2013年云南省第二次高中毕业生复习统一检测理科数学

合集下载

2013年普通高等学校招生全国统一考试 全国卷2 数学试卷含答案(理科)

2013年普通高等学校招生全国统一考试 全国卷2 数学试卷含答案(理科)

2013年普通高等学校招生全国统一考试(课标全国卷Ⅱ)理数本卷满分150分,考试时间120分钟.第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合M={x|(x-1)2<4,x∈R},N={-1,0,1,2,3},则M∩N=()A.{0,1,2}B.{-1,0,1,2}C.{-1,0,2,3}D.{0,1,2,3}2.设复数z满足(1-i)z=2i,则z=( )A.-1+IB.-1-iC.1+iD.1-i3.等比数列{a n}的前n项和为S n,已知S3=a2+10a1,a5=9,则a1=( )A.13B.-13C.19D.-194.已知m,n为异面直线,m⊥平面α,n⊥平面β.直线l满足l⊥m,l⊥n,l⊄α,l⊄β,则( )A.α∥β且l∥αB.α⊥β且l⊥βC.α与β相交,且交线垂直于lD.α与β相交,且交线平行于l5.已知(1+ax)(1+x)5的展开式中x2的系数为5,则a=( )A.-4B.-3C.-2D.-16.执行下面的程序框图,如果输入的N=10,那么输出的S=( )A.1+12+13+…+110 B.1+12!+13!+…+110! C.1+12+13+…+111D.1+12!+13!+…+111!7.一个四面体的顶点在空间直角坐标系O-xyz 中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到的正视图可以为( )8.设a=log 36,b=log 510,c=log 714,则( ) A.c>b>aB.b>c>aC.a>c>bD.a>b>c9.已知a>0,x,y 满足约束条件{x ≥1,x +y ≤3,y ≥a (x -3).若z=2x+y 的最小值为1,则a=( )A.14B.12C.1D.210.已知函数f(x)=x 3+ax 2+bx+c,下列结论中错误的是( ) A.∃x 0∈R, f(x 0)=0B.函数y=f(x)的图象是中心对称图形C.若x 0是f(x)的极小值点,则f(x)在区间(-∞,x 0)单调递减D.若x 0是f(x)的极值点,则f '(x 0)=011.设抛物线C:y 2=2px(p>0)的焦点为F,点M 在C 上,|MF|=5,若以MF 为直径的圆过点(0,2),则C 的方程为( ) A.y 2=4x 或y 2=8x B.y 2=2x 或y 2=8x C.y 2=4x 或y 2=16xD.y 2=2x 或y 2=16x12.已知点A(-1,0),B(1,0),C(0,1),直线y=ax+b(a>0)将△ABC 分割为面积相等的两部分,则b 的取值范围是( ) A.(0,1)B.(1-√22,12)C.(1-√22,13]D.[13,12)第Ⅱ卷(非选择题,共90分)本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第24题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分.13.已知正方形ABCD 的边长为2,E 为CD 的中点,则AE⃗⃗⃗⃗⃗ ·BD ⃗⃗⃗⃗⃗⃗ = . 14.从n 个正整数1,2,…,n 中任意取出两个不同的数,若取出的两数之和等于5的概率为114,则n= .15.设θ为第二象限角,若tan (θ+π4)=12,则sin θ+cos θ= . 16.等差数列{a n }的前n 项和为S n .已知S 10=0,S 15=25,则nS n 的最小值为 . 三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)△ABC 的内角A,B,C 的对边分别为a,b,c,已知a=bcos C+csin B. (Ⅰ)求B;(Ⅱ)若b=2,求△ABC 面积的最大值.18.(本小题满分12分)如图,直三棱柱ABC-A 1B 1C 1中,D,E 分别是AB,BB 1的中点,AA 1=AC=CB=√22AB. (Ⅰ)证明:BC 1∥平面A 1CD; (Ⅱ)求二面角D-A 1C-E 的正弦值.19.(本小题满分12分)经销商经销某种农产品,在一个销售季度内,每售出1 t该产品获利润500元,未售出的产品,每1 t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如下图所示.经销商为下一个销售季度购进了130 t该农产品,以X(单位:t,100≤X≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.(Ⅰ)将T表示为X的函数;(Ⅱ)根据直方图估计利润T不少于57 000元的概率;(Ⅲ)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,并以需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若需求量X∈[100,110),则取X=105,且X=105的概率等于需求量落入[100,110)的频率),求T的数学期望.20.(本小题满分12分)平面直角坐标系xOy中,过椭圆M:x 2a2+y2b2=1(a>b>0)右焦点的直线x+y-√3=0交M于A,B两点,P为AB的中点,且OP的斜率为12.(Ⅰ)求M的方程;(Ⅱ)C,D为M上两点,若四边形ACBD的对角线CD⊥AB,求四边形ACBD面积的最大值.21.(本小题满分12分) 已知函数f(x)=e x-ln(x+m).(Ⅰ)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性; (Ⅱ)当m≤2时,证明f(x)>0.请从下面所给的22、23、24三题中选定一题作答,不选、多选均按所答第一题评分;多答按所答第一题评分.22.(本小题满分10分)选修4—1:几何证明选讲如图,CD 为△ABC 外接圆的切线,AB 的延长线交直线CD 于点D,E,F 分别为弦AB 与弦AC 上的点,且BC·AE=DC·AF,B,E,F,C 四点共圆. (Ⅰ)证明:CA 是△ABC 外接圆的直径;(Ⅱ)若DB=BE=EA,求过B,E,F,C 四点的圆的面积与△ABC 外接圆面积的比值.23.(本小题满分10分)选修4— 4:坐标系与参数方程已知动点P,Q 都在曲线C:{x =2cost ,y =2sint (t 为参数)上,对应参数分别为t=α与t=2α(0<α<2π),M 为PQ 的中点. (Ⅰ)求M 的轨迹的参数方程;(Ⅱ)将M 到坐标原点的距离d 表示为α的函数,并判断M 的轨迹是否过坐标原点.24.