第4章 直流降压斩波电路
直流降压斩波电路实验报告
![直流降压斩波电路实验报告](https://img.taocdn.com/s3/m/28c7d8d7162ded630b1c59eef8c75fbfc77d946c.png)
直流降压斩波电路实验报告实验目的本实验旨在研究直流降压斩波电路的原理、特性及其在实际电路中的应用。
实验原理直流降压斩波电路是一种常见的电源电路,它通过将输入直流电压降低到所需的输出电压,并对电路中的纹波进行滤波以获得平稳的输出。
直流降压斩波电路的核心元件是电容和二极管。
实验设备本实验所使用的设备和元件如下: - 直流电源 - 变压器 - 滤波电容 - 整流二极管 - 负载电阻 - 示波器 - 万用表实验步骤1.将直流电源连接至变压器的输入端,设置合适的输入电压。
2.通过变压器将输入电压降低到所需的输出电压。
3.将滤波电容并联在输出端,以滤除输出电压中的纹波。
4.将整流二极管连接在滤波电容的正极,确保输出电压为正。
5.将负载电阻连接在整流二极管和滤波电容之间,作为电路的负载。
6.使用万用表测量输出电压和电流,记录实验数据。
7.使用示波器观察输出电压的波形,并测量其纹波水平。
8.分析实验结果,总结直流降压斩波电路的特性和应用。
实验结果与分析根据实验数据测量和示波器观察,我们得到了直流降压斩波电路的输出电压和波形。
通过测量输出电压和电流的关系,我们可以计算出电路的输出功率和效率,并分析其特性和应用。
结论通过本实验,我们深入研究了直流降压斩波电路的原理、特性及其在实际电路中的应用。
通过实验数据的测量和分析,我们得出了该电路的特性和性能参数,并对其应用进行了讨论。
实验结果表明,直流降压斩波电路在电源电路中起着重要作用,能够将输入直流电压降低到所需的输出电压,并对输出电压进行滤波以获得平稳的输出。
致谢感谢实验室老师对本实验的指导和支持,感谢实验室的同学们在实验过程中的帮助和合作。
参考文献[1] XXX,XXXX年,XXXX出版社。
[2] XXX,XXXX年,XXXX期刊。
直流降压斩波电路课程设计
![直流降压斩波电路课程设计](https://img.taocdn.com/s3/m/5a8b14f80408763231126edb6f1aff00bed57023.png)
直流降压斩波电路课程设计一、设计背景直流降压斩波电路是电子工程中常见的一种电路,其作用是将高压的直流电源转换为低压的直流电源,以满足不同设备对电压的需求。
本次课程设计旨在通过设计一个直流降压斩波电路来加深学生对该电路原理和应用的理解,并提高学生的实践能力。
二、设计要求1. 输入电压:24V DC2. 输出电压:12V DC3. 输出电流:最大2A4. 效率:不低于80%5. 稳定性:输出稳定性好,纹波小于100mV三、设计原理1. 直流降压原理直流降压是指通过变换器将输入端直流高压转换成输出端所需的较低直流电源。
通常情况下,使用变换器将输入端高频交变成矩形波进行输出,再通过滤波器进行平滑处理,从而得到稳定的直流输出。
2. 斩波原理斩波是指将交流信号转化为脉冲信号输出。
在斩波过程中,通过改变占空比(即高电平时间与周期时间之比)可以调节输出脉冲宽度,从而实现对输出电压的调节。
3. 直流降压斩波电路原理直流降压斩波电路是将直流高压输入信号通过变换器转化为高频交流信号,再通过斩波电路将其转化为脉冲信号输出。
最后通过滤波器对输出信号进行平滑处理,得到稳定的直流低压输出。
四、设计方案1. 变换器选择变换器是直流降压斩波电路中最关键的部分之一。
在本次设计中,我们选择使用UC3845作为变换器控制芯片,并搭配IRF540N MOSFET管进行驱动。
同时,我们还需要根据输入和输出电压的不同来选择合适的变压器。
2. 斩波电路设计在本次设计中,我们选择使用NE555作为斩波芯片,并根据输入和输出电压的不同来计算出合适的占空比。
同时,在斩波过程中还需要注意控制脉冲宽度以保证输出稳定性。
3. 滤波器设计滤波器是直流降压斩波电路中用于平滑处理输出信号的部分。
在本次设计中,我们选择使用L-C滤波器进行滤波处理,以保证输出电压的稳定性和纹波小于100mV。
4. 控制电路设计为了保证直流降压斩波电路的稳定性和安全性,我们还需要设计一个控制电路来监测输入和输出电压,并对变换器进行合适的控制。
直流降压斩波电路实验报告
![直流降压斩波电路实验报告](https://img.taocdn.com/s3/m/2a6cb6e03086bceb19e8b8f67c1cfad6195fe98e.png)
直流降压斩波电路实验报告
一、实验目的
本实验的主要目的是了解直流降压斩波电路的工作原理,掌握电路的搭建方法和调试技巧,同时能够通过实验数据分析和计算得出电路的性能参数。
二、实验原理
直流降压斩波电路是一种常用的电源调节电路,它可以将高压直流电源转换为低压直流电源。
该电路由三个部分组成:变压器、整流滤波器和斩波稳压器。
其中变压器主要起到降压作用,整流滤波器则可以将交流信号转换为直流信号,并对信号进行平滑处理,最后斩波稳压器则可以对输出信号进行稳定控制。
三、实验步骤
1. 搭建直流降压斩波电路。
2. 连接示波器和负载。
3. 调节变压器输出电压为所需输出值。
4. 调节斩波管触发角度和输出信号稳定性。
5. 记录实验数据并进行分析。
四、实验注意事项
1. 实验过程中应注意安全,避免触电等事故。
2. 严格按照步骤操作,避免误操作导致电路损坏。
3. 实验数据应准确记录,避免误差产生。
五、实验结果分析
通过实验数据的分析和计算,可以得出直流降压斩波电路的性能参数。
其中包括输出电压、输出电流、效率等指标。
同时还可以观察到斩波
