2x x +≥+(当且仅当1x =-时取等号).…………………………………7分所以要证明1eln(1)20x x +-+->,只需证明()2ln(1)20x x +-+->.………………………………………………8分 下面证明()ln 10x x -+≥.设()()ln 1p x x x =-+,则()1111x p x x x '=-=++. 当10x -<<时,()0p x '<,当0x >时,()0p x '>,所以当10x -<<时,函数()p x 单调递减,当0x >时,函数()p x 单调递增.所以()()00p x p ≥=.所以()ln 10x x -+≥(当且仅当0x =时取等号).……………………………10分 由于取等号的条件不同, 所以1eln(1)20x x +-+->.综上可知,当1m ≥时,()3()f x g x x >-. ……………………………………12分(若考生先放缩()ln 1x +,或e x、()ln 1x +同时放缩,请参考此思路给分!)思路3:先证明1eln(1)20x x +-+->.令1t x =+,转化为证明e ln 2tt ->()0t >.……………………………………5分因为曲线e ty =与曲线ln y t =关于直线y t =对称,设直线0x x =()00x >与曲线e ty =、ln y t =分别交于点A 、B ,点A 、B 到直线y t =的距离分别为1d 、2d ,则)122AB d d =+.其中0012x d =0022d ()00x >.①设()000e x h x x =-()00x >,则()00e 1x h x '=-. 因为00x >,所以()00e 10x h x '=->.所以()0h x 在()0,+∞上单调递增,则()()001h x h >=.所以00122x d =>②设()000ln p x x x =-()00x >,则()0000111x p x x x -'=-=. 因为当001x <<时,()00p x '<;当01x >时,()00p x '>, 所以当001x <<时,函数()000ln p x x x =-单调递减;当01x >时,函数()000ln p x x x =-单调递增. 所以()()011p x p ≥=.所以2d .所以)122AB d d ≥+>=⎭. 综上可知,当1m ≥时,()3()f x g x x >-.……………………………………12分证法二:因为+3()ex mf x x =-,()()ln 12g x x =++,所以()3()f x g x x >-等价于()+e ln 120x m x -+->.…………………………4分 以下给出两种思路证明()+e ln 120x m x -+->. 思路1:设()()+e ln 12x m h x x =-+-,则()+1e1x mh x x '=-+. 设()+1e1x mp x x =-+,则()()+21e 01x mp x x '=+>+. 所以函数()p x =()+1e 1x mh x x '=-+在()+∞-1,上单调递增.………………6分 因为1m ≥,所以()()1e +1e 1ee e e e 10mmmmm m h ----+-+'-+=-=-<,()0e 10m h '=->.所以函数()+1e1x mh x x '=-+在()+∞-1,上有唯一零点0x ,且()01e ,0m x -∈-+. …………………8分因为()00h x '=,所以0+01e1x mx =+,即()00ln 1x x m +=--.………………9分 当()00,x x ∈时,()0h x '<;当()0,x x ∈+∞时,()0h x '>.所以当0x x =时,()h x 取得最小值()0h x .……………………………………10分所以()()()0+00e ln 12x mh x h x x ≥=-+-00121x m x =++-+ ()0011301x m x =+++->+. 综上可知,当1m ≥时,()3()f x g x x >-.……………………………………12分思路2:先证明e 1()xx x ≥+∈R ,且ln(1)(1)x x x +≤>-.…………………5分设()e 1xF x x =--,则()e 1xF x '=-.因为当0x <时,()0F x '<;当0x >时,()0F x '>,所以()F x 在(,0)-∞上单调递减,在(0,)+∞上单调递增.所以当0x =时,()F x 取得最小值(0)0F =.所以()(0)0F x F ≥=,即e 1()xx x ≥+∈R .…………………………………7分所以ln(1)x x +≤(当且仅当0x =时取等号).…………………………………8分再证明()+e ln 120x m x -+->.由e 1()xx x ≥+∈R ,得1e 2x x +≥+(当且仅当1x =-时取等号).…………9分因为1x >-,1m ≥,且1e2x x +≥+与ln(1)x x +≤不同时取等号,所以 ()()+11e ln 12e e ln 12x m m x x x -+-+-=⋅-+-11e (2)2(e 1)(2)0m m x x x -->+--=-+≥.综上可知,当1m ≥时,()3()f x g x x >-.……………………………………12分(22)(Ⅰ)证明:因为AD 是⊙O 的切线,所以DAC B ∠=∠(弦切角定理).………………1分因为DECA ,所以DAC EDA ∠=∠.……………………………2分 所以EDA B ∠=∠.因为AED DEB ∠=∠(公共角),所以△AED ∽△DEB .……………………………………………………………3分 所以DE AE BEDE=.即2DE AE BE =.…………………………………………………………………4分 (Ⅱ)解:因为EF 是⊙O 的切线,EAB 是⊙O 的割线,所以2EF EA EB =(切割线定理).……………………………………………5分 因为4EF =,2EA =,所以8EB =,6AB EB EA =-=.…………………7分由(Ⅰ)知2DE AE BE =,所以4DE =.………………………………………8分 因为DECA ,所以△BAC ∽△BED . ………………………………………9分所以BA AC BEED=.所以6438BA ED AC BE⋅⨯===. …………………………………………………10分(23)(Ⅰ)解:由θρsin 2=,[)0,2θ∈π,可得22sin ρρθ=.