换热器温度控制系统
换热器温度控制系统
1.E-0101B混合加热器设计为确保混合加热器(E-0101B)中MN(亚硝酸甲酯),CO(一氧化碳)的出口温度为408K,选用0.68Mpa,408K的加热蒸汽加热入口温度为294K的工艺介质。
为保证生成物的产量,质量,及最终生成物的转化率,且工艺介质较稳定,蒸汽源压力较小,变化不大,因此针对此实际情况,最后确定设计一个换热器的反馈控制方案。
1.1换热器概述换热器工作状态如何,可用几项工作指标加以衡量。
常用的工作指标主要有漏损率、换热效率和温度效率。
它们比较全面的说明了换热器的特点和工作状态,在生产和科学试验中了解这些指标,对于换热器的管理和改进都是必不可少的。
换热器是将热流体的部分热量传递给冷流体的设备,又称热交换器。
换热器在化工、石油、动力、食品及其它许多工业生产中占有重要地位,其在化工生产中换热器可作为加热器、冷却器、冷凝器、蒸发器和再沸器等,应用广泛。
换热器是一种在不同温度的两种或两种以上流体间实现物料之间热量传递的节能设备,是使热量由温度较高的流体传递给温度较低的流体,使流体温度达到流程规定的指标,以满足工艺条件的需要,同时也是提高能源利用率的主要设备之一。
1.2换热器的分类适用于不同介质、不同工况、不同温度、不同压力的换热器,结构型式也不同,换热器的具体分类如下:一按传热原理分类:间壁式换热器,蓄热式换热器,流体连接间接式换热器,直接接触式换热器,复式换热器二按用途分类:加热器,预热器,过热器,蒸发器三、按结构分类:浮头式换热器,固定管板式换热器,U形管板换热器,板式换热器等此设计要求是将进料温度都为297.99K的MN(亚硝酸甲酯)和CO(一氧化碳)加热到出口温度为473K,所以我们经过调查研究,综合比较之后选择了管壳式(又称列管式) 换热器。
管壳式换热器主要有壳体、管束、管板和封头等部分组成,壳体多呈圆形,内部装有平行管束或者螺旋管,管束两端固定于管板上。
在管壳换热器内进行换热的两种流体,一种在管内流动,其行程称为管程;一种在管外流动,其行程称为壳程。
换热器温度控制.
任务一 强制对流换热器温度控制
将实验装置电源插头接到380V的三相交流电源。 打开电源三相带漏电保护空气开关,电压表指示380V。 打开总电源钥匙开关,按下电源控制屏上的启动按钮, 即可开启电源。 开启相关仪器和计算机软件,进入相应的实验。 运行组态软件,进入相应的实验,观察实时或历史曲 线,待水温基本稳定于给定值后,将调节器的开关由 “手动”位置拔至“自动”位置,使系统变为闭环控制 运行。待基本不再变化时,加入阶跃扰动(可通过改变 设定值来实现)。观察并记录在当前比例P时的余差和 超调量。每当改变值P后,再加同样大小的阶跃信号, 比较不同P时的ess和σp 。
任务一 强制对流换热器温度控制
任务一 强制对流换热器温度控制
Temperature Control of the Forced Convection Heat Exchanger
能力目标 :1.能够正确操作多种温度控制系统。 2.能够对温度控制系统PID整定。
知识目标 :1.温度控制系统分析。 2.比例积分(PI)调节器控制。 3.比例微分调节器(PD)控制。 4. 比例积分微分(PID)调节器控制
任务一 强制对流换热器温度控制
五、安全提示
实验前,锅炉内胆的水位必须高于热电阻的测 温点。 给定值必须要大于常温。 实验线路全部接好后,必须经指导老师检查认 可后,方可通电源开小组汇报
——操作
任务一 强制对流换热器温度控制
七、总结
作出比例调节器控制时,不同P值时的阶跃响 应曲线,得到的结论是什么? 分析PI调节器控制时,不同P和I值对系统性能 的影响? 绘制用PD调节器控制时系统的动态波形。 绘制用PID调节器控制时系统的动态波形。
任务一 强制对流换热器温度控制
06 换热器热流出口温度控制
15
实验步骤
整定控制器参数。
当比例增益Kc取1时,改变热流出口温度TI1104的SP,如从 120℃变为130℃,当TI1104稳定后再将SP从130℃改为 120℃,观察并记录TI1104的响应曲线。
控制器参数 Ti ----
0.85Tk 0.5Tk
Td ------0.13Tk
计算出控制器参数之后,先将K---c放在比计算值稍小一些
(一般小20%)的数值上,再依次放上Ti和Td的值,最后再
将K---c放回到计算值上即可。修改SP的值加入阶跃干扰,观
察1104的响应曲线,看衰减比是否达到4:1。
0.5Ts 0.3Ts
Td ------0.1Ts
计算出控制器参数之后,先将Kc放在比计算值稍小一些(一
般小20%)的数值上,再依次放上Ti和Td的值,最后再将Kc放
回到计算值上即可。施加扰动,观察换热器热流出口温度的
响应情况。
30
PID控制器参数的工程整定法
衰减振荡法
1.将TI1104设定值从120变为130,记录TI1104的响应曲线。 2.待TI1104稳定后,将TI1104设定值从130再变为120,记录 TI1104的响应曲线。 3.待系统稳定之后,手工将FV1105开度设置为40,观察 TI1104曲线的变化趋势。 4.当TI1104稳定后,再将FV1105开度调回到30,等待TI1104 稳定。
根据比例控制器的特点,不断修改Kc的值,每修改一次都要 通过改变SP来加入阶跃扰动,直到热流出口温度曲线出现4:1 衰减。观察并记录TI1104的响应曲线,同时记录下此时Kc的 值。
基于DCS换热器冷水出口温度控制系统
重庆化工职业学院课程设计任务书教培中心:自动化教培中心专业班级:学生姓名:设计题目:基于DCS换热器冷水出口温度控制系统起迄日期: 2011年6月2日~ 2011年6月23日摘要集散控制系统(Total Distributed Control System, DCS )是以微处理器为基础的集中分散型控制系统。
自20世纪70年代中期集散控制系统问世以来,已在工业控制领域得到了广泛的应用,越来越多的仪表和控制工程师已认识到集散控制系统并将成为工业自动控制的主流。
它具备分散控制、集中管理;采用局部网路通信技术;完善的功能控制;采用模块化和开放性结构,系统扩展方便;管理能力强;安全可靠性高等特点具有很强的实用价值。
本项目采用的是浙大中控(SUPCON JX-300X)的DCS,运用与之相配的AdvanTrol-Pro系统软件(V2.50)_SP06输出的组态软件。
实现现场数据实时记录和监控,设计了记录查询、报警、实时模拟等具有Windows风格的动态操作画面。
串级控制系统在生产过程中需要自动保持两个或多个参数之间的关系。
