函数单调性的应用
第三讲:函数的单调性
第三讲:函数单调性与应用一.知识点梳理 1. 函数单调性的定义(1) 一般地,对于给定区间上的函数f(x),如果对于属于这个区间的任意两个自变量x 1,x 2,当x 1<x 2时,都有f(x 1)<f(x 2)(或都有f(x 1)>f(x 2)),那么就说f(x)在这个区间上是单调增函数(或单调减函数).(2) 如果函数y=f(x)在某个区间上是单调增函数(或单调减函数),那么就说f(x)在这个区间上具有(严格的)单调性,这个区间叫作f(x)的单调区间.若函数是单调增函数,则称该区间为单调增区间;若函数为单调减函数,则称该区间为单调减区间. 2. 复合函数的单调性对于函数y=f(u)和u=g(x),如果当x ∈(a,b)时,u ∈(m,n),且u=g(x)在区间(a,b)上和y=f(u)在区间(m,n)上同时具有单调性,则复合函数y=f[g(x)]在区间(a,b)上具有单调性,并且具有这样的规律:同增异减(即内外函数的单调性相同则为增 ,内外函数的单调性相反则为减) 3.和函数的单调性 同增为增,同减为减,不同步不确定。
4. 积函数的单调性 (1) 同增同正,得增;(2) 同增同负,得减;(3) 同减同正,得减;(4) 同减同负,得增; (5) 一增一减,一正一负,单调性与原函数中函数值为负的函数相同; (6) 其余情况,可增可减,亦可为常数函数.5. 求函数单调区间或证明函数单调性的方法:(1) 函数单调性的定义法; (2) 函数的图象法; (3) 导函数法;(4)利用已知函数的单调性法 二.考点突破 1.函数单调性的判断例1:判断下列函数在区间(0,2)上的单调性:(1) y=-x+1; (2) y=; (3) y=x 2-2x+5; (4) y=2x .例2:设函数()f x =()f x 的单调性;例3:求下列函数的增单调区间(1)2()(3),(1))x f x x e x =-⋅∈-⋃+∞; (2)22()log (1)(2)f x x x x =+++变式:1. 函数f(x)=x 2-2x 的单调增区间为 . 2.给定下列函数:①y=12x ;②12log (1)y x =+;③y=-|x-1|;④y=2x+1.其中在区间(0,1)上单调递减的函数是 .(填序号)3.求函数f(x)=ln(4+3x-x 2)的单调减区间是 .4.求函数2()23f x x x =-++的单调增区间5.若函数1,0()0,01,0x f x x x >⎧⎪==⎨⎪-<⎩,2()()g x x f x =⋅,求函数()g x 的单调减区间6.已知函数f(x)= 是(-∞,+∞)上的单调减函数,那么实数a 的取值范围是 。
函数的单调性的应用(2019年11月整理)
例4:作出函数f(x)= x2 6x 9+ x2 6x 9 的图象,并指出函数f(x)的单调区间
分析:作出函数图象,直观地判断函数的单调区间
y
解: 原函数可化为:
-2x x -3
f(x)=|x-3|+|x+3|= 6 2x
-3<x<3 Y=-2x x3
6
Y=2x
如图可得:在义域:
y f (u)
u 2x x2
u在(-,1)上是增函数,在(1,+)上是减函数
而y=f(u)在R上是减函数
y f (2x x2 )在(-,1)上是减函数
在(1,+)上是增函数
例2:判断函数y
1 的单调性 x2 2x 3
解:定义域:x2 2x 3 0 x (, 1) (3, )
x
在[3,+)上为增函数,
-3
3
在[-3,3]上为常函数,不具有单调性
例3:已知f(x)=8+2x-x2,若g(x) f (2 x2), 试确定g(x)的单调区间,及单调性
(重点班、实验班)
解:设u=2-x2,则 y g(x) f (u) 8 2u u2 (u 1)2 7
函数的单调性
1.函数单调性的判定. 2.函数单调性的证明. 3.函数单调性的应用.
一.函数单调性的判定方法:
1.利用已知函数的单调性 2.利用函数图象 3.复合函数的判定方法 4.利用定义
例1.若函数f(x)在实数集上是减函数,求f(2x-x2) 的单调区间以及单调性.