…………………………………………………………………1分因为222x y ρ=+,sin y ρθ=,…………………………………………………2分所以曲线C 的普通方程为2220x y y +-=(或()2211x y +-=). …………4分(Ⅱ)解法一:因为直线的参数方程为32x y t ⎧=+⎪⎨=-+⎪⎩(t 为参数,t ∈R ),消去t 得直线l的普通方程为5y =+. ……………………………………5分 因为曲线C :()2211x y +-=是以G ()1,0为圆心,1为半径的圆,设点()00,D x y ,且点D 到直线l:5y =+的距离最短,所以曲线C 在点D 处的切线与直线l:5y =+平行.即直线GD 与l 的斜率的乘积等于1-,即(0011y x -⨯=-.………………7分 因为()220011x y +-=,解得0x =或0x =.所以点D 的坐标为122⎛⎫- ⎪ ⎪⎝⎭,或322⎛⎫⎪ ⎪⎝⎭,.……………………………………9分由于点D 到直线5y =+的距离最短,所以点D 的坐标为322⎛⎫⎪ ⎪⎝⎭,.……………………………………………………10分解法二:因为直线l 的参数方程为32x y t ⎧=+⎪⎨=-+⎪⎩(t 为参数,t ∈R ),消去t 得直线l 50y +-=.……………………………………5分 因为曲线C ()2211x y +-=是以G ()1,0为圆心,1为半径的圆,因为点D 在曲线C 上,所以可设点D ()cos ,1sin ϕϕ+[)()0,2ϕ∈π.………7分所以点D 到直线l 的距离为d =2sin 3ϕπ⎛⎫=-+ ⎪⎝⎭.………………………………8分因为[)0,2ϕ∈π,所以当6ϕπ=时,min 1d =.…………………………………9分此时D 32⎫⎪⎪⎝⎭,,所以点D 的坐标为32⎫⎪⎪⎝⎭,.……………………………10分(24)(Ⅰ)解:当1a =时,()12f x ≥等价于112x x +-≥.……………………1分①当1x ≤-时,不等式化为112x x --+≥,无解; ②当10x -<<时,不等式化为112x x ++≥,解得104x -≤<; ③当0x ≥时,不等式化为112x x +-≥,解得0x ≥.…………………………3分 综上所述,不等式()1≥x f 的解集为1,4⎡⎫-+∞⎪⎢⎣⎭.………………………………4分 (Ⅱ)因为不等式()f x b ≥的解集为空集,所以()max b f x >⎡⎤⎣⎦.…………………5分以下给出两种思路求()f x 的最大值.思路1:因为()f x x x =+-()01a ≤≤,当x ≤()f x x x =-=0.当x <时,()f x x x =2x =+211a aa1a a .当x ≥()f x x x ==所以()max f x ⎡⎤⎣⎦=……………………………………………………7分思路2:因为()f x x x =x x ≤==当且仅当x ≥所以()max f x ⎡⎤⎣⎦=……………………………………………………7分因为对任意[]0,1a ∈,不等式()f x b ≥的解集为空集,所以max b >.………………………………………………………8分以下给出三种思路求()g a =.思路1:令()g a =所以()21ga =+2212≤++=.=12a =时等号成立.所以()maxg a =⎡⎤⎣⎦.所以b 的取值范围为)∞.…………………………………………………10分思路2:令()g a =因为01a ≤≤,所以可设2cosa θ=02θπ⎛⎫≤≤ ⎪⎝⎭,则()g a =cos sin 4θθθπ⎛⎫=+=+≤ ⎪⎝⎭当且仅当4θπ=时等号成立.所以b 的取值范围为)∞.…………………………………………………10分思路3:令()g a =因为01a ≤≤,设,1,x a ya 则221xy 01,01x y .问题转化为在221x y 01,01xy 的条件下,求zx y 的最大值.利用数形结合的方法容易求得z ,此时22xy. 所以b 的取值范围为)∞.…………………………………………………10分高考理科数学试卷普通高等学校招生全国统一考试注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合{1,}A =2,3,{|(1)(2)0,}B x x x x =+-<∈Z ,则AB =(A ){1}(B ){12},(C ){0123},,,(D ){10123}-,,,, (2)已知(3)(1)i z m m =++-在复平面内对应的点在第四象限,则实数m 的取值范围是(A )(31)-,(B )(13)-,(C )(1,)∞+(D )(3)∞--,(3)已知向量(1,)(3,2)m =-,=a b ,且()⊥a +b b ,则m= (A )-8(B )-6 (C )6 (D )8(4)圆2228130x y x y +--+=的圆心到直线10ax y +-=的距离为1,则a= (A )43-(B )34-(C )3(D )2(5)如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为(A )24 (B )18 (C )12 (D )9(6)右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为(A )20π(B )24π(C )28π(D )32π(7)若将函数y=2sin 2x 的图像向左平移π12个单位长度,则评议后图象的对称轴为(A )x=kπ2–π6 (k ∈Z) (B )x=kπ2+π6 (k ∈Z) (C )x=kπ2–π12 (k ∈Z) (D )x=kπ2+π12 (k ∈Z)(8)中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的x=2,n=2,依次输入的a 为2,2,5,则输出的s=(A )7 (B )12 (C )17 (D )34(9)若cos(π4–α)=35,则sin 2α= (A )725(B )15(C )–15(D )–725(10)从区间[]0,1随机抽取2n 个数1x ,2x ,…,n x ,1y ,2y ,…,n y ,构成n 个数对()11,x y ,()22,x y ,…,(),n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为(A )4n m (B )2n m (C )4m n (D )2mn (11)已知F1,F2是双曲线E 22221x y a b-=的左,右焦点,点M 在E 上,M F1与x 轴垂直,sin 2113MF F ∠=,则E 的离心率为(AB )32(CD )2 (12)已知函数学.