管的触发角度对输出信号稳定性的影响,并对电路进行优化调整。
六、实验总结
本次实验通过搭建直流降压斩波电路并进行调试和分析,深入了解了
该电路的工作原理和性能参数计算方法。
同时也提高了我们的实验技
能和安全意识,为今后的学习和科研奠定了基础。
降压斩波电路
![降压斩波电路](https://img.taocdn.com/s3/m/eb684f8084868762caaed51f.png)
摘要直流斩波电路是将直流电变成另一种固定电压或可调电压的DC-DC变换器 , 如果改变开关的动作频率,或改变直流电流接通和断开的时间比例,就可以改变加到负载上的电压、电流平均值。
在直流传动系统、充电蓄电电路、开关电源、电力电子变换装置及各种用电设备中得到普通的应用。
随之出现了诸如降压斩波电路、升压斩波电路、升降压斩波电路、复合斩波电路等多种方式的变换电路。
直流斩波技术已被广泛用于开关电源及直流电动机驱动中,使其控制获得加速平稳、快速响应、节约电能的效果。
全控型电力电子器件MOSFET在牵引电传动电能传输与变换、有源滤波等领域得到了广泛的应用。
关键词:Buck Chopper MOSFET Simulink 高频开关目录1 降压斩波电路主电路基本原理 (1)2 MOSFET基本性能简介 (5)2.1 电力MOSFET的结构和工作原理 (5)2.1.1 电力MOSFET的结构 (5)2.1.2 功率MOSFET的工作原理 (6)2.2 功率MOSFET的基本特性 (6)2.2.1 静态特性 (6)2.2.2 动态特性 (7)2.3 电力MOSFET的主要参数 (8)3 电力MOSFET驱动电路 (9)3.1 MOSFET的栅极驱动 (9)3.2 MOSFET驱动电路介绍及分析 (9)3.2.1 不隔离的互补驱动电路 (9)3.2.2 隔离的驱动电路 (10)3.2.3 驱动电路的设计方案比较 (13)4 保护电路设计 (15)4.1 主电路的保护电路设计 (15)4.2 MOSFET的保护设计 (15)5 仿真结果 (17)心得体会 (23)参考文献 (24)1 降压斩波电路主电路基本原理高频开关稳压电源已广泛运用于基础直流电源、交流电源、各种工业电源,通信电源、通信电源、逆变电源、计算机电源等。
它能把电网提供的强电和粗电,它是现代电子设备重要的“心脏供血系统”。
BUCK变换器是开关电源基本拓扑结构中的一种,BUCK变换器又称降压变换器,是一种对输入输出电压进行降压变换的直流斩波器,即输出电压低于输入电压,由于其具有优越的变压功能,因此可以直接用于需要直接降压的地方。
降压斩波电路
![降压斩波电路](https://img.taocdn.com/s3/m/3e69e9080029bd64793e2c60.png)
题目直流降压斩波电路一、直流斩波电路的技术特点及应用方面直流斩波电路作为将直流电变成另一种固定电压或可调电压的DC-DC 变换器,在直流传动系统、充电蓄电电路、开关电源、电力电子变换装置及各种用电设备中得到普通的应用.随之出现了诸如降压斩波电路、升压斩波电路、升降压斩波电路、复合斩波电路等多种方式的变换电路 . 直流斩波技术已被广泛用于开关电源及直流电动机驱动中,使其控制获得加速平稳、快速响应、节约电能的效果。
全控型电力电子器件IGBT在牵引电传动电能传输与变换、有源滤波等领域得到了广泛的应用。
直流变换技术已被广泛的应用于开关电源及直流电动机驱动中,如不间断电源(UPS)、无轨电车、地铁列车、蓄电池供电的机动车辆的无级变速及20世纪80年代兴起的电动汽车的控制。
从而使上述控制获得加速平稳、快速响应的性能,并同时收到节约电能的效果。
直流变换系统的结构如下图-1所示。
由于变速器的输入是电网电压经不可控整流而来的直流电压,所以直流斩波不仅能起到调压的作用,同时还能起到有效地抑制网侧谐波电流的作用。
单相、REm二、分电路的原理及选择2.1 降压斩波电路工作原理电路的原理图如图2所示,图2 降压斩波电路主电路此电路使用一个全控型器件V ,图中为IGBT ,若采用晶闸管,需设置使晶闸管关断的辅助电路。
并设置了续流二极管VD ,在V 关断时给负载中电感电流提供通道。
主要用于电子电路的供电电源,也可拖动直流电动机或带蓄电池负载等,后两种情况下负载中均会出现反电动势,如图中Em 所示。
工作原理:当t=0时刻驱动V 导通,电源E 向负载供电,负载电压uo=E ,负载电流io 按指数曲线上升。
当 t=t1时控制V 关断,二极管VD 续流,负载电压uo 近似为零,负载电流呈指数曲线下降,通常串接较大电感L 使负载电流连续且脉动小。
此电路的基本数量关系为: (1)电流连续时负载电压的平均值为 (1-1)E E Tt E t t t U onoff on on o α==+=V 1V 3V 2V 4C 1R U ~V zU 上式中,ton 为V 处于通态的时间,toff 为V 处于断态的时间,T 为开关周期,α为导通占空比,简称占空比或导通比。
直流降压斩波电路仿真原理
![直流降压斩波电路仿真原理](https://img.taocdn.com/s3/m/1dc2761d3069a45177232f60ddccda38376be182.png)
直流降压斩波电路仿真原理直流降压斩波电路,是一种用电容和二极管构成的电路,被广泛应用于电子设备的电源供给和其他领域。
在该电路中,通过将直流电源与电容器串联,形成一个电压共享点,利用二极管的单向导电性质,使得电容器能够在一定时间内对直流电源进行充电,然后,在电容器充电到一定程度后,通过二极管的导通作用,将电容器内的电子释放到负载电路中,实现一个脉冲电流输出。
这样,就实现了对直流电源电压的降低,同时也消除了信号中的高频干扰。