所以在工业生产过程中广泛运用,在此项目中运用的是浙大中控的DCS来做换热器冷水出口温度控制系统的比值控制,通过串级控制来保持两液位的稳态。
引言在现代工业生产过程中,主控制器的输出作为副控制器的给定值,副控制器的输出去操纵控制阀,以实现对变量的定值控制。
如果控制不稳定就会影响产品的质量,严重的甚至会造成生产事故。
为此在生产过程中需要主、副两个控制器串接工作,这种控制系统就是串级控制系统。
串级控制系统:串级控制系统是由其结构上的特征而得名的。
它是由主、副两个控制器串接工作的。
主控制器的输出作为副控制器的给定值,副控制器的输出去操纵控制阀,以实现对变量的定值控制。
串级控制系统的特点,使用场合:串级控制系统的主要特点为:(1)在系统结构上,它是由两个串接工作的控制器构成的双闭环控制系统;(2)系统的目的在于通过设置副变量来提高对主变量的控制质量}(3)由于副回路的存在,对进入副回路的干扰有超前控制的作用,因而减少了干扰对主变量的影响;(4)系统对负荷改变时有一定的自适应能力。
换热站供热自动化控制系统的原理及应用探讨
换热站供热自动化控制系统的原理及应用探讨为了提升供暖质量,减少资源能源浪费,热力公司不断提升自动化技术水平,优化自动化控制系统的各方面性能,积极响应国家关于“节能降耗、绿色环保”的号召,并取得了阶段性成果。
借助于自动化控制系统实时监控的功能,供热全过程实现了透明化管理,尤其在温度与热量控制方面,实现了一次达标、一次通过的愿景,用户满意率呈现出逐年升高态势。
1换热站供热自动化控制系统的结构组成与工作原理1.1 结构组成换热站供热自动化控制系统主要包括:传感器、测量仪表、执行机构、PLC、现场液位计以工控机等结构组成。
其中测量装置主要对换热站的运行状态以及各项运行参数进行测量,测量参数涵盖一次供温温度、二次供水温度、二次供水流量、用户暖气温度以及二次回水温度等参数。
执行机构对供暖锅炉传输蒸汽管道的开关阀门进行有效控制。
而PLC 则是接收换热站控制系統传输来的数据信息,并对其进行运算和处理,然后借助于I/O 模块,写入自动运行控制程序,进而完成变频器、电动调节阀以及补水泵的相关动作行为。
现场液位计主要测量补水箱内的液位高低,工控机则是有效监测系统运行过程中的各项参数,如果发现运行异常,工控机的报警装置会发出报警信号。
换热站的控制柜对循环水泵以及补水泵进行有效控制,运行模式包括手动、自动、工频以及变频。
而保障换热器正常运转的独立运行程序则存储在PLC 内,在运行时,无需借助于上位机的监控管理软件。
换热站的中央控制室时时监测出口位置的暖气温度,如果温度不达标,可以及时进行智能化调整,使供暖温度能够满足终端用户需求。
1.2 工作原理从供暖锅炉内部出来的蒸汽借助于供热管道传输到换热站,在这传输过程中,蒸汽主要是由电动调节阀的自动开、关与手动阀门进行有效控制。
当蒸汽传导到双纹管换热器中后,与管网中的冷水介质发生热交换反应,使蒸汽温度下降而成为液态的冷凝水,此时,冷凝水贮存到水箱中,在循环泵的作用下,冷凝水进入到供暖管道当中。
热交换器温度控制系统课程设计
热交换器温度控制系统一.控制系统组成由换热器出口温度控制系统流程图1可以看出系统包括换热器、热水炉、控制冷流体的多级离心泵,变频器、涡轮流量传感器、温度传感器等设备。
图1换热器出口温度控制系统流程图控制过程特点:换热器温度控制系统是由温度变送器、调节器、执行器和被控对象(出口温度)组成闭合回路。
被调参数(换热器出口温度)经检验元件测量并由温度变送器转换处理获得测量信号c,测量值c与给定值r的差值e送入调节器,调节器对偏差信号e进行运算处理后输出控制作用u。
二、设计控制系统选取方案根据控制系统的复杂程度,可以将其分为简单控制系统和复杂控制系统。
其中在换热器上常用的复杂控制系统又包括串级控制系统和前馈控制系统。
对于控制系统的选取,应当根据具体的控制对象、控制要求,经济指标等诸多因素,选用合适的控制系统。
以下是通过对换热器过程控制系统的分析,确定合适的控制系统。
换热器的温度控制系统工艺流程图如图2所示,冷流体和热流体分别通过换热器的壳程和管程,通过热传导,从而使热流体的出口温度降低。
热流体加热炉加热到某温度,通过循环泵流经换热器的管程,出口温度稳定在设定值附近。
冷流体通过多级离心泵流经换热器的壳程,与热流体交换热后流回蓄电池,循环使用。
在换热器的冷热流体进口处均设置一个调节阀,可以调节冷热流体的大小。
在冷流体出口设置一个电功调节阀,可以根据输入信号自动调节冷流体流量的大小。
多级离心泵的转速由便频器来控制。
换热器过程控制系统执行器的选择考虑到电动调节阀控制具有传递滞后大,反应迟缓等缺点,根具离心泵模型得到通过控制离心泵转速调节流量具有反应灵敏,滞后小等特点,而离心泵转速是通过变频器调节的,因此,本系统中采用变频器作为执行器。
换热器温度控制系统_过程控制 - 副本
辽宁工业大学过程控制系统课程设计(论文)题目:换热器温度控制系统的设计院(系):电气工程学院专业班级:自动化102班学号: 100302042学生姓名:邢宏欢指导教师:(签字)起止时间:2013.6.25-2013.7.4课程设计(论文)任务及评语院(系):电气工程学院 教研室:自动化教研室注:成绩:平时20% 论文质量60% 答辩20% 以百分制计算 学 号 100302042 学生姓名 邢宏欢 专业班级 自动化102班 课程设计 换热器温度控制系统的设计课程设计(论文)任务课题完成的设计任务及功能、要求、技术参数 实现功能 设计换热器温度控制系统 换热器温度控制系统,通过换热器用蒸汽对冷物料进行加热,使换热器出口温度为某一定值。
工艺要求换热器出口温度在185±2℃以内,引起出口温度变化的扰动有:冷物料的流量与初温、蒸汽压力波动等,其中最主要的扰动是冷物料的流量Q 。
设计任务及要求 1、确定控制方案并绘制工艺节点图、方框图; 2、选择传感器、变送器、控制器、执行器,给出具体型号和参数; 3、确定控制器的控制规律以及控制器正反作用方式; 4、仿真分析/实验测试分析; 5、按规定的书写格式,撰写、打印设计说明书一份;设计说明书应在4000字以上。
技术参数测量范围:0-250℃控制温度:185±2℃最大偏差:8℃;进度计划1、确定控制方案并绘制工艺节点图、方框图;2、选择传感器、变送器、控制器、执行器,给出具体型号和参数;3、确定控制器的控制规律以及控制器正反作用方式;4、仿真分析/实验测试分析;5、按规定的书写格式,撰写、打印设计说明书一份;设计说明书应在4000字以上。
指导教师评语及成绩平时: 论文质量: 答辩:总成绩: 指导教师签字:年 月 日摘要随着工业的迅速发展,能量消耗量不断增加,能源紧张己成为一个世界性的问题。