科网()()f x x ∈R 满足()2()f x f x -=-,若函数1x y x+=与()y f x =图像的交点为1122(,),(,),,(,),m m x y x y x y ⋅⋅⋅则1()mi i i x y =+=∑(A )0 (B )m (C )2m (D )4m第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共3小题,每小题5分(13)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若cos A=45,cos C=513,a=1,则b=. (14)α、β是两个平面,m 、n 是两条直线,有下列四个命题:(1)如果m ⊥n ,m ⊥α,n ∥β,那么α⊥β.(2)如果m ⊥α,n ∥α,那么m ⊥n.(3)如果α∥β,m ⊂α,那么m ∥β. (4)如果m ∥n ,α∥β,那么m 与α所成的角和n 与β所成的角相等.其中正确的命题有.(填写所有正确命题的编号)(15)有三张卡片,分别写有1和2,1和3,2和3。
高考数学高三模拟试卷试题压轴押题高三水平测试数学理科
高考数学高三模拟试卷试题压轴押题高三水平测试数学(理科)本试卷共4页,20小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上.用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上.将条形码横贴在答题卡右上角“条形码粘贴处”.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案.答案不能答在试卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须填写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.作答选做题时,请先用2B 铅笔填涂选做题的题号(或题组号)对应的信息点,再作答.漏涂、错涂、多涂的,答案无效.5.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设2:x x f →是集合A 到B 的映射,如果B={1,2},则A∩B 只可能是( )A.φ或{1}B.{1}C.φ或{2}D.φ或{1}或{2}2.要得到函数)42sin(π-=x y 的图象,可以把函数x y 2sin =的图象( )A .向左平移8π个单位 B .向右平移8π个单位 C .向左平移4π个单位 D .向右平移4π个单位 3.与直线l1:012=--y m mx 垂直于点P (2,1)的直线l2的方程为( )A.01=-+y xB.03=--y xC.01=--y xD.03=-+y x4.函数xxa y x=(01)a <<的图象的大致形状是( )5.已知a 、b 为两条不同的直线,、β为两个不同的平面,且a ⊥,b ⊥β,则下列命题中的假命题是( )A.若a ∥b ,则∥βB.若⊥β,则a ⊥bC.若a 、b 相交,则、β相交D.若、β相交,则a 、b 相交6.,R ∈θ那么曲线⎪⎪⎨⎧=cos 2θy x 与22y x +4=一定( ) A.无公共点 B.有且仅有一个公共点 C.有且仅有两个公共点 C.有三个以上公共点x y O 1 -1 x y O 1 -1 (A ) x yO 1 -1 xy O1 -1 (D )BA7.已知函数⎪⎩⎪⎨⎧-=)()()(22为偶数时当为奇数时当,,n n n n n f 且)1()(++=n f n f a n ,则+++321a a a 100a +等于( )A .0B .100C .100D .10200 8.已知定义在R 上的函数y=f(x)满足下列三个条件:①对任意的x ∈R 都有);()4(x f x f =+②对于任意的2021≤<≤x x ,都有),()(21x f x f <③)2(+=x f y 的图象关于y 轴对称,则下列结论中,正确的是()A .)7()5.6()5.4(f f f <<B .)5.6()7()5.4(f f f <<C .)5.6()5.4()7(f f f <<D .)5.4()5.6()7(f f f << 二、填空题:本大题共6小题,每小题5分,满分30分. 9.计算:=+-)2)(1(i i . 10.若5,x y +=则xy 的最大值是. 11.⎰--22)24(dx x x = .12.在如图所示的坐标平面的可行域(阴影部分且包括边界) 内,目标函数ay x z -=2取得最大值的最优解有无数个, 则a 为_______________.13.若平面上三点A 、B 、C 3=AB 4=BC 5=CA ,则⋅+⋅+⋅ 的值等于。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学高三模拟试卷试题压轴押题普通高中高三教学质量检测理科数学(B 卷)第Ⅰ卷一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、复数(12i i i -为虚数单位)的共轭复数为( ) A .25i -+B .25i --C .25i -D .25i + 2、设全集{|33,},{1,2},{2,1,2}I x x x Z A B =-<<∈==--,则()I AC B 等于( ) A .{}1B .{}1,2C .{}2D .{}0,1,23、cos735=( )A .34B .32C .624-D .624+[来源:学.科.