斩波电路的概念是指将输入的信号转换为另一种形式的信号,并通过转换完成对电路信号的调制。
直流降压斩波电路的仿真原理,是利用数学模型来模拟电路的操作,以验证电路的设计和性能,并帮助设计者在电路实际制造之前进行各种模拟和测试。
仿真可以通过软件进行,这些软件通常提供电路的建模和仿真功能,包括参数设置、调试和性能评估等。
直流降压斩波电路的仿真通常需要考虑的因素包括:1. 电容和二极管的参数:电容的容量和漏电电阻以及二极管的导通电压和承受电流等参数。
2. 输入电压:直流电源的电压值和波形。
3. 负载电路的参数:负载电阻、电感、电容等参数。
4. 斩波电路的拓扑结构:斩波电路不同的连接方式会影响电路的性能,需要进行详细的仿真和分析。
具体的仿真步骤如下:1. 选择合适的仿真软件和建立仿真模型。
2. 设定电路元器件参数,输入电压和负载电路参数等。
3. 运行仿真程序,观察电路输出的波形,用数据分析工具对电路进行评估和分析。
4. 如有需要,通过更改参数或修改电路拓扑结构等方式,进行更加准确的仿真和设计。
5. 根据仿真结果,对电路进行优化和优化,最终设计出符合实际需求的电路。
直流降压斩波电路的仿真原理,是实现电路设计和性能测试的重要方法。
通过仿真分析,可以有效地优化电路性能,提高其可靠性和稳定性,为电子产品的生产和使用提供可靠保障。
直流降压斩波电路在电子产品中被广泛应用,主要用于将高压直流电转换为较小的直流电。
直流降压斩波电路
![直流降压斩波电路](https://img.taocdn.com/s3/m/62541d716bec0975f465e2fe.png)
.目录第1章总体方案 (2)第2章主电路设计 (3)2.1 工作原理 (3)2.2 参数分析 (4)2.3 元件型号选择 (5)第3章控制电路设计 (5)3.1 控制电路方案选择 (5)3.2 工作原理 (7)第4章驱动电路设计 (8)4.1 驱动电路方案选择 (8)4.2 工作原理 (9)第5章保护电路设计 (10)5.1 过压保护电路 (10)5.2 过流保护电路 (12)第6章系统仿真 (13)6. 1 电路总图 (13)6.2MATLAB的仿真结果 (14)6.3 仿真结果分析 (15)第7章课程设计总结 (15)第8章参考文献 (16)第1章总体方案电力电子器件在实际应用中,一般是由控制电路,驱动电路,保护电路和以电力电子器件为核心的主电路组成一个系统。
由信息电子电路组成的控制电路按照系统的工作要求形成控制信号,通过驱动电路去控制主电路中电力电子器件的导通或者关断来完成整个系统的功能,当控制电路所产生的控制信号能够足以驱动电力电子开关时就无需驱动电路。
根据降压斩波电路设计任务要求设计主电路、控制电路、驱动及保护电路,设计出降压斩波电路的结构框图如图1所示。
图1降压斩波电路结构框图在图1结构框图中,控制电路是用来产生降压斩波电路的控制信号,控制电路产生的控制信号传到驱动电路,驱动电路把控制信号转换为加在开关控制端,可以使其开通或关断的信号。
通过控制开关的开通和关断来控制降压斩波电路的主电路工作。
控制电路中的保护电路是用来保护电路的,防止电路产生过电流现象损害电路设备。
第2章 主电路设计2.1 工作原理根据所学的知识,直流降压斩波主电路如图2所示:图2 主电路图直流降压斩波主电路使用一个全控器件IGBT 控制导通。
用控制电路和驱动电路来控制IGBT 的通断,当t=0时,驱动IGBT 导通,电源E 向负载供电,负载电压0u =E ,负载电流0i 按指数曲线上升。
电路工作时波形图如图3所示:图3 降压电路波形图t O O O E O t t tE M i G t t T i G t on t off i o i 1i 2I 10I 20t 1u oa)b)O O T E E i G t on t off i o t x i 1i 2I 20t 1t 2u o当1t t =时刻,控制IGBT 关断,负载电流经二极管D V 续流,负载电压0u 近似为零,负载电流指数曲线下降。
降压式直流斩波电路
![降压式直流斩波电路](https://img.taocdn.com/s3/m/d84563d43968011ca200915f.png)
实验一降压式直流斩波电路(Buck)一、原理图在控制开关VT导通ton期间,二极管VD反偏,电源E通过电感L向负载R供电,此间iL增加,电感L的储能也增加,导致在电感两端有一个正向电压Ul=E-u0,左正右负,这个电压引起电感电流iL的线性增加。
2)在控制开关VT关断toff期间,电感产生感应电势,左负右正,使续流二极管VD 导通,电流iL经二极管VD续流,uL=-u0,电感L向负载R供电,电感的储能逐步消耗在R上,电流iL线性下降,如此周而复始周期变化。
如图1-1。
图1-1 电路图二、建立仿真模型根据原理图用matalb软件画出正确的仿真电路图,如图1-2。
图1-2 仿真电路图(截图)仿真参数,算法(solver)ode15s,相对误差(relativetolerance)1e-3,开始时间0结束时间10,如图1-3。
图1-3 (截图)电源参数,电压100v,如图1-4。
图1-4 (截图)晶闸管参数,如图1-5。
图1-5 (截图)电感参数,如图1-6。
图1-6 (截图)电阻参数,如图1-7。
图1-7 (截图)二极管参数设置,如图1-8。
图1-8 (截图)电容参数设置,如图1-9。
图1-9 (截图)三、仿真参数设置设置触发脉冲占空比α分别为20%、50%、70%、90%。
与其产生的相应波形分别如图1-10图1-11图1-12图1-13。
在波形图中第一列波为输出电压波形,第二列波为输入电压波形。