函数的单调性在解题中十个方面的应用举例
函数的单调性在解题中十个方面的应用举例函数的单调性是函数的一条重要性质,通过研究函数的单调性可以揭示函数值的变化特性,对于一些数学问题,若解题中注意应用函数的单调性,可以使问题的解决简捷明快;它是历年高考重点考查的重要内容之一,它在中学数学的应用十分广泛。
本文通过利用函数的单调性解方程、解不等式、证明不等式等问题的例子,探讨函数单调性在解题中的应用。
1利用函数的单调性比较大小2利用函数的单调性解方程3利用函数的单调性解方程根的问题x2+x+1=0至多有一个实根。
4利用函数的单调性解不等式例4解不等式(2x-1)5+2x-1<x5+x解:原不等式两边的结构都是t5+t的形式,故令f(t)=t5+t,则原不等式可写为f(2x-1)<f(x)∵f(t)=t5+t在(-∞,+∞)上是增函数,由f(2x-1)<f(x)得2x-1<x,解得x<1∴原不等式的解是x<15利用函数的单调性求值6利用函数的单调性求最大(小)值例6 已知圆C:(x+4)2+y2=4,圆D的圆心D在y轴上且与圆C外切,圆D与y轴交于A、B两点,点P坐标为(-3,0)。
求当D在轴上移动时,得最大值。
7利用函数的单调性求取值范围例7若关于x的方程cos2x+2asinx-3a-1=0有实数解,求a的取值范围。
故当sinx=1时,a最小=-1,因此,a的取值范围是-1,<a<08利用函数的单调性证明条件等式9利用函数的单调性证明条件不等式10利用函数的单调性证明函数的性质例10试证函数f(x)=x-asinx(x∈R,0≤a,1)有反函数。
参考文献1谭森.函数单调性的应用花名册.高中数理化,2010(10)2胡岩火等.函数单调性在解题中的一些应用.数学通报,1993(02)3李国勤.巧用函数的单调性证明不等式./xxff/200510/gaoshu/42.htm4边锡栋.函数单调性的应用.学勉数学网5杨晓.函数的单调性在解题中的应用/wu51/keyan/shu15.doc2007-6-13。
函数的单调性的应用课件
详细描述
在许多优化算法中,如梯度下降法、牛顿法等,可以 利用函数的单调性来指导搜索方向,加速算法的收敛 速度。此外,在求解最优化问题时,可以利用单调性 来证明解的存在性和唯一性。
THANKS
感谢观看
导数与函数的单调性
导数与函数的单调性密切相关。导数大于零的区间内,函数单调递增;导数小于零的区间内,函数单 调递减。
通过求函数的导数,可以判断函数的单调性,进而研究函数的极值、拐点等性质。此外,导数还可以 用于求解函数的零点、近似计算等问题。
微积分中的单调性应用
单调性在微积分中有着广泛的应用。例如,在积分学中,可以利用单调性判断积分的符号和大小;在级数理论中,可以利用 单调性判断级数的收敛性和发散性。
02
在单调增函数中,随着自变量$x$的增大,函数值 $f(x)$也相应增大。
03
单调增函数在图像上表现为从左到右逐渐上升的曲 线。
单调减函数
01
单调减函数是指函数在某个区间内,对于任意$x_1 <
x_2$,都有$f(x_1) > f(x_2)$。
02
在单调减函数中,随着自变量$x$的增大,函数值
$f(x)$相应减小。
单调性在图像分析中的应用
判断极值点
通过单调性分析,可以确定函数的极值 点,即函数由递增转为递减或由递减转 为递增的点。
VS
确定函数值范围
根据单调性,可以确定函数在某个区间内 的最大值和最小值。
图像变换与单调性的关系
平移变换
函数图像的平移不影响函数的单调性,平移 后的图像仍保持相同的单调性。
伸缩变换
利用单调性进行投资决策分析
总Hale Waihona Puke 词投资决策分析中,函数的单调性可以用于评 估投资组合的风险和回报。
函数单调性的应用及解法
函数单调性的应用及解法函数的单调性是数学中的一个重要概念,它描述了函数随着自变量的增大或减小,函数值是递增还是递减的趋势。
掌握函数的单调性不仅对于理解函数的性质和行为有帮助,还可以在实际问题中进行正确的推导和解决。
本文将从函数单调性的概念、解法和应用方面进行详细论述,以便读者更好地理解和灵活运用。
首先,我们来具体定义函数的单调性。
设函数f(x)在区间I上有定义,如果对于任意x1和x2,若x1 < x2,则有f(x1) ≤f(x2),则称函数f(x)在区间I上是递增的;如果对于任意x1和x2,若x1 < x2,则有f(x1) ≥f(x2),则称函数f(x)在区间I上是递减的。
如果函数f(x)既是递增的又是递减的,则称函数f(x)在区间I上是严格单调的。
接下来,我们将介绍解决函数单调性的一般方法。
首先,我们需要找到函数的导数。
