深度神经网络PPT培训课件

合集下载

深度学习-神经网络PPT学习课件

深度学习-神经网络PPT学习课件
神经网络的学习过程就是学习控制着空间变换方式(物质组成方式)的权重矩阵 W , 那如何学习每一层的权重矩阵 W 呢? 2.3.1、激活函数
激活函数的主要作用是提供网络的非线性建模能力。如果没有激活函数,那么该网络 仅能够表达线性映射,此时即便有再多的隐藏层,其整个网络跟单层神经网络也是等价 的。因此也可以认为,只有加入了激活函数之后,深度神经网络才具备了分层的非线性 映射学习能力。
线性可分视角:神经网络的学习就是学习如何利用矩阵的线性变换加激活函数的非 线性变换,将原始输入空间投向线性可分/稀疏的空间去分类/回归。
增加节点数:增加维度,即增加线性转换能力。 增加层数:增加激活函数的次数,即增加非线性转换次数。
2/29/2020
13
2.2.2、物理视角:“物质组成”
回想上文由碳氧原子通过不同组合形成若干分子的例子。从分子层面继续迭代这种 组合思想,可以形成DNA,细胞,组织,器官,最终可以形成一个完整的人。不同层级之 间都是以类似的几种规则再不断形成新物质。
2/29/2020
16
➢Sigmoid
sigmoid 是使用范围最广的一类激活函数,具 有指数函数形状,它在物理意义上最为接近生物神 经元。此外,(0, 1) 的输出还可以被表示作概率, 或用于输入的归一化,代表性的如Sigmoid交叉熵 损失函数。
然而,sigmoid也有其自身的缺陷,最明显的 就是饱和性。 软饱和激活函数:
2/29/2020
17
➢Tanh
➢ReLU
可以看到,当x<0时,ReLU硬饱和,
tanh也是一种非常常见的激活函数。 与sigmoid相比,它的输出均值是0, 使得其收敛速度要比sigmoid快,减少 迭代次数。然而,从途中可以看出, tanh一样具有软饱和性,从而造成梯 度消失。

神经网络与深度学习(PPT31页)

神经网络与深度学习(PPT31页)
神经网络 & 深度学习 基础知识
图像的特征
计算机图像是由一定数量的点阵像素构成的。如上所示,我们看到的 是一辆车,但实际上计算机理解的是一个由各像素点的灰度值组成的 矩阵,它并不能直接理解“这是一辆车”。
我们需要将“这是一辆车”这个事实用完全逻辑化的语言描述出来, 让计算机建立一个函数,这个矩阵自变量 x 所对应的结果因变量 y 就 是“车”。难度可想而知。
不仅是房子这个整体,房子里的门、窗户等元素我们都能发现,而原因自然也 是颜色突变。
思考:人能看见绝对透明(100% 透明)的玻璃吗?
我们定义一个形状的时候,本质 上就是在定义其产生颜色突变的 像素点的大致相对位置。比如圆, 在一个直角坐标系的图象上上, 存在所有满足 (x-a)2+(y-b)2=r2 条件的坐标点的某个小邻域内有 较大的颜色突变,那么这幅图像 上就有一个圆的形状。左上方是 一幅色盲测试图,不色盲的朋友 都能看到左下角有一个蓝色的圆, 而且是一个空心圆。
特征:用来描述一个对象具体表现形式的逻辑语言。
如前页所述,“上半部分是圆,下半部分是靠右的一撇” 就是数字 9 的形状特征。
特征是构成一个对象的必要但不充分条件,因为一个对象 是由无数个特征组成的,在有限数量的特征里,我们永远 只能预估该对象,而不能 100% 确定该对象究竟是什么。
经典的图像特征之——Haar 特征
思考:我们一眼就能看出来这幅图像上有一栋房子。但任何一幅图像 都是由一定数量的像素点组成的,我们是怎么从这些单纯的像素点里 发现了房子的呢?
这个问题还可以换一种问法:我们怎么知道一幅图像中是有前景对象 的,对于一张纯色画布,我们为什么无法发现任何对象?
这涉及到一个现象:颜色突变。上图所圈出的区域中,都是颜色变化较大的区 域。而我们就会自然地认为,这是物体的边缘,而由封闭边缘构成的区域就是 物体。