(本小题满分10分)选修4—5:不等式选讲 设a,b,c 均为正数,且a+b+c=1,证明: (Ⅰ)ab+bc+ca≤13; (Ⅱ)a 2b +b 2c +c 2a ≥1.2013年普通高等学校招生全国统一考试(课标全国卷Ⅱ)一、选择题1.A 化简得M={x|-1<x<3},所以M ∩N={0,1,2},故选A.2.A 由题意得z=2i 1-i =2i ·(1+i)2=-1+i,故选A.3.C 由已知条件及S 3=a 1+a 2+a 3得a 3=9a 1,设数列{a n }的公比为q,则q 2=9. 所以a 5=9=a 1·q 4=81a 1,得a 1=19,故选C.4.D 若α∥β,则m ∥n,这与m 、n 为异面直线矛盾,所以A 不正确.将已知条件转化到正方体中,易知α与β不一定垂直,但α与β的交线一定平行于l,从而排除B 、C.故选D.评析 本题考查了线面的位置关系,考查了空间想象能力,本题利用排除法求解效果比较好.5.D 由二项式定理得(1+x)5的展开式的通项为T r+1=C 5r ·x r ,所以当r=2时,(1+ax)(1+x)5的展开式中x 2的系数为C 52,当r=1时,x 2的系数为C 51·a,所以C 52+C 51·a=5,a=-1,故选D.6.B 由框图知循环情况如下:T=1,S=1,k=2; T=12,S=1+12,k=3;T=12×3,S=1+12+12×3,k=4; T=14!,S=1+12!+13!+14!,k=5;…;T=110!,S=1+12!+13!+…+110!,k=11>10,输出S,故选B. 7.A 设O(0,0,0),A(1,0,1),B(1,1,0),C(0,1,1),将以O 、A 、B 、C 为顶点的四面体补成一正方体后,由于OA ⊥BC,所以该几何体以zOx 平面为投影面的正视图为A.8.D 由对数运算法则得a=log 36=1+log 32,b=1+log 52,c=1+log 72,由对数函数图象得log 32>log 52>log 72,所以a>b>c,故选D.9.B 由约束条件画出可行域(如图所示的△ABC),由{x =1,y =a(x -3)得A(1,-2a), 当直线2x+y-z=0过点A 时,z=2x+y 取得最小值,所以1=2×1-2a,解得a=12,故选B.10.C 由三次函数值域为R 知f(x)=0有解,所以A 项正确;因为y=x 3的图象为中心对称图形,而f(x)=x 3+ax 2+bx+c 的图象可以由y=x 3的图象平移得到,故B 项正确;若f(x)有极小值点,则f '(x)=0有两个不等实根x 1,x 2(x 1<x 2), f '(x)=3x 2+2ax+b=3(x-x 1)(x-x 2),则f(x)在(-∞,x 1)上为增函数,在(x 1,x 2)上为减函数,在(x 2,+∞)上为增函数,故C 项错误;D 项正确.故选C.评析 本题考查了三次函数的图象和性质,考查了利用导数研究函数极值与单调性. 11.C ∵以MF 为直径的圆过点(0,2),∴点M 在第一象限.由|MF|=x M +p2=5得M (5-p 2,√2p (5-p 2)).从而以MF 为直径的圆的圆心N 的坐标为(52,12√2p (5-p2)),∵点N 的横坐标恰好等于圆的半径,∴圆与y 轴切于点(0,2),从而2=12√2p (5-p2),即p 2-10p+16=0,解得p=2或p=8,∴抛物线方程为y 2=4x 或y 2=16x.故选C.评析 本题考查了直线、圆、抛物线的位置关系,考查了综合解题能力.建立关于p 的方程是求解的关键.12.B (1)当直线y=ax+b 与AB 、BC 相交时(如图1),由{y =ax +b,x +y =1得y E =a+ba+1,又易知x D =-ba,∴|BD|=1+ba,由S △DBE =12×a+b a×a+b a+1=12得b=√1+1a+1∈(0,12).图1(2)当直线y=ax+b 与AC 、BC 相交时(如图2),由S △FCG =12(x G -x F )·|CM|=12得b=1-√22√1-a 2∈(1-√22,1)(∵0<a<1),图2∵对于任意的a>0恒成立, ∴b∈(0,12)∩(1-√22,1),即b ∈(1-√22,12).故选B.二、填空题 13.答案 2解析 解法一:AE ⃗⃗⃗⃗⃗ ·BD ⃗⃗⃗⃗⃗⃗ =(AD ⃗⃗⃗⃗⃗ +12AB ⃗⃗⃗⃗⃗ )·(AD ⃗⃗⃗⃗⃗ -AB ⃗⃗⃗⃗⃗ )=AD ⃗⃗⃗⃗⃗ 2-12AB ⃗⃗⃗⃗⃗ 2=22-12×22=2. 解法二:以A 为原点建立平面直角坐标系(如图).则AE ⃗⃗⃗⃗⃗ ·BD⃗⃗⃗⃗⃗⃗ =(1,2)·(-2,2)=1×(-2)+2×2=2.14.答案 8解析 因为5=1+4=2+3,所以2C n2=114,即n(n-1)=56,解得n=8或n=-7(舍).15.答案 -√105解析 tan θ=tan [(θ+π4)-π4]=12-11+12=-13,∴sin θ=-13cos θ,将其代入sin 2θ+cos 2θ=1得109cos 2θ=1,∴cos 2θ=910,易知cos θ<0, ∴cos θ=-310√10,sin θ=√1010,故sin θ+cos θ=-√105. 16.答案 -49 解析 由S n =na 1+n(n -1)2d 得{10a 1+45d =0,15a 1+105d =25,解得a 1=-3,d=23,则S n =-3n+n(n -1)2·23=13(n 2-10n),所以nS n =13(n 3-10n 2),令f(x)=13(x 3-10x 2),则 f '(x)=x 2-203x=x (x -203),当x ∈(1,203)时, f(x)递减, 当x ∈(203,+∞)时, f(x)递增,又6<203<7, f(6)=-48, f(7)=-49,所以nS n 的最小值为-49.评析 本题考查了数列与函数的应用,考查了数列的基本运算,利用导数求最值.本题易忽略n 的取值范围. 三、解答题17.解析 (Ⅰ)由已知及正弦定理得sin A=sin Bcos C+sin C ·sin B.① 又A=π-(B+C),故sin A=sin(B+C)=sin Bcos C+cos Bsin C.② 由①,②和C ∈(0,π)得sin B=cos B. 又B ∈(0,π),所以B=π4.(Ⅱ)△ABC 的面积S=12acsin B=√24ac. 由已知及余弦定理得4=a 2+c 2-2accos π4.又a 2+c 2≥2ac,故ac ≤2-√2,当且仅当a=c 时,等号成立.因此△ABC 面积的最大值为√2+1.18.解析 (Ⅰ)连结AC 1交A 1C 于点F,则F 为AC 1中点. 又D 是AB 中点,连结DF,则BC 1∥DF.