第五章 线性系统的频域分析法 单元测试题(
第五章 线性系统的频域分析法习题
501第五章 线性系统的频域分析法5-1 设闭环系统稳定,闭环传递函数为)(s Φ,试根据频率特性的定义证明:系统输入信号为余弦函数)cos()(φω+=t A t r 时,系统的稳态输出为)](cos[|)(|)(ωφωωj t j A t c ss Φ∠++Φ=。
证明:根据三角定理,输入信号可表示为 )90sin()( ++=φωt A t r ,根据频率特性的定义,有 ]90)(sin[|)(|)( +Φ∠++Φ=ωφωωj t j A t c ss , 根据三角定理,得证: )](cos[|)(|)(ωφωωj t j A t c ss Φ∠++Φ=。
5-2 若系统的单位阶跃响应t t e e t c 948.08.11)(--+-=,试确定系统的频率特性。
解:s s s s C 1361336)(2++=,361336)(2++=s s s G ,)9)(4(36)(ωωωj j j G ++=;2/122/12)81()16(36|)(|ωωω++=j G ,9arctan 4arctan )(ωωω--=∠j G 。
或:)(2.7)()(94t t e e t ct g ---== ;361336)]([)(2++==s s t g L s G ; 5-3 设系统如下图所示,试确定输入信号)452cos()30sin()(--+=t t t r作用下,系统的稳态误差)(t e ss 。
解:21)(++=Φs s s e ; )452sin()30sin()(+-+=t t t r6325.0|)(|=Φj e , 4.186.2645)(=-=Φ∠j ;7906.0|)2(|=Φj e , 4.18454.63)2(=-=Φ∠j ; 答案:)4.632sin(7906.0)4.48sin(6325.0)( +-+=t t t e ss 。
5-4 典型二阶系统的开环传递函数)2()(2n ns s s G ωζω+=, 当取t t r sin 2)(=时,系统的稳态输出为)45sin(2)( -=t t c ss ,试确定系统参数n ω和ζ。
线性系统的频域分析法试题答案
线性系统的频域分析法【课后自测】5-1 频率特性有哪几种分类方法?解:幅频特性,相频特性,实频特性和虚频特性。
5-2 采用半对数坐标纸有哪些优点?解:可以简化频率特性的绘制过程,利用对数运算可以将幅值的乘除运算化为加减运算,并可以用简单的方法绘制近似的对数幅频特性曲线。
5-3 从伯德图上看,一个比例加微分的环节与一个比例加积分的环节串联,两者是否有可能相抵消。
若系统中有一个惯性环节使系统性能变差,那再添加一个怎样的环节(串联)可以完全消除这种影响,它的条件是什么?解:一个比例加微分的环节与一个比例加积分的环节串联,两者是有可能相抵消;。
若系统中有一个惯性环节使系统性能变差,那再添加一个一阶微分环节(串联)可以完全消除这种影响,两个环节的时间常数相同即可。
5-5 为什么要求在ωc 附近L (ω)的斜率为-20dB/dec ?解:目的是保证系统稳定性,若为-40 dB/dec ,则所占频率区间不能过宽,否则系统平稳性将难以满足;若该频率更负,闭环系统将难以稳定,因而通常取-20dB/dec 。
5-6 已知放大器的传递函数为()1K G s Ts =+ 并测得ω=1 rad/s、幅频A =φ=-π/4。
试问放大系数K 及时间常数T 各为多少?解:频率特性为:G (jω)=KjωT +1幅频和相频分别为:{|G (j1)|=√1+T2=12√2⁄φ(1)=−arctanT =−π4⁄ 得到:K =12,T =15-7 当频率ω1=2 rad/s 、ω2=20 rad/s 时, 试确定下列传递函数的幅值和相角: 1210(1)1(2)(0.11)G s G s s ==+解:(1)G 1(jω)=10jω=-j 10ω|G 1(jω)|=10ωφ1(ω)=−90°ω1=2 rad/s 时,|G 1(jω)|=102=5 ,φ1(ω)=−90° ω1=20 rad/s 时,|G 1(jω)|=1020=0.5 ,φ1(ω)=−90° (2)G 2(jω)=1jω(0.1jω+1)=1jω-0.1ω2|G 2(jω)|=ω√1+0.01ω2φ2(ω)=arctan 10ωω1=2 rad/s 时,|G 2(jω)|=12√1+0.01×22=0.49φ2(ω)=arctan 102=78.7°ω1=20 rad/s 时,|G 2(jω)|=120√1+0.01×202=0.02φ2(ω)=arctan 1020=26.6°5-8 设单位反馈系统的传递函数为10()1G s s =+ 当把下列信号作用在系统输入端时,求系统的稳态输出。
自控习题课1
总结和习题
内蒙古工业大学信息工程学院自动化系
☝ 第五章 线性系统的频域分析法
习题
绘制开环幅相曲线
总结和习题
内蒙古工业大学信息工程学院自动化系
☝ 第五章 线性系统的频域分析法
习题
绘制对数幅频渐近特性曲线
开环系统Bode图的绘制步骤 开环系统Bode图的绘制步骤 Bode
将开环传递函数表示为典型环节的串联(相乘的形式) 将开环传递函数表示为典型环节的串联(相乘的形式); 确定各一、二阶环节的交接频率并由小到大标示在对数频率轴上; 确定各一、二阶环节的交接频率并由小到大标示在对数频率轴上; 交接频率并由小到大标示在对数频率轴上 绘制低频段的渐近线。渐近线的斜率取决于积分的个数ν 绘制低频段的渐近线。渐近线的斜率取决于积分的个数ν,等于 20νdB/dec。 处纵坐标等于20lgK 的点, 20νdB/dec。在ω=1处纵坐标等于20lgK 的点, ω = ν K 时, 纵坐标为0 纵坐标为0。 向右延长最低频段渐近线, 向右延长最低频段渐近线,每遇到一个转折频率改变一次渐近线 斜率;改变的频率取决于该转折频率对应的典型环节的种类。 斜率;改变的频率取决于该转折频率对应的典型环节的种类。 惯性环节,-20dB/dec 振荡环节, 惯性环节, 振荡环节, -40dB/dec 一阶微分环节, 一阶微分环节,+20dB/dec 二阶微分环节,+40dB/dec 二阶微分环节,
