第2章 时域离散信号和系统的频域分析 ppt课件

合集下载

第二章 信号与系统的时域分析

第二章 信号与系统的时域分析
17
二 卷积积分(The convolution integral) 若 (t ) h(t ) 则 (t ) h(t ) = h (t )
x t x h t

x(t ) x( ) (t )d y(t ) x( )h (t )d
则 y(t ) ak yk (t )
k
4
信号与系统的时域分析:
一般的信号都可以表示为延迟冲激的线性组合。
结合系统的叠加性和时不变性,就能够用LTI的单位
冲激响应来完全表征任何一个LTI系统的特性。这样
一种表示在离散情况下称为卷积和;在连续时间情
况下称为卷积积分。
5
分析方法:
对信号分解可在时域进行,也可在频域或变换域 进行,相应地产生了对LTI系统的时域分析法、频 域分析法和变换域分析法。
h( n n kk n h ) uu (n k )k
1
1
k
0
...
0
k
n
12
运算过程:
k k) ,再随参变量 为 h(
点值累加,得到
将一个信号 xk 不动,另一个信号反转后成为
下,将 xk 与 hn k 对应点相乘,再把乘积的各
n
移位.在每个 n 值的情况
x( [ n] y x x[ (n n] )* [ (n) h2 (n n)] x ) y( n n) (h h1 ) 1 n h2 h (n ) h( n) h2 x(t ) 11 y(t ) x(t ) [h1 (t ) h2 (t )] h1 (t ) h2 (t )
0
16
对一般信号 x(t ) ,可以分成很多 宽度的区段, 用一个阶梯信号 x (t ) 近似表示 x(t ) .当 0 时,

信号与系统第2章ppt课件

信号与系统第2章ppt课件
,这种频谱搬移技术在通信系统中
得到广泛的应用。调幅,调频都是
在该基础上进行的。
精选ppt
由此可见,将时间信号f(t)
乘以Cos(ω0t) 或Sin(ω0t)
,等效于将f(t)的频谱一分
为二,即幅度减小一半,沿
频率轴向左和向右各平移ω0.
第二章 傅立叶变换
例2 求如下矩形调幅信号的频谱函数
f(t) G (t)c o s 0 t
例7 如图a所示系统,已知乘法器的输入为
f (t) sin(2t) s(t)co3st)(
t
系统的频率响应为:
求输出y(t).
精选ppt
第二章 傅立叶变换
f (t) sin(2t) s(t)co3st)(
t
乘法器的输出信号为: x(t)f(t)s(t)
依频域卷积定理可知:X(j)21F(j)*S(j) 这里 f(t)F(j) s(t)S(j)
当 0 时 当 0 时
A () li m 0 A e () lim A e ( 0) lim 2 0 2 0
所以
A () li m 0A e()()
B()li m0Be()j
精选ppt
第二章 傅立叶变换
(6)符号函数 符号函数sgn(t)如图所示
由于sgn(t)不符合绝对可积条件, 故使用间接方法计算。
利用傅里叶反变换公式计算
第二章 傅立叶变换
例4 试求图示周期信号的频谱函数,图(b)中冲激函数的强度均为1.
(b)
[提示:(a)F()F[1]1F[cos(t)]
22

(b
Cn
1 T
T
2 T
fT(t)ejntdt
2
fT(t)(t)(tT2)

时域离散信号和系统的频域分析

时域离散信号和系统的频域分析
第2章 时域离散信号和系统的频域分析 本章主要内容
序列的傅里叶变换的定义和性质
周期序列的离散傅里叶级数及傅里叶变换表示式 时域离散信号的傅里叶变换与模拟信号的傅里叶变换之间 的关系 序列的Z变换 利用Z变换分析信号和系统的频域特性
2.1 引言
信号和系统的两种分析方法: 时域分析方法和频率分析方法 (1)模拟信号和系统 信号用连续变量时间t的函数表示; 系统则用微分方程描述;
2.2 序列的傅里叶变换的定义和性质 2.2.2 序列傅里叶变换的性质
1. FT的周期性 在FT定义式中, n取整数, 因此下式成立
X (e j )
结论:
n


x( n)e j ( 2 M ) n , M为整数
(1) 序列的傅里叶变换是频率ω的连续周期函数,周期是2π。 (2) X(ejω)可展成傅里叶级数, x(n)是其系数。 X(ejω)表示了信 号在频域中的分布规律。 (3) 在ω=0,〒2π,〒4π…表示信号的直流分量,在ω=(2M+1)π
j j
2.2 序列的傅里叶变换的定义和性质
(5) 研究FT的对称性 (a) 将序列x(n)表示成实部xr(n)与虚部xi(n)的形式
x(n)=xr(n)+jxi(n)
将上式进行FT, 得到: X(e jω)=Xe(e jω)+Xo(e jω)
j j j jjj n j n n j n n n
1 1 [ X (e jj ) X (e jj )] X e (e ) [ X (e ) X (e )] X e (e ) 2 2 1 j j ) 1 [ X ( e j ) X ( e j )] X o (e ) [ X (e j ) X (e j )] X o (e 2 2