网] 4、在三棱柱111ABC A B C -中,1A A ⊥平面ABC ,12,3AB BC AC AA BC ===,则直线1AB 与面11BB C C 所成角的正切值为( )A .34B .32C .134D .393 5、已知等差数列{}n a 的前n 项和为,20n n S S =-,则4563a a -+=( )A .20B .4C .12D .206、在四边形ABCD 中,M 为BD 上靠近D 的三等分点,且满足AM x AB y AD =+,则实数,x y 的值分别为( )A .12,33B .21,33C .11,22D .13,44[来源:学+科+网] 7、设n S 为等比数列{}n a 的前n 项和,记命题甲:2140a a -=,命题乙:425S S =,则命题甲成立是命题乙成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件8、已知某几何体的三视图如图,根据图中标出的尺寸(单位:dm ),可得这个几何体的体积是( )A .35312dm πB .34912dm πC .34512dm πD .33dm π9、在平行四边形ABCD 中,5,4AC BD ==,则AB BC ⋅=( )A .414B .414-C .94D .94- 10、设变量,x y 满足约束条件101020x x y x y +≥⎧⎪-+≤⎨⎪+-≤⎩,则满足114t dx x y x =+⎰的t 的最大值为( )[来源:]A .2e -B .1e -C .1D .12e 11、函数()1()7(1)21(1)x xf x x x ⎧-<-⎪=⎨⎪+≥-⎩,若()1f t <,则使函数()1g t t at =+为减函数的a 的取值范围是( )A .1(,]9-∞B .1(,)9-∞C .1(0,]9D .(,1)-∞12、如图所示,一张正方形的黑色硬纸板,剪去两个一样的小矩形得到一个“E”形的图形,设小矩形的长、宽分别为,10a b a ≤≤,剪去部分的面积为8,则1919b a +++的最大值为( )[来源:] A .1 [来源:] B .1110C .65D .2第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上。
.13、已知数列{}n a ,点12(1,),(2,),,(,),n a a n a 均在同一条斜率大于零的直线上,满足21321,4a a a ==-,则数列{}n a 的前n 项和为14、已知函数()221(0,0)32x b f x x ax a b =-++>>,则函数()()ln f x g x a x a'=+在点(,())b g b 处切线的斜率的最小值是15、在ABC ∆中,角,,A B C 的对边分别为,,a b c ,且2cos 2c B a b =+,若ABC ∆的面积为3S c = 则ab 的最小值为 16、定义函数:(),01,0x e x G x x ⎧≥=⎨<⎩,下列结论正确的是 ①()()()G a G b G a b =+②()()2()2a b G a G b G ++≥ ③()1G a b a b +≥++④()()()G ab G a G b =三、解答题:解答应写出文字说明、证明过程或演算步骤[来源:学|科|网Z|X|X|K]17、(本小题满分10分)在在ABC ∆中,角,,A B C 的对边分别为,,a b c ,若5tan 3,cos ,4A C c === (1)求角B ;(2)求ABC ∆的面积。
18、(本小题满分12分)已知数列{}n a 的各项均为正数,n S 且其前n 项和,对于任意的n N ∈*都有2,,n n a S 为等差数列(1)求数列{}n a 的通项公式;(2)设数列{}n b 的通项公式是2221log log n n n b a a +=⋅,试比较{}n b 的前n 项和n T 与34的大小。
19、(本小题满分12分)设函数()()2,ln h x x mx g x x =-=[来源:ZXXK](1)设2()(sin cos )f t m x x dx ππ=+⎰,且(2016)2f π=,若函数()h x 与()g x 在0x x=处的切线平行,求这两切线间的距离;(2)若以0x >,不等式()()h x g x ≥恒成立,求实数m 的取值范围。
20、(本小题满分12分)如图,在ABC ∆中,AD BC ⊥于O ,224OB OA OC ===,点,,D E F 分别为,,OA OA OC 的中点BD 与AE 相交于H ,CD 与AF 相交于G ,将ABO ∆沿OA 折起,使二面角B OA C --为直二面角。
(1)在底面ABC ∆的边BC 上是否存在一点P ,使得OP GH ⊥,若存在,请计算BP 的长度;若不存在,请说明理由;(2)求二面角A GH D --的余弦值。
21、(本小题满分12分)已知()f x 是定义在(0,)+∞上的函数,且对任意正数,x y 都满足()()()f xy f x f y =+,且当1x >时,()()0,31f x f >=。
[来源:ZXXK](1)求集合(){|(1)2}A x f x f x =>-+;[来源:Z 。
xx 。
](2)比较(1ln )f a a +-与1(1ln )f a a++的大小,并说明理由。
[来源:]22、(本小题满分12分)设函数()ln bx f x ax x=- (1)若0a =,求0a =的单调递增区间;(2)当1b =时,存在212,[,]x x e e ∈,使()()12f x f x a '≤+成立,求实数a 的最小值,(其中e是自然对数的底数)高考模拟题复习试卷习题资料高考数学试卷(理科)(附详细答案)(10)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给处的四个选项中,只有一项是符合题目要求的.1.(5分)在x(1+x)6的展开式中,含x3项的系数为()A.30B.20C.15D.102.(5分)已知集合A={x|x2﹣x﹣2≤0},集合B为整数集,则A∩B=()A.{﹣1,0,1,2}B.{﹣2,﹣1,0,1}C.{0,1}D.{﹣1,0}3.(5分)为了得到函数y=sin(2x+1)的图象,只需把y=sin2x的图象上所有的点()A.向左平行移动个单位长度B.向右平行移动个单位长度C.向左平行移动1个单位长度D.向右平行移动1个单位长度4.(5分)若a>b>0,c<d<0,则一定有()A.>B.<C.>D.<5.(5分)执行如图所示的程序框图,若输入的x,y∈R,那么输出的S的最大值为()A.0B.1C.2D.36.(5分)六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有()A.192种B.216种C.240种D.288种7.(5分)平面向量=(1,2),=(4,2),=m+(m∈R),且与的夹角等于与的夹角,则m=()A.﹣2B.﹣1C.1D.28.(5分)如图,在正方体ABCD﹣A1B1C1D1中,点O为线段BD的中点,设点P在线段CC1上,直线OP与平面A1BD所成的角为α,则sinα的取值范围是()A.[,1]B.[,1]C.[,]D.[,1]9.(5分)已知f(x)=ln(1+x)﹣ln(1﹣x),x∈(﹣1,1).现有下列命题:①f(﹣x)=﹣f(x);②f()=2f(x)③|f(x)|≥2|x|其中的所有正确命题的序号是()A.①②③B.②③C.①③D.①②10.