总结和习题
内蒙古工业大学信息工程学院自动化系
☝ 第五章 线性系统的频域分析法
习题
绘制开环幅相曲线 解:频率特性为
2 2[1 − 16ω 2 − j10ω ] G ( jω ) = = (2 jω + 1)(8 jω + 1) (1 + 4ω 2 )(1 + 64ω 2 )
第五章线性系统的频域分析法
对 A(ω ) 求导并令等于零,可解得 A(ω ) 的极值对应的频率 ω r 。
ω r = ω n 1 2ζ 2
该频率称为谐振峰值频率。可见,当 ζ = 当ζ
> 1 2
s = jω
G( jω) =| G( jω) | e
j∠G( jω)
= A(ω)e
j (ω)
G( jω) = G(s) |s= jω
G( jω) = G(s)|s= jω =| G( jω)| e j∠G( jω) = A(ω)e j(ω)
A A j (ω ) k1 = G( jω ) e k2 = G( jω ) e j (ω ) 2j 2j
可以作为系统模型
G( jω) = G(s) |s= jω = G( jω) e j(ω)
定义 幅频特性
A(ω ) =| G( jω ) |
(ω ) = ∠G ( jω )
它描述系统对不同频率输入信号在稳态时的放大特性; 它描述系统对不同频率输入信号在稳态时的放大特性; 相频特性
它描述系统的稳态响应对不同频率输入信号的相位移特性; 它描述系统的稳态响应对不同频率输入信号的相位移特性; 幅频特性和相频特性可在复平面上构成一个完整的向量 G ( jω ), 频率特性。 频率特性 G ( jω ) = A(ω )e j (ω ) ,它也是 ω 的函数。G( jω) 称为频率特性 还可将 G ( jω ) 写成复数形式,即
A(ω ) = 1 1 + T 2ω 2 ,
G (s) =
1 Ts + 1
G ( jω ) =
1 jT ω + 1
(ω ) = tg 1T ω
幅频特性 L(ω) = 20log A(ω) = 20log K 20log 1+ T 2ω2 低频段:当Tω << 1时,ω 高频段:当 Tω >> 1时, ω
频域分析阶段测试参考答案
④ x(2t) 表示将此磁带以二倍速度加快播放
3.能够无失真的通过截止频率为100π 的理想低通滤波器的是: A
A、 Sa(50πt + 1 ) ; 2
B、
1 50π
Sa (200π
)
C、 G50π (t) ;
D、 G200π (t)
4.某信号的频谱函数如下图所示,下列系统中能够对其实现无失真传输的是 A
,输入周期信号为 x(t) = sin 2t
,计
算系统的稳态响应。
解:
H ( jω ) = 1 ↔ h(t) = e−tu(t) ,该系统为稳定系统 1 + jω
H ( j2) = 1 = 1 , (H ( j2) = arctg( −2) = −arctg2
1+ j2 5
1
利用 e jωt → H ( jω )e jωt 和
)
(a) x(n) 奇对称 (b) x(n) 偶对称 (c) x(0) = 0
∞
(d) ∑ x(n) = 0 n=−∞
∞
∞
∑ ∑ 分析: X (Ω) = x(n)e− jΩn , X (0) = x(n) = 0
n= −∞
n= −∞
11.如下所示的 4 个系统中,( (d) )完成低通滤波功能,((c) )完成高通滤波功
cosωt → H ( jω ) cos[ωt + ∠H ( jω )]
可知 x(t) = sin 2t → H ( j2) sin[ωt + ∠H ( j2)]
y(t) = 1 sin(2t − arctg2) 5
8
↔
π 50π
G100π
(ω)
=
1 50
第五章 线性系统的频域分析法-5-2——【南航 自动控制原理】
)2
A(0) 1 (0) 0
G(jn )
A() 0 () 180
j
G(j0)
●
0
G(jn )
共振点
G( jn ) (n ) 0 G( jn ) (n ) 180
变化趋势 0 n () 0 , A() :1
n () 180 , A() : 0
零阻尼振荡环节在自然振荡频率处,相角突变180°。
A()
谐振现象是振荡系统的 特性,谐振频率 r 与系 统固有频率 n 和阻尼比
有关。当谐振频率等于
频率响应峰值
Mr 1/ (2 1 2 )
阶跃响应超调
p exp( / 1 2 )
固有频率时,则发生共振。
共振的危害巨大。
当阻尼比较小,且系统谐振频率处于输入信号的
频率范围时,系统输出会出现很大的振荡,影响系
5.2 典型环节与开环系统的频率特性
环节是系统的基本组成单元。將环节进行分类形成 典型环节。典型环节的频率特性是开环系统频率特性 的分解,而开环系统频率特性是闭环系统分析与设计 的基础。
一、典型环节的频率特性
1.典型环节的分类
环节:系统增益、零点或极点对应的因式
分类:按照增益的正负性、零点或极点的位置(实数 或复数、位于左半平面或右半平面)进行划分,共分 为最小相位、非最小相位两大类、12种典型环节。
设互为倒数的典型环节频率特性为
G1(j)=A1()e j1() G2 (j) =A2 ()e j2 ()
则由 G1(s) 1/ G2 (s) 得
A1()e j1 ( ) =A21()e j2 ( )
L1() L2 ()
互为倒数典型环节的对数相频曲线关于0°线对称, 对数幅频曲线关于0dB线对称。
信号与系统第5章习题答案
第5章连续时间信号的抽样与量化5.1试证明时域抽样定理。
证明:设抽样脉冲序列是一个周期性冲激序列,它可以表示为T(t)(tnT)sn由频域卷积定理得到抽样信号的频谱为:1F s ()F()T 2()1 T snFns式中F()为原信号f(t)的频谱,T ()为单位冲激序列T (t)的频谱。