数字信号处理第三版第2章.ppt

数字信号处理第三版第2章.ppt

| z | 2
试利用部分分式展开法求其Z反变换。
解:
X (z)

A1 1 2z 1

1

A2 0.5
z
1
4 1 1 1 3 1 2z1 3 1 0.5z1
x(n)


4 3

2n

1 3
(0.5)n
u(n)
第2章 时域离散信号和系统的频域分析
例: 设
X (z)
7)终值定理:设x(n)为因果序列,且X(z)=Z[x(n)]的全部
极点,除有一个一阶极点可以在z=1 处外,其余都在单位
圆内,则 : lim x(n) lim[(z 1)X (z)]
n
z1
第2章 时域离散信号和系统的频域分析
8)序列卷积(卷积定理)
若: y(n) x(n) h(n) x(m)h(n m) m
3z (z 3)2

z2
3z , 6z 9
试利用长除法求其Z反变换。
解:
| z | 3
第2章 时域离散信号和系统的频域分析
2.5.4 Z 变换的性质和定理
1)线性性质
Z[ax(n)+by(n)]=aX(z)+bY(z)
2)序列的移位 Z[x(n m)] zm X (z) Rx | z | Rx
2 j c
c (Rx , Rx )
直接利用围线积分的方法计算逆Z变换比较麻烦。 下面介绍几种常用的逆Z变换计算方法: 1)用留数定理求逆Z变换(了解) 2)部分分式展开法(掌握) 3)幂级数展开法(长除法)
第2章 时域离散信号和系统的频域分析
例: 设
1

第二章 时域离散信号和系统(数字信号处理)

第二章  时域离散信号和系统(数字信号处理)

第二章 时域离散信号和系统
6. 复指数序列
x(n)=e(σ+jω0)n 式中ω0为数字域频率,设σ=0,用极坐标和实部虚 部表示如下式: x(n)=e jω0n
x(n)=cos(ω0n)+jsin(ω0n)
由于n取整数,下面等式成立: e j(ω0+2πM)n= e jω0n, M=0,±1,±2…
第二章 时域离散信号和系统
图1.2.5 正弦序列
第二章 时域离散信号和系统
则要求N=(2π/ω0)k,式中k与N均取整数,且k的取
值要保证N是最小的正整数,满足这些条件,正弦序列 才是以N为周期的周期序列。
正弦序列有以下三种情况:
(1)当2π/ ω0为整数时,k=1,正弦序列是以2π/ ω0 为周期的周期序列。例如sin(π/8)n, ω0 =π/8,2π/ ω0 =16,该正弦序列周期为16。
例 设x(n)=R4(n),h(n)=R4(n),求y(n)=x(n)*h(n)。
解 按照公式,
y (n )
m
R ( m) R ( n m)
4 4

上式中矩形序列长度为4,求解上式主要是根据矩
形序列的非零值区间确定求和的上、下限,R4(m)的非

令n-k=m,代入上式得到
u( n )
n
( m)
n
第二章 时域离散信号和系统
u(n) 1 „ n 0 1 2 3
单位阶跃序列
第二章 时域离散信号和系统
3. 矩形序列RN(n) 1, RN(n)= 0, 0≤n≤N-1 其它n
上式中N称为矩形序列的长度。当N=4时,R4(n)的
第二章 时域离散信号和系统
第2章 时域离散信号和系统

第2章 连续时间信号和离散时间信号的时域分析

第2章  连续时间信号和离散时间信号的时域分析

第2章 连续时间信号和离散时间信号的时域分析
2.单位冲激信号 1) 单位冲激信号(Delta函数)的定义
∞ δ (t )dt = 1 ∫ ∞ (2-14) δ (t ) = 0 t ≠ 0 冲激信号用箭头表示,如图2.8(a)所示。冲激信号具有强度,其
强度就是冲激信号对时间的定积分值。在图中以括号注明,以与信 号的幅值相区分。 冲激信号可以延时至任意时刻 t0 ,以符号 δ (t t 0 ) 表示,定义 为
Ae st = Ae(σ + jω
0 )t
= Aeσ t cos(ω0 t ) + jAeσ t sin(ω0 t )
(2-8)
式(2-8)表明,一个复指数信号可以分解为实部﹑虚部两部分。 实部﹑虚部分别为幅度按指数规律变化的正弦信号。若 σ < 0 ,复指 数信号的实部﹑虚部为减幅正弦信号,波形如图2.4(a)﹑(b)所示。 若 σ > 0 ,其实部﹑虚部为增幅正弦信号,波形如图2.4(c)﹑(d)所 示。
第2章 连续时间信号和离散时间信号的时域分析
4.抽样函数 抽样函数是指 sin t 与 t 之比构成的函数,其定义如下:
sin t Sa(t ) = t
抽样函数的波形如图2.5所示。
(2-10)
图2.5 抽样函数的波形 抽样函数具有以下性质:
Sa(0) = 1, Sa(kπ) = 0 ,k
= ±1, ±2,L ∫∞ Sa(t )dt = π
第2章 连续时间信号和离散时间信号的时域分析
应用阶跃信号与延时阶跃信号,可以表示任意的矩形波脉冲信号。 例如,图2.7(a)所示的矩形波信号可由图2.7(b)表示,即 :
f (t ) = u (t T ) u (t 3T )