对于定义在区间I上的函数f(x),如果导数f'(x) ≥0,则f(x)在区间I上递增;如果导数f'(x) ≤0,则f(x)在区间I上递减。
如果导数f'(x) > 0,则f(x)在区间I上严格递增;如果导数f'(x) < 0,则f(x)在区间I上严格递减。
因此,解决函数单调性问题的一般步骤如下:首先,计算函数的导数;然后,找到导数的零点,即导数为0的点;最后,根据导数的正负情况,判断函数的单调性。
然而,由于计算函数的导数和求解导数的零点可能会比较复杂,所以在实际应用中,我们往往会借助一些简化的策略和技巧。
下面,我将以实际问题为例,具体介绍函数单调性的应用和解法。
第一个应用场景是求解函数极值问题。
对于一个凸函数(即导数的二阶导数大于等于0),如果在一个区间上函数的导数从正数变为负数,那么函数在该点上取得极大值;如果在一个区间上函数的导数从负数变为正数,那么函数在该点上取得极小值。
这是因为函数在这两种情况下都出现了斜率的变化,导致函数的增长或减小逐渐趋缓。
函数单调性的七种应用
函数单调性的七种应用
一、内容提要如果函数f()对于区间(a,b)内任意两个值1和2,当1
如果对于区间(a,b)内任意两个值1和2,当1f(2),那么f()叫做在区间(a,b)内是单调减少的,区间(a,b)叫做函数f()的单调减少区间。
在其中一区间单调增加或单调减少的函数叫做这个区间的单调函数,
这个区间叫做这个函数的单调区间。
二、函数单调性的应用
函数的单调性既属于数学的基础知识,也是解决数学问题的重要工具。
许多数学问题,比如,确定参变量的范围、证明不等式、求解三角方程、高
次方程、超越方程、求解高难度的不等式,以及确定函数的周期,都要用到
函数的单调性。
上面我所提到的这些问题看上去用初等方法解决起来都较
为困难。
但是,如果采用函数的单调性来求解的话,那将变得很简单、可行。
三、例题分析
例1:f()=,其中a是实数,n是任意给定的自然数且n≥2,如果f()当
∈(-∞,1]时有意义,求a的取值范围。
解:要使f()有意义必须且只须1+2+3…(n-1)+na>0恒成立,从而a>
①,令①右端为式g(),则g()在(-∞,1]上单调递增。
从而有
g()≤g(1),∈(-∞,1]而g(1)=
∴g()≤≤(∵n≥2)
由式①可得a>
例2:设00时,有f()在(0,1)上是增函数。
则f()0
解:改写原不等式为
()3+>3+5
令f()=3+5,则原不等式即为
f()>f()⑥
∵f()是实数集R上的单调增函数
∴不等式⑥等价于不等式>
解之得原不等式的解为-1。
函数单调性及其应用的研究
函数单调性及其应用的研究
函数单调性指的是函数在其定义域上的增减性质。
具体来说,如果函数f的定义域上的任意两个自变量x1和x2满足x1<x2,则有f(x1)<f(x2)(即f单调递增),或者f(x1)>f(x2)(即f单调递减)。
如果函数既不单调递增也不单调递减,则称之为不单调。
函数单调性的研究在数学分析、微积分、数值分析、优化等领域中有着广泛的应用。
以下是一些具体的应用:
1. 函数单调性可以帮助我们确定函数的最值和极值,从而指导我们在实际问题中找到最优解。
2. 在微积分中,函数单调性可以帮助我们证明一些基本定理,例如中值定理、罗尔定理等。
3. 函数单调性还可以为数值计算提供依据。
如果我们知道函数f在一个区间上单调递增或递减,那么我们就可以使用二分法等技术来快速找到这个区间内的零点或极值点。
4. 在优化问题中,函数单调性可以帮助我们确定最优解空间的边界和方向,从而指导我们设计更加高效的优化算法。
总之,函数单调性是数学中一个非常重要的概念,它不仅可以帮助我们求解各种实际问题,还可以为理论研究提供有力的工具和方法。
函数单调性及其应用
函数单调性及其应用
函数单调性是指函数在某个定义域内的取值随着自变量的增加或减少而单调递增或递减的特性。
如果函数在该定义域内只有单调递增或单调递减的情况,则称该函数具有单调性。
应用方面,函数单调性可以用于优化问题的求解、最大值和最小值问题的解决以及一些相关定理的证明。
常见的应用包括:
1. 优化问题的求解。
如果在某个定义域上,函数单调递增,则可以通过增大自变量的取值达到最大化函数值的目的;如果函数单调递减,则可以通过减小自变量的取值达到最大化函数值的目的。
2. 最大值和最小值问题的解决。
如果函数具有单调性,则可以通过确定其定义域上的边界值来确定函数的极值点。
3. 相关定理的证明。
函数单调性对于一些相关定理的证明具有十分重要的作用,例如拉格朗日中值定理和柯西-施瓦茨不等式等。
综上所述,函数单调性在数学领域中具有广泛的应用和重要的意义。
函数的单调性及其应用
函数的单调性及其应用