可知抽样后信 号的频谱()F 由F()以s 为周期进行周期延拓后再与1T s 相乘而得到,这意味着如果 s s2,抽样后的信号f s (t)就包含了信号f(t)的全部信息。
如果s2m ,即抽样m 间隔 1 Tsf2m,则抽样后信号的频谱在相邻的周期内发生混叠,此时不可能无失真地重建 原信号。
因此必须要求满足1 Tsf2 m,f(t)才能由f s (t)完全恢复,这就证明了抽样定理。
5.2确定下列信号的最低抽样频率和奈奎斯特间隔:2t (1)Sa(50t)(2)Sa(100)2t (3)Sa(50t)Sa(100t)(4)(100)(60)SatSa解:抽样的最大间隔 T s 12f 称为奈奎斯特间隔,最低抽样速率f s 2f m 称为奈奎m斯特速率,最低采样频率s 2称为奈奎斯特频率。
m(1)Sa(t[u(50)u(50)],由此知m50rad/s ,则50)5025 f , m由抽样定理得:最低抽样频率50 f s 2f m ,奈奎斯特间隔1 T 。
sf50s2t(2))Sa(100)(1100200脉宽为400,由此可得radsm200/,则100f,由抽样定理得最低抽样频率m200f s2f m,奈奎斯特间隔1T。
sf200s(3)Sa[(50)(50)],该信号频谱的m50rad/s(50t)uu50Sa(100t)[u(100)u(100)],该信号频谱的m100rad/s10050Sa(50t)Sa(100t)信号频谱的m100rad/s,则f,由抽样定理得最低m抽样频率100f s2f m,奈奎斯特间隔1T。
自动控制原理第五章线性系统的频域分析法
自动控制原理第五章线性系统的频域分析法1、基本内容和要点(l)频率特性系统的稳态频率响应,频率响应的物理概念及数学定义;求取频率特性的分析法和实验法。
(2)典型环节的频率特性比例、惯性、积分、微分、振荡、延迟环节的频率特性和对数频率特性。
非最小相位环节的频率特性。
(3)反馈控制系统的开环频率特性研究系统开环频率特性的意义。
单环系统开环对数频率持性的求取与绘制。
最小相位系统开环对数幅频特性与相频特性间的对应关系。
(4)奈奎斯特稳定判据幅角定理。
S平面与F平面的映射关系。
根据开环频率特性判别闭环系统稳定性的奈氏判据。
奈氏判据在多环系统中的应用和推广。
系统的相对稳定性。
相角与增益稳定裕量。
(5)二阶和高阶系统的频率域性能指标与时域性指标。
系统频率域性能指标。
二阶和高阶系统暂态响应性能指标与频率域性能指标间的解析关系及近似关系。
(6)系统的闭环频率特性开环频率特性与闭环频率特性间的解析关系。
用等M圆线从开环频率特性求取闭环频率特性。
用尼氏图线从开环对数频率特性求取闭环频率特性。
2、重点(l)系统稳态频率响应和暂态时域响应的关系。
(2)系统开环频率特性的绘制,最小相位系统开环频率特性的特点。
(3)奈奎斯特稳定判据和稳定裕量。
5-1引言第三章,时域分析,分析系统零、极点与系统时域指标的关系;典型二阶系统极点或和n与时域指标tp、和t、tr及稳态误差等的关系,及高阶系统的近似指标计算;第四章,根轨迹分析,研究系统某一个参数变化对系统闭环极点的影响;本章讨论系统零、极点对系统频率域指标的关系,频域指标又分开环频域指标和闭环频域指标,它们都是在频域上评价系统性能的参数。
频域分析是控制理论的一个重要分析方法。
5-2频率特性1.频率特性的基本概念理论依据定理:设线性定常系统G()的输入信号是正弦信号某(t)某int,在过度过程结束后,系统的稳态输出是与输入同频率的正弦信号,其幅值和相角都是频率的函数,即为c(t)Y()in[t()]。
第五章 频域分析
第五章 线性系统的频域分析法单元测试题(A )一、填空题:1、用频域法分析控制系统时,最常用的典型输入信号是_ __。
2、控制系统中的频率特性反映了 信号作用下系统响应的性能。
3、已知传递函数ss G 10)(=,其对应的幅频特性A(ω)=_ _,相频特性φ(ω)=___ ___。
4、常用的频率特性图示方法有极坐标图示法和_ _图示法。
5、对数频率特性曲线由对数 曲线和对数 曲线组成,是工程中广泛使用的一组曲线。
6、0型系统Bode 图幅频特性的低频段是一条斜率为 的直线。
7、I 型系统Bode 图幅频特性的低频段是一条斜率为 的直线。
8、Ⅱ型系统Bode 图幅频特性的低频段是一条斜率为 的直线。
9、除了比例环节外,非最小相位环节和与之相对应的最小相位环节的区别在于 。
10、传递函数互为倒数的典型环节,对数幅频曲线关于 0dB 线对称,对数相频曲线关于 线对称。
11、惯性环节的对数幅频渐进特性曲线在交接频率处误差最大,约为 。
12、开环幅相曲线的起点,取决于 和系统积分或微分环节的个数。
13、开环幅相曲线的终点,取决于开环传递函数分子、分母多项式中 和 的阶次和。
14、当系统的多个环节具有相同交接频率时,该交接频率点处斜率的变化应为各个环节对应的斜率变化值的 。
15、复变函数F(s)的零点为闭环传递函数的 ,F(s)的极点为开环传递函数的 。
16、系统开环频率特性上幅值为1时所对应的角频率称为 。
17、系统开环频率特性上相位等于-1800时所对应的角频率称为 。
18、延时环节的奈氏曲线为一个 。
19、ω从0变化到+∞时,惯性环节的频率特性极坐标图在__ _象限,形状为___ ___。
20、比例环节的对数幅频特性L(ω)= dB二、单项选择题 (在下列每小题的四个备选答案中选出一个正确的答案,并将其字母标号填入题干的括号内。
)1、用频域法分析控制系统时,最常用的典型输入信号是( )。
A.脉冲函数B.斜坡函数C.阶跃函数D.正弦函数2、比例环节的频率特性相位移θ(ω)=( )。
信号与系统频域分析题库
基础与提高题4-1 求下列各信号的傅里叶级数表达式。
(1)j200e t (2) []cos π(1)/4t - (3) t t 8sin 4cos + (4) t t 6sin 4cos + (5) ()f t 是周期为2的周期信号,且()e ,11t f t t -=-<< (6) ()f t 如题图4-1(a)所示。