(5分)已知F为抛物线y2=x的焦点,点A,B在该抛物线上且位于x轴的两侧,•=2(其中O为坐标原点),则△ABO与△AFO面积之和的最小值是()A.2B.3C.D.二、填空题:本大题共5小题,每小题5分,共25分11.(5分)复数=.12.(5分)设f(x)是定义在R上的周期为2的函数,当x∈[﹣1,1)时,f(x)=,则f()=.13.(5分)如图,从气球A上测得正前方的河流的两岸B,C的俯角分别为67°,30°,此时气球的高是46m,则河流的宽度BC约等于m.(用四舍五入法将结果精确到个位.参考数据:sin67°≈0.92,cos67°≈0.39,sin37°≈0.60,cos37°≈0.80,≈1.73)14.(5分)设m∈R,过定点A的动直线x+my=0和过定点B的动直线mx﹣y﹣m+3=0交于点P(x,y).则|PA|•|PB|的最大值是.15.(5分)以A表示值域为R的函数组成的集合,B表示具有如下性质的函数φ(x)组成的集合:对于函数φ(x),存在一个正数M,使得函数φ(x)的值域包含于区间[﹣M,M].例如,当φ1(x)=x3,φ2(x)=sinx时,φ1(x)∈A,φ2(x)∈B.现有如下命题:①设函数f(x)的定义域为D,则“f(x)∈A”的充要条件是“∀b∈R,∃a∈D,f(a)=b”;②函数f(x)∈B的充要条件是f(x)有最大值和最小值;③若函数f(x),g(x)的定义域相同,且f(x)∈A,g(x)∈B,则f(x)+g(x)∉B.④若函数f(x)=aln(x+2)+(x>﹣2,a∈R)有最大值,则f(x)∈B.其中的真命题有.(写出所有真命题的序号)三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(12分)已知函数f(x)=sin(3x+).(1)求f(x)的单调递增区间;(2)若α是第二象限角,f()=cos(α+)cos2α,求cosα﹣sinα的值.17.(12分)一款击鼓小游戏的规则如下:每盘游戏都需要击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐:每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得﹣200分).设每次击鼓出现音乐的概率为,且各次击鼓出现音乐相互独立.(1)设每盘游戏获得的分数为X,求X的分布列;(2)玩三盘游戏,至少有一盘出现音乐的概率是多少?(3)玩过这款游戏的许多人都发现.若干盘游戏后,与最初分数相比,分数没有增加反而减少了.请运用概率统计的相关知识分析分数减少的原因.18.(12分)三棱锥A﹣BCD及其侧视图、俯视图如图所示,设M,N分别为线段AD,AB的中点,P为线段BC上的点,且MN⊥NP.(1)证明:P是线段BC的中点;(2)求二面角A﹣NP﹣M的余弦值.19.(12分)设等差数列{an}的公差为d,点(an,bn)在函数f(x)=2x的图象上(n∈N*).(1)若a1=﹣2,点(a8,4b7)在函数f(x)的图象上,求数列{an}的前n项和Sn;(2)若a1=1,函数f(x)的图象在点(a2,b2)处的切线在x轴上的截距为2﹣,求数列{}的前n项和Tn.20.(13分)已知椭圆C:+=1(a>b>0)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.(1)求椭圆C的标准方程;(2)设F为椭圆C的左焦点,T为直线x=﹣3上任意一点,过F作TF的垂线交椭圆C于点P,Q.①证明:OT平分线段PQ(其中O为坐标原点);②当最小时,求点T的坐标.21.(14分)已知函数f(x)=ex﹣ax2﹣bx﹣1,其中a,b∈R,e=2.71828…为自然对数的底数.(1)设g(x)是函数f(x)的导函数,求函数g(x)在区间[0,1]上的最小值;(2)若f(1)=0,函数f(x)在区间(0,1)内有零点,求a的取值范围.高考模拟题复习试卷习题资料高考数学试卷(理科)(附详细答案)(10)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给处的四个选项中,只有一项是符合题目要求的.1.(5分)在x(1+x)6的展开式中,含x3项的系数为()A.30B.20C.15D.10【分析】利用二项展开式的通项公式求出(1+x)6的第r+1项,令x的指数为2求出展开式中x2的系数.然后求解即可.【解答】解:(1+x)6展开式中通项Tr+1=C6rxr,令r=2可得,T3=C62x2=15x2,∴(1+x)6展开式中x2项的系数为15,在x(1+x)6的展开式中,含x3项的系数为:15.故选:C.【点评】本题考查二项展开式的通项的简单直接应用.牢记公式是基础,计算准确是关键.2.(5分)已知集合A={x|x2﹣x﹣2≤0},集合B为整数集,则A∩B=()A.{﹣1,0,1,2}B.{﹣2,﹣1,0,1}C.{0,1}D.{﹣1,0}【分析】计算集合A中x的取值范围,再由交集的概念,计算可得.【解答】解:A={x|﹣1≤x≤2},B=Z,∴A∩B={﹣1,0,1,2}.故选:A.【点评】本题属于容易题,集合知识是高中部分的基础知识,也是基础工具,高考中涉及到对集合的基本考查题,一般都比较容易,且会在选择题的前几题,考生只要够细心,一般都能拿到分.3.(5分)为了得到函数y=sin(2x+1)的图象,只需把y=sin2x的图象上所有的点()A.向左平行移动个单位长度B.向右平行移动个单位长度C.向左平行移动1个单位长度D.向右平行移动1个单位长度【分析】根据 y=sin(2x+1)=sin2(x+),利用函数y=Asin(ωx+φ)的图象变换规律,得【解答】解:∵y=sin(2x+1)=sin2(x+),∴把y=sin2x的图象上所有的点向左平行移动个单位长度,即可得到函数y=sin(2x+1)的图象,故选:A.【点评】本题主要考查函数y=Asin(ωx+φ)的图象变换规律,属于基础题.4.(5分)若a>b>0,c<d<0,则一定有()A.>B.<C.>D.<【分析】利用特例法,判断选项即可.【解答】解:不妨令a=3,b=1,c=﹣3,d=﹣1,则,,∴A、B不正确;,=﹣,∴C不正确,D正确.解法二:∵c<d<0,∴﹣c>﹣d>0,∵a>b>0,∴﹣ac>﹣bd,∴,∴.故选:D.【点评】本题考查不等式比较大小,特值法有效,导数计算正确.5.(5分)执行如图所示的程序框图,若输入的x,y∈R,那么输出的S的最大值为A.0B.1C.2D.3【分析】算法的功能是求可行域内,目标函数S=2x+y的最大值,画出可行域,求得取得最大值的点的坐标,得出最大值.