第2章 时域离散信号和系统的频域分析

第2章  时域离散信号和系统的频域分析
函数
3、 非周期离散信号的傅里叶变换:频率函数是周期的连续函数 4、 离散周期序列的傅里叶变换:具有既是周期又是离散的频谱,即
时域和频域都是离散的、周期的 规律:一个域的离散就必然造成另一个域的周期延拓。 1、如果信号频域是离散的,则该信号在时域就表现为周期性的时间函 数。 2、在时域上是离散的,则该信号在频域必然表现为周期性的频率函 数。 3、如果时域信号离散且是周期的,由于它时域离散,其频谱必是周期 的,又由于时域是周期的,相应的频谱必是离散的, 4、离散周期序列一定具有既是周期又是离散的频谱,即时域和频域都 是离散周期的。
对于,将以为周期进行周期延拓,得到所示的周期序列, 周期为16, 求的DFS。 可以看出,在时,处频谱的幅度和处是一样的。也就是说,点数越多, 频谱越精确。
..2 离散周期序列的傅里叶变换 各种形式的傅里叶变换 1、 非周期实连续时间信号的傅里叶变换: 频谱是一个非周期的连续
函数 2、 周期性连续时间信号的傅里叶变换: 频谱是非周期性的离散频率
例:设, f0=50 Hz,以采样频率对进行采样, 得到采样信号和时域离 散信号, 求)、和的傅里叶变换的FT。
2.5 序列的Z变换 双边Z变换的定义:序列x(n)的Z变换定义为: 式中:z是一个复变量,它所在的复平面称为z平面。 注意在定义中,对 n求和是在±∞之间求和,可以称为双边Z变换。
为单边Z变换: 适用于因果序列,如果不特别强调,均用双边Z变换对信号进行分析和 变换。 Z变换成立条件: Z变量取值的域称为收敛域。 一般收敛域用环状域表示
在模拟系统中, 的傅里叶变换为 对于时域离散系统中, ,它的傅立叶变换 对于

例:求对进行的周期延拓后的周期序列的傅立叶变换FT 注意:对于同一个周期信号, 其DFS和FT分别取模的形状是一样的, 不同的是FT用单位冲激函数表示(用带箭头的竖线表示)。 因此周期序列 的频谱分布用其DFS或者FT表示都可以,但画图时应注意单位冲激函数 的画法。 例:设 ,为有理数,求其FT 物理含义:的FT是在处的单位冲激函数,强度为π,且以2π为周期进行 延拓。

信号与系统-吴大正PPT课件

信号与系统-吴大正PPT课件
■ 第 17 页
§1.2 信号的描述和分类
信号的描述 信号的分类 几种典型确定性信号
■ 第 18 页
一、信号的描述
信号是信息的一种物理体现。它一般是随时间或 位置变化的物理量。
信号按物理属性分:电信号和非电信号。它们 可以相互转换。
电信号容易产生,便于控制,易于处理。本课 程讨论电信号——简称“信号”。


第1页
信号与系统
是电子技术、信息工程、通信工程 等专业重要的学科基础课
课程介绍
Signals and Systems
电子技术、 信息工程、 通信工程 等专业的 考研课程

第3页
课程位置
先修课
后续课程
《高等数学》 《通信原理》
《线性代数》 《数字信号处理》
《复变函数》 《自动控制原理》
《电路分析基础》 《数字图像处理》


第7页
参考书目
(1)郑君里等. 信号与系统(第二版) . 北京:高等教育出 版社, 2000 (2) 管致中等 . 信号与线性系统 (第四版) . 北京:高等 教育出版 社, 2004 (3)A.V.OPPENHEIM. 信号与系统 (第二版) .北京 :电 子工业出版 社, 2002 (4)王松林、张永瑞、郭宝龙、李小平.信号与线性系统 分析 (第4版) 教学指导书. 北京:高等教育出版 社, 2006