图1-10 α=20%(截图)图1-11 α=50%(截图)图1-12 α=70%(截图)图1-13 α=90%(截图)四、小结(1)在降压式直流斩波电路(Buck)中,电感和电容值设置要稍微大一点。
(2)注意VT的导通和关断时间,电容的充放电规律和电感的作用。
(3)输出电压计算公式:U0=DE。
实验二升压式直流斩波电路(Boost)一、工作原理1)当控制开关VT导通时,电源E向串联在回路中的L充电储能,电感电压uL 左正右负;而负载电压u0上正下负,此时在R与L之间的续流二极管VD被反偏,VD 截至。
降压直流斩波电路设计
![降压直流斩波电路设计](https://img.taocdn.com/s3/m/805eca2ca9114431b90d6c85ec3a87c240288ad8.png)
降压直流斩波电路设计一、背景介绍高血压是目前全球性的公共卫生问题,长期高血压会增加心脑血管疾病的风险,因此对高血压患者进行有效的降压治疗非常重要。
目前常见的降压药物有利尿剂、β受体阻滞剂、钙通道阻滞剂等,但这些药物也会带来一定的副作用。
因此,设计一种可靠、安全、无副作用的降压方法对于人类健康具有重要意义。
二、直流斩波电路原理直流斩波电路是一种将直流电转换为交流电的电路。
其基本原理是通过切换开关将直流电源分时段地斩断,使得输出信号呈现出交变特性。
在实际应用中,直流斩波电路可以通过调节开关频率和占空比来控制输出信号的幅值和频率。
三、降压直流斩波电路设计1. 电源部分:由于直流斩波电路需要稳定的直流供电,因此需要设计一个稳定可靠的电源模块。
常见的供电方式包括单相整流桥式电路、双向开关稳压电源等。
在设计时需要考虑到电源的输出电压和电流,以及对于直流斩波电路的影响。
2. 斩波部分:直流斩波电路的核心是斩波部分,其主要由开关管、滤波器和负载组成。
在设计时需要考虑到开关管的导通损耗和关断损耗,以及滤波器的参数选择和负载的匹配问题。
常见的开关管包括MOSFET、IGBT等。
3. 控制部分:为了实现对输出信号幅值和频率的精确控制,需要设计一个可靠的控制模块。
常见的控制方式包括PWM控制和SPWM控制等。
在设计时需要考虑到控制信号的精度和稳定性。
四、降压直流斩波电路应用降压直流斩波电路可以广泛应用于医疗、工业自动化、能源等领域。
在医疗领域中,可以通过调节输出信号幅值和频率来实现对高血压患者血压的精确调节;在工业自动化领域中,可以用于驱动各种类型的负载;在能源领域中,可以用于太阳能、风能等新能源的转换和控制。
五、总结降压直流斩波电路具有可靠、安全、无副作用等优点,可以广泛应用于医疗、工业自动化、能源等领域。
在设计时需要考虑到电源部分、斩波部分和控制部分的参数选择和匹配问题,以实现对输出信号的精确控制。
直流降压斩波电路原理
![直流降压斩波电路原理](https://img.taocdn.com/s3/m/ebc403da534de518964bcf84b9d528ea81c72f07.png)
直流降压斩波电路原理直流降压斩波电路是一种常用的电路,用于将高压直流电源的输出电压降低到所需的较低电压。
它由一个整流器和一个滤波器组成,常见的形式是整流器采用二极管整流,滤波器采用电容滤波。
整流器原理整流器是直流降压斩波电路中的第一部分。
它的作用是将交流电源转换为直流电源。
常见的整流器有半波整流和全波整流两种。
半波整流半波整流通过使用一个二极管将正弦交流信号的负半周截去,只保留正半周。
具体原理如下:1.当输入交流信号为正时,二极管处于导通状态,允许电流通过。
2.当输入交流信号为负时,二极管处于截止状态,不允许电流通过。
这样,在每个周期内只有一个半周的信号被传递,从而实现了对输入信号进行了“剪切”,只保留了其中的正半周。
全波整流全波整流通过使用两个二极管将正弦交流信号的负半周与正半周分别截去,只保留正半周。
具体原理如下:1.当输入交流信号为正时,D1二极管处于导通状态,允许电流通过。
2.当输入交流信号为负时,D2二极管处于导通状态,允许电流通过。
这样,在每个周期内都有一个半周的信号被传递,从而实现了对输入信号进行了“剪切”,只保留了其中的正半周。
滤波器原理滤波器是直流降压斩波电路中的第二部分。
它的作用是对整流后的脉动直流进行平滑处理,以获得稳定的直流输出。
常见的滤波器采用电容滤波。
电容滤波电容滤波器通过使用电容器对输入信号进行滤波。
当输入信号为直流时,电容器充电到与输入信号相同的电压;当输入信号发生变化时,电容器通过放电或充电来平滑输出信号。
具体原理如下:1.当输入信号为正时,电容器开始充电,储存能量。
2.当输入信号为负时,电容器开始放电,向外输出能量。
这样,电容器的充放电过程可以平滑输出信号,减小脉动。
原理图示例以下是一个简单的直流降压斩波电路的原理图示例:输入电源────> 整流器────> 滤波器────> 输出负载│ │└───────┬──────┘│地线输入电源为交流高压信号,经过整流器转换为直流信号。
直流斩波电路【PPT课件】
![直流斩波电路【PPT课件】](https://img.taocdn.com/s3/m/2f812ac751e79b8969022650.png)
图4-10 瞬时值控制方式 (a)控制系统方框图 (b)输出电压电流波形
2020/10/17
图4-12 时间比与瞬时值相结合的控制方式 (a)控制系统框图 (b)输出电压电流波形
4.3.2 PWM(Pulse Width Modulation)信号的产生
图4-13 单极性PWM信号的产生
(a) 信号产生电路 (b)、(c)波形
◤按直流斩波器输入输出电压间关系可 以分为:当Uo大于Uin时,称其为升压斩波 器(Boost Converter );当Uo既可以小 于Uin也可以大于大于Uin时,称其为反转 斩波器或升降压斩波器(Buck-Boost Converter ) ◢