深度学习介绍 ppt课件

深度学习介绍 ppt课件

自编码器的建立
建立AutoEncoder的方法是:
对于m个数据的输入,有:
Code编码:使用非线性激活函数,将维输入数据映射到维隐含层(隐含节点表示特 征)
其中W是一个的权重矩阵,b是一个d'维的偏移向量 Decode解码:通过反向映射,对映射后的数据进行重建
hi
yi
SAE网络每一次训练输入都会得到映射后的 与解码后的 。通过对代价函数的最优
深层带来的好处
为什么采用层次网络
预训练与梯度消失现象
主要内容
自编码器结构
单层自动编码器网络(AutoEncoder)实质上是一个三层的反向传播神经网络。它逐 层采用无监督学习的方式,不使用标签调整权值,将输入映射到隐含层上,再经过反 变换映射到输出上,实现输入输出的近似等价。
X1 X2 X3 X4 X5 +1
RBM网络有几个参数,一个是可视层与隐含 层之间的权重矩阵,一个是可视节点的偏移 量b,一个是隐含节点的偏移量c,这几个参 数决定了RBM网络将一个m维的样本编码成 一个什么样的n维的样本。
受限玻尔兹曼机
RBM介绍

RBM训练
一般地,链接权重Wij可初始化为来自正态分布N(0,0.01)的随机数,隐 单元的偏置cj初始化为0; 对于第i个可见单元,偏置bj初始化为log[pi/(1-pi)] 。pi表示训练样本中 第i个特征处于激活状态所占的比率 学习率epsilon至关重要,大则收敛快,但是算法可能不稳定。小则 慢。为克服这一矛盾引入动量,使本次参数值修改的方向不完全由当 前样本似然函数梯度方向决定,而是上一次参数值修改方向与本次梯 度方向的结合可以避免过早的收敛到局部最优点
激活函数
y f (x)

神经网络学习PPT课件

神经网络学习PPT课件
不断迭代,权重逐渐调整到最优解附近。
牛顿法
总结词
牛顿法是一种基于二阶泰勒级数的优化算法,通过迭 代更新参数,以找到损失函数的极小值点。在神经网 络训练中,牛顿法可以用于寻找最优解。
详细描述
牛顿法的基本思想是,利用二阶泰勒级数近似损失函数 ,并找到该函数的极小值点。在神经网络训练中,牛顿 法可以用于寻找最优解。具体来说,根据二阶导数矩阵 (海森矩阵)和当前点的梯度向量,计算出参数更新的 方向和步长,然后更新参数。通过不断迭代,参数逐渐 调整到最优解附近。与梯度下降法相比,牛顿法在迭代 过程中不仅考虑了梯度信息,还考虑了二阶导数信息, 因此具有更快的收敛速度和更好的全局搜索能力。
07
未来展望与挑战
深度学习的发展趋势
模型可解释性
随着深度学习在各领域的广泛应用,模型的可解释性成为研究热 点,旨在提高模型决策的透明度和可信度。
持续学习与终身学习
随着数据不断增长和模型持续更新,如何实现模型的持续学习和终 身学习成为未来的重要研究方向。
多模态学习
随着多媒体数据的普及,如何实现图像、语音、文本等多模态数据 的融合与交互,成为深度学习的另一发展趋势。
深度学习
通过构建深层的神经网络结构, 提高了对复杂数据的处理能力。
循环神经网络
适用于序列数据,如自然语言 处理和语音识别等领域。
02
神经网络的基本结构
感知机模型
感知机模型是神经网络的基本单 元,由一个输入层和一个输出层 组成,通过一个或多个权重和偏
置项来计算输出。
感知机模型只能实现线性分类, 对于非线性问题无法处理。
详细描述
反向传播算法的基本思想是,首先计算神经网络的输出层与实际值之间的误差,然后将误差逐层反向传播,并根 据梯度下降法更新每一层的权重。通过不断迭代,权重逐渐调整,使得神经网络的输出逐渐接近实际值,从而降 低误差。反向传播算法的核心是计算每一层的梯度,即权重的导数,以便更新权重。