题图4-1(a)(7) []()()1cos 2πcos 10ππ/4f t t t =++⎡⎤⎣⎦(8) ()f t 是周期为2的周期信号,且(1)sin 2π,01()1sin 2π,12t t t f t t t -+<<⎧=⎨+<<⎩(9) ()f t 如题图4-1(b)所示。
题图4-1(b)(10) ()f t 如题图4-1(c)所示题图4-1(c)(11) ()f t 如题图4-1(d)所示题图 4-1(d)(12) ()f t 是周期为4的周期信号,且sin π,02()0,24t t f t t ≤≤⎧=⎨≤≤⎩(13) ()f t 如题图4-1(e )所示题图4-1(e)(14) ()f t 如题图4-1(f)所示题图4-1(f)4-2 设()f t 是基本周期为0T 的周期信号,其傅里叶系数为k a 。
求下列各信号的傅里叶级数系数(用k a 来表示)。
(1)0()f t t - (2)()f t -(3)*()f t (4)()d t f z z -∞⎰ (假定00=a )(5)d ()d f t t(6)(),0f at a > (确定其周期)4-3 求题图4-3所示信号的傅里叶变换(a ) (b ) (c ) (d )题图4-3 4-4 已知信号()f t 的傅里叶变换为()j F ω,试利用傅里叶变换的性质求如下函数的傅里叶变换(1)()3t f t ⋅ (2)()()5t f t -⋅ (3)()()d 1d f t t t-⋅(4)()()22t f t -⋅- 4-5 已知信号()f t 如题图4-5(a )所示,试使用以下方法计算其傅里叶变换(a ) (b )题图 4-5(1)利用定义计算()j F ω;(2)利用傅里叶变换的微积分特性计算;(3)()u u u u 2244f t t t t t ττττ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+--++-- ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦,利用常用信号()u t 的傅里叶变换及傅里叶变换的线性特性及时移特性计算()j F ω;(4)()()()11f t f t f t =+-(()1f t 如题图4-5(b )所示),先计算()1j F ω,然后利用尺度变换性质计算()j F ω;(5)()()()/2f t g t g t ττ=+,利用门函数的傅里叶变换及傅里叶变换的线性特性()j F ω;(6)()()/2/4/433288f t g t g t g t τττττ⎛⎫⎛⎫=+++-⎪ ⎪⎝⎭⎝⎭,利用门函数的傅里叶变换和傅里叶变换的线性特性及()j F ω时移特性计算()j F ω。
信号与线性系统分析试题及答案(10套)
标准答案(一)一、填空题(每空1分,共30分)1、无线电通信中,信号是以电磁波形式发射出去的。
它的调制方式有调幅、调频、调相。
2、针对不同的调制方式有三种解调方式,分别是检波、鉴频、和鉴相。
3、在单调谐放大器中,矩形系数越接近于1、其选择性越好;在单调谐的多级放大器中,级数越多,通频带越窄、(宽或窄),其矩形系数越(大或小)小。
4、调幅波的表达式为:uAM(t)= 20(1 +0.2COS100πt)COS107πt(V);调幅波的振幅最大值为24V,调幅度Ma为20℅,带宽fBW为100Hz,载波fc为5*106Hz。
5、在无线电技术中,一个信号的表示方法有三种,分别是数学表达式、波形、频谱。
6、调频电路有直接调频、间接调频两种方式。
7、检波有同步、和非同步检波两种形式。
8、反馈式正弦波振荡器按照选频网络的不同,可分为LC、RC、石英晶振等三种。
9、变频器可由混频器、和带通滤波器两部分组成。
10、列出三个常见的频谱搬移电路调幅、检波、变频。
11、用模拟乘法器非线性器件实现调幅最为理想。
二、选择题(每小题2分、共20分)将一个正确选项前的字母填在括号内1、下列哪种信号携带有调制信号的信息(C )A、载波信号B、本振信号C、已调波信号2、小信号谐振放大器的主要技术指标不包含(B )A、谐振电压增益B、失真系数C、通频带D、选择性3、丙类谐振功放其谐振回路调谐于( A )分量A、基波B、二次谐波C、其它高次谐波D、直流分量4、并联型石英晶振中,石英谐振器相当于(C )元件A、电容B、电阻C、电感D、短路线5、反馈式正弦波振荡器的起振条件为( B )A、|AF|=1,φA+φF= 2nπB、|AF| >1,φA+φF = 2nπC、|AF|>1,φA+φF ≠2nπD、|AF| =1,φA+φF ≠2nπ6、要实现集电极调制特性应使功放工作在(B )状态A、欠压状态B、过压状态C、临界状态D、任意状态7、自动增益控制可简称为( B )A、MGCB、AGCC、AFCD、PLL8、利用非线性器件相乘作用来实现频率变换其有用项为( B )A、一次方项B、二次方项C、高次方项D、全部项9、如右图所示的电路是(D )A、普通调幅电路B、双边带调幅电路C、混频器D、同步检波器10、在大信号包络检波器中,由于检波电容放电时间过长而引起的失真是(B)A、频率失真B、惰性失真C、负峰切割失真D、截止失真三、判断题,对的打“√”,错的打“×”(每空1分,共10分)1、谐振放大器是采用谐振回路作负载的放大器。
《信号与系统》第五章知识要点+典型例题
是双边拉氏变换收敛域的一种特殊情况。 3、 常用函数单边拉氏变换对 表 5.1 列出了最常使用函数的单边拉氏变换对。 4、单边拉氏变换的主要性质 掌握拉氏变换的性质如图掌握傅里叶变换性质一样重要,应用性质并结合常用函数的 拉氏变换对就可以简便地求复杂信号的拉氏变换,或由复杂象函数求原函数。表 5.2 列出了 最常用的单边拉氏变换的性质。
n
(5.3)
式中, s = pi 为 F ( s ) 的第 i 个单阶实极点,系数 K i 由下式确定
K i = (s - pi ) F (s )
b.