因为DF ⊂平面A 1CD,BC 1⊄平面A 1CD,所以BC 1∥平面A 1CD. (Ⅱ)由AC=CB=√22AB 得,AC ⊥BC.以C 为坐标原点,CA⃗⃗⃗⃗⃗ 的方向为x 轴正方向,建立如图所示的空间直角坐标系C-xyz.设CA=2,则D(1,1,0),E(0,2,1),A 1(2,0,2),CD⃗⃗⃗⃗⃗ =(1,1,0),CE ⃗⃗⃗⃗⃗ =(0,2,1),CA ⃗⃗⃗⃗⃗ 1=(2,0,2). 设n =(x 1,y 1,z 1)是平面A 1CD 的法向量,则{n ·CD ⃗⃗⃗⃗⃗ =0,n ·CA ⃗⃗⃗⃗⃗ 1=0,即{x 1+y 1=0,2x 1+2z 1=0. 可取n =(1,-1,-1).同理,设m 是平面A 1CE 的法向量,则{m ·CE ⃗⃗⃗⃗ =0,m ·CA ⃗⃗⃗⃗⃗ 1=0. 可取m =(2,1,-2).从而cos<n,m >=n ·m |n||m|=√33,故sin<n,m >=√63.即二面角D-A 1C-E 的正弦值为√63.评析 本题考查了线面平行的判定和性质,考查二面角的计算.考查了空间想象能力.正确求出平面的法向量是解题的关键.19.解析 (Ⅰ)当X ∈[100,130)时,T=500X-300(130-X)=800X-39 000,当X ∈[130,150]时,T=500×130=65 000.所以T={800X -39 000,100≤x <130,65 000,130≤X ≤150.(Ⅱ)由(Ⅰ)知利润T 不少于57 000元当且仅当120≤X ≤150.由直方图知需求量X ∈[120,150]的频率为0.7,所以下一个销售季度内的利润T 不少于57 000元的概率的估计值为0.7.(Ⅲ)依题意可得T 的分布列为T45 000 53 000 61 000 65 000 P 0.1 0.2 0.3 0.4所以ET=45 000×0.1+53 000×0.2+61 000×0.3+65 000×0.4=59 400.20.解析 (Ⅰ)设A(x 1,y 1),B(x 2,y 2),P(x 0,y 0),则x 12a 2+y 12b 2=1,x 22a 2+y 22b 2=1,y 2-y 1x 2-x 1=-1,由此可得b 2(x 2+x 1)a 2(y 2+y 1)=-y 2-y1x 2-x 1=1. 因为x 1+x 2=2x 0,y 1+y 2=2y 0,y 0x 0=12, 所以a 2=2b 2.又由题意知,M 的右焦点为(√3,0),故a 2-b 2=3.因此a 2=6,b 2=3.所以M 的方程为x 26+y 23=1. (Ⅱ)由{x +y -√3=0,x 26+y 23=1解得{x =4√33,y =-√33,或{x =0,y =√3. 因此|AB|=4√63. 由题意可设直线CD 的方程为y=x+n (-5√33<n <√3),设C(x 3,y 3),D(x 4,y 4).由{y =x +n,x 26+y 23=1得3x 2+4nx+2n 2-6=0. 于是x 3,4=-2n±√2(9-n 2)3.因为直线CD 的斜率为1,所以|CD|=√2|x 4-x 3|=43√9-n 2.由已知,四边形ACBD 的面积S=12|CD|·|AB|=8√69√9-n 2. 当n=0时,S 取得最大值,最大值为8√63. 所以四边形ACBD 面积的最大值为8√63.评析 本题考查了直线和椭圆的位置关系,考查了解析几何中的中点问题和最值问题,计算量大,综合性较强.应充分重视方程思想和函数思想在解题中的作用.21.解析 (Ⅰ)f '(x) =e x -1x+m .由x=0是f(x)的极值点得f '(0)=0,所以m=1.于是f(x)=e x -ln(x+1),定义域为(-1,+∞), f '(x)=e x -1x+1.函数f '(x)=e x -1x+1在(-1,+∞)单调递增,且f '(0)=0,因此当x ∈(-1,0)时, f '(x)<0;当x ∈(0,+∞)时, f '(x)>0.所以f(x)在(-1,0)单调递减,在(0,+∞)单调递增.(Ⅱ)当m ≤2,x ∈(-m,+∞)时,ln(x+m)≤ln(x+2),故只需证明当m=2时, f(x)>0.当m=2时,函数f '(x)=e x -1x+2在(-2,+∞)单调递增.又f '(-1)<0, f '(0)>0,故f '(x)=0在(-2,+∞)有唯一实根x 0,且x 0∈(-1,0).当x ∈(-2,x 0)时, f '(x)<0;当x ∈(x 0,+∞)时, f '(x)>0,从而当x=x 0时, f(x)取得最小值. 由f '(x 0)=0得e x 0=1x0+2,ln(x 0+2)=-x 0, 故f(x)≥f(x 0)=1x 0+2+x 0=(x 0+1)2x 0+2>0. 综上,当m ≤2时, f(x)>0.评析 本题考查了函数的极值、单调性,考查了构造函数证明不等式;考查了函数与方程思想,转化与化归的思想,对运算能力要求很高.22.解析 (Ⅰ)因为CD 为△ABC 外接圆的切线,所以∠DCB=∠A,由题设知BC FA =DCEA ,故△CDB ∽△AEF,所以∠DBC=∠EFA.因为B,E,F,C 四点共圆,所以∠CFE=∠DBC,故∠EFA=∠CFE=90°.所以∠CBA=90°,因此CA 是△ABC 外接圆的直径.(Ⅱ)连结CE,因为∠CBE=90°,所以过B,E,F,C 四点的圆的直径为CE,由DB=BE,有CE=DC,又BC 2=DB ·BA=2DB 2,所以CA 2=4DB 2+BC 2=6DB 2.而DC 2=DB ·DA=3DB 2,故过B,E,F,C 四点的圆的面积与△ABC 外接圆面积的比值为12.23.解析 (Ⅰ)依题意有P(2cos α,2sin α),Q(2cos 2α,2sin 2α),因此M(cos α+cos 2α,sin α+sin 2α).M 的轨迹的参数方程为{x =cosα+cos2α,y =sinα+sin2α(α为参数,0<α<2π). (Ⅱ)M 点到坐标原点的距离d=√x 2+y 2=√2+2cosα (0<α<2π).当α=π时,d=0,故M 的轨迹过坐标原点.24.解析 (Ⅰ)由a 2+b 2≥2ab,b 2+c 2≥2bc,c 2+a 2≥2ca 得a 2+b 2+c 2≥ab+bc+ca.由题设得(a+b+c)2=1,即a 2+b 2+c 2+2ab+2bc+2ca=1.所以3(ab+bc+ca)≤1,即ab+bc+ca ≤13.(Ⅱ)因为a 2b +b ≥2a,b 2c +c ≥2b,c 2a +a ≥2c,故a 2b +b 2c +c 2a +(a+b+c)≥2(a+b+c),即a 2b +b 2c +c 2a ≥a+b+c.所以a 2b +b 2c +c 2a ≥1.。