《深度学习PPT》第3章 人工神经网络与深度学习

《深度学习PPT》第3章 人工神经网络与深度学习

9 of 57
3.1 探秘大脑的工作原理
第3章 人工神经网络与深度学习
3.1.2 人脑神经元的结构
神经元的基本结构包括细胞体和突起两部分。细胞体包括细胞核、细胞质、细胞 膜。细胞膜内外电位差称为膜电位。神经元的突起一般包括数条短而呈树状分支 的树突和一条长而分支少的轴突。长的突起外表大都套有一层鞘,组成神经纤维, 神经纤维末端的细小分支叫作神经末梢。神经纤维集结成束,外面包有膜,构成 一条神经。
6 of 57
3.1 探秘大脑的工作原理
(5)深度学习算法 数据输 出
外部环 境
第3章 人工神经网络与深度学习
数据输入
执行
深度学习(端到端网络,一组函数集)
知识库
学习
深度学 习
深度学习的基本模型
人的活动过程伴随信息传递、知识处理和智能的形成过程,其信息 传输模型如图所示
7 of 57
3.1 探秘大脑的工作原理
22 of 57
3.4 人脑神经网络的互连结构
第3章 人工神经网络与深度学习
3.4.1 前馈神经网络
前馈神经网络(feedforward neural network),简称前馈网络,是人 工神经网络的一种。在此种神经网络中,各神经元从输入层开始,接 收前一级输入,并输入到下一级,直至输出层。整个网络中无反馈, 可用一个有向无环图表示
输出
hw.b
3.2 人脑神经元模型
3.2.2 激活函数
常用激活函数主要有:线性函数、 非线性函数(sigmoid型函数)、 概率型函数。
y
x 0
(a)线性函数 y
x 0
(c) ReLU函数 y
1 x
0 (e) sigmoid函数

深度学习之神经网络(CNN-RNN-GAN)算法原理+实战课件PPT模板可编辑全文

深度学习之神经网络(CNN-RNN-GAN)算法原理+实战课件PPT模板可编辑全文
8-1图像生成文本问题引入入
8-5showandtell模型
8-2图像生成文本评测指标
8-4multi-modalrnn模型
8-6showattendandtell模型
8-10图像特征抽取(1)-文本描述文件解析
8-8图像生成文本模型对比与总结
8-9数据介绍,词表生成
8-7bottom-uptop-downattention模型
第6章图像风格转换
06
6-1卷积神经网络的应用
6-2卷积神经网络的能力
6-3图像风格转换v1算法
6-4vgg16预训练模型格式
6-5vgg16预训练模型读取函数封装
6-6vgg16模型搭建与载入类的封装
第6章图像风格转换
单击此处添加文本具体内容,简明扼要的阐述您的观点。根据需要可酌情增减文字,与类别封装
06
7-12数据集封装
第7章循环神经网络
7-13计算图输入定义
7-14计算图实现
7-15指标计算与梯度算子实现
7-18textcnn实现
7-17lstm单元内部结构实现
7-16训练流程实现
第7章循环神经网络
7-19循环神经网络总结
第8章图像生成文本
08
第8章图像生成文本
02
9-9文本生成图像text2img
03
9-10对抗生成网络总结
04
9-11dcgan实战引入
05
9-12数据生成器实现
06
第9章对抗神经网络
9-13dcgan生成器器实现
9-14dcgan判别器实现
9-15dcgan计算图构建实现与损失函数实现
9-16dcgan训练算子实现
9-17训练流程实现与效果展示9-14DCGAN判别器实现9-15DCGAN计算图构建实现与损失函数实现9-16DCGAN训练算子实现9-17训练流程实现与效果展示