第8页
信号与系统
第一章 信号与系统
第二章 连续系统的时域分析
第三章 离散系统的时域分析
第四章 傅里叶变换和系统的频域分析
第五章 连续系统的s域分析
第六章 离散系统的z域分析
第七章 系统函数
第八章 系统的状态变量分析

时域离散信号和系统的频域分析

时域离散信号和系统的频域分析

时域离散信号和系统的频域分析信号与系统的分析方法有两种:时域分析方法和频域分析方法。

在连续时间信号与系统中,信号一般用连续变量时间t 的函数表示,系统用微分方程描述,其频域分析方法是拉普拉斯变换和傅立叶变换。

在时域离散信号与系统中,信号用序列表示,其自变量仅取整数,非整数时无定义,系统则用差分方程描述,频域分析方法是Z 变换和序列傅立叶变换法。

Z变换在离散时间系统中的作用就如同拉普拉斯变换在连续时间系统中的作用一样,它把描述离散系统的差分方程转化为简单的代数方程,使其求解大大简化。

因此,对求解离散时间系统而言,Z变换是一个极重要的数学工具。

2.2 序列的傅立叶变换(离散时间傅立叶变换)一、序列傅立叶变换:正变换:DTFT[x(n)]=(2.2.1)反变换:DTFT-1式(2.2.1)级数收敛条件为||= (2.2.2)上式称为x(n)绝对可和。

这也是DTFT存在的充分必要条件。

当遇到一些绝对不可和的序列,例如周期序列,其DTFT可用冲激函数的形式表示出来。

二、序列傅立叶变换的基本性质:1、 DTFT的周期性,是频率的周期函数,周期为2。

∵ = 。

问题1:设x(n)=R N(n),求x(n)的DTFT。

====设N为4,画出幅度与相位曲线。

2、线性设=DTFT[x1(n)],=DTFT[x2(n)],则:DTFT[a x1(n)+b x2(n)]= = a+b3、序列的移位和频移设 = DTFT[x(n)],则:DTFT[x(n-n0)] ==DTFT[x(n)] == =4、 DTFT的对称性共轭对称序列的定义:设序列满足下式则称为共轭对称序列。

共轭对称序列的性质:共轭对称序列的实部是偶函数,虚部是奇函数证明:=+j(实部加虚部)∵∴+j=-j∴=(偶函数)∴=-(奇函数)一般情况下,共轭对称序列用表示:共轭反对称序列的定义:设序列满足下式则称为共轭反对称序列。

共轭反对称序列的性质:共轭反对称序列的实部是奇函数,虚部是偶函数证明:=+j(实部加虚部)∵∴+j=+j∴=(奇函数)∴=(偶函数)一般情况下,用来表示一个序列可用共轭对称序列与共轭反对称序列之和表示。

离散信号与系统的时域和频域分析

离散信号与系统的时域和频域分析
h(0) h(1) ... h(n 1) 0 h(n) 1
h(k n) an1h(k n 1) an2h(k n 2) ... a0h(k ) 0 K>0时, n 齐次差分方程解: k
h(k ) [ ci ( ) ] (k )
离散信号与系统分析
开始
下一页
结束
本章说明

与连续信号与系统相比较,离散系统的数学描述是激励响应的差分方 程,其系统分析求响应实质是求解描述离散系统的差分方程。离散系 统的零状态响应可以用卷积和来求取。 时域分析: 1.掌握离散信号与系统的基本概念。 2.熟悉并掌握常用基本信号的描述、特性、运算与变换。 3.深刻理解采样定理的意义、内容及应用。 4.掌握离散系统的数学描述方法—差分方程及模拟图 5.掌握离散系统的时域分析—经典法求零输入响应、零状态响应。 6.熟悉卷积和法及其主要性质并会应用卷积和法求零状态响应。
4、图解法卷积
①变量代换 f1(n) 变成f1(k) f2(n) 变成f2( ②反折其中之一信号 ③将反折信号移位 m f2(-k) f2(m-k) 以k代n
④e将平移后的f2(m-k)与对应的f1(k)相乘 ⑤将各乘积值相加可画出全部y(m) ⑥重复步骤③到⑤可画出全部y(n) 5、系统零状态响应为
5、序列的运算



④差分:离散信号的差分运算 f (k ) f (k 1) f (k ) 前向差分: f (k ) f (k ) f (k 1) 后向差分: ⑤反折:将离散信号以纵轴为对称轴反折(转) ⑥压扩:将离散信号中f(k)的自变量k置换为ak得到的过程称为信号的尺 度变换 注意:不存在非整数ak的值! ⑦求和:离散信号的求和运算是对某一离散信号进行历史推演的求和过程。