近几年来,我国在节能方面虽然已取得很大的成绩,但能源的供应矛盾依然十分尖锐。
换热器热流出口温度控制
资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载换热器热流出口温度控制地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容毕业设计说明书GRADUATE THESIS论文题目:换热器热流出口温度控制学院:电气工程学院摘要换热器作为一种标准工艺设备已经被广泛应用于动力工程领域和其他过程工业部门。
以工业上常用的列管式换热器为例,热流体和冷流体通过对流热传导达到换热的目的,从而使换热器物料出口温度满足工业生产的需求。
但由于目前制造工艺的限制,控制方式的单一性,换热器普遍存在控制效果差,换热效率低的现象,造成能源的浪费。
如何提高换热器的控制效果,提高换热效率,对于缓解我国能源紧张的状况,具有长远的意义。
本课题来源于对SMPT—1000实验平台换热器的研究,对于换热器热流出口温度的控制,使用PID控制来进行调节,通过不断的调整其参数,确定一个比较准确的参数值,通过调整冷水阀的开度调整其流量来控制热流的出口温度。
本设计利用PCS7来完成整个系统自动控制,通过PCS7软件对系统进行硬件和软件组态,完成控制出口温度的编程,最后通过人机界面监控维护控制系统正常运行。
关键词换热器;温度;PID控制;PCS7AbstractHeat exchanger as a standard process equipment has been widely used in the field of power engineering and other process industries. In the industry commonly used shell and tube heat exchanger, for example, the hot fluid and cold fluid heat transfer by convection heat transfer to achieve the purpose, so that the heat exchanger outlet temperature of the material to meet the needs of industrial production. However, as the manufacturing process constraints, control unity, common heat exchanger control is poor, the phenomenonof low heat transfer efficiency, resulting in waste of energy. How to improve the control performance of the heat exchanger to improve heat transfer efficiency, to ease China's energy shortage situation, have long-term significance.The design comes from the SMPT-1000 test platform research exchanger for heat exchanger outlet temperature control, the use of PID control to adjust, through continuous adjusting its parameters to determine a more accurate parameter values by adjusting opening of the cold water valve to control the flow of adjustment of the outlet temperature of the heat flow.This design uses PCS7 to complete the system of automatic control by PCS7 software on the system hardware and software configuration, complete control of the outlet temperature of the programming, the last operating normally by HMI monitoring and control system.Keywords Heat;temperature; PID control; PCS7目录 TOC \o "1-3" \h \z \uHYPERLINK \l "_Toc421781690" 摘要 PAGEREF_Toc421781690 \h IHYPERLINK \l "_Toc421781691" Abstract PAGEREF_Toc421781691 \h IIHYPERLINK \l "_Toc421781692" 目录 PAGEREF_Toc421781692 \h IIIHYPERLINK \l "_Toc421781693" 第1章绪论 PAGEREF_Toc421781693 \h 1HYPERLINK \l "_Toc421781694" 1.1换热器设备 PAGEREF_Toc421781694 \h 1HYPERLINK \l "_Toc421781695" 1.2 选题背景及意义 PAGEREF _Toc421781695 \h 1HYPERLINK \l "_Toc421781696" 1.3国内外研究现状及发展史PAGEREF _Toc421781696 \h 2HYPERLINK \l "_Toc421781697" 1.4本设计主要内容 PAGEREF_Toc421781697 \h 4HYPERLINK \l "_Toc421781698" 1.5 本章小结 PAGEREF_Toc421781698 \h 4HYPERLINK \l "_Toc421781699" 第2章系统工艺流程及算法控制PAGEREF _Toc421781699 \h 5HYPERLINK \l "_Toc421781700" 2.1 SMPT-1000实验平台及换热器PAGEREF _Toc421781700 \h 5HYPERLINK \l "_Toc421781701" 2.2 换热器 PAGEREF_Toc421781701 \h 6HYPERLINK \l "_Toc421781702" 2.2.1 高阶换热器 PAGEREF_Toc421781702 \h 6HYPERLINK \l "_Toc421781703" 2.2.2换热器工作原理 PAGEREF _Toc421781703 \h 6HYPERLINK \l "_Toc421781704" 2.3 PID控制 PAGEREF_Toc421781704 \h 7HYPERLINK \l "_Toc421781705" 2.3.1 PID基本介绍 PAGEREF_Toc421781705 \h 7HYPERLINK \l "_Toc421781706" 2.3.2 参数整定 PAGEREF_Toc421781706 \h 10HYPERLINK \l "_Toc421781707" 2.3.3 主要功能和应用 PAGEREF _Toc421781707 \h 12HYPERLINK \l "_Toc421781708" 2.4控制系统的设计 PAGEREF_Toc421781708 \h 13HYPERLINK \l "_Toc421781709" 2.4.1温度控制特点 PAGEREF_Toc421781709 \h 13HYPERLINK \l "_Toc421781710" 2.4.2 换热器温度控制系统PAGEREF _Toc421781710 \h 13HYPERLINK \l "_Toc421781711" 2.5本章小结 PAGEREF_Toc421781711 \h 15HYPERLINK \l "_Toc421781712" 第3章基于PCS7实现系统控制PAGEREF _Toc421781712 \h 16HYPERLINK \l "_Toc421781713" 3.1 PCS7简介 PAGEREF_Toc421781713 \h 16HYPERLINK \l "_Toc421781714" 3.2 PCS7作用 PAGEREF_Toc421781714 \h 16HYPERLINK \l "_Toc421781715" 3.3 PCS7控制系统结构 PAGEREF _Toc421781715 \h 17HYPERLINK \l "_Toc421781716" 3.4工程项目的建立 PAGEREF_Toc421781716 \h 18HYPERLINK \l "_Toc421781717" 3.5 控制系统硬件设计与组态PAGEREF _Toc421781717 \h 19HYPERLINK \l "_Toc421781718" 3.5.1 硬件系统组成 PAGEREF _Toc421781718 \h 19HYPERLINK \l "_Toc421781719" 3.5.2 硬件选型选型以及通讯PAGEREF _Toc421781719 \h 20HYPERLINK \l "_Toc421781720" 3.5.3 操作员站组态 PAGEREF _Toc421781720 \h 22HYPERLINK \l "_Toc421781721" 3.5.4 网络连接组态 PAGEREF _Toc421781721 \h 23HYPERLINK \l "_Toc421781722" 3.6软件组态 PAGEREF_Toc421781722 \h 23HYPERLINK \l "_Toc421781723" 3.6.1系统软件程序 PAGEREF_Toc421781723 \h 23HYPERLINK \l "_Toc421781724" 3.6.2与硬件地址的连接 PAGEREF _Toc421781724 \h 24HYPERLINK \l "_Toc421781725" 3.6.3系统报警软件程序 PAGEREF _Toc421781725 \h 25HYPERLINK \l "_Toc421781726" 3.7人机界面创建 PAGEREF_Toc421781726 \h 25HYPERLINK \l "_Toc421781727" 3.8 过程趋势画面的创建 PAGEREF _Toc421781727 \h 26HYPERLINK \l "_Toc421781728" 第4章控制系统的投运 PAGEREF _Toc421781728 \h 28HYPERLINK \l "_Toc421781729" 4.1运前的准备工作 PAGEREF_Toc421781729 \h 28HYPERLINK \l "_Toc421781730" 4.2副环参数整定 PAGEREF_Toc421781730 \h 28HYPERLINK \l "_Toc421781731" 4.3主环参数整定 PAGEREF_Toc421781731 \h 28HYPERLINK \l "_Toc421781732" 4.4控制系统的仿真运行 PAGEREF _Toc421781732 \h 29HYPERLINK \l "_Toc421781733" 4.4.1 热流出口温度 PAGEREF _Toc421781733 \h 29HYPERLINK \l "_Toc421781734" 4.4.2 系统扰动测试 PAGEREF _Toc421781734 \h 30HYPERLINK \l "_Toc421781735" 第5章总结 PAGEREF_Toc421781735 \h 31HYPERLINK \l "_Toc421781736" 参考文献 PAGEREF_Toc421781736 \h 32HYPERLINK \l "_Toc421781737" 谢辞 PAGEREF_Toc421781737 \h 34第1章绪论1.1换热器概述换热器是一种在不同温度的两种或两种以上流体间实现物料之间热量传递的节能设备,是使热量由较高的流体传递给温度较低的流体,使流体温度达到流程规定的指标,以满足过程工艺条件的需要,同时也提高能源利用率的主要设备之一。
热力公司换热站控制系统设计讲解
第一章绪论集中供暖的发展概述集中供暖是在十九世纪末期,伴随经济的发展和科学技术的进步,在集中供暖技术的基础上发展起来的,它利用热水或蒸汽作为热媒,由集中的热源向一个城市或较大区域供应热能。
集中供暖不仅为城市提供稳定、可靠的热源,改善人民生活,而且与传统的分散供热相比,能节约能源和减少污染,具有明显的经济效益和社会效益。