【解答】解:由程序框图知:算法的功能是求可行域内,目标还是S=2x+y的最大值,画出可行域如图:当时,S=2x+y的值最大,且最大值为2.故选:C.【点评】本题借助选择结构的程序框图考查了线性规划问题的解法,根据框图的流程判断算法的功能是解题的关键.6.(5分)六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有()A.192种B.216种C.240种D.288种【分析】分类讨论,最左端排甲;最左端只排乙,最右端不能排甲,根据加法原理可得结论.【解答】解:最左端排甲,共有=120种,最左端只排乙,最右端不能排甲,有=96种,根据加法原理可得,共有120+96=216种.故选:B.【点评】本题考查排列、组合及简单计数问题,考查学生的计算能力,属于基础题.7.(5分)平面向量=(1,2),=(4,2),=m+(m∈R),且与的夹角等于与的夹角,则m=()A.﹣2B.﹣1C.1D.2【分析】由已知求出向量的坐标,再根据与的夹角等于与的夹角,代入夹角公式,构造关于m的方程,解方程可得答案.【解答】解:∵向量=(1,2),=(4,2),∴=m+=(m+4,2m+2),又∵与的夹角等于与的夹角,∴=,∴=,∴=,解得m=2,故选:D.【点评】本题考查的知识点是数量积表示两个向量的夹角,难度中档.8.(5分)如图,在正方体ABCD﹣A1B1C1D1中,点O为线段BD的中点,设点P在线段CC1上,直线OP与平面A1BD所成的角为α,则sinα的取值范围是()A.[,1]B.[,1]C.[,]D.[,1]【分析】由题意可得:直线OP于平面A1BD所成的角α的取值范围是∪.再利用正方体的性质和直角三角形的边角关系即可得出.【解答】解:由题意可得:直线OP于平面A1BD所成的角α的取值范围是∪.不妨取AB=2.在Rt△AOA1中,==.sin∠C1OA1=sin(π﹣2∠AOA1)=sin2∠AOA1=2sin∠AOA1cos∠AOA1=,=1.∴s inα的取值范围是.故选:B.【点评】本题考查了正方体的性质和直角三角形的边角关系、线面角的求法,考查了推理能力,属于中档题.9.(5分)已知f(x)=ln(1+x)﹣ln(1﹣x),x∈(﹣1,1).现有下列命题:①f(﹣x)=﹣f(x);②f()=2f(x)③|f(x)|≥2|x|其中的所有正确命题的序号是()A.①②③B.②③C.①③D.①②【分析】根据已知中函数的解析式,结合对数的运算性质,分别判断三个结论的真假,最后综合判断结果,可得答案.【解答】解:∵f(x)=ln(1+x)﹣ln(1﹣x),x∈(﹣1,1),∴f(﹣x)=ln(1﹣x)﹣ln(1+x)=﹣f(x),即①正确;f()=ln(1+)﹣ln(1﹣)=ln()﹣ln()=ln ()=ln[()2]=2ln()=2[ln(1+x)﹣ln(1﹣x)]=2f(x),故②正确;当x∈[0,1)时,|f(x)|≥2|x|⇔f(x)﹣2x≥0,令g(x)=f(x)﹣2x=ln(1+x)﹣ln(1﹣x)﹣2x(x∈[0,1))∵g′(x)=+﹣2=≥0,∴g(x)在[0,1)单调递增,g(x)=f(x)﹣2x≥g (0)=0,又f(x)≥2x,又f(x)与y=2x为奇函数,所以|f(x)|≥2|x|成立,故③正确;故正确的命题有①②③,故选:A.【点评】本题以命题的真假判断为载体,考查了对数的运算性质,代入法求函数的解析式等知识点,难度中档.10.(5分)已知F为抛物线y2=x的焦点,点A,B在该抛物线上且位于x轴的两侧,•=2(其中O为坐标原点),则△ABO与△AFO面积之和的最小值是()A.2B.3C.D.【分析】可先设直线方程和点的坐标,联立直线与抛物线的方程得到一个一元二次方程,再利用韦达定理及•=2消元,最后将面积之和表示出来,探求最值问题.【解答】解:设直线AB的方程为:x=ty+m,点A(x1,y1),B(x2,y2),直线AB与x轴的交点为M(m,0),由⇒y2﹣ty﹣m=0,根据韦达定理有y1•y2=﹣m,∵•=2,∴x1•x2+y1•y2=2,结合及,得,∵点A,B位于x轴的两侧,∴y1•y2=﹣2,故m=2.不妨令点A在x轴上方,则y1>0,又,∴S△ABO+S△AFO═×2×(y1﹣y2)+×y1,=.当且仅当,即时,取“=”号,∴△ABO与△AFO面积之和的最小值是3,故选B.【点评】求解本题时,应考虑以下几个要点:1、联立直线与抛物线的方程,消x或y后建立一元二次方程,利用韦达定理与已知条件消元,这是处理此类问题的常见模式.2、求三角形面积时,为使面积的表达式简单,常根据图形的特征选择适当的底与高.3、利用基本不等式时,应注意“一正,二定,三相等”.二、填空题:本大题共5小题,每小题5分,共25分11.(5分)复数= ﹣2i .【分析】利用两个复数代数形式的乘除法法则化简所给的复数,可得结果.【解答】解:复数===﹣2i,故答案为:﹣2i.【点评】本题主要考查两个复数代数形式的乘除法法则的应用,属于基础题.12.(5分)设f(x)是定义在R上的周期为2的函数,当x∈[﹣1,1)时,f(x)=,则f()= 1 .【分析】由函数的周期性f(x+2)=f(x),将求f()的值转化成求f()的值.【解答】解:∵f(x)是定义在R上的周期为2的函数,∴=1.故答案为:1.【点评】本题属于容易题,是考查函数周期性的简单考查,学生在计算时只要计算正确,往往都能把握住,在高考中,属于“送分题”.13.(5分)如图,从气球A上测得正前方的河流的两岸B,C的俯角分别为67°,30°,此时气球的高是46m,则河流的宽度BC约等于 60 m.(用四舍五入法将结果精确到个位.参考数据:sin67°≈0.92,cos67°≈0.39,sin37°≈0.60,cos37°≈0.80,≈1.73)【分析】过A点作AD垂直于CB的延长线,垂足为D,分别在Rt△ACD、Rt△ABD中利用三角函数的定义,算出CD、BD的长,从而可得BC,即为河流在B、C两地的宽度.【解答】解:过A点作AD垂直于CB的延长线,垂足为D,则Rt△ACD中,∠C=30°,AD=46m,AB=,根据正弦定理,,得BC===60m.故答案为:60m.【点评】本题给出实际应用问题,求河流在B、C两地的宽度,着重考查了三角函数的定义、正余弦定理解三角形的知识,属于中档题.14.(5分)设m∈R,过定点A的动直线x+my=0和过定点B的动直线mx﹣y﹣m+3=0交于点P(x,y).则|PA|•|PB|的最大值是 5 .【分析】先计算出两条动直线经过的定点,即A和B,注意到两条动直线相互垂直的特点,则有PA⊥PB;再利用基本不等式放缩即可得出|PA|•|PB|的最大值.