s =p i
(5.4)
F ( s ) 有单阶共轭极点
设 s = -a ± jb 为 F ( s ) 的一对共轭极点。 求逆变换时把 F ( s ) 首先凑成类似余弦函数
2
掌握拉氏变换的重要性质,也应从性质的基本形式、应用该性质的基本思路及应用中 应注意的问题这样三个方面来掌握。许多性质的应用思路及注意的问题都类同傅里叶变换, 这里不再赘述。 表 5.1 编号 1 2 3 4 5 时域函数 f (t ) 常用信号的单边拉氏变换对 (t ³0 ) 象函数 F ( s ) 1
s
¥ s
f ( )d
F ( s ) 为真分式
f ( ) lim sF ( s ),
s0
s 0 在sF ( s )的收敛域内
5、常用的拉氏逆变换的求解方法 逆变换积分公式并不常用于求解拉氏逆变换,而经常使用的有以下几种。 (1) 查表法 若提供拉氏变换对表,可“对号入座” ,一一查找。但应试时,一不提供表, 二不准翻书查看。我们需要记住一些常用信号的拉氏变换对,结合拉氏变换的重要性质,加 以套用,求得拉氏逆变换。 (2) 部分分式展开法 该方法要求 F ( s ) 为有理真分式。若 F ( s ) 为假分式,应先利用多项式相除, 把 F ( s ) 表示成一个多项式加真分式的形式。对于多项式部分,对应的逆变换是非常容易求 得的,它们是冲激函数 (t ) 及其各阶导数项之和。例如
2020年智慧树知道网课《信号与系统(山东联盟-山东师范大学)》课后章节测试满分答案
第一章测试1【判断题】(10分)正弦连续函数一定是周期信号A.对B.错2【判断题】(10分)正弦离散函数一定是周期序列。
A.错B.对3【判断题】(10分)余弦连续函数一定是周期信号。
A.错B.对4【判断题】(10分)余弦离散序列一定是周期的A.对B.错5【判断题】(10分)两个离散周期序列的和一定是周期信号。
A.对B.错6【判断题】(10分)两个连续周期函数的和一定是周期信号。
A.对B.错7【判断题】(10分)两个连续正弦函数的和不一定是周期函数。
A.对B.错8【判断题】(10分)取样信号属于功率信号。
A.对B.错9【判断题】(10分)门信号属于能量信号。
A.错B.对10【判断题】(10分)两个连续余弦函数的和不一定是周期函数。
A.错B.对第二章测试1【判断题】(10分)微分方程的齐次解称为自由响应。
A.对B.错2【判断题】(10分)微分方程的特解称为强迫响应。
A.错B.对3【判断题】(10分)微分方程的零状态响应是稳态响应的一部分A.对B.错4【判断题】(10分)微分方程的零输入响应是稳态响应的一部分A.对B.错5【判断题】(10分)微分方程的零状态响应包含齐次解部分和特解两部分。
A.错B.对6【判断题】(10分)微分方程的零状态响应中的特解部分与微分方程的强迫响应相等。
A.错B.对7【判断题】(10分)对LTI连续系统,当输入信号含有冲激信号及其各阶导数,系统的初始值往往会发生跳变。
A.对B.错8【判断题】(10分)对线性时不变连续系统,当输入信号含有阶跃信号,系统的初始值往往会发生跳变A.对B.错9【判断题】(10分)冲激函数匹配法是用于由零负初始值求解零正初始值。
A.对B.错10【判断题】(10分)LTI连续系统的全响应是单位冲激响应与单位阶跃响应的和。
A.对B.错第三章测试1【判断题】(10分)LTI离散系统的响应等于自由响应加上强迫响应。
A.错B.对2【判断题】(10分)LTI离散系统的响应等于齐次解加上零状态响应的和。
第5章频域分析法习题解答
第5章频域分析法5.1 学习要点1 频率特性的概念,常用数学描述与图形表示方法;2 典型环节的幅相频率特性与对数频率特性表示及特点;3 系统开环幅相频率特性与对数频率特性的图示要点;4 应用乃奎斯特判据判断控制系统的稳定性方法;5 对数频率特性三频段与系统性能的关系;6 计算频域参数与性能指标;5.2 思考与习题祥解题5.1 判断下列概念的正确性ω的正弦信号加入线性系统,这个系统的稳态输出也将是同一(1) 将频率为频率的。
M仅与阻尼比ξ有关。
(2) 对于典型二阶系统,谐振峰值p(3) 在开环传递函数中增加零点总是增加闭环系统的带宽。