1.1.1 国外集中供暖发展概况集中供暖方式始于1877年,当时在美国纽约,建立了第一个区域锅炉房向附近14家用户供热。
20世纪初期,一些工业发达的国家,开始利用发电厂内汽轮机的排气,供给生产和生活用热,其后逐渐成为现代化的热电厂。
在上世纪中,特别是二次世界大战以后,西方一些发达国家的城镇集中供暖事业得到迅速发展。
原苏联和东欧国家的集中供暖事业长期以来是实行以积极发展热电厂为主的发展政策。
原苏联集中供暖规模,居世界首位。
地处寒冷气候的北欧国家,如瑞典、丹麦、芬兰等国家,在第二次世界大战以后集中供暖事业发展迅速,城市集中供暖普及率都较高。
据1982年资料,如瑞典首都斯德哥尔摩市,集中供暖普及率为35%;丹麦集中供暖系统遍及全国城镇,向全国1/3以上的居民供暖和热水供应。
第二次世界大战后德国在废墟中进行重建工作,为发展集中供暖提供了有力的条件。
目前除柏林、汉堡、慕尼黑等城市已有规模较大的集中供暖系统外,在鲁尔地区和莱茵河下游,还建立了联结几个城市的城际供暖系统。
在一些工业发达较早的国家中,如美、英、法等国家,早期多以锅炉房供暖来发展集中供暖事业,锅炉房供暖占较大比例。
不过这些国家已非常重视发展热电联产的集中供暖方式。
!1.1.2 国内集中供暖发展概况我国城市集中供暖真正起步是在50年代开始的,党的十一届三中全会以后,特别是国务院1986年下发《关于加强城市集中供热管理工作的报告》,对我国的集中供暖事业的发展起到了极大的推动作用。
虽然我国这些年来集中供暖事业取得了迅速发展,但是和国外相比,我国目前采暖系统相当落后,具体体现在供暖质量差,即室温冷热不均,系统效率低下,不仅多耗成倍能量,而且用户不能自行调节室温。
换热器温度控制系统设计
换热器温度控制系统设计热交换器是工业生产中常用的设备之一,用于传递热量并调节流体温度。
热交换器温度控制系统的设计是为了确保热交换器能够稳定运行并提供所需的热量。
本文将介绍热交换器温度控制系统的设计要点和步骤。
1.系统需求分析在开始设计热交换器温度控制系统之前,首先需要对系统的需求进行分析。
这包括流体的类型、流量、温度范围以及所需的温度稳定性等。
根据这些需求,选择合适的控制器和传感器。
2.传感器选择传感器是热交换器温度控制系统中非常重要的组成部分,用来监测流体的温度并传输给控制器。
常用的温度传感器有热电偶和热敏电阻。
选择适合的传感器需要考虑精度、响应时间以及耐高温等因素。
3.控制器选择控制器是热交换器温度控制系统的核心部分,用于读取传感器的信号并根据设定的温度范围进行控制。
常用的控制器包括PID控制器和模糊控制器。
选择控制器时需要考虑可调节的参数、控制精度以及响应速度。
4.控制策略选择合适的控制策略是确保热交换器温度控制系统稳定运行的关键。
常用的控制策略有开环控制和闭环控制。
开环控制根据预先设定的参数进行控制,闭环控制根据传感器反馈的信息进行调节。
根据实际需求选择合适的控制策略。
5.温度设定和调节根据系统需求,设置所需的温度范围和稳定性。
通过控制器对热交换器的供热和冷却进行调节,以保持流体温度在设定的范围内。
6.安全保护热交换器温度控制系统设计中需要考虑安全保护措施,以防止超温和意外故障。
例如,可以设置过温报警和自动断电装置,当温度超出设定范围或发生故障时,及时停止热交换器的运行。
7.控制系统调试和优化在完成热交换器温度控制系统的设计和安装后,需要进行调试和优化,以确保系统的性能和稳定性。
在调试过程中,根据实际情况调整控制器的参数,以达到所需的温度控制效果。
总结:热交换器温度控制系统的设计需要从系统需求分析、传感器选择、控制器选择、控制策略、温度设定和调节、安全保护等方面进行考虑。
通过合理的设计和调试优化,可以确保热交换器能够稳定运行并提供所需的热量。
基于DCS的换热器蒸汽出口温度控制
变给 定值 和 施 加 扰 动等 测试 实现 了 对 温度 参数 T I 1 0 4的 精 确 控 制 。
关键词 . P C S 7 蒸 汽 温度 控制 组 态
中图 分 类 号
T H 8 6 2 . 6
文 献 标 识 码 B
文 章 编 号 1 0 0 0 — 3 9 3 2 ( 2 0 1 3 ) 0 7 - 0 9 1 7 - 0 3
锅 炉 是 石 油 化 工 和 电 厂 工 业 过 程 中非 常 重 要
的动力 设备 , 换 热器是 锅 炉系统 的重 要设 备 之一 ,
换 热器 可分 为 加 热器 和冷 却 器 两类 , 加 热 器 主要 用 于冷 流 体 升 温 ; 冷却器则 用于热流体 降温…。 D C S是 计算 机技 术 、 控制 技 术 和 网络技 术 高度 结
点 J 。该 系统 的所 有 硬件 都 基 于 统 一 的 硬件 平
台, 所 有软 件也都 全 部集 成 在 S I MA T I C程 序 管理
器下。
图1 换 热 器 热 流 出 口温 度 控 制 流 程
1 温 度 控 制 流 程 简 述
模块 连接 到 P r o i f b u s 总 线 上送 至 主控 制 器 。从 结
往 现 场 的执 行 信 号 通 过4 8 5 通 信 由P M1 2 5 转 换
收稿 1 3期 : 2 0 1 3 - 0 5 . 1 5 ( 修改稿 ) 基金项目 : 国家 自然 科 学 基 金 资 助 项 目( 6 1 0 7 4 0 2 2 )
第 7期
王
燕等. 基于 D C S的换 热器 蒸 汽 出 口温度 控 制
9 1 9
3 控 制 效 果
换热器温度控制系统的设计
1换热器温度控制系统的组成与特点1.1换热器的组成换热器温度控制系统包括换热器、热水炉、控制冷流体的多级离心泵,变频器、涡轮流量传感器、温度传感器等设备。
根据控制系统的复杂程度,可以将其分为简单控制系统和复杂控制系统。
其中在换热器上常用的复杂控制系统又包括串级控制系统和前馈控制系统。
1.2系统控制过程的特点换热器温度控制过程有如下特点:换热器温度控制系统是由温度变送器、调节器、执行器和被控对象(出口温度)组成闭合回路。
被调参数(换热器出口温度)经检验元件测量并由温度变送器转换处理获得测量信号,测量值与给定值的差值送入调节器,调节器对偏差信号进行运算处理后输出控制作用。
换热器的温度控制系统工艺流程如下:冷流体和热流体分别通过换热器的壳程和管程,通过热传导,从而使热流体的出口温度降低。
热流体加热炉加热到某温度,通过循环泵流经换热器的管程,出口温度稳定在设定值附近。
冷流体通过多级离心泵流经换热器的壳程,与热流体交换热后流回蓄电池,循环使用。
在换热器的冷热流体进口处均设置一个调节阀,可以调节冷热流体的大小。
在冷流体出口设置一个电功调节阀,可以根据输入信号自动调节冷流体流量的大小。