函数的单调性是指函数在定义域内的取值增减情况。
具体地说,设函数$f(x)$在区间$I$内有定义,如果对于$I$内任意的$x_1$和
$x_2$,只要$x_1<x_2$,就有$f(x_1)<f(x_2)$,则称$f(x)$在区间$I$内单调递增;如果对于$I$内任意的$x_1$和$x_2$,只要
$x_1<x_2$,就有$f(x_1)>f(x_2)$,则称$f(x)$在区间$I$内单调递减。
应用方面,函数的单调性可以帮助我们判断函数的图像和性质,如:
1. 判断函数的最值及其取值范围:单调递增的函数在定义域内
最小值是在端点处取得,最大值是在定义域最大值处取得;单调递
减的函数则恰好相反。
2. 判断函数零点:若函数为单调递增,则只有一个零点;若函
数为单调递减,则只有一个零点。
3. 判断函数的奇偶性:若函数为奇函数,则当$x<0$时单调递减,$x>0$时单调递增;若函数为偶函数,则在整个定义域内都单调
递增或单调递减。
4. 判断函数解析式的符号:已知某函数在某区间单调递增或单
调递减,则我们可以根据函数图像的位置,得到函数解析式的符号。
函数的单调性的应用
例4:作出函数f(x)= x2 6 x 9 + x2 6 x 9 的图象,并指出函数f(x)的单调区间
分析:作出函数图象,直观地判断函数的单调区间 解: 原函数可化为: -2x f(x)=|x-3|+|x+3|= 6 2x x -3 -3<x<3 x3
Y=-2x 6 y
总结:此函数以下单调规律: 两边为增,中间为减.
-a
0
-a
点拨:含参函数,不能化为基本函数类型,常采用定义 法解题.
例3.已知定义在(0,+)上的函数f(x)满足 : 对x,y (0,+)都有f(xy)=f(x)+f(y), 当x>1时,f(x)>0. 试证明:f(x)在(0,+)上是增函数
a(x+2)-2a+1 2a 1 解: f(x)= a x2 x2 当-a+1>0时 a<1 f(x)在(-2,+)上是减函数 当-a+1<0时 a>1 f(x)在(-,-2)上是增函数
点拨:含参函数,能够化归为常见函数的单调性时,直接 讨论参数.
二.证明:根据函数单调性定义解题.
Y=2x
如图可得:在(-,-3]上为减函数, 在[3,+)上为增函数,
-3 3
x
在[-3,3]上为常函数,不具有单调性
例3:已知f(x)=8+2x-x , 若g ( x) f (2 x ),
2 2
试确定g ( x)的单调区间,及单调性
(重点班、实验班)
解:设u=2-x ,则 y g ( x) f (u ) 8 2u u (u 1) 7
函数的单调性和奇偶性的综合应用
精品资料欢迎下载函数的单调性和奇偶性的综合应用知识要点:对称有点对称和轴对称:O点对称:对称中心O轴对称:数的图像关奇函于原点成点对称,偶函数的图像关于y 轴成轴对称图形。
1、函数的单调性:应用:若y f ( x) 是增函数, f ( x1 )应用:若y f ( x) 是减函数, f ( x1 )f (x2 )x1x2 f (x2 )x1x2相关练习:若 y f (x) 是R上的减函数,则 f (1) f ( a2 2 a 2 )2、熟悉常见的函数的单调性:y kx b 、y k、 y ax2bx cb在 (x相关练习:若 f ( x) ax ,g ( x),0) 上都是减函数,则 f (x)ax 2bx 在 (0,) 上是函x数(增、减)3、函数的奇偶性:定义域关于原点对称, f (x) f (x) f (x) 是偶函数定义域关于原点对称, f (x) f ( x) f ( x) 是奇函数(当然,对于一般的函数,都没有恰好f ( x) f ( x) ,所以大部分函数都不具有奇偶性)相关练习:( 1)已知函数f ( x)ax2bx4a1是定义在 [a 1,2a] 上的奇函数,且 f (1) 5 ,求 a 、bb(2) 若f ( x)(K2) x2( K1)x 3 是偶函数,则 f ( x) 的递减区间是。
(3) 若函数 f ( x) 是定义在R 上的奇函数,则 f (0)。