(4) 在开环传递函数中增加极点通常将减少闭环系统的带宽并同时降低稳定性。
(5) 对于最小相位系统,如果相位裕量是负值,闭环系统总是不稳定的。
(6) 对于最小相位系统,如果幅值裕量大于1,闭环系统总是稳定的。
(7) 对于最小相位系统,如果幅值裕量是负分贝值,闭环系统总是不稳定的。
(8) 对于非最小相位系统,如果幅值裕量大于1,闭环系统总是稳定的。
(9) 对于非最小相位系统,须幅值裕量大于1且相位裕量大于0,闭环系统才是稳定的。
(10) 相位穿越频率是在这一频率处的相位为0。
(11) 幅值穿越频率是在这一频率处的幅值为0dB。
(12) 幅值裕量在相位穿越频率处测量。
(13) 相位裕量在幅值穿越频率处测量。
(14) 某系统稳定的开环放大系数25K<,这是一个条件稳定系统。
(15) 对于(-2/ -1/ -2)特性的对称最佳系统,具有最大相位裕量。
(16) 对于(-2/ -1/ -3)特性的系统,存在一个对应最大相位裕量的开环放大系数值。
(17) 开环中具有纯时滞的闭环系统通常比没有时滞的系统稳定性低些。
(18) 开环对数幅频特性过0分贝线的渐近线斜率通常表明了闭环系统的相对稳定性。
M和频带宽BW的(19) Nichols图可以用于找到一个闭环系统的谐振峰值p信息。
(20) Bode 图能够用于最小相位以及非最小相位系统的稳定性分析。
第五章 线性系统的频域分析法
4.还可以推广到研究某些非线性系统。
时域分析法与频域分析法比较:
时域分析法是分析控制系统的直接方法,比较直观、 精确。当往往需要求解复杂的微分方程。 频域分析法是一种图解分析法。它依据系统的又一种 数学模型——频率特性,利用频域指标和时域指标之间的 对应关系,间接地揭示系统的暂态特性和稳态特性,简单 迅速地判断某些环节或者参数对系统的暂态特性和稳态特 性的影响,并能指明改进系统的方向。也是一种工程上常 用的方法。
2 0.707 2
时,谐振峰值 M r 1 。
2 , (0, r ), 0 2 0 2 , ( , ), r 2
4.无谐振时
2 1, (0, ), 2
A( )
1
2 2 2 1 2 4 2 n n 2
参见《信号与系统》
频域分析法的基本介绍 •控制系统的频率特性反映正弦信号作用下系统响应的性能, 是系统的一种数学模型。 •应用频率特性来研究线性系统的经典方法称为频域分析法。 频域分析法具有以下特点:
1.控制系统及其元部件的频率特性可以运用分析法或者实验 法获得,并可用多种形式的曲线来表示,因而系统分析和控 制器设计可以应用图解法进行。
4.系统的开环幅相曲线(Nyquist图)
5.系统的开环对数频率特性曲线(bode图) 6.传递函数的频域实验确定
7.延迟环节和延迟系统
重点掌握最小相位情况的各个知识点,非最小相位情况的考试不考,考研可能考。
1.典型环节
2.最小相位环节的频率特性
《信号与系统》第五章基本内容示例(含答案)
对比,得 a = −5, b = −6, c = 6 (1 分)
3.
解:设 f (t) F(s), yzs (t) Y (s), g(t) G(s) ,可得
G(s) = 1 − 1 + 2 ,Y(s) = 1 − 2 + 3
s s+2 s+3
s +1 s + 2 s +3
又由 (t) 1 (1 分),因此 s
正确答案的序号填在括号内。)
1、指出下面哪个说法是正确的,__________。
A. 线性时不变系统零状态响应的象函数等于系统函数与激励的象函数的乘积。 B. 在零状态条件下,元件的 s 域模型中,描述动态元件(L、C)初始状态的内部象
电源全为零,这时网络的 s 域模型与原电路形式与电路参数都完全相同。
Z1 ( s )
=
1 sC1
•
(R2
+
1 sC2
12、______变换是分析线性连续系统的有力工具,它将描述系统的时域微积分 方程变换为 s 域的______方程,便于运算和求解。(____)
A、傅立叶、微分 C、积分、代数 E、拉氏、代数 G、代数、积分
B、代数、微分 D、傅立叶、差分 F、代数、代数 H、拉氏、积
13、已知两个子系统的系统函数分别为 H1(s), H2 (s) ,则由这两个子
)
A.