【解答】解:由题意可知,动直线x+my=0经过定点A(0,0),动直线mx﹣y﹣m+3=0即 m(x﹣1)﹣y+3=0,经过点定点B(1,3),注意到动直线x+my=0和动直线mx﹣y﹣m+3=0始终垂直,P又是两条直线的交点,则有PA⊥PB,∴|PA|2+|PB|2=|AB|2=10.故|PA|•|PB|≤=5(当且仅当时取“=”)故答案为:5【点评】本题是直线和不等式的综合考查,特别是“两条直线相互垂直”这一特征是本题解答的突破口,从而有|PA|2+|PB|2是个定值,再由基本不等式求解得出.直线位置关系和不等式相结合,不容易想到,是个灵活的好题.15.(5分)以A表示值域为R的函数组成的集合,B表示具有如下性质的函数φ(x)组成的集合:对于函数φ(x),存在一个正数M,使得函数φ(x)的值域包含于区间[﹣M,M].例如,当φ1(x)=x3,φ2(x)=sinx时,φ1(x)∈A,φ2(x)∈B.现有如下命题:①设函数f(x)的定义域为D,则“f(x)∈A”的充要条件是“∀b∈R,∃a∈D,f(a)=b”;②函数f(x)∈B的充要条件是f(x)有最大值和最小值;③若函数f(x),g(x)的定义域相同,且f(x)∈A,g(x)∈B,则f(x)+g(x)∉B.④若函数f(x)=aln(x+2)+(x>﹣2,a∈R)有最大值,则f(x)∈B.其中的真命题有①③④.(写出所有真命题的序号)【分析】根据题中的新定义,结合函数值域的概念,可判断出命题①②③是否正确,再利用导数研究命题④中函数的值域,可得到其真假情况,从而得到本题的结论.【解答】解:(1)对于命题①,若对任意的b∈R,都∃a∈D使得f(a)=b,则f(x)的值域必为R.反之,f(x)的值域为R,则对任意的b∈R,都∃a∈D使得f(a)=b,故①是真命题;(2)对于命题②,若函数f(x)∈B,即存在一个正数M,使得函数f(x)的值域包含于区间[﹣M,M].∴﹣M≤f(x)≤M.例如:函数f(x)满足﹣2<f(x)<5,则有﹣5≤f(x)≤5,此时,f (x)无最大值,无最小值,故②是假命题;(3)对于命题③,若函数f(x),g(x)的定义域相同,且f(x)∈A,g(x)∈B,则f(x)值域为R,f(x)∈(﹣∞,+∞),并且存在一个正数M,使得﹣M≤g(x)≤M.故f (x)+g(x)∈(﹣∞,+∞).则f(x)+g(x)∉B,故③是真命题;(4)对于命题④,∵﹣≤≤,当a>0或a<0时,aln(x+2)∈(﹣∞,+∞),f(x)均无最大值,若要使f(x)有最大值,则a=0,此时f(x)=,f(x)∈B,故④是真命题.故答案为①③④.【点评】本题考查了函数值域的概念、基本不等式、充要条件,还考查了新定义概念的应用和极限思想.本题计算量较大,也有一定的思维难度,属于难题.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(12分)已知函数f(x)=sin(3x+).(1)求f(x)的单调递增区间;(2)若α是第二象限角,f()=cos(α+)cos2α,求cosα﹣sinα的值.【分析】(1)令2kπ﹣≤3x+≤2kπ+,k∈z,求得x的范围,可得函数的增区间. (2)由函数的解析式可得 f()=sin(α+),又f()=cos(α+)cos2α,可得sin(α+)=cos(α+)cos2α,化简可得(cosα﹣sinα)2=.再由α是第二象限角,cosα﹣sinα<0,从而求得cosα﹣sinα 的值.【解答】解:(1)∵函数f(x)=sin(3x+),令2kπ﹣≤3x+≤2kπ+,k∈Z,求得﹣≤x≤+,故函数的增区间为[﹣,+],k∈Z. (2)由函数的解析式可得 f()=sin(α+),又f()=cos(α+)cos2α,∴sin(α+)=cos(α+)cos2α,即sin(α+)=cos(α+)(cos2α﹣sin2α),∴sinαcos+cosαsin=(cosαcos﹣sinαsin)(cosα﹣sinα)(cosα+sinα)即(sinα+cosα)=•(cosα﹣sinα)2(cosα+sinα),又∵α是第二象限角,∴cosα﹣sinα<0,当sinα+cosα=0时,tanα=﹣1,sinα=,cosα=﹣,此时cosα﹣sinα=﹣.当sinα+cosα≠0时,此时cosα﹣sinα=﹣.综上所述:cosα﹣sinα=﹣或﹣.【点评】本题主要考查正弦函数的单调性,三角函数的恒等变换,体现了分类讨论的数学思想,属于中档题.17.(12分)一款击鼓小游戏的规则如下:每盘游戏都需要击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐:每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得﹣200分).设每次击鼓出现音乐的概率为,且各次击鼓出现音乐相互独立.(1)设每盘游戏获得的分数为X,求X的分布列;(2)玩三盘游戏,至少有一盘出现音乐的概率是多少?(3)玩过这款游戏的许多人都发现.若干盘游戏后,与最初分数相比,分数没有增加反而减少了.请运用概率统计的相关知识分析分数减少的原因.【分析】(1)设每盘游戏获得的分数为X,求出对应的概率,即可求X的分布列;(2)求出有一盘出现音乐的概率,独立重复试验的概率公式即可得到结论.(3)计算出随机变量的期望,根据统计与概率的知识进行分析即可.【解答】解:(1)X可能取值有﹣200,10,20,100.则P(X=﹣200)=,P(X=10)==P(X=20)==,P(X=100)==,故分布列为:X ﹣200 10 20 100P由(1)知,每盘游戏出现音乐的概率是p=+=,则至少有一盘出现音乐的概率p=1﹣.由(1)知,每盘游戏获得的分数为X的数学期望是E(X)=(﹣200)×+10×+20××100=﹣=.这说明每盘游戏平均得分是负分,由概率统计的相关知识可知:许多人经过若干盘游戏后,入最初的分数相比,分数没有增加反而会减少.【点评】本题主要考查概率的计算,以及离散型分布列的计算,以及利用期望的计算,考查学生的计算能力.18.(12分)三棱锥A﹣BCD及其侧视图、俯视图如图所示,设M,N分别为线段AD,AB 的中点,P为线段BC上的点,且MN⊥NP.(1)证明:P是线段BC的中点;(2)求二面角A﹣NP﹣M的余弦值.【分析】(1)用线面垂直的性质和反证法推出结论,(2)先建空间直角坐标系,再求平面的法向量,即可求出二面角A﹣NP﹣M的余弦值. 