(4)函数 y f (x) 的奇偶性如下:画出函数在另一半区间的大致图像奇函数偶函数奇函数奇函数y y y yo x o x o x o x精品资料欢迎下载例题分析:4、单调性和奇偶性的综合应用【类型 1转换区间】相关练习:( 1)根据函数的图像说明,若偶函数y f ( x) 在 (,0) 上是减函数,则 f ( x) 在 (0,) 上是函数(增、减)(2)已知 f ( x) 为奇函数,当x0时, f ( x)(1x) x ,则当x0 时, f (x)=(3)R 上的偶函数在(0,) 上是减函数, f (3) f ( a2a 1 )4(4) 设f (x)为定义在((,) 上的偶函数,且 f (x) 在 [0,) 为增函数,则 f (2) 、 f () 、f (3) 的大小顺序是()A. f () f (3) f (2)B. f () f (2) f (3)C. f () f (3) f (2)D. f () f (2) f (3)(5)如果奇函数 f (x) 在区间 [3,7] 上的最小值是5,那么 f ( x) 在区间 [ 7, 3]上 ()A.最小值是 5B. 最小值是-5C. 最大值是-5D. 最大值是 5(6)如果偶函数 f (x) 在 [3,7] 上是增函数,且最小值是-5那么 f (x) 在 [ 7,3]上是( )A.增函数且最小值为-5B. 增函数且最大值为-5C.减函数且最小值为-5D. 减函数且最大值为-5(7)已知函数 f ( x) 是定义在R 上的偶函数,且在(, 0)上 f (x) 是单调增函数,那么当x10 , x20 且x1x20 时,有()A. f (x1) f ( x2 )B. f ( x1 ) f (x2 )C. f ( x1) f ( x2 )D. 不确定(8)如果 f ( x) 是奇函数,而且在开区间( ,0) 上是增函数,又 f (2)0 ,那么 x f ( x) 0的解是()A. 2 x 0 或 0 x2B. 2 x 0 或 x 2C. x 2 或 0 x 2D. x 3 或 x 3(9)已知函数f ( x)为偶函数,xR ,当 x0 时,f ( x)单调递增,对于x1,x2,有| x1|| x2|,则()A. f ( x1)f ( x2)B.f ( x1) f ( x2)C.f ( x1)f ( x2 ) D. | f ( x1 ) | | f ( x2 ) |精品资料 欢迎下载5、单调性和奇偶性的综合应用【类型 2利用单调性解不等式】(1 相关练习: (1)已知y f ( x)是( 3,3)上的减函数,解不等式f (x 3) f (2 x)1 ,)2(0, 2 (2) 定义在( 1,1)上的奇函数f ( x)是减函数,且满足条件 f (1 a) f (1 2a) 0),求 a的取值范围。
函数单调性在生活中实际应用
函数单调性在生活中实际应用函数单调性在我们生活中有着广泛的应用,其中最常见的就是经济学中的供求关系。
例如在市场中,当价格上涨时,需求量会逐渐减少,反之价格下跌时,需求量会增加,这就是函数单调性的应用。
另外,函数单调性还可以应用在企业的生产管理方面,可以帮助企业确定生产规模,从而获取较大的经济效益,同时也可以有效的防止企业的生产成本过高。
此外,函数单调性也可以应用在社会管理方面,可以帮助政府有效的进行政策调整,以达到更好的社会效果。
例如,政府可以采取政策措施来控制房价,房价过高时政府可以采取控制房价的措施,从而降低房价;反之,如果房价过低时,政府可以采取政策手段来提高房价。
此外,函数单调性还可以应用在财政管理方面,可以帮助政府有效的调整财政支出和税率,从而获取较大的财政收入。
函数单调性作为一种运用自然现象的规律,其应用非常广泛,可以方便政府和企业更好的进行规划,实现更高效的管理。
此外,函数单调性也广泛应用在数学中,可以用来寻找极值点。
函数单调性可以帮助我们确定函数在某一点是最大值还是最小值,从而可以有效的计算函数的最大和最小值从而获得更好的结果。
因此函数单调性在解决数学难题方面也发挥着重要的作用。
另外,函数单调性在经济学的投资分析中也有重要作用,它可以帮助投资者对风险有效的进行评估和预测,以便于投资者采取更加谨慎的投资行为,从而获得最优投资收益。
总之,函数单调性在日常生活、社会管理、财政管理、数学以及投资分析中都发挥重要作用,它不仅可以帮助政府和企业更好的制定规划,同时也可以帮助投资者对风险有效的进行评估和预测。
此外,函数单调性在建筑设计、农业生产以及工程管理等领域也有着重要的作用。
在建筑设计中,函数单调性可以帮助建筑设计师确定合理的建筑尺寸,从而实现安全可靠的建筑设计。
在农业生产中,函数单调性可以帮助农民们确定合理的种植模式,从而最大化农作物的产量。
在工程管理中,函数单调性可以帮助工程管理者有效的完成复杂的工程,从而节约时间和金钱。
函数单调性的应用