神经网络ppt课件

神经网络ppt课件
神经元层次模型 组合式模型 网络层次模型 神经系统层次模型 智能型模型
通常,人们较多地考虑神经网络的互连结构。本 节将按照神经网络连接模式,对神经网络的几种 典型结构分别进行介绍
12
2.2.1 单层感知器网络
单层感知器是最早使用的,也是最简单的神经 网络结构,由一个或多个线性阈值单元组成
这种神经网络的输入层不仅 接受外界的输入信号,同时 接受网络自身的输出信号。 输出反馈信号可以是原始输 出信号,也可以是经过转化 的输出信号;可以是本时刻 的输出信号,也可以是经过 一定延迟的输出信号
此种网络经常用于系统控制、 实时信号处理等需要根据系 统当前状态进行调节的场合
x1
…… …… ……
…… yi …… …… …… …… xi
再励学习
再励学习是介于上述两者之间的一种学习方法
19
2.3.2 学习规则
Hebb学习规则
这个规则是由Donald Hebb在1949年提出的 他的基本规则可以简单归纳为:如果处理单元从另一个处
理单元接受到一个输入,并且如果两个单元都处于高度活 动状态,这时两单元间的连接权重就要被加强 Hebb学习规则是一种没有指导的学习方法,它只根据神经 元连接间的激活水平改变权重,因此这种方法又称为相关 学习或并联学习
9
2.1.2 研究进展
重要学术会议
International Joint Conference on Neural Networks
IEEE International Conference on Systems, Man, and Cybernetics
World Congress on Computational Intelligence
复兴发展时期 1980s至1990s

深学习循环神经网络PPT课件

深学习循环神经网络PPT课件
11
Linear Separable Problem
AND
0
1
0
0
x1
x2
y
000
100
010
111
OR
1
1
0 1
111
XOR
1
0
0 1
x1
x2
y
000
101
011
110
12
Single Layer Perceptrons
XOR
1
0
0 1
For XOR problem: 1. introducing one additional neuron in a special way; 2. using differentiable activation function;
最简单的神经网络: Perceptrons
8
Single Layer Perceptrons
Rosenblatt, 1957
x1
x2
w1
y
• ••
w2
b
wM
xM
y f (u) signwi xi b
1 if u 0 y 1 if u 0
1 if u 0 f (u) w1x1 w2x2 b 1 if u 0
吸收了HMM模型的有限序列关联的思想。 神经网络的隐藏层结构能够更好的表达有限的观察值背后的复杂分布。
22
递归神经网络模型
时序扩展
23
Recurrent Neural Network
RNN是一类扩展的人工神经网络,它是为了对序列数据进行建模而产生的。 针对对象:序列数据。例如文本,是字母和词汇的序列;语音,是音节的序列;

人工智能算法工程师:深度学习与神经网络算法培训ppt

人工智能算法工程师:深度学习与神经网络算法培训ppt
层数选择
根据问题复杂度选择合适的神经 网络层数,层数过多可能导致过 拟合,层数过少可能无法充分学 习数据特征。
优化算法:梯度下降与反向传播
梯度下降
通过计算损失函数梯度,沿着梯度方向更新神经网络参数,以最小化损失函数 。
反向传播
根据输出误差反向传播至前一层,计算各层参数的梯度,用于更新参数。
过拟合与欠拟合问题
了解数据预处理的常见方法,如归一化、数据增强、随机裁 剪等,并掌握如何在实际项目中应用。
模型评估
了解模型评估的常见指标,如准确率、精确率、召回率、F1 分数等,并掌握如何在实际项目中应用。
05 人工智能伦理与法规
数据隐私与安全问题
01
02
03
数据匿名化
在处理敏感数据时,应确 保数据匿名化,避免泄露 个人隐私。
循环神经网络(RNN)
循环神经网络是一种用于处理序 列数据的深度学习模型,如文本
、语音和时间序列数据等。
RNN通过引入循环结构,使得 网络能够记忆之前时刻的状态,
并在此基础上更新当前状态。
RNN在自然语言处理、语音识 别、机器翻译等领域有广泛应用