多级离心泵的转速由便频器来控制。
1.3引起换热器出口温度变化的扰动因素简要概括起来,引起换热器出口温度变化的扰动因素主要有:(1)热流体的流量和温度的扰动,热流体的流量主要受到换热器入口阀门的开度和循环泵压头的影响。
热流体的温度主要受到加热炉加热温度和管路散热的影响。
(2)冷流体的流量和温度的扰动。
冷流体的流量主要受到离心泵的压头、转速和阀门的开度等因素的影响。
(3)加热炉的启停机的影响。
(4)室内温度与管路内气体变化和阀门开度的影响。
2.1 换热器温度控制原理介绍图2.1为蒸汽水换热器的工作原理图。
加热介质为蒸汽,冷流体为水,控制目标是T ,T 1~T 3 温度传感器 M 电动调节阀图2.1 换热器温度控制原理图其工作原理为:温度传感器T 测量换热器出水温度,把信号传送至DDC 现场控制器,此为温度控制的主回路。
换热器温度控制方案
换热器温度控制方案概述换热器温度控制是工业生产过程中非常重要的一部分,能够有效地控制换热器的温度可保证生产过程的稳定性和产品的质量。
本文档将介绍一种换热器温度控制的方案,以提高工艺过程中的换热效率和温度稳定性。
方案设计1. 温度传感器温度传感器是控制换热器温度的基础,良好的温度传感器能够准确地感知换热器内部的温度变化。
选择合适的温度传感器非常重要,目前市场上常用的温度传感器有热电偶和热敏电阻。
热电偶对高温环境有较好的适应性,而热敏电阻则适用于较低温度范围。
根据具体的工艺要求和环境条件,选择合适的温度传感器进行安装。
2. 温度控制器温度控制器是控制换热器温度的核心部件,能够根据传感器测量到的温度信号进行反馈控制。
根据具体的应用场景,可以选择PID控制器或者模糊控制器等不同类型的温度控制器。
PID控制器通过比较实际温度和设定温度来调节输出信号,具有响应速度快和稳态误差小的特点;而模糊控制器则能够根据温度变化趋势进行模糊推理和控制辨识,适用于非线性和复杂的控制系统。
根据具体的需求选择合适的温度控制器并进行参数调节,以实现对换热器温度的精确控制。
3. 温度调节阀温度调节阀作为温度控制系统的执行部件,通过控制工作介质的流量来调节换热器内部的温度。
温度调节阀的选择和设计需要考虑介质类型、流量要求以及工艺条件等因素。
常见的温度调节阀有旋塞阀、蝶阀和电动调节阀等,根据具体要求选择合适的类型和规格,并进行安装和调试。
方案实施1. 温度传感器安装首先,根据换热器的结构和布置确定合适的温度传感器安装位置。
通常情况下,温度传感器需要安装在换热器的进口和出口处,以便及时感知到换热器的温度变化。
安装时要注意传感器与换热介质的接触良好,并确保传感器固定牢固,避免发生松动或脱落。
2. 温度控制器调试将温度传感器与温度控制器连接,并进行调试。
首先,根据实际情况设置设定温度值,并观察温度控制器的输出信号和换热器的温度变化情况。
如果温度控制不准确,可以通过调整控制器的参数来提高控制精度。
换热器温度控制方案
换热器温度控制方案换热器是工业生产中常见的设备,用于将热能从一个介质传递到另一个介质。
在实际应用中,为了确保换热器的效率和安全性,温度的控制是非常重要的。
本文将探讨几种常见的换热器温度控制方案,并对其优缺点进行分析。
首先,我们来介绍一种常见的控制方案——比例控制。
比例控制是通过调节冷却介质流量或加热介质流量的比例来控制换热器的温度。
这种方法简单直接,易于实施。
然而,由于比例控制只能调节流量,而不能对介质的温度进行直接控制,所以在某些情况下,可能无法满足精确控制的要求。
为了更好地控制换热器温度,反馈控制是一种更高级的控制方案。
反馈控制是通过测量换热器的出口温度,并根据测量结果调整加热或冷却介质的流量。
这种方式可以实现对温度的精确控制,提高系统响应速度和控制精度。
然而,反馈控制需要实时监测和计算,对硬件和算法要求较高,增加了系统的复杂性和成本。
除了比例控制和反馈控制,前馈控制也是一种常见的控制方案。
前馈控制是提前根据进口温度和流量变化预测出口温度的变化,并根据预测结果进行相应的调整。
这种方法可以在温度变化前就采取控制行动,提前消除变化带来的影响。
前馈控制在应对外部扰动和预测未来变化方面具有一定的优势。
然而,由于前馈控制无法准确预测所有变化情况,仍然需要与反馈控制结合使用。
在实际应用中,智能控制技术的发展也为温度控制带来了新的方案。
例如,基于人工智能的控制算法可以实时学习和优化系统的控制策略,在保证温度稳定的同时,提高系统的能效和自适应能力。
此外,传感器技术的进步也为温度控制提供了更多的数据来源,使得控制更加精确和可靠。
综上所述,换热器温度的控制方案多种多样,每种方案都有自己的优缺点。
在选择控制方案时,需要根据具体的应用需求、控制精度要求和系统复杂性等因素进行综合考量。
未来随着技术的进一步发展,相信会出现更多高效、智能的控制方案,为换热器温度控制提供更多选择和可能性。
换热器温度控制系统设计
换热器温度控制系统设计热交换器是工业生产中常见的设备,用于传递热量。
为了保证热交换器的高效运行,需要设计一个温度控制系统,使得热交换器内的温度始终保持在合适的范围内。
本文将从系统的硬件组成、控制策略、控制算法和性能评价四个方面对热交换器温度控制系统进行设计。
1.系统的硬件组成热交换器温度控制系统的硬件组成包括传感器、执行器和控制器。
传感器用于实时测量热交换器内的温度,常用的传感器包括热电偶和温度传感器。
执行器通过控制热交换器内的冷却或加热装置,来调节温度。
常用的执行器包括冷却水泵和加热器。
控制器负责采集传感器的数据,并根据控制策略进行控制,常用的控制器包括PLC和单片机。
2.控制策略热交换器温度控制系统的常用控制策略包括比例控制、比例积分控制和模糊控制。
比例控制是基于测量值与设定值之间的误差进行控制的,根据误差的大小来调节执行器,使得误差逐渐减小,温度稳定在设定值附近。
比例积分控制在比例控制的基础上增加了对误差的积分项。
积分项的作用是累积误差,并在误差连续一段时间内较大时进行补偿。
这种控制策略可以更好地消除系统的定常误差,使得温度更加稳定。
模糊控制是一种基于人类智慧的控制方法。
它通过建立模糊规则来描述输入变量和输出变量之间的关系。
根据传感器测量到的温度值和设定值,模糊控制器会根据事先设定的模糊规则来决定执行器的控制信号,从而实现温度的控制。
3.控制算法在选择控制算法时,可以采用经典的PID控制算法或者先进的自适应控制算法。
PID控制算法是一种常见的经典控制算法。
它根据误差的大小和变化率来计算控制信号,并通过加权比例、积分和微分项来调节执行器,最终实现温度的控制。