函数单调性的应用 The latest revision on November 22, 2020函数单调性的应用一、比较大小例1若函数f(x)=x2+mx+n,对任意实数x都有f(2-x)=f(2+x)成立,试比较f(-1),f(2),f(4)的大小.解依题意可知f(x)的对称轴为x=2,∴f(-1)=f(5).∵f(x)在[2,+∞)上是增函数,∴f(2)<f(4)<f(5),即f(2)<f(4)<f(-1).评注(1)利用单调性可以比较函数值的大小,即增函数中自变量大函数值也大,减函数中自变量小函数值反而变大;(2)利用函数单调性比较大小应注意将自变量放在同一单调区间.二、解不等式例2已知y=f(x)在定义域(-1,1)上是增函数,且f(t-1)<f(1-2t),求实数t的取值范围.解依题意可得解得0<t<.评注(1)利用单调性解不等式就是利用函数在某个区间内的单调性,推出两个变量的大小,然后去解不等式.(2)利用单调性解不等式时应注意函数的定义域,即首先考虑使给出解析式有意义的未知数的取值范围.(3)利用单调性解不等式时,一定要注意变量的限制条件,以防出错.三、求参数的值或取值范围例3已知a>0,函数f(x)=x3-ax是区间[1,+∞)上的单调函数,求实数a的取值范围.解任取x1,x2∈[1,+∞),且x1<x2,则Δx=x2-x1>0.Δy=f(x2)-f(x1)=(x-ax2)-(x-ax1)=(x2-x1)(x+x1x2+x-a).∵1≤x1<x2,∴x+x1x2+x>3.显然不存在常数a,使(x+x1x2+x-a)恒为负值.又f(x)在[1,+∞)上是单调函数,∴必有一个常数a,使x+x1x2+x-a恒为正数,即x+x1x2+x>a.当x1,x2∈[1,+∞)时,x+x1x2+x>3,∴a≤3.此时,∵Δx=x2-x1>0,∴Δy>0,即函数f(x)在[1,+∞)上是增函数,∴a的取值范围是(0,3].四、利用函数单调性求函数的最值例4已知函数f(x)=,x∈[1,+∞).(1)当a=4时,求f(x)的最小值;(2)当a=时,求f(x)的最小值;(3)若a为正常数,求f(x)的最小值.解(1)当a=4时,f(x)=x++2,易知,f(x)在[1,2]上是减函数,在[2,+∞)上是增函数,∴f(x)min=f(2)=6.(2)当a=时,f(x)=x++2.易知,f(x)在[1,+∞)上为增函数.∴f(x)min=f(1)=.(3)函数f(x)=x++2在(0,]上是减函数,在[,+∞)上是增函数.当>1,即a>1时,f(x)在区间[1,+∞)上先减后增,∴f(x)min=f()=2+2.当≤1,即0<a≤1时,f(x)在区间[1,+∞)上是增函数,∴f(x)min=f(1)=a+3.。
函数单调性的应用教案
函数单调性的应用教案一、教学目标:1. 理解函数单调性的概念,掌握函数单调性的判断方法。
2. 学会运用函数单调性解决实际问题,提高解决问题的能力。
3. 培养学生的逻辑思维能力和数学建模能力。
二、教学内容:1. 函数单调性的定义与判断方法2. 函数单调性在实际问题中的应用3. 函数单调性在数学建模中的应用三、教学重点与难点:1. 函数单调性的判断方法2. 函数单调性在实际问题中的应用四、教学方法与手段:1. 采用讲授法、案例分析法、讨论法等多种教学方法,引导学生主动探究、积极参与。
2. 使用多媒体课件,直观展示函数单调性的概念和应用实例。
五、教学过程:1. 导入新课:通过复习初中阶段的一次函数、二次函数的单调性,引出本节课的内容——函数单调性的应用。
2. 知识讲解:(1) 介绍函数单调性的定义及其判断方法。
(2) 通过实例讲解函数单调性在实际问题中的应用,如最值问题、不等式问题等。
(3) 介绍函数单调性在数学建模中的应用,如线性规划、最优化问题等。
3. 课堂练习:布置具有代表性的练习题,让学生巩固所学知识。
5. 课后作业:布置课后作业,巩固所学知识,提高解决问题的能力。
六、教学反思:在课后对教学效果进行反思,了解学生的掌握情况,针对存在的问题进行调整教学策略,以提高教学效果。
七、教学评价:通过课堂表现、课后作业和课后访谈等方式,对学生的学习情况进行全面评价,了解学生对函数单调性及其应用的掌握程度。
八、教学拓展:引导学生深入研究函数单调性的其他方面,如函数单调性的推广、函数单调性与奇偶性的关系等。
九、教学资源:1. 多媒体课件2. 教学案例及实例3. 练习题及解答4. 数学建模相关资料十、教学进度安排:1课时(45分钟)完成本节课的教学内容。
六、教学内容拓展:1. 研究函数的单调性与奇偶性的关系。
2. 探讨函数单调性在高等数学中的应用,如微分、积分等。
七、教学活动设计:2. 安排一节实践课,让学生运用函数单调性解决实际问题,如最优化问题、经济增长率问题等。
函数单调性的应用
2
a≥(2-a)×1+1,
7. 已知函数 () = ቐ
( − 2), ≥ 2,
满足对任意的实数 1 ≠ 2 ,都有
− 1, < 2
13
(−∞, ]
8
(1 )−(2 )
< 0 成立,则实数 的取值范围为_______________.