◤按斩波开关所采用的器件分类:BJT斩 波器、MOSFET斩波器、IGBT斩波器、 Thyristor斩波器等等 ◢
(3) 三 角 波 的 频 率 取 决 于 积 分 时 间 常 数 和 分 压 比 (R2/R1)。在实际工作中必须选取频率特性较好的电阻 和电容作为积分电阻、积分电容及分压电阻。
(4)该三角波电路结构简单,在几千赫兹范围内线性
度和稳定性均很好。
若对三角波的线性度要求更高, 或要求为严格的等腰三角形时, 应采用恒流源对电容C进行充放 电,如图4-16就是一种用恒流源 构成的三角波发生器的电路图。 电容充放电电流的大小由场效 应管的栅源电压和电阻R所决定。 三角波从运放A2构成的射极跟 随器输出。而3140是高输入阻 抗的运放不会对电容的充放电 产生影响,从而保证了三角波的 线性度。改变电阻R或者电容C 的大小都可以改变三角波的频 率,所以该电路的频率范围很宽, 可以从几千赫兹到几百千赫兹。
二 瞬时值控制方式
分别预先给定电流或电压的上 限值与下限值,将其与实际电流 或电压的瞬时值进行比较,当实 际电流或电压达到给定上限值 或下限值时,关断或开通斩波器。 这种控制方式就是瞬时值控制
第4章 直流降压斩波电路
![第4章 直流降压斩波电路](https://img.taocdn.com/s3/m/d33ff0ea102de2bd96058814.png)
EI o t on RI T E M I o T
2 o
Io
E EM
R
EI 1 EI
o
U oIo
I1
t on T
Io Io
• 输出功率等于输入功率,可将降压斩波器看作直流降压变压器。
m EM / E
t t1 / 1 T
T
第4章 直流-直流变换 --直流斩波器
4.0
直流斩波器的出现
• 直流--直流变换(DC/DC)的功能:改变和调节直流电 的电压和电流,也称直流调节器 • 电力电子技术出现之前,直流调空电压主要依靠直流 发电机 • 电力电子技术出现之后,采用斩波和脉宽调制原理的 斩波器(DC chopping)和直流PWM电路 • 6种基本斩波电路:降压斩波电路、升压斩波电路、 升降压斩波电路、Cuk斩波电路、Sepic斩波电路和 Zeta斩波电路 • 广泛应用于直流牵引的变速拖动(使用直流电源时)
Uo t on E ( T t on t x ) E M T t Байду номын сангаас tx 1 on m E T
(3-18)
此时Uo不仅和占空比α 有关,也和反电动势EM有关。 此时负载电流平均值为:
1 t on Io i1 d t T 0
tx
0
t tx U Em E i 2 d t on m o T R R
谢谢观看
斩波电路分析的回顾
• 电力电子电路的实质上是分时段线性电 路的思想。 • 基于“分段线性”的思想,对降压斩波 电路进行解析。 • 分V处于通态和处于断态 • 初始条件分电流连续和断续
直流降压斩波电路原理
![直流降压斩波电路原理](https://img.taocdn.com/s3/m/99bea3a450e79b89680203d8ce2f0066f4336454.png)
直流降压斩波电路原理一、什么是直流降压斩波电路?直流降压斩波电路是一种电路设计,用于将输入的直流电压降低到需要的电压值,并去除电压中的波动。
该电路由降压电路和斩波电路组成。
二、直流降压电路原理直流降压电路旨在将输入的直流电压降低到较低的电压值。
常见的直流降压电路有线性降压电路和开关式降压电路。
1. 线性降压电路线性降压电路通常使用稳压二极管和电阻网络来实现。
稳压二极管通过调整其正向工作点来实现电压的稳定输出。
然而,线性降压电路的效率较低,且只适用于较小的降压比。
2. 开关式降压电路开关式降压电路是一种更高效的降压电路设计。
它通过开关器件(如晶体管或MOSFET)将输入电压分段连接到输出。
通过控制开关器件的开关频率和占空比,开关式降压电路可以实现更大的降压比。
三、斩波电路原理斩波电路(也称为滤波电路)用于去除降压电路输出中的波动,使输出电压更加稳定。
常见的斩波电路有电容滤波和电感滤波。
1. 电容滤波电容滤波通过将电容器连接到降压电路输出端来实现。
电容器可以储存电能,并在电压波动时释放电能来稳定输出电压。
较大的电容值能够获得更好的滤波效果。
2. 电感滤波电感滤波利用电感元件将电流平滑地传递到负载端,从而抑制电压的波动。
电感元件具有高阻抗,可以滤除高频信号。
较大的电感值可以实现更好的滤波效果。
四、直流降压斩波电路的设计直流降压斩波电路的设计需要考虑以下几个方面:1. 负载要求根据负载的要求确定所需的输出电压和电流,进而确定降压比和滤波元件的参数。
2. 稳定性要求确定所需的输出电压稳定性,并选择合适的稳压二极管或开关器件来实现。
3. 效率要求根据应用的需求确定电路的效率要求,并选择适当的降压电路和滤波电路。
4. 成本和尺寸要求考虑成本和尺寸限制,在设计电路时选择适当的元器件和拓扑结构。
五、直流降压斩波电路的应用直流降压斩波电路广泛应用于各种电子设备和系统中。
以下是一些常见的应用示例:1.电子教育设备:用于实验室中的实验电路的供电。
直流降压斩波电路原理(一)
![直流降压斩波电路原理(一)](https://img.taocdn.com/s3/m/8a16a9ee185f312b3169a45177232f60ddcce712.png)
直流降压斩波电路原理(一)直流降压斩波电路什么是直流降压斩波电路?直流降压斩波电路是一种常用于电源供电的电路,用于将高电压直流电源降压为所需的稳定低电压。
它还能提供稳定的输出电压,并过滤掉电源中的脉动电压。