自适应控制算法是一种先进的控制算法,它能够根据实际的系统动态特性,自动调整控制参数。
自适应控制算法通过建立数学模型来描述系统,并根据系统的响应来修正控制参数,从而实现更好的控制效果。
4.性能评价热交换器温度控制系统的性能评价主要包括控制精度、稳定性和快速性。
换热器温度控制系统课程设计
换热器温度控制系统课程设计一、设计背景及目的1.1 设计背景换热器是工业生产中常见的设备,其主要作用是将热量从一个物质传递到另一个物质中。
在换热器的使用过程中,为了保证其正常运行和安全性,需要对换热器进行温度控制。
因此,本课程设计旨在设计一种能够实现换热器温度控制的系统。
1.2 设计目的本课程设计旨在通过对换热器温度控制系统的设计与实现,培养学生对自动控制原理和电气控制技术的理解和应用能力,提高学生对工业自动化技术的认识和应用水平。
二、设计内容2.1 系统结构本系统采用分层结构,包括上位机、下位机、传感器、执行机构等四个部分。
其中上位机负责监测和控制整个系统;下位机负责接收上位机指令并控制执行机构;传感器负责采集温度信号;执行机构则根据下位机指令调节换热器内部水流量。
2.2 系统功能本系统主要包括以下功能:(1)实时监测换热器内部的温度变化,并将数据传输给上位机;(2)根据上位机发送的指令,下位机调节执行机构控制水流量,从而实现对换热器内部温度的控制;(3)当系统出现异常情况时,自动报警并停止运行。
2.3 系统设计2.3.1 上位机设计上位机采用C#语言编写,主要包括以下功能:(1)实时监测温度数据,并进行显示;(2)设置温度控制参数,并发送给下位机;(3)接收下位机状态信息,并进行显示;(4)当系统出现异常情况时,自动报警并停止运行。
2.3.2 下位机设计下位机采用单片机进行设计,主要包括以下功能:(1)接收上位机指令,并解析指令内容;(2)根据指令调节执行机构控制水流量;(3)采集执行机构状态信息,并发送给上位机。
2.3.3 传感器设计本系统采用PT100型号温度传感器进行温度信号采集。
该传感器具有精度高、稳定性好等优点。
2.3.4 执行机构设计本系统采用电磁阀作为执行元件。
电磁阀具有调节水流量的功能,可实现对换热器内部温度的控制。
三、系统实现3.1 系统硬件设计本系统采用单片机作为下位机控制核心,通过串口与上位机进行通信;采用PT100型号温度传感器进行温度信号采集;采用电磁阀作为执行元件,控制水流量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. E-0101B混合加热器设计为确保混合加热器(E-0101B)中MN(亚硝酸甲酯),CO(一氧化碳)的出口温度为408K,选用0.68Mpa,408K 的加热蒸汽加热入口温度为294K的工艺介质。
为保证生成物的产量,质量,及最终生成物的转化率,且工艺介质较稳定,蒸汽源压力较小,变化不大,因此针对此实际情况,最后确定设计一个换热器的反馈控制方案。
1.1 换热器概述换热器工作状态如何, 可用几项工作指标加以衡量。
常用的工作指标主要有漏损率、换热效率和温度效率。
它们比较全面的说明了换热器的特点和工作状态,在生产和科学试验中了解这些指标,对于换热器的管理和改进都是必不可少的。
换热器是将热流体的部分热量传递给冷流体的设备,又称热交换器。
换热器在化工、石油、动力、食品及其它许多工业生产中占有重要地位,其在化工生产中换热器可作为加热器、冷却器、冷凝器、蒸发器和再沸器等,应用广泛。
换热器是一种在不同温度的两种或两种以上流体间实现物料之间热量传递的节能设备,是使热量由温度较高的流体传递给温度较低的流体,使流体温度达到流程规定的指标,以满足工艺条件的需要,同时也是提高能源利用率的主要设备之一。
1.2换热器的分类适用于不同介质、不同工况、不同温度、不同压力的换热器,结构型式也不同,换热器的具体分类如下:一按传热原理分类:间壁式换热器,蓄热式换热器,流体连接间接式换热器,直接接触式换热器,复式换热器二按用途分类:加热器,预热器,过热器,蒸发器三、按结构分类:浮头式换热器,固定管板式换热器,U形管板换热器,板式换热器等此设计要求是将进料温度都为297.99K 的MN(亚硝酸甲酯)和CO(一氧化碳)加热到出口温度为473K,所以我们经过调查研究,综合比较之后选择了管壳式( 又称列管式) 换热器。
管壳式换热器主要有壳体、管束、管板和封头等部分组成,壳体多呈圆形,内部装有平行管束或者螺旋管,管束两端固定于管板上。
在管壳换热器内进行换热的两种流体,一种在管内流动,其行程称为管程;一种在管外流动,其行程称为壳程。
管束的壁面即为传热面。
2.换热器的用途换热器又叫做热交换器(heat exchanger),是化工、石油、动力、食品及其它许多工业部门的通用设备,在生产中占有重要地位。
进行换热的目的主要有下列四种:. 使工艺介质达到规定的温度,以使化学反应或其他工艺过程很好的进行;. 生产过程中加入吸收的热量或除去放出的热量,使工艺过程能在规定的温度范围内进行;. 某些工艺过程需要改变无聊的相态;④. 回收热量。
由于换热目的的不同,其被控变量也不完全一样。
在大多数情况下,被控变量是温度,为了使被加热的工艺介质达到规定的温度,常常取出温度问被控温度、调节加热蒸汽量使工艺介质出口温度恒定。
对于不同的工艺要求,被控变量也可以是流量、压力、液位等。
3.换热器的工作原理及工艺流程图换热器的温度控制系统换热器工作原理工艺流程如下:冷流体和热流体分别通过换热器的管程和壳程,通过热传导,从而使热流体的出口温度降低。
热流体加热炉加热到某温度,通过循环泵流经换热器的管程,出口温度稳定在设定值附近。
冷流体通过多级离心泵流经换热器的壳程。
在换热器的冷热流体进口处均设置一个调节阀,可以调节冷热流体的大小。
图1 换热器温度控制系统工艺流程图从传热过程的基本方程式可知,为了保证出口的温度平稳,满足工艺生产的要求,必须对传热量进行调节,调节传热量有以下几条途径:、调节载热体的流量。
调节载热体流量大小,其实只是改变传热速率方程中的传热系数K 和平均温差△Tm,对于载热体在加热过程中不发生相变的情况,主要是改变传热速率方程的热系数K;而对于载热体在传热过程中发生相变的情况,主要是改变传热方程中的△Tm。
、调节传热平均温差△Tm。
这种控制方案滞后较小反应迅速,应用比较广泛。
、调节传热面积F。
这种方案滞后较大,只有在某些必要的场合才采用。
④、将工艺介质分路。
该方案是一部分工艺介质经换热, 另一部分走旁路。
在设计传热设备自动化控制方案时,要视具体传热设备的特点和工艺条件而定。