循环神经网络(RNN)
要点一
总结词
循环神经网络是处理序列数据的深度学习模型,具有记忆 和时序依赖性。
等领域取得了突破性进展。
神经网络的基本原理
神经元模型
神经元是神经网络的基本单元,它通过加权输入信号并应用激活函数来输出信号。
感知机模型
感知机是神经网络的早期模型,可以用于解决二分类问题。它由一组神经元组成,每个神 经元接收输入信号并输出一个值。感知机通过调整权重和阈值来学习分类规则。
多层感知机模型
人工智能算法工程师:深度 学习与神经网络算法培训

神经网络基础PPT课件

神经网络基础PPT课件

AlexNet
VGGNet
ResNet
DenseNet
由Yann LeCun等人提出 ,是最早的卷积神经网 络之一,用于手写数字 识别。
由Alex Krizhevsky等人 提出,获得了2012年 ImageNet图像分类竞 赛的冠军,引入了ReLU 激活函数和数据增强等 技巧。
由牛津大学Visual Geometry Group提出 ,通过反复堆叠3x3的小 型卷积核和2x2的最大池 化层,构建了深度较深 的网络结构。
内部表示。
隐藏层
通过循环连接实现信息 的持久化,捕捉序列中
的动态信息。
输出层
将隐藏层的状态转化为 具体的输出。
循环连接
将隐藏层的状态反馈到 输入层或隐藏层自身, 实现信息的循环传递。
序列建模与长短时记忆网络(LSTM)
序列建模
01
RNN通过循环连接实现对序列数据的建模,能够处理任意长度
的序列输入。
久化。
Jordan网络
与Elman网络类似,但将输出 层的状态反馈到隐藏层。
LSTM网络
长短时记忆网络,通过引入门 控机制实现对长期依赖信息的
有效处理。
GRU网络
门控循环单元网络,一种简化 的LSTM结构,具有较少的参
数和较快的训练速度。
06 深度学习框架 TensorFlow使用指南
TensorFlow安装与配置教程
非线性可分问题
不存在一条直线(或超平面)能够将两类样本完全分开的 问题。对于这类问题,需要使用非线性分类器或者核方法 等技巧进行处理。
处理非线性可分问题的方法
包括使用多项式核、高斯核等核函数将数据映射到高维空 间使其线性可分;或者使用神经网络等非线性模型对数据 进行建模和分类。

神经网络理论基础PPT课件

神经网络理论基础PPT课件
神经网络的复兴
20世纪80年代,随着反向传播算法的提出,神经网络重 新受到关注。反向传播算法使得神经网络能够通过学习来 调整权重,从而提高了网络的性能。
感知机模型
1957年,心理学家Frank Rosenblatt提出了感知机模型 ,它是最早的神经网络模型之一,用于解决模式识别问题 。
深度学习的兴起
神经网络的模型
总结词
神经网络的模型是由多个神经元相互连接而成的计算模型,它能够模拟生物神经系统的 复杂行为。
详细描述
神经网络模型可以分为前馈神经网络、反馈神经网络和自组织神经网络等类型。前馈神 经网络中,信息从输入层逐层传递到输出层,每一层的输出只与下一层相连。反馈神经 网络中,信息在神经元之间来回传递,直到达到稳定状态。自组织神经网络能够根据输
入数据的特性进行自组织、自学习。
神经网络的参数
总结词
神经网络的参数是用于调整神经元之间连接强度的可训练参 数,它们在训练过程中不断优化以实现更好的性能。
详细描述
神经网络的参数包括权重和偏置等。权重用于调整输入信号 对激活函数的影响程度,偏置则用于调整激活函数的阈值。 在训练过程中,通过反向传播算法不断调整参数,使得神经 网络能够更好地学习和逼近目标函数。
作用
误差函数用于指导神经网络的训练, 通过最小化误差函数,使网络逐渐 逼近真实数据。
梯度下降法
基本思想
梯度下降法是一种优化算法,通 过不断调整神经网络的参数,使
误差函数逐渐减小。
计算方法
计算误差函数的梯度,并根据梯 度信息更新网络参数。
优化策略
采用不同的学习率或适应学习 率策略,以加快训练速度并避免
2006年,深度学习的概念被提出,神经网络的层次开始 增加,提高了对复杂数据的处理能力。