第2章 时域离散信号和系统的频域分析

第2章  时域离散信号和系统的频域分析

1第2章时域离散信号和系统的频域分析z 2.1 引言z 2.2 序列的傅里叶变换的定义及性质z 2.4 时域离散信号的傅里叶变换与模拟信号傅里叶变换之间的关系z 2.5 序列的Z 变换z 2.6 利用Z变换分析信号和系统的频域特性22.1 引言信号和系统的分析方法:时域分析方法和变换域分析方法。

频域变换(傅里叶变换->复频域拉氏变换)连续时间信号(系统微分方程)频域变换(傅里叶变换->复频域Z 变换)时域离散信号(系统差分方程)本章学习内容是本书也是数字信号处理这一领域的基础。

3第2章时域离散信号和系统的频域分析z 2.1 引言z 2.2 序列的傅里叶变换的定义及性质z 2.4 时域离散信号的傅里叶变换与模拟信号傅里叶变换之间的关系z 2.5 序列的Z 变换z 2.6 利用Z变换分析信号和系统的频域特性2.2 序列的傅里叶变换的定义及性质5例2.2.1 设x(n)=R 4(n),求x(n)的DTFT 图2.2.1 R (n)的幅度与相位曲线sin /2ω常用序列的傅立叶变换7(2)()j M nn x n eωπ∞−+=−∞=∑二、序列离散时间傅里叶变换(DTFT)的性质1. DTFT 的周期性()()j j nn X e x n eωω∞−=−∞=∑(2)()j M X eωπ+=时域离散,频域周期函数。

周期是2π。

由于DTFT 的周期,一般只分析0-2π之间的DTFT 。

2. 线性1122:()[()],()[()]j j X e DTFT x n X e DTFT x n ωω==若1212:[()()]()()j j DTFT ax n bx n aX e bX e ωω+=+则3. 时移与频移00(0:[()](),[()]()j n j nj j DTFT x n n eX e DTFT ex n X eωωωωω−−−==则:()[()]j X e DTFT x n ω=若4. 反转7. 帕斯维尔(Parseval)定理8. 频域微分序列的Fourier变换的对称性质*()x n−)n也可分解成:e−*(e对称性质•序列Fourier 变换()()j x n X e ωRe[()]()j e x n X e ωIm[()]()j o j x n X e ω()Re[()]j e x n X e ω()Im[()]j o x n j X e ω实数序列的对称性质•序列Fourier 变换Re[()]()()j j e x n X e X e ωω=Im[()]0()0j o j x n X e ω==()Re[()]j e x n X e ω()Im[()]j o x n j X e ω)j eω−变换满足共轭对称性()]j X eω−Im[()]j X e ω−)arg[结论:z序列分成实部与虚部两部分,实部对应的DTFT具有共轭对称性,虚部和j一起对应的DTFT具有共轭反对称性。

第2章 时域离散信号和系统的频域分析

第2章 时域离散信号和系统的频域分析
1
X (z)
n

x ( n) z n x ( n) z n
n0
n
x ( n) z n
因而其收敛域应该是右边序列与左边序列收敛域的重叠部分。 等式右边第一项为右边序列,其收敛域为|z|>Rx-; 第二项为左边序 列,其收敛域为|z|<Rx+。如果Rx-<Rx+,则存在公共收敛区域,X(z)
n 0
n n
1 (az ) 1 az 1 n 0
1 n
|z|>|a|
这是一个无穷项的等比级数求和,只有在 |az-1|<1即|z|>|a|处收敛如图所示。故得到以上
1 z 闭合形式的表达式,由于 ,故 1 az 1 z a
jIm[z]
|a|
a
o
在z=a处有一极点(用“×”表示),在z=0处有
4
第2章
时域离散信号和系统的频域分析
2.5 序列的Z 变换
2.5.1

ˇ
Z变换的定义 一个离散序列x(n)的Z变换定义为
X (z)
‵ 式中,z是一个复变量,它所在的复平面称为Z平 面。我们常用Z[x(n)]表示对序列x(n)进行Z 变换,也即
n
x ( n) z

n
(2.5.1)
Z[ x(n)] X ( z )
Re[z]
一个零点(用“○”表示),收敛域为极点所
在圆|z|=|a|的外部。
18
第2章
时域离散信号和系统的频域分析
收敛域上函数必须是解析的,因此收敛域内不允许有极点存在。 所以,右边序列的Z变换如果有N个有限极点{z1,z2,…,zN}存在,