新课标全国统考区2013届最新高三名校理科数学试题精选分类汇编6:不等式

新课标全国统考区2013届最新高三名校理科数学试题精选分类汇编6:不等式

新课标全国统考区(吉林、河南、黑龙江、内蒙古、山西、云南)2013届最新高三名校理科数学试题精选分类汇编6:不等式一、选择题1 .(河南省六市2013届高三第二次联考数学(理)试题)当实数,x y 满足不等式⎪⎩⎪⎨⎧≤+≥≥2200y x y x 时,恒有3ax y +≤成立,则实数a 的取值范围是( )A .0a ≤B .0a ≥C .02a ≤≤D .3a ≤【答案】D2 .(河南省中原名校2013届高三下学期第二次联考数学(理)试题)若*1(),()(),2f n n g n n n n N nϕ==-=∈,则(),(),()f n g n n ϕ的大小关系 ( ) A .()()()f n g n n ϕ<< B .()()()f n n g n ϕ<< C .()()()g n n f n ϕ<<D .()()()g n f n n ϕ<<【答案】B3 .(云南省玉溪市2013年高中毕业班复习检测数学(理)试题)已知变量x ,y 满足约束条件211y x y x y ≤⎧⎪+≥⎨⎪-≤⎩,则z =3x +y 的最大值为( )( )A .12B .11C .3D .-1【答案】B4 .(河南省豫东、豫北十所名校2013届高三阶段性测试(四) 数学(理)试题(word 版))已知实数⎪⎩⎪⎨⎧≤+-≤≥.,13,1,m y x x y y y x 满足如果目标函数y x z 45-=的最小值为—3,则实数m=( )A .3B .2C .4D .311 【答案】A5 .(河南省中原名校2013届高三下学期第二次联考数学(理)试题)若A 为不等式组002x y y x ≤⎧⎪≥⎨⎪-≤⎩所示的平面区域,则当a 从-2连续变化到1时,动直线x +y=a 扫过A 中的那部分区域面积为 ( )A .2B .1C .34D .74【答案】D6 .(河南省商丘市2013届高三第三次模拟考试数学(理)试题)若0.5222,log 3,log sin5a b c ππ===,则,,a b c 之间的大小关系是( )A .c a b >>B .a b c >>C .b a c >>D .b c a >>【答案】B7 .(云南省2013年第二次高中毕业生复习统一检测数学理试题(word 版) )已知()f x 是定义域为实数集R的偶函数,10x ∀≥,20x ∀≥,若12x x ≠,则1212()()0f x f x x x -<-.如果13()34f =,184(log )3f x >,那么x 的取值范围为( )A .10,2⎛⎫ ⎪⎝⎭B .1,22⎛⎫⎪⎝⎭C .()1,12,2⎛⎤+∞⎥⎝⎦D .110,,282⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭【答案】B8 .(河南省开封市2013届高三第四次模拟数学(理)试题)若a>1,设函数4)(-+=x a x f x 的零点为m,g(x)4log -+=x x a 的零点为n,则nm 11+的取值范围是 ( )A .(3.5,+∞)B .(1,+∞)C .(4,+∞)D .(4.5,+∞)【答案】B9 .(吉林省吉林市2013届高三三模(期末)试题 数学理 )已知点(),P x y 在不等式组⎪⎩⎪⎨⎧≥-+≤-≤-0220102y x y x 表示的平面区域上运动,则z x y =-的取值范围是 ( )A .[]2,1--B .[]2,1-C .[]1,2-D .[]1,2【答案】C10.(黑龙江省哈师大附中2013届第三次高考模拟考试 理科数学 Word 版含答案)设x 、y 满足约束条件2040220x y x y x y -+-≤⎧⎪+-≤⎨⎪-+≤⎩,则目标函数z = 2x + y 的最大值为 A .-4B .5C .6D .不存在【答案】C11.(山西省临汾一中、忻州一中、康杰中学、长治二中2013届高三第四次四校联考数学(理)试题)若实数x ,y 满足约束条件142x y x y y -≥-⎧⎪+≤⎨⎪≥⎩,则目标函数 24z x y =+的最大值为( )A .10B .12C .13D .14【答案】C12.(河南省三市(平顶山、许昌、新乡)2013届高三第三次调研(三模)考试数学(理)试题)设实数,x y 满足约束条件:360200,0x y x y x y --≤⎧⎪-+≥⎨⎪≥≥⎩,若目标函数(0,0)z ax by a b =+>>的最大值为12,则2294a b +的最小值为( )A .12 B .1325C .1D .2【答案】A 13.(河北省石家庄市2013届高中毕业班第二次模拟考试数学理试题(word 版) )设y x ,满足约束条件⎪⎩⎪⎨⎧≤+≥≥,1434,,0y x x y x 则21++x y 的取值范围是 ( )A .]617,21[ B .]43,21[C .]617,43[ D .),21[+∞【答案】A 二、填空题14.(河南省郑州市2013届高三第三次测验预测数学(理)试题)已知⎪⎩⎪⎨⎧≥≤-+≤++101553,034x y x y x ,则z =______.【答案】812[,]15515.(吉林省实验中学2013届高三第二次模拟考试数学(理)试题)已知点P (x ,y )的坐标满足条件0,0,20,≥≥≤x y x y ⎧⎪⎨⎪+-⎩则z =2x -y 的最大值是_________. 【答案】416.(2013年红河州高中毕业生复习统一检测理科数学)设y x ,满足约束条件⎪⎩⎪⎨⎧≥≥≤--≥+-0,0048022y x y x y x ,若目标函数)0,0(>>+=b a y abx z 的最大值为8,则b a +的最小值为_______. 【答案】417.(山西省山大附中2013届高三4月月考数学(理)试题)设二次函数c x ax x f +-=4)(2的值域为[)+∞,0,_______18.(云南省玉溪市2013年高中毕业班复习检测数学(理)试题)若正实数a,b 满足:(a-1)(b-1)=4,则ab 的最小值是_____.【答案】919.(内蒙古包头市2013届高三第二次模拟考试数学(理)试题)设x,y 满足条件20360,(0,0)0,0x y x y z ax by a b x y -+≥⎧⎪--≤=+>>⎨⎪≥≥⎩若目标函数的最大值为12,则32a b +的最小值为________【答案】 420.(河北省衡水中学2013届高三第八次模拟考试数学(理)试题 )已知点P (x ,y )在不等式组1003x y x y x ⎧⎪⎨⎪⎩+-≥,-≥,≤表示的平面区域内运动,则34z x y =-的最小值为________ 【答案】解析:可行域是以11(,),(3,3),(3,2)22A B C -三点为顶点的三角形,当过点B 时,z 取最小值是3-.21.