B.-10
C. -11
D.1
3.因果系统转移函数 H (s) 的零极图如下图所示,此系统属于( )系统。
A.临界稳定的
B.不稳定的
j
C.无法判断稳定性 D.稳定的
-1 -1/2 0
4. 单边拉氏变换象函数 F(s)的收敛坐标σ< 0,则其收敛坐标在虚轴以左,在 这种情况下,___________________________。(____) A、 F(s)式在虚轴上不收敛,因此不能直接计算其傅里叶变换 B、F(s)式中,令 s=jω,就得到相应的傅里叶变换 C、 F(s)式在虚轴上收敛,但也不能直接计算其傅里叶变换 D、函数 f(t)的傅里叶变换不存在
自动控制原理第五章 线性系统的频域分析法-5-6
5.6 控制系统的频域校正方法
控
结合校正装置,简要介绍串联校正的设计方法。常
制 原
用校正装置分为无源和有源两大类。
理 1. 串联无源校正 包括无源超前、无源滞后和无源滞
后-超前校正三种。无源校正网络由电阻、电容构成。
⑴ 串联无源超前校正
超前校正网络实现形式
Gc
(s)
U U
c r
( (
s s
) )
a4
制 校验相角裕度
原 理
m
arctan
a 21 a=源自arctan3 4
=36.9
=180 +(c)+m 180 167.2 36.9 49.7
达到相角裕度的要求。由于选择超前校正,校正后开
环幅相曲线与负实轴仍无交点,故幅值裕度无穷大,
自然满足要求。
再由
m
T
1 a
=4.4
T 0.114 s
串联超前校正设计步骤
R(s)
K C(s)
例5.6-1 图示反馈系统
-
s(s 1)
要求系统在 r(t)=t 1(t) 时,
稳态误差 e ss 0 .1 ra d ,截止频率 c 4 .4 ra d / s 相角
裕度 4 5 幅值裕度 h d B 1 0 d B ,试设计串联无
源超前网络。
5
Page: 5
自 解:① 设计开环增益,满足稳态要求
动
控 未校正系统为Ⅰ型系统。在单位斜坡输入下,由
制
1
原 理
ess K 0.1
K 10
T 为a的减函数 m 为a的增函数
② 校验待校正系统频域指标 由 L(m) 为a的增函数
【自动控制原理经典考试题目整理】第五章-第六章
【自动控制原理经典考试题目整理】第五章-第六章自动控制原理经典考试题目整理第五章-第六章第五章频率分析法1.线性定常系统在正弦信号输入时,稳态输出与输入的相位移随频率而变化的函数关系称为__________。
2.积分环节的幅相频率特性图为;而微分环节的幅相频率特性图为。
3.一阶惯性环节G(s)=1/(1+T s) 的相频特性为ψ(ω)=__ _____________,比例微分环节G(s)=1+T s的相频特性为ψ(ω)=_____ __________。
4.常用的频率特性图示方法有极坐标图示法和__________图示法。
5.频率特性的极坐标图又称_____________图。
6.利用代数方法判别闭环控制系统稳定性的方法有____________和赫尔维茨判据两种。
7.设系统的频率特性为,则称为。
8.ω从0变化到+∞时,惯性环节的频率特性极坐标图在___________象限,形状为___________圆。
9.频率特性可以由微分方程或传递函数求得,还可以用___________方法测定。
10.0型系统对数幅频特性低频段渐近线的斜率为______dB/dec,高度为20lgKp。
11.型系统极坐标图的奈氏曲线的起点是在相角为______的无限远处。
12.积分环节的对数幅频特性曲线是一条直线,直线的斜率为_______dB/dec。
13.惯性环节G(s)=1/(Ts+1)的对数幅频渐近特性在高频段范围内是一条斜率为-20dB /dec,且与ω轴相交于ω=_______________的渐近线。
14.设积分环节的传递函数为G(s)=K/s,则其频率特性幅值M(ω)=()A. K/ω B. K/ω2 C.1/ω D. 1/ω215.ω从0变化到+∞时,迟延环节频率特性极坐标图为()A.圆B.半圆 C.椭圆 D.双曲线16.二阶振荡环节的相频特性ψ(ω),当时ω→ ∞ ,其相位移ψ(ω)为( )A .-270°B .-180°C .-90°D .0°17.某校正环节传递函数Gc(s)= ,则其频率特性的奈氏图终点坐标为()A.(0,j0)B.(1,j0)C.(1,j1)D.(10,j0)18.利用奈奎斯特图可以分析闭环控制系统的()A.稳态性能B.动态性能 C.稳态和动态性能 D.抗扰性能19.若某系统的传递函数为G(s)= K/(Ts+1) ,则其频率特性的实部R(ω)是() A . B .- C . D .-20.设某系统开环传递函数为G(s)= ,则其频率特性奈氏图起点坐标为( )A .(-10,j0)B .(-1,j0)C .(1,j0)D .(10,j0)21.设微分环节的频率特性为G(j ω) ,当频率ω从0变化至∞时,其极坐标平面上的奈氏曲线是()A .正虚轴B .负虚轴C .正实轴D .负实轴22.设某系统的传递函数G(s)=10/(s+1),则其频率特性的实部()A .B .C . D.23.设惯性环节的频率特性为G(j ω)=10/(j ω+1) ,当频率ω从0变化至∞时,则其幅相频率特性曲线是一个半圆,位于极坐标平面的()A .第一象限B .第二象限C .第三象限D .第四象限1101100++s s 221T Kω+221T K ω+T K ω+1TK ω+1)1)(10(102+++s s s 2110ω+2110ω+-T ω+110T ω+-1101020.设某系统开环传递函数为G(s)= ,则其频率特性奈氏图起点坐标为( )A .(-10,j0)B .(-1,j0)C .(1,j0)D .(10,j0)21.设微分环节的频率特性为G(j ω) ,当频率ω从0变化至∞时,其极坐标平面上的奈氏曲线是()A .正虚轴B .负虚轴C .正实轴D .负实轴22.设某系统的传递函数G(s)=10/(s+1),则其频率特性的实部()A .B .C .D .23.设惯性环节的频率特性为G(j ω)=10/(j ω+1) ,当频率ω从0变化至∞时,则其幅相频率特性曲线是一个半圆,位于极坐标平面的()A .第一象限B .第二象限C .第三象限D .第四象限24.2型系统对数幅频特性的低频段渐近线斜率为()A .-60dB /dec B .-40dB /decC .-20dB /decD .0dB /dec25.1型系统开环对数幅频渐近特性的低频段斜率为()A.-40(dB/dec)B.-20(dB/dec)C.0(dB/dec)D.+20(dB/dec)26.已知某单位负反馈系统的开环传递函数为G(s)=,则相位裕量γ的值为()A .30°B .45°C .60°D .90°27.设二阶振荡环节的传递函数G (s )= ,则其对数幅频特性渐近线的转角频率为()A .2rad/sB .4rad/sC .8rad/sD .16rad/s2110ω+2110ω+-T ω+110T ω+-110)1(24+s s 164162++s s 10)(=s Y28.设某闭环传递函数为,则其频带宽度为()A.0~10rad/s B.0~5rad/s C.0~1rad/s D.0~0.1rad /s第六章线性系统的校正1.滞后校正装置最大滞后角的频率= 。