信号与系统第二章(陈后金)2PPT课件

信号与系统第二章(陈后金)2PPT课件
2 1 0 1 2
x [k]
3
22
1
k
2 1 0 1 2 3
x [ k ] 3 [ k 1 ] [ k ] 2 [ k 1 ] 2 [ k 2 ]
2021/4/8
28
二、基本离散时间序列
5.单位阶跃序列
定义:
u[k] 1
2 1 0 1 2
✓ [k]与u[k]的关系:
[k]u[k]u[k1]
2021/4/8
1 k 0 u[k]0 k 0
k
k
u[k] [n] n 29
二、基本离散时间序列
6.矩形序列
1 0kN1
RN[k]0 otherwise
N 1
R N[k]u[k]u[kN ][km ] m 0 RN[k] 1
k
21 0 1 2
N1
2021/4/8
30
二、基本离散时间序列
7.斜坡序列
即0N = m2p , m = 正整数时,信号是周期信号。
如果0 /2p m/N , N、m是不可约的整数, 则信号的周期为N。
2021/4/8
23
[例]判断下列离散序列是否为周期信号.
1) x1[k] = cos(kp/6)
0 /2p 1/12, 由于1/12是不可约的有理数,
故离散序列的周期N=12。
-1 0 1 2 3
k
➢ 序列的列表表示
表示k=0的位置
x[k]=[0, 2, 0, 1, 3, 1, 0]
2021/4/8
18
二、基本离散时间序列
1.实指数序列
r >1
x[k]Akr, kZ
0< r <1
r <1

《信号与系统(第2版)》配套课件 离散时间信号与系统的复频域分析1

《信号与系统(第2版)》配套课件 离散时间信号与系统的复频域分析1

z 1,求x[k]
解: 将X(z)化为z的负幂,可得
X
(
z
)
1
2 0.5z
0.5z 1 1 0.5
z
2
A 1 z 1
B 1 0.5z1
A
(1
z 1)
X
(z)
z 1
2 0.5z1 1 0.5z1
z1 1
B
(1 0.5z1) X
(z)
z 0.5
2 0.5z1 1 z 1
z0.5 1
将X(z)进行z反变换,可得
]}
1
1 a
z
1
,
za
e j0k u[k ]
Z
1 1 e j0 z1 ,
z 1
利用Euler公式和线性特性,可得
Z cos(0k)u[k]=Z e j0ku[k] / 2 Z e j0ku[k] / 2
单边z变换的性质
[例] 求正弦类序列cos(Ω0k) u[k]和sin(Ω0k) u[k]的z变换
1. 离散时间LTI系统的频域描述
➢ 系统函数H(z)的另一种定义 零状态响应的频域表示
yzs[k] x[k]* h[k]
利用z变换 的卷积特性
Yzs (z) X (z)H (z)
H (z) Yzs (z) X (z)
1. 离散时间LTI系统的频域描述
➢ H(z) 的物理意义
x[k]
h[k]
1
1 z1 cos(0 ) 2z1 cos(0 )
z
2
单边z变换的性质
[例] 求正弦类序列cos(Ω0k) u[k]和sin(Ω0k) u[k]的z变换
解c:os( 0k )u[k ]

精品课件-数字信号处理(第四版)-第2章 时域离散信号和系统的频域分析-3

精品课件-数字信号处理(第四版)-第2章 时域离散信号和系统的频域分析-3
图2.6.2 H(z)=z-1的频响19特
【例2.6.3】 设一阶系统的差分方程为y(n)=by(n-1)+x(n)

由系统差分方程得到系统函H数(为z)
1 1 bz1
z
z b
| z || b |
式中,0<b<1。系统极点z=b,零点z=0,当B点从ω=0逆时针 旋转时,在ω=0点,由于极点向量长度最短,形成波峰;在 ω=π点形成波谷;z=0处零点不影响幅频响应。极零点分布 及幅度特性如图所示。
如果-1<b<0,则峰值点出现在ω=π处,形成高通滤波 器。
20
【例2.6.4】已知H(z)=1-z-N,试定性画出系统的幅频特性。
H(z) 1 zN z N 1 zN
H(z)的极点为z=0,这是一个N阶极点,它不影响系统的幅频响 应。零点有N个,由分子多项式的根决定
z N 1 0 即 z N e j2πk
小结 单位圆附近的零点位置对幅度响应波谷的位置和深度有明
显的影响,零点可在单位圆外。 在单位圆内且靠近单位圆附近的极点对幅度响应的波峰的
位置和高度则有明显的影响,极点在单位圆上,则不稳定。 利用直观的几何确定法,适当地控制零、极点的分布,就
能改变系统频率响应的特性,达到预期的要求,因此它是 一种非常有用的分析系统的方法。
根据其形状,称之为梳状滤波器。
例2.6.4的梳状滤波器的极零点分布及幅频、相频特性
22
2.6.4 几种特殊系统的系统函数及其特点 全通滤波器 梳状滤波器 最小相位系统
23
1 全通系统(全通网络,全通滤波器)
定义:如果滤波器的幅频特性对所有频率均等于常数或1.
| H (ej ) | 1 0 2π