(河南省开封市2013届高三第四次模拟数学(理)试题)实数x,y 满足条件yx z y x y x y x -=⎪⎩⎪⎨⎧≥≥≥+-≤-+2,0,002204则的最小值为_________. 【答案】1-22.(山西省山大附中2013届高三4月月考数学(理)试题)在平面直角坐标系中,不等式⎪⎩⎪⎨⎧≤≥-≥+a x y x y x 00a (为常数)表示的平面区域的面积为8,则32+++x y x 的最小值为_________23.(2013年长春市高中毕业班第四次调研测试理科数学)设,x y 满足约束条件00+2y y xx y a ⎧⎪⎨⎪-⎩≥≤≤,若目标函数3x y +的最大值为6,则a =______.【答案】【命题意图】本小题通过线性规划问题考查学生的运算求解能力,是一道基本题.【试题解析】由题意可知,3z x y =+取最大值6时,直线 36y x =-+过点(2,0),则点(2,0)必在线性规划区域内,且可以使一条斜率为3-的直线经过该点时取最大值,因此点 (2,0)为区域最右侧的点,故直线0+2x y a -=必经过点(2,0), 因此2a =.24.(吉林省实验中学2013届高三第二次模拟考试数学(理)试题)已知P 是面积为1的△ABC 内的一点(不含边界),若△PBC ,△PCA 和△PAB 的面积分别为,,x y z ,则1x yx y z +++的最小值是_________. 【答案】325.(山西省太原市第五中学2013届高三4月月考数学(理)试题)设实数x ,y 满足约束条件2220,20,220,x y x y x y x y ⎧-≤⎪-≥⎨⎪+--≤⎩,则目标函数z x y =+的最大值为_________. 【答案】4。

2013年云南省第二次高中毕业生复习总结统一检测理科数学质量分析报告

2013年云南省第二次高中毕业生复习总结统一检测理科数学质量分析报告

2013年云南省第二次高中毕业生复习统一检测理科数学质量分析报告一、抽样统计分析1.抽样全卷基本情况2.抽样分数段1 / 303.各小题抽样情况(1)选择题2 / 30(2)填空题(3)解答题3 / 304 / 30(4)第II 卷 选考题数据统计二、各题质量分析一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.第1题:已知集合{}21,=S ,集合{}a T =,Φ表示空集,如果S T S ⋃=,那么a 的值是 (A )Φ (B )1(C )2(D )1或2本题考查集合的概念和运算.解:∵{}21,=S ,{}a T =,S T S ⋃=, ∴S a ∈.所以1=a 或2=a . 故选D .5 / 30答题分析:下列解法是错误的:因为S T S ⋃=,所以T S ⊆,从而T 可以是空集Φ,因此选 A.原因在于没有注意到{}a T =,从而T 是单元素集合.实际上{}1T =或{}2T =. 第2题:在92)1(xx -的二项式展开式中,常数项是 (A )504 (B )84(C )84-(D )504-本题考查二项式定理. 解:在92)1(x x -的二项式展开式中,通项公式r r r r xx C T )1(21891-=-+ r r r x C 3189)1(--=. ∵0318=-r ,∴6=r ,84)1(39696==-C C . ∴在92)1(xx -的二项式展开式中,常数项是84. 故选B.答题分析:解题时应记住二项展开通项公式:1r n r rr nT C a b -+=. 第3题:一个由实数组成的等比数列,它的前6项和是前3项和的9倍,则此数 列的公比为 (A )2 (B )3(C )21(D )31本题考查等比数列的性质及相关计算.解法一: 设此数列的公比为q ,根据题意得qq a q q a --=--1)1(91)1(3161,解得2=q .故选A.解法二: 依题意得639S S =,故33339S q S S +=. ∴319q +=,解得2=q .6 / 30故选A.第4题:已知a r 、b r 是平面向量,若(2)a a b ⊥-r r r,)2(-⊥,则a r 与b r 的夹角是(A )6π (B )3π (C )32π (D )65π 本题考查向量的概念及其与运算.考查向量垂直、两个向量夹角的求法.解:∵(2)a a b ⊥-r r r , ∴22.0a a b -=r r r. ∵)2(a b b -⊥, ∴022=-. 设a r 与b r的夹角为θ, θ=,则0cos 222=-=-θ, 0cos 222=-=-θ.∴θ2=,θ2=.0=0==0=,此时,(A )、(B )、(C )、(D )都正确.0≠0≠,解方程组得到21cos =θ. ∴3πθ=.故选B.第5题:如图是一个空间几何体的三视图,其中正视图和侧视图都是半径为2的 半圆,俯视图是半径为2的圆,则该几何体的体积等于(A )34π (B )38π (C )316π(D )332π本题以半球为载体,考查由三视图还原几何体的能力.正视图俯视图侧视图7 / 30解: 由三视图知几何体是半径为2的半球,所以其体积等于316234213ππ=⨯⨯. 故选C .第6题:已知常数a 、b 、c 都是实数,34)(23-++=x c x b x a x f 的导函数为)(x f ',0)(≤'x f 的解集为{}32≤≤-x x ,若)(x f 的极小值等于115-,则a 的值是 (A )2281- (B )31(C )2(D )5本题考查函数与导数.考查函数极值、方程的思想方法. 解: ∵34)(23-++=x c x b x a x f ,∴c bx ax x f ++='23)(2.∵不等式0)(≤'x f 的解集为{}32≤≤-x x , ∴不等式0232≤++c bx ax 的解集为{}32≤≤-x x .∴⎪⎪⎪⎩⎪⎪⎪⎨⎧=⨯--=+->,332,3232,0a c a b a 即⎪⎩⎪⎨⎧-=-=>.18,23,0a c a b a ∴341823)(23---=ax x a x a x f . 根据已知得当2-=x 时,)(x f 取得极大值,当时3=x 时,)(x f 取得极小值.∴115345422727)3(-=---=a aa f ,解得2=a . 故选C.答题分析:1.一些考生不能把条件“不等式0)(≤'x f 的解集为{}32≤≤-x x ”正确地进行等价转化.2.本题通过求a 的问题设置,引导考思考使用待定系数法,从而想到联立方程组.进而联想到题设条件,用原函数与导函数关系,列出方程组求解.3.