【解答】解:(1)由三棱锥A﹣BCD及其侧视图、俯视图可知,在三棱锥A﹣BCD中:平面ABD⊥平面CBD,AB=AD=BD=CD=CB=2设O为BD的中点,连接OA,OC于是OA⊥BD,OC⊥BD 所以BD⊥平面OAC⇒BD⊥AC因为M,N分别为线段AD,AB的中点,所以MN∥BD,MN⊥NP,故BD⊥NP假设P不是线段BC的中点,则直线NP与直线AC是平面ABC内相交直线从而BD⊥平面ABC,这与∠DBC=60°矛盾,所以P为线段BC的中点(2)以O为坐标原点,OB,OC,OA分别为x,y,z轴建立空间直角坐标系,则A(0,0,),M(,O,),N(,0,),P(,,0)于是,,设平面ANP和平面NPM的法向量分别为和由,则,设z1=1,则由,则,设z2=1,则cos===所以二面角A﹣NP﹣M的余弦值【点评】本题考查线线的位置关系,考查二面角知识的应用,解题的关键是掌握用向量的方法求二面角大小的步骤,属于中档题.19.(12分)设等差数列{an}的公差为d,点(an,bn)在函数f(x)=2x的图象上(n∈N*).(1)若a1=﹣2,点(a8,4b7)在函数f(x)的图象上,求数列{an}的前n项和Sn;(2)若a1=1,函数f(x)的图象在点(a2,b2)处的切线在x轴上的截距为2﹣,求数列{}的前n项和Tn.【分析】(1)由于点(an,bn)在函数f(x)=2x的图象上,可得,又等差数列{an}的公差为d,利用等差数列的通项公式可得=2d.由于点(a8,4b7)在函数f(x)的图象上,可得=b8,进而得到=4=2d,解得 d.再利用等差数列的前n项和公式即可得出.(2)利用导数的几何意义可得函数f(x)的图象在点(a2,b2)处的切线方程,即可解得a2.进而得到an,bn.再利用“错位相减法”即可得出.【解答】解:(1)∵点(an,bn)在函数f(x)=2x的图象上,∴,又等差数列{an}的公差为d,∴==2d,∵点(a8,4b7)在函数f(x)的图象上,∴=b8,∴=4=2d,解得d=2.又a1=﹣2,∴Sn==﹣2n+=n2﹣3n.(2)由f(x)=2x,∴f′(x)=2xln2,∴函数f(x)的图象在点(a2,b2)处的切线方程为,又,令y=0可得x=,∴,解得a2=2.∴d=a2﹣a1=2﹣1=1.∴an=a1+(n﹣1)d=1+(n﹣1)×1=n,∴bn=2n.∴.∴Tn=+…++,∴2Tn=1+++…+,两式相减得Tn=1++…+﹣=﹣==.【点评】本题综合考查了指数函数的运算性质、导数的几何意义、等差数列与等比数列的通项公式及其前n项和公式等基础知识与基本技能方法,考查了推理能力、计算能力、“错位相减法”,属于难题.21.(14分)已知函数f(x)=ex﹣ax2﹣bx﹣1,其中a,b∈R,e=2.71828…为自然对数的底数.(1)设g(x)是函数f(x)的导函数,求函数g(x)在区间[0,1]上的最小值;(2)若f(1)=0,函数f(x)在区间(0,1)内有零点,求a的取值范围.【分析】(1)求出f(x)的导数得g(x),再求出g(x)的导数,对它进行讨论,从而判断g(x)的单调性,求出g(x)的最小值;(2)利用等价转换,若函数f(x)在区间(0,1)内有零点,则函数f(x)在区间(0,1)内至少有三个单调区间,所以g(x)在(0,1)上应有两个不同的零点.【解答】解:∵f(x)=ex﹣ax2﹣bx﹣1,∴g(x)=f′(x)=ex﹣2ax﹣b,又g′(x)=ex﹣2a,x∈[0,1],∴1≤ex≤e,∴①当时,则2a≤1,g′(x)=ex﹣2a≥0,∴函数g(x)在区间[0,1]上单调递增,g(x)min=g(0)=1﹣b;②当,则1<2a<e,∴当0<x<ln(2a)时,g′(x)=ex﹣2a<0,当ln(2a)<x<1时,g′(x)=ex﹣2a>0,∴函数g(x)在区间[0,ln(2a)]上单调递减,在区间[ln(2a),1]上单调递增,g(x)min=g[ln(2a)]=2a﹣2aln(2a)﹣b;③当时,则2a≥e,g′(x)=ex﹣2a≤0,∴函数g(x)在区间[0,1]上单调递减,g(x)min=g(1)=e﹣2a﹣b,综上:函数g(x)在区间[0,1]上的最小值为;(2)由f(1)=0,⇒e﹣a﹣b﹣1=0⇒b=e﹣a﹣1,又f(0)=0,若函数f(x)在区间(0,1)内有零点,则函数f(x)在区间(0,1)内至少有三个单调区间,由(1)知当a≤或a≥时,函数g(x)在区间[0,1]上单调,不可能满足“函数f(x)在区间(0,1)内至少有三个单调区间”这一要求.若,则gmin(x)=2a﹣2aln(2a)﹣b=3a﹣2aln(2a)﹣e+1令h(x)=(1<x<e)则=,∴.由>0⇒x<∴h(x)在区间(1,)上单调递增,在区间(,e)上单调递减,==<0,即gmin(x)<0 恒成立,∴函数f(x)在区间(0,1)内至少有三个单调区间⇔⇒,又,所以e﹣2<a<1,综上得:e﹣2<a<1.【点评】本题考查了,利用导数求函数的单调区间,分类讨论思想,等价转换思想,函数的零点等知识点.是一道导数的综合题,难度较大.20.(13分)已知椭圆C:+=1(a>b>0)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.(1)求椭圆C的标准方程;(2)设F为椭圆C的左焦点,T为直线x=﹣3上任意一点,过F作TF的垂线交椭圆C于点P,Q.①证明:OT平分线段PQ(其中O为坐标原点);②当最小时,求点T的坐标.【分析】第(1)问中,由正三角形底边与高的关系,a2=b2+c2及焦距2c=4建立方程组求得a2,b2;第(2)问中,先设点的坐标及直线PQ的方程,利用两点间距离公式及弦长公式将表示出来,由取最小值时的条件获得等量关系,从而确定点T的坐标.【解答】解:(1)依题意有解得所以椭圆C的标准方程为+=1.(2)设T(﹣3,t),P(x1,y1),Q(x2,y2),PQ的中点为N(x0,y0),①证明:由F(﹣2,0),可设直线PQ的方程为x=my﹣2,则PQ的斜率.由⇒(m2+3)y2﹣4my﹣2=0,所以,于是,从而,即,则直线ON的斜率,又由PQ⊥TF知,直线TF的斜率,得t=m.从而,即kOT=kON,所以O,N,T三点共线,从而OT平分线段PQ,故得证.②由两点间距离公式得,由弦长公式得==,所以,令,则(当且仅当x2=2时,取“=”号),所以当最小时,由x2=2=m2+1,得m=1或m=﹣1,此时点T的坐标为(﹣3,1)或(﹣3,﹣1).【点评】本题属相交弦问题,应注意考虑这几个方面:1、设交点坐标,设直线方程;2、联立直线与椭圆方程,消去y或x,得到一个关于x或y一元二次方程,利用韦达定理;3、利用基本不等式或函数的单调性探求最值问题.。