第二章 时域离散信号与系统的频域分析

第二章 时域离散信号与系统的频域分析
(c) x2 (n) (n 1) 2 x(n) 4、已知
0 1, X (e j ) 0, 0
求 X (e j ) 的傅里叶反变换 x ( n) 。 5、求以下序列的 z 变换,并画出零极点图和收敛域。 (a) x(n) a ( | a | 1)
n
1 西北大学信息科学与技术学院——王宾
数字信号处理课程作业——第二章 时域离散信号与系统的频域分析
1 x(n) u(n 1) 2 (b)
(c) x(n) n sin(0n)
n
, n 0 (0为常数)
6、求下列 X ( z ) 的 Z 反变换:
1 1 z 1 2 , (a) X ( z ) 1 2 1 z 4
数字信号处理课程作业——第二章 时域离散信号与系统的频域分析
1、试求下列序列的傅里叶变换: (a) x(n) (n 3)
1 1 (b) x(n) (n 1) (n) (n 1) 2 2
(c) x(n) anu(n) (d) x(n) u (n 3) u (n 4) (e) x(n) cos(0n) sin(0n) 2、设 X (e j ) 是如下图所示的 x ( n ) 信号的傅里叶变换,不必求出 X (e j ) ,试完成 下列计算: (a) X (e j 0 ) (b) (c) (d)
应曲线。
2 西北大学信息科学与技术学院——王宾


X (e j )d
X (e j ) d
dX (e j ) d d2 Nhomakorabea2


3、已知 x ( n ) 有傅里叶变换 X (e j ) ,用 X (e j ) 表示下列信号的傅里叶变换。 (a) x1 ( n ) x (1 n ) x ( 1 n )

教学课件 数字信号处理(第四版)高西全(王军宁)

教学课件 数字信号处理(第四版)高西全(王军宁)

• u(n)在n= 0时为u(0)= 1
13
矩形序列
1, 0≤n≤ N 1
RN (n) 0,
其它
• N 为矩形序列的长度
和u(n)、δ(n)的关系 :
14
实指数序列 x(n) anu(n) • a为实数
当|a|<1时序列收敛 当|a|>1时序列发散
15
正弦序列
• A为幅度
x(n)= Asin(ωn+φ) • ω为数字域频率
表示将序列x(n)的标乘,定义为各序列值 均乘以a,使新序列的幅度为原序列的a倍。
32
例:序列的标乘
例: 设序列
2n1, n ≥ 1
x(n) 0,
n<1
计算序列4x(n)。
解:
2n1, n ≥ 1 4 x(n) 0, n<1
33
基本运算—序列的翻转
设序列为x(n),则序列 y(n)= x(-n)
36
基本运算—序列的差分
•前向差分:将序列先进行左移,再相减 Δx(n) = x(n+1)- x(n)
后向差分:将序列先进行右移,再相减 ▽x(n) = x(n)- x(n-1)
由此,容易得出 ▽x(n) = Δx(n-1)
37
基本运算—时间尺度(比例)变换
设序列为x(n),m为正整数,则序列 • 抽取序列
48
I/O关系推导
• 用δ(n)表示x(n)
系统输出 叠加原理 时不变性 I/O关系: 线性时不变系统的输出等于输入序列和单位脉冲响应
h(n)的卷积。
49
线性时不变系统的性质
• 交换律 • 结合律 • 分配律
可以推广到多个系统的情况,由卷积和的定义可以很容易加以证明。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