而在某些场合,当被加热工艺介质的出口温度较低,采用低压蒸汽作载热体,传热面积裕量又较大时,为了保证温度控制平稳及冷凝液排除畅通,往往以冷凝器流量作为操纵变量,调节传热面积,以保持出口温度恒定。
4. 控制系统1.3控制系统的选择由于本次设计的任务控制换热器被加热物料出口温度,工艺过程主要就是冷热流体热交换,且外来干扰因素主要是载热体的流量变化,故选择单回路控制系统便可以达到预定的控制精度。
1.4工艺流程图和系统方框图单回路控制系统又称为简单控制系统,是有一个被控对象、一个检测元件及变送器、一个调节器和一个控制器所构成的闭合系统。
单回路控制系统结构简单、易于分析设计,投资少、便于施工,并能满足一般的一般生产过程的控制要求,因此在生产过程中得到广泛的应用,其方框图如下图所示。
图2、单回路控制系统方框图其中,被控变量:被加热物料的出口温度;操纵变量:载热体的流量。
如图所示:测量元件及变送器对冷物料出口温度进行测量,得到测量值Ym 并传送给调节器,调节器把Ym 与内部给定值Ys 比较得到偏差信号 e 按一定的调节运算规律计算出控制信号,并将控制信u 号传送给执行器,执行器接收到控制信号u,自动的改变阀门的开度,改变蒸汽的流量。
5. 、被控对象特性研究换热器是传热设备中较为简单的一种,也是最常见的一种。
通常它两侧的介质( 工艺介质和载热体) 在换热过程中均无相变。
换热器换热的目的是保证工艺介质加热( 或冷却) 到一定温度。
为保证出口温度平稳,满足工艺要求,必须对传递的热量进行调节。
6.被控变量的选择影响一个生产过程正常操作的因素很多, 但并非对所有影响因素都要进行控制. 被控参数是一个输出参数, 应为独立变量, 与输入量之间应有单值函数关系. 对于换热器过程控制系统, 人们最关心的是对换热器中介质即冷流体的温度和压力的自动控制与调节, 而在这两项当中, 温度的自动调节又处于首位. 因为出口水温直接影响产品质量、产量、效率及安全性, 即本系统把换热器出口水温作为被控参数.7.操纵变量的选择在控制系统中,用来克服干扰对被控变量的影响,实现控制作用的变量就是操纵变量。
将出口温度维持在一定值,影响冷物料出口温度的有很多因素,比说冷物料的流量,载热体的流量,载热体的温度等。
冷物料是工艺所需要的,不能选用冷物料作为被控变量,而若选载热体温度作为操纵变量,改变其温度还需改变其他工艺过程如锅炉的温度,考虑工艺合理性,我选择对热流体流量进行控制,保证出口温度的稳定。
8.被控对象特性换热器系统在连续生产中,其控制原理可通过热量平衡方程和传热速率方程来分析,这个方案的控制流程图如图3。
图3 换热器的温度控制系统工艺流程图为了处理方便,不考虑传热过程中的热损失,根据能量守恒定律,热流体失去的热量应该等于冷流体吸收的热量,热量平衡方程为:q=G c(T1 - T1 )G c(T2 - T2 )1 1 i o2 2 o i式中,q 为传热速率(单位时间内传递的热量);G为质量流量;c 为比热容;T 为温度。
式中的下标处 1 为载热体;2 为冷流体;i 为入口;o为出口。
传热过程中的传热速率为:q KF T式中,K为传热系数;F 为传热面积;T 为两流体间的平均温差。
其中,平均温差T 对于逆流、单程的情况为对数平均值:(- )-(- )T T T T T T1i1o2o 2i 1 2T=T T T1i 1o 1ln lnT T T2o 2i 2当1T T1i 1o3 T T2o 2i3 时,其误差在5%以内,可采用算术平均值来代替,算术平均值表示为:T (- )+(- )T T T T1i 1o 2o 2i2由于冷流体间的传热既符合热量平衡方程,又符合传热速率方程,因此有下列关系G c(T2 - T2)=KF T2 2 o iKF TT T2o 2iG c2 25从上式可以看出,在传热面积F、冷流体进口流量G2 、温度T2i 和比热容c2 一定的情况下,影响冷流体出口温度的因素主要是传热系数K以及平均温差T 。
9.调节器调节规律的选择调节器的作用是对来自变送器的测量信号与给定值比较所产生的偏差e(t)进行比例(P)、比例积分(PI)、比例微分(PD)或比例积分微分(PID)运算,并输出信号到执行器。
选择调节器的控制规律是为了使调节器的特性与控制过程的特性能很好配合,使所设计的系统能满足生产工艺对控制质量指标的要求。
比例控制规律(P)是一种最基本的控制规律,其适用范围很广。
在一般情况下控制质量较高,但最后有余差。
对于过程控制通道容量较大,纯时延较小,负荷变化不大,工艺要求又不太高的场合,可选用比例控制作用。
比例控制规律(P)的微分方程数学模型为:u(t ) k e(t )p比例积分(PI)控制规律,结合了比例控制反应快,积分控制能消除余差。
但是当过程控制通道的纯时延和容量时延都较大时,由于积分作用容易引起较大的超调,可能出现持续振荡,所以要尽可能避免用比例积分控制规律,不然会降低控制质量。
通常对管道内的流量或压力控制,采用比例积分作用其效果甚好,所以应用较多。
比例积分(PI)控制规律的微分方程数学模型为:1tu(t ) k { e(t) e(t)dt}pTi比例微分(PD)控制规律,由于引入微分,具有超前作用,对于被控过程具有较大容量时延的场合,会大大改善系统的控制质量。
但是对于时延很小,扰动频繁的系统,由于微分作用会使系统产生振荡,严重时会使系统发生事故,所以应尽可能不用微分作用。
比例微分(PD)控制规律的微分方程数学模型为:de(t)u(t) { e(t) }k Tp ddt比例积分微分(PID)作用是一种理想的控制作用,一般均能适应不同的过程特性。
当要求de tu(t ) k {e(t) e(t) dt T }p dTi dt6其中:u(t) :为调节器的输出号k :放大倍数pT :积分时间常数iT :微分时间常数de(t ):设定值与测量值偏差信号通过以上几种调节规律的分析及本系统是温度控制为被控参数,温度检测本身具有滞后性,为了弥补这个缺点,本系统选用比例积分微分(PID)控制规律。
3、过程检测控制仪表的选用10.测温元件及变送器根据生产实践和现场使用条件以及仪表的性能,我们选用普通热电偶测温仪表。
热电偶温度仪表是基于热电效应原理制成的测温仪器,它由热电偶、电测仪表和连接导线组成,其核心元件是热电偶。
热电偶温度计有以下特点:①测温精度高、性能稳定;②结构简单,易于制造,产品互换性好;③将温度信号转换为电信号,便于信号远传和实现多点切换测量;④测温范围广,可达-200~2000℃;⑤形式多样,适用于多种测温条件;被控温度在500℃以下,由[1]表3-5 选用铂热电阻温度计,为了提高检测精度,应采用三线制接法,并配用DDZ-Ⅲ型热电偶温度变送器。