本题较好地体现了高考类似设题思想,体现知识与方法的交汇.8 / 30第7题:已知i 是虚数单位,复数z 的共轭复数是z ,如果i z z 48-=+,那么z 等于 (A )i 43-- (B )i 43+-(C )i 34+(D )i 43+本题考查复数、共轭复数的概念.考查复数的基本运算、方程的思想方法. 解:设yi x z +=,x 、y 都是实数,则yi x y x z z -++=+22,∵i z z 48-=+,∴⎩⎨⎧=++-=-8422x y x y ,解方程组得⎩⎨⎧==34x y . ∴=z i 43+. 故选D .答题分析:本题解题方法是利用复数相等条件来列等式,求出未知数.复数 不能比较大小,但复数可以相等.本题体现了这一思想.第8题:已知⊙P 的半径等于6,圆心是抛物线x y 82=的焦点,经过点)2,1(-M 的直线l 将⊙P 分成两段弧,当优弧与劣弧之差最大时,直线l 的方程为 (A )032=++y x (B )052=--y x(C )02=+y x(D )052=--y x本题考查直线和圆的基本知识.解:∵⊙P 的半径等于6,圆心是抛物线x y 82=的焦点, ∴⊙P 的方程为16)2(22=+-y x .∵过点)2,1(-M 的直线l 将圆16)2(22=+-y x 分成两段弧,当优弧与 劣弧之差最大时,劣弧最短, ∴点)2,1(-M 是直线l 的中点.∵圆16)2(22=+-y x 的圆心为)0,2(P ,∴211-=-=PMl k k .∴直线l 的方程为)1(212--=+x y ,即032=++y x .故选A .9 / 30答题分析:本题的难点在于理解条件“当优弧与劣弧之差最大时”,实际上,由于优弧和劣弧之和是定值圆周长,所以两弧之差最大劣弧最短.另外从几何的角度来看当直线l PM ⊥时,过点P 垂直于直线的弦长最长,从而劣弧最短. 第9题:在数列{}n a 中,11=a ,22=a ,若2212+-=++n n n a a a ,则n a 等于 (A )5652513+-n n(B )49523-+-n n n(C )222+-n n(D )4522+-n n本题考查递推数列通项公式的求法.解法一(直接求通项公式):∵11=a ,22=a ,2212+-=++n n n a a a , ∴112=-a a ,2)()(112=---+++n n n n a a a a .∴{}n n a a -+1是首项为1,公差为2的等差数列. 所以121-=-+n a a n n . ∵2213211()()()22n n n a a a a a a a a n n -=-+-++-+=-+L . ∴222+-=n n a n .故选C .解法二(特值排除法):因为11=a ,22=a ,2212+-=++n n n a a a , ∴35a =,410a =,代入验证,可以排除A 、B 、D , 故选C.答题分析:若采用下列解法:∵2212+-=++n n n a a a ,不妨设()211n n n n a xa y z a xa y +++--=--, 则()21n n n a x z a xza y yz ++=+-+-,∴212x z xz y yz +=⎧⎪=⎨⎪-=⎩,解得1102x z =⎧⎪=⎨⎪=⎩,矛盾.说明这个数列并不能配凑成上述样子. 事实上,可以配凑成2)()(112=---+++n n n n a a a a ,但这需要一定配凑意识、观察能力和思维的灵活,而这正是解决本题的难点所在.10 / 30第10题:已知)(x f 是定义域为实数集R 的偶函数,01≥∀x ,02≥∀x ,若21x x ≠,则0)()(1212<--x x x f x f .如果43)31(=f ,3)log (481>x f ,那么x 的取值范围为(A ))21,0( (B ))2,21((C )1(,1](2,)2⋃+∞(D )11(0,)(,2)82⋃ 本题综合考查函数的奇偶性、单调性. 解:∵01≥∀x ,02≥∀x ,21x x ≠,则0)()(1212<--x x x f x f ,∴定义在实数集R 上的偶函数)(x f 在),0[∞+上是减函数.∵3)log (481>x f , ∴43)log (81>x f , 即)31()log (81f x f >. ∴ ,31log ,0log 8181⎪⎩⎪⎨⎧<≥x x 或 ,31log ,0log 8181⎪⎩⎪⎨⎧-><x x 解得121≤<x 或21<<x . ∴221<<x . 故选B .答题分析:1.本题首先要看出函数)(x f 在),0[∞+上是减函数. 2.根据函数的单调性“去f ”:∵3)log (481>x f , ∴43)log (81>x f , 即)31()log (81f x f >,但这个不等式并不等价于181log 3x <,原因是函数)(x f 在),0[∞+上是减函数,但在(),0-∞上却是增函数.事实上,因为)(x f 是定义域为实数集R 的偶函数,所以上式可化为181log 3f x f ⎛⎫⎛⎫> ⎪ ⎪⎪⎝⎭⎝⎭,即181log 3x >,接下来分类讨论去绝对值即可.11 / 30第11题:两位同学一起参加某单位的招聘面试,单位负责人对他们说:“我们 要从面试的人中招聘3人,假设每位参加面试的人被招聘的概率相等,你们俩同 时被招聘的概率是701”.根据这位负责人的话可以推断出这次参加该单位招聘 面试的人有(A )44人(B )42人(C )22人(D )21人本题考查概率、古典概型的计算以及组合数的计算.解:设参加面试的人数为n ,根据已知得701312=-nn C C ,解得21=n . 故选D .第12题:在三棱锥ABC P -中,PC PB PA ==,底面ABC ∆是正三角形,M 、N 分别是侧棱PB 、PC 的中点.若平面⊥AMN 平面PBC ,则平面AMN 与平面ABC 所成二面角(锐角)的余弦值等于(A )630(B )621(C )66(D )63 本题考查空间线面位置关系及“无棱二面角”的求法.解: 设MN 的中点为D ,BC 的中点为E ,连接AD ,AE ,PE .在平面ABC 内作BC AF //,则平面ABC ⋂平面AF AMN =. 由已知得AN AM =. ∴MN AD ⊥.∵平面⊥AMN 平面PBC , ∴⊥AD 平面PBC . ∴⊥AD BC ,⊥AD PE .N MCABPC12 / 30∵ABC ∆是等边三角形,BC 的中点为E , ∴⊥AE BC . ∵BC AF //, ∴AF AE ⊥,AF AD ⊥.∴DAE ∠是平面AMN 与平面ABC 所成二面角(锐角)的平面角. 设等边ABC ∆的边长为a ,侧棱长为b . ∵M 、N 分别是侧棱PB 、PC 的中点, ∴D 是PE 的中点. ∵⊥AD PE ,∴AE PA =. ∴a b 23=. ∴a BE PB PE DE 42212122=-==. ∴66sin ==∠AE DE DAE . ∴630sin 1cos 2=∠-=∠DAE DAE . 