直流降压电路的基本原理直流降压电路的核心是稳压器电路,它通过采用电阻、电容、二极管和三极管等元件,使输入电压经过降压后保持在一个稳定的输出电压。
1. 反馈稳压电路反馈稳压电路是直流降压电路中常用的一种。
它利用负反馈原理,通过对输出电压进行检测,并根据检测结果对输入电压进行调整,使输出电压稳定在设定值。
2. 串联稳压电路串联稳压电路是另一种常见的直流降压电路。
它通过串联一个稳压二极管和一个限流电阻,将多余的电压转化为热能释放,从而实现降压的效果。
直流降压斩波电路的工作原理1. 整流直流降压斩波电路的第一步是进行整流,将输入的交流电转化为直流电。
这一步通常通过使用二极管来完成,二极管只允许电流沿一个方向流动,将负半周的电流截断,从而得到单向传导的电流。
2. 滤波在整流后的电路中,仍然存在着脉动电压,为了去除这些脉动,需要进行滤波处理。
滤波电路通常由电容器和电阻器组成,电容器能够储存电荷并释放,从而平滑输出电压。
3. 降压稳压经过滤波后的电路中,输出电压已经相对平稳,但仍然可能高于所需的目标电压。
这时需要采用稳压电路来将电压降到合适的范围。
稳压器电路可以根据负载和输入电压的变化调整输出电压,使其保持在稳定的水平。
总结直流降压斩波电路是一种能够将高电压直流电源降压为所需的低电压的电路。
通过整流、滤波和稳压等步骤,可以得到稳定的输出电压。
了解直流降压斩波电路的原理对于电源设计和修复非常重要,希望本文能对读者有所帮助。
直流降压斩波电路的应用1. 电子设备供电直流降压斩波电路广泛应用于各种电子设备的供电中。
通过将高电压直流电源降压为适合设备工作的低电压,可以保证设备的正常运行。
2. 可再生能源系统在可再生能源系统中,如太阳能发电系统和风力发电系统,经过整流后的电流往往还存在较大的脉动。
降压斩波电路
![降压斩波电路](https://img.taocdn.com/s3/m/8f25fcfa9e31433239689364.png)
题目直流降压斩波电路一、直流斩波电路的技术特点及应用方面直流斩波电路作为将直流电变成另一种固定电压或可调电压的DC-DC 变换器,在直流传动系统、充电蓄电电路、开关电源、电力电子变换装置及各种用电设备中得到普通的应用.随之出现了诸如降压斩波电路、升压斩波电路、升降压斩波电路、复合斩波电路等多种方式的变换电路 . 直流斩波技术已被广泛用于开关电源及直流电动机驱动中,使其控制获得加速平稳、快速响应、节约电能的效果。
全控型电力电子器件IGBT在牵引电传动电能传输与变换、有源滤波等领域得到了广泛的应用。
直流变换技术已被广泛的应用于开关电源及直流电动机驱动中,如不间断电源(UPS)、无轨电车、地铁列车、蓄电池供电的机动车辆的无级变速及20世纪80年代兴起的电动汽车的控制。
从而使上述控制获得加速平稳、快速响应的性能,并同时收到节约电能的效果。
直流变换系统的结构如下图-1所示。
由于变速器的输入是电网电压经不可控整流而来的直流电压,所以直流斩波不仅能起到调压的作用,同时还能起到有效地抑制网侧谐波电流的作用。
单相、REm二、分电路的原理及选择2.1 降压斩波电路工作原理电路的原理图如图2所示,图2 降压斩波电路主电路此电路使用一个全控型器件V ,图中为IGBT ,若采用晶闸管,需设置使晶闸管关断的辅助电路。
并设置了续流二极管VD ,在V 关断时给负载中电感电流提供通道。
主要用于电子电路的供电电源,也可拖动直流电动机或带蓄电池负载等,后两种情况下负载中均会出现反电动势,如图中Em 所示。
工作原理:当t=0时刻驱动V 导通,电源E 向负载供电,负载电压uo=E ,负载电流io 按指数曲线上升。
当 t=t1时控制V 关断,二极管VD 续流,负载电压uo 近似为零,负载电流呈指数曲线下降,通常串接较大电感L 使负载电流连续且脉动小。
此电路的基本数量关系为: (1)电流连续时负载电压的平均值为 (1-1)E E Tt E t t t U onoff on on o α==+=V 1V 3V 2V 4C 1R U ~V zU 上式中,ton 为V 处于通态的时间,toff 为V 处于断态的时间,T 为开关周期,α为导通占空比,简称占空比或导通比。
第4章直流斩波电路2012.9
![第4章直流斩波电路2012.9](https://img.taocdn.com/s3/m/7b06b2f7aef8941ea76e050b.png)
第4章 直流斩波电路直流斩波电路是一种将电压恒定的直流电变换为电压可调的直流电的电力电子变流装置,亦称直流斩波器或DC/DC 变换器。
用斩波器实现直流变换的基本思想是通过对电力电子开关器件的快速通、断控制把恒定的直流电压或电流斩切成一系列的脉冲电压或电流,在一定滤波的条件下,在负载上可以获得平均值可小于或大于电源的电压或电流。
如果改变开关器件通、断的动作频率,或改变开关器件通、断的时间比例,就可以改变这一脉冲序列的脉冲宽度,以实现输出电压、电流平均值的调节。
早在1940年德国人采用机械开关通断的思想来调节直流电压以控制直流电动机的转速,1960年美国人把晶体管斩波器用于控制柴油发电机的励磁系统,1963年德国人把晶闸管斩波器用于控制蓄电池车。
早期主要应用于城市电车,地铁、电动汽车等直流牵引调速控制系统中。
随着自关断电力电子开关器件和脉宽调制(Pulse Width Modulation —PWM )技术的不断发展,直流斩波器具有效率高、体积小、重量轻、成本低等显著优点,广泛应用于开关电源、有源功率因数校正、超导储能等新技术领域。