线性系统频域分析
线性系统频域分析您的姓名(必填): [填空题] *_________________________________您的学号(必填) [填空题] *_________________________________您的班级(必填) [填空题] *_________________________________假设可以测得一个线性系统在单一频率信号输入下,其响应信号的幅值。
那么根据定义可以得到该系统的幅频特性关系。
() [单选题] *对错(正确答案)答案解析:系统的幅频关系是一条曲线,覆盖所有频率分量。
只根据一个单一频率信号的输入输出关系不能得到系统的幅频关系。
系统的频率特性是其幅频特性和相频特性的总称,可以通过实验测得。
因而线性系统频率分析方法是用概略图形表示系统,进行特性分析。
一般不能得到精确的定量结论。
() [单选题] *对错(正确答案)答案解析:第一句话是对的。
但线性系统频率特性最主要的数学模型是与传递函数结构有对应关系的复变函数解析表达式。
幅频关系和相频关系共同构成这个复变函数表达式,完全可以定量精确求解。
基于图形的的表示方式是为了方便直观地分析系统。
线性系统的传递函数是用输出信号和输入信号拉氏变换的比值定义的,所以相频关系也可以用输出信号和输入信号的相角之比来计算。
[判断题] *对错(正确答案)答案解析:线性系统的传递函数可以对应频率特性。
两个信号的复变函数表达之比,对应到幅值和相角关系,分别呈现为幅值之比和相位之差。
BODE 图绘制的是系统的对数幅频关系和相频关系曲线,由两条曲线组成。
其中对数幅频关系曲线经常用渐近折线近似表示。
[判断题] *对(正确答案)错答案解析:Bode图的定义关于Nyquist 图的定义,以下说法正确的是:() *A.Nyquist 图是极坐标图,向量长度和向量与坐标正方向的夹角分别对应了系统幅值和相角。
(正确答案)B.Nyquist 图是直角坐标图,横纵坐标分别对应了系统幅值和相角。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章 线性系统的频域分析法
单元测试题(C )
一、填空题:
1、频率特性仅适用于 系统及元件
2、 Bode 图的低频段特性完全由系统开环传递函数中的积分环节数和 决定。
3、二阶振荡环节的对数幅频渐进特性的高频段的斜率为 (db/dec )。
4、当w 为增益的截止频率c w 时,幅值特性20lg|G (j c w )|= 。
5、频率特性可以由微分方程或传递函数求得,还可以用____ _____方法测定。
6、一般来说,系统的相位裕量愈大,则超调量__ _;穿越频率愈大,则调节时间__ ______。
7、一个稳定的闭环系统,若它开环右半平面极点数为P ,则它的开环传递函数的Nyquist 曲线必 时针绕(-1, j0)点 周。
8、对于最小相位系统,其开环幅相特性曲线G(j w )在w ®∞时,总是以确定的角度收敛于复平面的 。
9、设系统的频率特性G(j w )=R(w ) +jI(w ),则相频特性Ð G(j w )= 。
10、频率特性可以由微分方程或传递函数求得,还可以 方法测定。
11、闭环频率特性的性能指标有零频值 、谐振峰值 和频带宽度 。
二、单项选择题 (在下列每小题的四个备选答案中选出一个正确的答案,并将其字母标号填入题干的括号内。
)
1、当ω从−∞→+∞变化时,惯性环节的极坐标图为一个( )。
A 位于第一象限的半圆
B 位于第四象限的半圆
C 整圆
D 不规则曲线
2、w 从0变化到+ ∝时,一阶不稳定环节频率特性的幅相特性极坐标图为( )
A .半圆
B .椭圆
C .圆
D .双曲线
3、利用奈奎斯特图可以分析闭环控制系统的( )
A .稳态性能
B .稳态和动态性能
C .动态性能
D .抗扰性能
4、下列频域性能指标中,反映闭环频域指标的是( )。
A .谐振峰值Mr
B .相位裕量g
C .模(或增益)裕量h (或G M )
D .截止频率c w
5、某系统开环频率特性G (j w )=2)
1(2+w j ,当w =1 rad/s 时,其频率特性幅值A(1)=( ) A .2 B .2 C .1 D .1/2
6、 ω从0变化到+∞时,延迟环节频率特性极坐标图为( )
A .圆
B .半圆
C .椭圆
D .双曲线
7、设有一个单位反馈系统的开环传递函数为G (S )=
)1(+TS S K ,若要求带宽增加a 倍,相位裕量保持不变,则K 应变为( )
A . 3K a
B . K a
C .aK
D . 2aK 8、设开环系统频率特性3)1(4)(w w j j G +=
,当w =1rad/s 时,其频率特性幅值 M (1)=( )
A .4
2 B .24 C .2 D .22 9、设开环系统频率特性G (j w )=
3)1(10w j +,则其频率特性相位移j (w )=-180o 时,对应频率w 为( )。
A . 10(rad/s )
B .3(rad/s )
C .3(rad/s )
D . 1(rad/s )
10、设开环系统频率特性G (j ω)=3)
1(4w j + ,当ω=1rad/s,其频率特性幅值 M (1)=( )。
A . 22
B .2
C .42
D .4
2 11、若开环传递函数G (S )=)
1(+TS S K ,若要求带宽增加10倍,相位裕量保持不变,则K 、T 将( )。
A .K 扩大10倍,T 不变 B . K 不变,T 缩小10倍
C . K 扩大10倍,T 缩小10倍
D . K 缩小10倍,T 扩大10倍
12、下列频域性能指标中,反映闭环频域性能指标的是( )。
A .谐振峰值M r
B .相位裕量γ
C .增益裕量K g (或h )
D .截止频率c w
三、已知一控制系统结构图如图所示,当输入r(t) = 2sint时,测得输出c(t)=4sin(t-45°),试确定
系统的参数x,w n。