故选A .答题分析:1.本题的关键在于对空间线面位置关系进行正确而有效的转化,只要哪一步思维卡壳,就很难做下去了.2.首先要找到平面AMN 与平面ABC 所成二面角(锐角)的平面角DAE ∠. 接下来要逆用等腰三角形的性质,得出AE PA =,从而找到底面正三角形边长a 和侧棱长b 之间的等量关系,再计算平面角DAE ∠的余弦值.3.本题的难点在于:首先要找出所求的二面角的平面角,其次如何根据条件找到底面边长a 和侧棱长b 的等量关系.4.本题也可用建立空间直角坐标系的方法来求解.13 / 30二.填空题:本大题共4小题,每小题5分.第13题:如果执行下列程序框图,那么输出的S = .本题考查程序框图,考查等差数列前n 项和的求法.解:根据程序框图的意义,得()212202021420S =⨯+++=⨯=L . 第14题:一次射击训练,某小组的成绩只有7环、8环、9环三种情况,且该小 组的平均成绩为15.8环,设该小组成绩为7环的有x 人,成绩为8环、9环的人 数情况见下表:那么x .本题考查统计,考查方程的思想方法. 解: 根据题意得)87(15.872567++=++x x ,解得5=x .第15题:已知a 、b 、c 分别为A B C ∆三个内角A 、B 、C 的对边,若bc c b a -+=222,12c b =,则B tan 的值等于 . 本题考查解三角形,涉及正余弦定理、三角变换.14 / 30解:根据余弦定理得:212cos 222=-+=bc a c b A . ∵A 是三角形的内角,∴3π=A .在ABC ∆中,B B A C -=--=32ππ. ∴B B C sin 21cos 23sin +=. 根据正弦定理和已知得:321sin sin 21cos 23sin sin +=+=B BB BC . ∴B B cos 23sin 3=. ∴21tan =B . 答题分析:1.解答本题的一个关键是要从bc c b a -+=222看出这是关于角A 的余弦定理,可得出3π=A .2.由于()s i n 120s i n s i n s i nB cC b B B ︒-===+,这个式子展开后,得1122+=+.第16题:已知1F 、2F 是双曲线1222=-y ax 的两个焦点,点P 在此双曲线上,021=⋅PF PF ,如果点P 到x 轴的距离等于55,那么该双曲线的离心率等于 .本题考查双曲线,考查离心率的求法. 解法一: ∵021=⋅PF PF , ∴21PF ⊥.∴21PF PF ⊥.15 / 30∵点P 在双曲线1222=-y ax 上,∴22214)(a PF PF =-.∴221222142a PF PF PF PF =-+.∴221242)1(4a PF PF a =-+⨯. ∴221=PF PF . ∴2125512PF PF a =⨯+,解得42=a . ∴1422=-y x 的离心率等于25.解法二(方程思想):∵1222=-y ax ,∴()1,0F c -,()2,0F c .设,5P m ⎛⎫ ⎪ ⎪⎝⎭,则22115m a -=……①由021=⋅PF PF得221,,05c m c m m c ⎛⎛--⋅-=-+= ⎝⎭⎝⎭…… ② 又221a c +=…… ③解得c =2a =,∴1422=-y x 的离心率等于25.三.解答题:解答应写出文字说明,证明过程或演算步骤. 第17题:(本小题满分12分)已知21cos cos sin 3)(2+-=x x x x f . (Ⅰ)写出)(x f 的最小正周期T ; (Ⅱ) 求由)(x f y =)650(π≤≤x ,)650(0π≤≤=x y ,)01(65≤≤-=y x π,以及)021(0≤≤-=y x 围成的平面图形的面积. 本题考查三角函数的化简计算、定积分的应用.16 / 30解:(Ⅰ)∵21cos 2cos sin 3)(2--=x x x x f)62sin(2cos 212sin 23π-=-=x x x , ∴ππ==22T . ∴)(x f 的最小正周期为π. (Ⅱ)设由)(x f y =)650(π≤≤x ,)650(0π≤≤=x y ,)01(65≤≤-=y x π,以及)021(0≤≤-=y x 围成的平面图形的面积为S ,∵)62sin()(π-=x x f ,∴123012sin(2)3sin (2)66S x dx x dx πππππ=--+-⎰⎰.∵)62sin(2)62cos(ππ-='⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--x x , ∴⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⨯--⨯+-⨯--⨯=2)632cos()6122cos(32)602(cos )6122(cos πππππππS 432-=. ∴由)(x f y =)650(π≤≤x ,)650(0π≤≤=x y ,)01(65≤≤-=y x π以及 )021(0≤≤-=y x 围成的平面图形的面积为432-.17 / 30答题分析:1.解答第(Ⅱ)问,首先要正确画出示意图.2.要注意的是,当面积在x 轴上方的时候,定积分算出来是正数;当面积在x 轴下方的时候,定积分算出来是负数.很多考生没有注意到这一点而导致出错:123012sin(2)3sin(2)66S x dx x dx πππππ=-+-⎰⎰.3.充分运用对称性,否则就要计算三个定积分了.第18题:(本小题满分12分)一次高中数学期末考试,选择题共有12个,每个选择题给出了四个选项,在给出的四个选项中,只有一项是符合题目要求的. 评分标准规定:对于每个选择题,不选或多选或错选得0分,选对得5分.在这次考试的选择题部分,某考生比较熟悉其中的8个题,该考生做对了这8个题.其余4个题,有一个题,因全然不理解题意,该考生在给出的四个选项中,随机选了一个;有一个题给出的四个选项,可判断有一个选项不符合题目要求,该考生在剩下的三个选项中,随机选了一个;还有两个题,每个题给出的四个选项,可判断有两个选项不符合题目要求,对于这两个题,该考生都是在剩下的两个选项中,随机选了一个选项.请你根据上述信息,解决下列问题:(Ⅰ)在这次考试中,求该考生选择题部分得60分的概率;(Ⅱ)在这次考试中,设该考生选择题部分的得分为X ,求X 的数学期望. 本题考查概率.考查随机变量分布列、数学期望的计算.