1
( )
2
1 −2
2
1
,+∞.
2
a(x+2)+1-2a
1-2a
方法二:f(x)=
=a+
,∵f(x)在(-2,+∞)上单调递
x+2
x+2
1
增,∴1-2a<0,∴a>2.
(1,2)
4. 已知函数 y=loga(2-ax)在[0,
1]上是减函数,
则实数 a 的取值范围是________.
【解析】 设 u=2-ax,∵a>0,且 a≠1,
2 − > 0,
[解析] 由已知可得 ൞ + 3 > 0,
解得 −3 < < −1 或 > 3 ,所以实数 的
2 − > + 3,
取值范围为 (−3, −1) ∪ (3, +∞) .
1
2. 已知函数 () 为 上的减函数,则满足 (| |) < (1) 的实数 的取值范围
− 2 < 0,
1 2
[解析] 由题意知函数 () 是 上的减函数,于是有 ൝
( − 2) × 2 ≤ ( ) − 1,
2
由此解得 ≤
13
13
,即实数 的取值范围是 (−∞, ] .
函数单调性总结及应用
yxo 函数的基本性质 单调性与最大(小)值(1)函数的单调性①定义及判定方法函数的 性 质定义图象判定方法 函数的 单调性如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< x ..2.时,都有f(x ...1.)<f(x .....2.).,那么就说f(x)在这个区间上是增函数....(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图象上升为增) (4)利用复合函数 如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< x ..2.时,都有f(x ...1.)>f(x .....2.).,那么就说f(x)在这个区间上是减函数....(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图象下降为减) (4)利用复合函数②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.③1212()(()())0x x f x f x -->或12120()()x x f x f x ->-等价于单增;1212()(()())0x x f x f x --<或12120()()x x f x f x -<-等价于单减;(2)打“√”函数()(0)af x x a x=+>的图象与性质 ()f x 分别在(,]a -∞-、[,)a +∞上为增函数,分别在[,0)a -、]a 上为减函数. (3)最大(小)值定义 ①一般地,设函数()y f x =的定义域为I,如果存在实数M 满足:(1)对于任意的x I ∈,都有()f x M≤;(2)存在0x I ∈,使得0()f x M =.那么,我们称M 是函数()f x 的最大值,记作max ()f x M =.②一般地,设函数()y f x =的定义域为I,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.x 1x 2y=f(X)xy f(x )1f(x )2oy=f(X)yxox x 2f(x )f(x )211课后练习【感受理解】 1.函数2y x=-的单调递_____区间是______________________. 2.函数221y x x =+-的单调递增区间为_______________________.3.已知()(21)f x k x b =++在R 上是增函数,则k 的取值范围是______________. 4.下列说法中,正确命题的个数是______________. ①函数2y x =在R 上为增函数; ②函数1y x=-在定义域内为增函数; ③若()f x 为R 上的增函数且12()()f x f x >,则12x x >; ④函数1y x=的单调减区间为(,0)(0,)-∞⋃+∞. 【思考应用】5.函数()1f x x =+的增区间为 . 6.函数1()1f x x =+的单调减区间为 . 7.函数14)(2+-=mx x x f 在]2,(--∞上递减,在),2[+∞-上递增,则实数m = . 二、解答题: 8.证明函数1()1g x x=-在()1,+∞是减函数.9.求证函数1()f x x x=-在()0,+∞是单调增函数.10.若二次函数2()(1)5f x x a x =--+在区间1(,1)2上是增函数,求a 的取值范围【能力提高】 12.讨论函数1()f x x x=+的单调性.函数的单调性(2)课后训练【感受理解】1.已知函数)y f x =(在R 上是增函数,且f (m 2)>f (-m ),则m 的取值范围是: __________.2.函数()f x =的单调减区间 .3.