一般来说,直流斩波电路有两类不同的应用领域:一类负载是要求输出电压可在一定范围内调节控制,即要求电路输出可变的直流电压,例如直流电动机负载,为了改变其转速,要求可变的直流电压供电;另一类负载则要求无论在电源电压变化或负载变化时,电路的输出电压都能维持恒定不变,即输出一个恒定的直流电压,如开关电源等。
这两种不同的要求均可通过一定类型的控制系统根据反馈控制原理实现。
直流斩波电路的种类较多,根据其电路结构及功能分类,主要有以下4种基本类型:降压(Buck)斩波电路、升压(Boost)斩波电路、升降压(Buck-Boost)斩波电路、丘克(Cuk)斩波电路,其中前两种是最基本的电路,后两种是前两种基本电路的组合形式。
由基本斩波电路衍生出来的Sepic 斩波电路和Zeta 斩波电路也是较为典型的电路。
实验四·直流斩波电路BUCK电路
![实验四·直流斩波电路BUCK电路](https://img.taocdn.com/s3/m/2ccab195336c1eb91b375d95.png)
实验四直流降压斩波电路一实验目的1.理解降压斩波电路的工作原理及波形情况,掌握该电路的工作状态及结果。
2.研究直流降压斩波电路的全过程3.掌握降压斩波电路MATLAB的仿真方法,会设置各模块的参数。
二预习内容要点1. 降压斩波电路工作的原理及波形2. 输入值输出值之间的关系三实验内容及步骤1.降压斩波电路(Buck Chopper)的原理图如图2.1所示。
图中V为全控型器件,选用IGBT。
D为续流二极管。
由图4-12b中V的栅极电压波形UGE可知,当V处于通态时,电源Ui向负载供电,UD=Ui。
当V处于断态时,负载电流经二极管D续流,电压UD近似为零,至一个周期T结束,再驱动V导通,重复上一周期的过程。
负载电压的平均值为:式中ton为V处于通态的时间,toff为V处于断态的时间,T为开关周期,α为导通占空比,简称占空比或导通比(α=ton/T)。
由此可知,输出到负载的电压平均值UO最大为Ui,若减小占空比α,则UO随之减小,由于输出电压低于输入电压,故称该电路为降压斩波电路。
2.(1)器件的查找以下器件均是在MATLAB R2017b环境下查找的,其他版本类似。
有些常用的器件比如示波器、脉冲信号等可以在库下的Sinks、Sources中查找;其他一些器件可以搜索查找(2)连接说明有时查找出来的器件属性并不是我们想要的例如:示波器可以双击示波器进入属性后进行设置。
图2.11 / 4(3)参数设置1.双击直流电源把电压设置为200V。
负载电动势20V。
’2.双击脉冲把周期设为0.001s,占空比设为30%,40%,80%,(可多设几组)延迟角设为30度,由于属性里的单位为秒,故把其转换为秒即,30×0.02/360;3.双击负载把电阻设为10Ω,电感设为0.1H;4.双击示波器把Number of axes设为3,同时把History选项卡下的Limit data points to last前面的对勾去掉;5.晶闸管和二极管参数保持默认即可四仿真及其结果降压斩波仿真电路图仿真波形及分析占空比为40%占空比为60%占空比为80%占空比80%图2.2仿真波形图占空比从图中可以看出输出电压随占空比的变化而变化其关系为U0=ɑUi五、实验总结IGBT的门极驱动条件密切地关系到他的静态和动态特性。
第4章 直流降压斩波电路
![第4章 直流降压斩波电路](https://img.taocdn.com/s3/m/1f80b1100b4e767f5acfced1.png)
Io
E EM
R
EI
1
EI
o
U oIo
I1
t on T
Io Io
• 输出功率等于输入功率,可将降压斩波器看作直流降压变压器。
m EM / E
t t1 / 1 T
T
负载电流断续的情况: I10=0,且t=tx时,i2=0,利用式(3-7)和式(3-6) 可求出tx为: 1 (1 m ) e t x ln (3-16) m 电流断续时,tx<toff,由此得出电流断续的条件为: (3-17) EM e 1 ( T / ;=L/R) m E e 1 对于电路的具体工况,可据此式判断负载电流是否连续。 在负载电流断续工作情况下,负载电流一降到零,续流二极管VD即关断, 负载两端电压等于EM。输出电压平均值为:
斩波电路三种控制方式
此种方式应用 最多
①开关周期T不变,改变导通时间ton —脉 冲宽度调制(Pulse Width Modulation)
②导通时间ton不变,改变开关周期T —频 率调制 ③ton和T都可调,改变占空比—混合型
• 电力电子电路的实质上是分时段线性电 路的思想。 • 基于“分段线性”的思想,对降压斩波 电路进行解析。 • 分V处于通态和处于断态 • 初始条件分电流连续和断续
2.t=t1时刻控制V关断,二 极管VD续流,负载电压uo 近似为零,负载电流呈指 数曲线下降 3.通常串接较大电感L使负 载电流连续且脉动小
降压斩波电路Buck Chopper
• • • 电路稳态时,负载电流在一个周期 的初值和终值相等 电流连续 负载电压平均值:
Uo t on t on t off E t on T E E
降压直流斩波电路
![降压直流斩波电路](https://img.taocdn.com/s3/m/1ba45225ba0d4a7303763a18.png)
电力电子技术课程设计题目:降压直流斩波电路院(系):专业班级:学号:学生姓名:指导教师:起止时间:摘要直流-直流变流电路的功能是将直流电变为另一固定电压或可调电压的直流电,包括直接直流电变流电路和间接直流电变流电路。
直接直流电变流电路也称斩波电路,它的功能是将直流电变为另一固定电压或可调电压的直流电,一般是指直接将直流电变为另一直流电,这种情况下输入与输出之间不隔离。
间接直流变流电路是在直流变流电路中增加了交流环节,在交流环节中通常采用变压器实现输入输出间的隔离,因此也称带隔离的直流-直流变流电路或直-交-直电路。