因此
x(n) 1 X (e j )e jmd
2
(2.2.3) (2.2.4)
2020/12/27
5
第2章 时域离散信号和系统的频域分析
上式即是FT的逆变换。 (2.2.1)和(2.2.4)式组成一对 傅里叶变换公式。
(2.2.2)式是FT存在的充分必要条件, 如果引入冲 激函数, 一些绝对不可和的序列, 例如周期序列, 其 傅里叶变换可用冲激函数的形式表示出来, 这部分内 容在下面介绍。
2020/12/27
2
第2章 时域离散信号和系统的频域分析
频域分析是用Z变换或傅里叶变换这一数学工具。 其中 傅里叶变换指的是序列的傅里叶变换, 它和模拟域中 的傅里叶变换是不一样的, 但都是线性变换, 很多性 质是类似的。
本章学习序列的傅里叶变换和Z变换, 以及利用Z 变换分析系统和信号频域特性。 本章学习内容是本书 也是数字信号处理这一领域的基础。
x(n)=xe(n)+xo(n)
(2.2.16)
式中xe(n), xo(n)可以分别பைடு நூலகம்原序列x(n)求出。
将x0(n)表示成实部与虚部如下式:
xo(n)xo(rn )jo x(in)
可以得到
xo(rn)xo(rn) (2.2.14)
xo(in)xo(in)
(2.2.15)
即共轭反对称序列的实部是奇函数, 而虚部是偶函数。
2020/12/27
13
第2章 时域离散信号和系统的频域分析
例 2.2.2 试分析x(n)=e jωn的对称性 解: 将x(n)的n用-n代替, 再取共轭得到:
对比上面两公式, 左边相等, 因此得到
xer(n)xer(n)
(2.2.11)
xe(in)xe(in)
(2.2.12)
由上面两式得到共轭对称序列其实部是偶函数, 而虚 部是奇函数。
类似地, 可定义满足下式的称共轭反对称序列
xo(n)xo*(n)
(2.2.13)
2020/12/27
12
第2章 时域离散信号和系统的频域分析
2020/12/27
3
第2章 时域离散信号和系统的频域分析
2.2 序列的傅里叶变换的定义及性质
2.2.1 序列傅里叶变换的定义
定义
X(ej) x(n)ejn
(2.2.1)
n
为序列x(n)的傅里叶变换, 可以用FT(Fourier
Transform)缩写字母表示。 FT成立的充分必要条件是
序列x(n)满足绝对可和的条件, 即满足下式:
x*(-n)= e jωn 因此x(n)=x*(-n), 满足(2.2.10)式, x(n)是共轭对 称序列, 如展成实部与虚部, 得到
x(n)=cosωn+j sinωn 由上式表明, 共轭对称序列的实部确实是偶函数, 虚部是奇函数。
2020/12/27
14
第2章 时域离散信号和系统的频域分析
对于一般序列可用共轭对称与共轭反对称序列之 和表示, 即
(2.2.10)
则称xe(n)为共轭对称序列。 为研究共轭对称序列具 有什么性质, 将xe(n)用其实部与虚部表示
xe(n )xe(rn )je x(in )
将上式两边n用-n代替, 并取共轭, 得到
x e( n ) x e(r n ) je x (i n )
2020/12/27
11
第2章 时域离散信号和系统的频域分析
式中a, b为常数
3. 时移与频移
设X(e jω)=FT[x(n)], 那么
FT[x(nn0)]ejn0X(ej) FT[ej0nx(n)]X(ej(0)
(2.2.8) (2.2.9)
2020/12/27
10
4. FT的对称性
第2章 时域离散信号和系统的频域分析
设序列xe(n)满足下式:
xe(n)xe*(n)
e j(N1) /2 sin(N / 2) sin / 2
(2.2.5)
设N=4, 幅度与相位随ω变化曲线如图2.2.1所示。
2020/12/27
7
第2章 时域离散信号和系统的频域分析
图 2.2.1 R4(n)的幅度与相位曲线
2020/12/27
8
第2章 时域离散信号和系统的频域分析
2.2.2 序列傅里叶变换的性质
2020/12/27
6
第2章 时域离散信号和系统的频域分析
例 2.2.1 设x(n)=RN(n), 求x(n)的FT
解:
N 1
X (e j )
RN (n)e jn
e jn
n
n0
1 1
e jN e j
e jN / 2 (e jN / 2 e jN / 2 ) e (e jN / 2 j / 2 e j / 2 )
第2章 时域离散信号和系统的频域分析
第2章 时域离散信号和系统的频域分析
2.1 引言 2.2 序列的傅里叶变换的定义及性质 2.3 周期序列的离散傅里叶级数及傅里叶变换表示式 2.4 时域离散信号的傅里叶变换与模拟
信号傅里叶变换之间的关系 2.5 序列的Z变换 2.6 Z变换分析信号和系统的频域特性
2020/12/27
1
第2章 时域离散信号和系统的频域分析
2.1 引言
我们知道信号和系统的分析方法有两种, 即时域 分析方法和频率分析方法。 在模拟领域中, 信号一般 用连续变量时间t的函数表示, 系统则用微分方程描述。 为了在频率域进行分析, 用拉普拉斯变换和傅里叶变 换将时间域函数转换到频率域。 而在时域离散信号和 系统中, 信号用序列表示, 其自变量仅取整数, 非整 数时无定义, 而系统则用差分方程描述。
1. FT的周期性
在定义(2.2.1)式中, n取整数, 因此下式成立
X(ej) x(n)ej(2M)n,
n
M为整数(2.2.6)
因此序列的傅里叶变换是频率ω的周期函数, 周期 是2π。
2020/12/27
9
第2章 时域离散信号和系统的频域分析
2. 线性
设 X 1(ej)F T[x1(n)],X2(ej)F T[x2(n)], 那么 F T[ax1(n)bx2(n)]aX 1(ej)bX2(ej) (2.2.7)
x(n)
n
(2.2.2)
2020/12/27
4
第2章 时域离散信号和系统的频域分析
为求FT的反变换, 用e jωn乘(2.2.1)式两边, 并在 -π~π内对ω进行积分, 得到
X (e j )e jmd
[
x(n)e jn ]e jnd
n
x(n)
e j (mn)d
n
式中
e j (mn)d 2 (n m)
相关文档
最新文档