函数1()1xf x x-=+的单调递减区间 . 4.函数y _____________.【思考应用】5. 若函数2()45f x x mx m =-+-在[2,)-+∞上是增函数,则实数m 的取值范为 .6. 函数)(x f 在),0(+∞上是减函数,那么)1(2+-a a f 与)43(f 的大小关系是 .7. 设)(x f 为定义在R 上的减函数,且0)(>x f ,则下列函数: ①)(23x f y -=;② )(11x f y +=;③ )(2x f y =;④ )(2x f y += 其中为R 上的增函数的序号是 . 8. 函数xx x f 2)(+=在]1,0(上有最 值 . 9.函数1||22+-=x x y 的单调增区间为 . 10. 定义在R 上的偶函数满足:对任意的,有.则A) B) C) D) 11.求证:函数()f x x =在R 上是单调减函数.【能力提高】12.函数y =f (x )在R 上为增函数,且f (2m )>f (-m +9),则实数m 的取值范围是( ).A .(-∞,-3)B .(0,+∞)C .(3,+∞)D .(-∞,-3)∪(3,+∞)13.()y f x =是定义在(0,)+∞上增函数,解不等式()[8(2)]f x f x >-.()f x 1212,[0,)()x x x x ∈+∞≠2121()()0f x f x x x -<-(3)(2)(1)f f f <-<(1)(2)(3)f f f <-<(2)(1)(3)f f f -<<(3)(1)(2)f f f <<-。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数单调性的应用
一、比较大小
例1 若函数f (x )=x 2+mx +n ,对任意实数x 都有f (2-x )=f (2+x )成立,试比较f (-1),f (2),f (4)的大小.
解 依题意可知f (x )的对称轴为x =2,
∴f (-1)=f (5).
∵f (x )在[2,+∞)上是增函数,
∴f (2)<f (4)<f (5),即f (2)<f (4)<f (-1).
评注 (1)利用单调性可以比较函数值的大小,即增函数中自变量大函数值也大,减函数中自变量小函数值反而变大;
(2)利用函数单调性比较大小应注意将自变量放在同一单调区间.
二、解不等式
例2 已知y =f (x )在定义域(-1,1)上是增函数,且f (t -1)<f (1-2t ),求实数t 的取值范围.
解 依题意可得⎩⎪⎨⎪⎧
-1<t -1<1,-1<1-2t <1,
t -1<1-2t ,解得0<t <23. 评注 (1)利用单调性解不等式就是利用函数在某个区间内的单调性,推出两个变量的大小,然后去解不等式. (2)利用单调性解不等式时应注意函数的定义域,即首先考虑使给出解析式有意义的未知数的取值范围.
(3)利用单调性解不等式时,一定要注意变量的限制条件,以防出错.
三、求参数的值或取值范围
例3 已知a>0,函数f(x)=x3-ax是区间[1,+∞)上的单调函数,求实数a的取值范围.
解任取x1,x2∈[1,+∞),且x1<x2,
则Δx=x2-x1>0.
Δy=f(x2)-f(x1)=(x32-ax2)-(x31-ax1)
=(x2-x1)(x21+x1x2+x22-a).
∵1≤x1<x2,∴x21+x1x2+x22>3.
显然不存在常数a,使(x21+x1x2+x22-a)恒为负值.
又f(x)在[1,+∞)上是单调函数,
∴必有一个常数a,使x21+x1x2+x22-a恒为正数,
即x21+x1x2+x22>a.
当x1,x2∈[1,+∞)时,x21+x1x2+x22>3,
∴a≤3.此时,∵Δx=x2-x1>0,∴Δy>0,
即函数f(x)在[1,+∞)上是增函数,
∴a的取值范围是(0,3].
四、利用函数单调性求函数的最值
例4 已知函数f(x)=x2+2x+a
x,x∈[1,+∞).
(1)当a=4时,求f(x)的最小值;
(2)当a =12时,求f (x )的最小值;
(3)若a 为正常数,求f (x )的最小值.
解 (1)当a =4时,f (x )=x +4x +2,易知,f (x )在[1,2]上是减函数,在
[2,+∞)上是增函数,
∴f (x )min =f (2)=6.
(2)当a =12时,f (x )=x +12x +2.
易知,f (x )在[1,+∞)上为增函数.
∴f (x )min =f (1)=72.
(3)函数f (x )=x +a x +2在(0,a ]上是减函数,
在[a ,+∞)上是增函数. 当a >1,即a >1时,f (x )在区间[1,+∞)上先减后增,
∴f (x )min =f (a )=2a +2. 当a ≤1,即0<a ≤1时,f (x )在区间[1,+∞)上是增函数,∴f (x )min =f (1)=a +3.。