深度学习-循环神经网络PPT课件

深度学习-循环神经网络PPT课件

W=[1.66 1.11] b=[1.25]
W=[1.54 1.28] b=[-0.64]
where?
W=[1.16 1.63] b=[-1.8] W=[1.66 1.11] b=[-0.823] W=[1.49 -1.39] b=[-0.743] 11
Single Layer Perceptrons:局限性
12
Linear Separable Problem
AND
0
1
0
0
x1
x2
y
000
100
010
111
OR
1
1
0 1
x1
x2
y
000
101
011
111
XOR
1
0
0 1
x1
x2
y
000
101
011
110
13
Single Layer Perceptrons
XOR
1
0
0 1
For XOR problem: 1. introducing one additional neuron in a special way; 2. using differentiable activation function;
• Input—Output Mapping 输入输出匹配
• Adaptivity 自适应性
8
最简单的神经网络: Perceptrons
9
Single Layer Perceptrons
Rosenblatt, 1957
x1
x2
w1
y
• ••
w2
b
wM

深度卷积神经网络PPT文档108页

深度卷积神经网络PPT文档108页

END
39、没有不老的誓言,没有不变的承 诺,踏 上旅途 ,义无 反顾。 40、对时间的价值没有没有深切认识 的人, 决不。——华盛顿 17、一个人即使已登上顶峰,也仍要自强不息。——罗素·贝克 18、最大的挑战和突破在于用人,而用人最大的突破在于信任人。——马云 19、自己活着,就是为了使别人过得更美好。——雷锋 20、要掌握书,莫被书掌握;要为生而读,莫为读而生。——布尔沃
深度卷积神经网络
36、“不可能”这个字(法语是一个字 ),只 在愚人 的字典 中找得 到。--拿 破仑。 37、不要生气要争气,不要看破要突 破,不 要嫉妒 要欣赏 ,不要 托延要 积极, 不要心 动要行 动。 38、勤奋,机会,乐观是成功的三要 素。(注 意:传 统观念 认为勤 奋和机 会是成 功的要 素,但 是经过 统计学 和成功 人士的 分析得 出,乐 观是成 功的第 三要素 。