直流斩波电路的种类有很多,包括六种基本斩波电路:降压斩波电路,升压斩波电路,升降压斩波电路,Cuk斩波电路,Sepic斩波电路和Zeta斩波电路,利用不同的斩波电路的组合可以构成符合斩波电路,如电流可逆斩波电路,桥式可逆斩波电路等。
利用相同结构的基本斩波电路进行组合,可构成多相多重斩波电路。
关键字:直流斩波,降压斩波第1章电路总体设计方案1.1 设计课题任务设计一个直流降压斩波电路。
1.2 功能要求说明将24V直流电压降压输出并且平均电压可调,范围为0-24V。
1.3 设计总体方案和设计原理降压斩波电路的原理图以及工作波形如图1.1所示。
该电路使用一个全控型器件V,图中为IGBT。
为在V关断时给负载中电感电流提供通道,设置了续流二极管VD。
斩波电路主要用于电子电路的供电电源,也可拖动直流电动机或带蓄电池负载等。
图1.1 降压斩波电路原理图如图1.2中V 的栅极电压u GE 波形所示,在t=0时刻驱动V 导通,电源E 向负载供电,负载电压u o =E ,负载电流i o 按指数上升。
当t=t 1时刻,控制V 关断,负载电流经二极管VD 续流,负载电压u o 近似为零负载电流呈指数曲线下降。
为了使负载电流连续且脉动小,通常是串联的电感L 值较大。
至一个周期T 结束,在驱动V 导通,重复上一周期的过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Io
E EM
R
EI
1
EI
o
U oIo
I1
t on T
Io Io
• 输出功率等于输入功率,可将降压斩波器看作直流降压变压器。
m EM / E
t t1 / 1 T
T
负载电流断续的情况: I10=0,且t=tx时,i2=0,利用式(3-7)和式(3-6) 可求出tx为: 1 (1 m ) e t x ln (3-16) m 电流断续时,tx<toff,由此得出电流断续的条件为: (3-17) EM e 1 ( T / ;=L/R) m E e 1 对于电路的具体工况,可据此式判断负载电流是否连续。 在负载电流断续工作情况下,负载电流一降到零,续流二极管VD即关断, 负载两端电压等于EM。输出电压平均值为:
Uo t on E (T t on t x ) E M T t tx 1 on T m E
(3-18)
此时Uo不仅和占空比α 有关,也和反电动势EM有关。 此时负载电流平均值:
1 t on Io i1 d t T 0
电路种类
6种基本斩波电路:降压斩波电路、升压斩波电路、 升 降压斩波电路、Cuk斩波电路、Sepic斩波电路和Zeta 斩波电路。
直流斩波器依负载电压及负载电流极性来区分可分 为下列三种︰
• • • • 1. 单象限直流斩波器。 2. 两象限直流斩波器。 3. 四象限直流斩波器。 如图1.2(a)所示为单象限直流斩 波器示意图,其负载电压及负 载电流皆为正;如图1.2(b)所示 负载电压为正,负载电流有正 有负称两象限直流斩波器;若 负载电压有正有负,负载电流 亦有正有负,称四象限直流斩 波器如图1.2(c)所示。本系统可 依接线方式改变,达成上述三 种直流斩波器。
第4章 直流-直流变换 --直流斩波器
直流斩波电路
直流斩波电路(DC Chopper)
将直流电变为另一固定电压或可调电压的直流电;
也称为直接直流--直流变换器(DC/DC Converter); 一般直流斩波是指直接将直流电变为另一直流电,不 包括直流—交流—直流。 广泛应用于直流牵引的变速拖动(使用直流电源时)。
同样可以从能量传递关系出发进行的推导
• • • • 由于L为无穷大,故负载电流维持为Io不变 电源只在V处于通态时提供能量,为 EI t o on 在整个周期T中,负载消耗的能量为 一周期中,忽略损耗,则电源提供的能量与负载消耗的能量相等。
EI o t on RI T E M I o T
2 o
tx
0
t tx E U Em i 2 d t on m o T R R
谢谢
MADE BY HE
2.t=t1时刻控制V关断,二 极管VD续流,负载电压uo 近似为零,负载电流呈指 数曲线下降 3.通常串接较大电感L使负 载电流连续且脉动小
降压斩波电路Buck Chopper
• • • 电路稳态时,负载电流在一个周期 的初值和终值相等 电流连续 负载电压平均值:
Uo t on t on t off E t on T E E
4.1
直流降压斩波电路
• 降压斩波电路 (Buck Chopper)
典型用途之一是拖动 直流电动机,也可带 蓄电池负载。
负载出 现的反 电动势
全控型器件 若为晶闸管, 须有辅助关断 电路。
续流二极管
工作原理
1.t=0时刻驱动V导通,电 源E向负载供电,负载电 压uo=E,负载电流io按指 数曲线上升
斩波电路三种控制方式
此种方式应用 最多
①开关周期T不变,改变导通时间ton —脉 冲宽度调制(Pulse Width Modulation)
②导通时间ton不变,改变开关周期T —频 率调制 ③ton和T都可调,改变占空比—混合型
• 电力电子电路的实质上是分时段线性电 路的思想。 • 基于“分段线性”的思想,对降压斩波 电路进行解析。 • 分V处于通态和处于断态 • 初始条件分电流连续和断续
•
负载电流平均值:
Io U EM R
o
•
电流断续,Uo被抬高,一般不 希望出现
① ② ③ •
ton——V导通的时间 toff——V断开的时间 a---导通占空比Duty cycle 输出负载电压平均值最大为E,改 变占空比可改变输出电压大小,所 以此电路为降压斩波电路
电流断续,Uo被抬高, 一般不希望出现。