最新神经网络培训课件.ppt

最新神经网络培训课件.ppt

11.4 神经网络的拟合
• 使用梯度下降法迭代,在第(r+1)次时有 如下公式
11.4 神经网络的拟合
• 如果将迭代前的公式写成如下形式
• 其中 和 分别是当前模型输出层,隐藏 层的“误差”,并且满足
11.4 神经网络的拟合
• 上面的关系称作反向传播方程 • 向前传递时固定当前权值,计算预测值 • 向后传递是计算误差 ,进而又得到 • 最后使用更新的误差值计算更新的梯度 • 反向传播方法具有简单性和局部特性,每
第11章 神Байду номын сангаас网络
11.3 神经网络
• 神经网络的本质是两阶段非线性统计模型
11.3 神经网络
• Z称为导出特征,在神经网络中也成为隐藏 层。先由输入的线性组合创建Z,再以Y为 目标用Z的线性组合建立模型
11.3 神经网络
• 激活函数σ(‫)ע‬的选取 • 神经网络源于人脑开发模型,神经元接收
到的信号超过阀值时被激活。由于需要光 滑的性质,阶梯函数被光滑阀函数取代。
11.3 神经网络
• 输出函数 是对于向量T的最终变换,早 期的K分类使用的是恒等函数,后来被 softmax函数所取代,因其可以产生和为1 的正估计。
11.2 投影寻踪模型
• 投影寻踪模型是神经网络模型的特例 • 先将X投影于某一方向,再用得到的标量进
• M=1时,首先给定一个投影方向的初值, 通过光滑样条估计g
• 给定g, 在误差函数上对投影方向做极小化
• 舍弃了二阶导数之后,再带入误差函数得
• 对于右端进行最小二乘方回归,得到投影 方向的新估计值,重复以上步骤得到
11.4 神经网络的拟合
• 未知参数称为权,用θ表示权的全集 • 对于回归和分类问题,我们分别使用误差
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
nonlinearity, dropout) • New development of computer architectures
– GPU – Multi-core computer systems
• Large scale databases
Big Data !
深度学习浪潮
IT Companies are Racing into Deep Learning
– Google
• “on our test set we saw double the average precision when compared to other approaches we had tried. We acquired the rights to the technology and went full speed ahead adapting it to run at large scale on Google’s computers. We took cutting edge research straight out of an academic research lab and launched it, in just a little over six months.”
A. Krizhevsky, L. Sutskever, and G. E. Hinton, “ImageNet Classification with Deep Convolutional Neural Networks,” NIPS, 2012.
Neural network Back propagation
Y. Sun, X. Wang, and X. Tang. Deep Learning Face Representation by Joint IdentificationVerification. NIPS, 2014.
Y. Sun, X. Wang, and X. Tang. Deeply learned face representations are sparse, selective, and robust. CVPR, 2015.
But it is given up…
Neural network Back propagation
Nature
1986
Deep belief net Science
Speech
2006
2011 2012
Object recognition over 1,000,000 images and 1,000 categories (2 GPU)
Deep belief net Science
Speech
1986
2006
2011 2012
ImageNet 2013 – image classification challenge
MSRA, IBM, Adobe, NEC, Clarifai, Berkley, U. Tokyo, UCLA, UIUC, Toronto …. Top 20 groups all used deep learning
• ImageNet 2013 – object detection challenge
Neural network Back propagation
Deep belief net Science
Speech
1986
2006
2011 2012
ImageNet 2014 – Image classification challenge
• ImageNet 2014 – object detection challenge
Neural network Back propagation
Deep belief net Science
Speech
1986
2006
2011 2p learning based visual search engines (2013)
Nature
1986
历史

w1 w2
w3
x1
x2
x3
Neural network Back propagation
Nature
1986
历史
2006
• 解决了一般性学习问题 • 与生物系统相联系
But it is given up…
• SVM • Boosting • Deack propagation
Deep belief net Science
Speech
Face recognition
1986
2006
2011 2012
2014
Deep learning achieves 99.53% face verification accuracy on Labeled Faces in the Wild (LFW), higher than human performance
深度神经网络
内容
深度神经网络发展历史、背景 动机——Why Deep Learning? 深度学习常用模型
Neural network Back propagation
Nature
1986
历史
• 解决了一般性学习问题 • 与生物系统相联系
Neural network Back propagation
Neural network Back propagation
Nature
1986
Deep belief net Science
Speech
2006
2011 deep learning results
• Solve general learning problems • Tied with biological system
Neural network Back propagation
Nature
1986
…… …… …… ……
历史
Deep belief net Neural networks
Science
is coming back!
2006
• Unsupervised & Layer-wised pre-training • Better designs for modeling and training (normalization,
相关文档
最新文档