解:设选对“全然不理解题意”的试题的选项为事件A ,选对“可判断有一个 选项不符合题目要求”试题的选项为事件B ,选对“可判断有两个选项不符18 / 30合题目要求”试题的选项为事件C ,根据题意得41)(=A P ,31)(=B P ,21)(=C P . (Ⅰ)在这次考试中,该考生选择题得60分的概率48121213141=⨯⨯⨯=P ; (Ⅱ)随机变量X 可能的取值为40,45,50,55,60,根据题意得8121213243)40(=⨯⨯⨯==X P , 4817212132432121314321213241)45(12=⨯⨯⨯⨯+⨯⨯⨯+⨯⨯⨯==C X P , 21213243212131432121324121213141)50(1212⨯⨯⨯+⨯⨯⨯⨯+⨯⨯⨯⨯+⨯⨯⨯==C C X P 4817=,487212131432121324121213141)55(12=⨯⨯⨯+⨯⨯⨯+⨯⨯⨯⨯==C X P ,48121213141)60(=⨯⨯⨯==X P . ∴X 的数学期望48160487554817504817458140⨯+⨯+⨯+⨯+⨯=EX 12575=.答题分析: 1.本题以学生熟悉的背景设题,将得分与选择对、选错联系起来,感受随机事件与概率.因此,解题首先是要读懂题意.善于在熟悉的情境中理解题意,这是解概率题的关键.2.概率问题往往涉及到分类计算,这是由于分布列的特点需要分类进行计算.另由于选择各题时相对独立,独立事件也需要分类计算.3.概率题要求计算要准确,全功尽弃. 第19题:(本小题满分12分)如图,在长方体ABCD D C B A -1111中,4==CD AD ,51=AD ,M 是线段11D B 的中点.(Ⅰ)求证://BM 平面AC D 1;19 / 30(Ⅱ)求直线1DD 与平面AC D 1所成角的正弦值.本题考查空间线面位置关系、线面平行、线面角的求法. (Ⅰ)证明:在长方体ABCD D C B A -1111中,∵4=AD ,51=AD ,∴32211=-=AD AD DD .建立如图所示的空间直角坐标系xyz D -,设AC 的中点为N ,连接1ND ,根据题意得)0,0,4(A ,)0,4,4(B ,)0,4,0(C ,)0,0,0(D ,)3,4,4(1B ,)3,0,0(1D ,线段11D B 的中点为)3,2,2(M ,线段AC 的中点为)0,2,2(N .∴)3,2,2(--=,)3,2,2(1--=ND . ∴1//ND BM . ∵⊄BM 平面AC D 1,⊂1ND 平面AC D 1, ∴1//ND BM . ∴//BM 平面AC D 1.(Ⅱ)解:)3,0,0(1=DD ,)0,4,4(-=,)3,0,4(1-=AD ,设平面AC D 1的一个法向量为),,z y x (=,根据已知得⎩⎨⎧=+-=⋅=+-=⋅,034,0441z x AD y x 取1=x ,得⎪⎩⎪⎨⎧==.34,1z y D 1C 1B 1A 1ABCDM20 / 30D 1C 1B 1 A1 ABCDMN O∴)34,1,1(=是平面AC D 1的一个法向量.∴17342,cos 1==><DD . ∴直线1DD 与平面AC D 1所成角的正弦值等于17342. 答题分析:1.本题的模型是长方体,因此采用坐标法不失为一个好的选择.2.本题也可以采用几何法的方式进行求解.(Ⅰ)如图,连接BD ,交AC 于N , 可以证明四边形1BND M 是平行四边形, 从而1//BM ND ,进而可以证明//BM 平面AC D 1.(Ⅱ)过D 作1DO ND ⊥于O ,因为底面ABCD 是正方形,可以证明DO ⊥平面1ACD ,从而1DD O ∠即为所求角.接下来解之即可.第(Ⅱ)问也可以用等积的办法来求解.设点D 到平面1D AC 的距离为d .在1D AC ∆中,115D A D C==,AC =,可得AC 边上的高等于7=,∴112D AC S ∆=⨯= ∵11D ADC D AD C V V --=,∴111443323d ⎛⎫⨯⨯⨯⨯=⨯ ⎪⎝⎭,解得d=.设直线1DD 与平面AC D 1所成角的大小为θ,则1434s i n 17d D D θ====. ∴直线1DD 与平面AC D 1所成角的正弦值等于17342.21 / 30第20题:(本小题满分12分)已知22)1(ln 2)(+--=x x x x f . (Ⅰ)求)(x f 的单调递增区间;(Ⅱ)若函数a x x x f x F ++-=3)()(2在]2,21[-上只有一个零点,求实数a 的取值范围.本题通过导函数考查函数的单调性、极值、零点、比较大小等知识. 解: (Ⅰ))(x f 的定义域为{}1-≠x x . ∵22)1(ln 2)(+--=x x x x f∴1)2(21222)(2+-=+--='x x x x x f . 解1,()0,x f x ≠-⎧⎨'>⎩得1x <<-或x > ∴)(x f的单调递增区间是(1)-和+∞( ). (Ⅱ)由已知得a x x x F ++-=2)1ln()(,且1-≠x .∴11121)(+-=+-='x x x x F . ∴当1-<x 或1>x 时,0)(>'x F ; 当11<<-x 时,0)(<'x F . ∴当121<<-x 时,0)(<'x F ,此时,)(x F 单调递减; 当21<<x 时,0)(>'x F ,此时,)(x F 单调递增.∵a a F >++-=-2ln 221)21(,a a F <+-=3ln 22)2(, ∴)2()21(F F >-. ∴)(x F 在]2,21[-上只有一个零点⎪⎩⎪⎨⎧<≥-⇔,0)2(,0)21(F F 或0)1(=F .22 / 30由⎪⎩⎪⎨⎧<≥-,0)2(,0)21(F F 得23ln 22ln 221-<≤-a ; 由0)1(=F ,得12ln 2-=a . ∴实数a 的取值范围为23ln 22ln 221-<≤-a 或12ln 2-=a . 答题分析:1.本题要注意函数的定义域{}1-≠x x .2.在比较11()2ln 222F a -=-++与(2)22ln3F a =-+的大小时,如果直接采用作差的方式进行比较:11()(2)2ln222ln322F F --=-++-+552ln 62ln 624⎛⎫=-+=- ⎪⎝⎭,则很难得出答案.实际上,因为a a F >++-=-2ln 221)21(,a a F <+-=3ln 22)2(,所以)2()21(F F >-.这提示我们处理问题的时候思维要相当灵活,要眼观六路,耳听八方,怎么好做就怎么做.3. 很多考生误认为)(x F 在]2,21[-上只有一个零点⎪⎩⎪⎨⎧<≥-⇔,0)2(,0)21(F F 事实上漏了0)1(=F .第21题:(本小题满分12分)已知1F 、2F 分别是椭圆E : )0(12222>>=+b a b y a x 的左、右焦点,点)3,2(P 在直线ba x 2=上,线段1PF 的垂直平分线经过点2F .直线mx k y +=与椭圆E 交于不同的两点A 、B ,且椭圆E 上存在点M ,使λ=+,其中O 是坐标原点,λ是实数.(Ⅰ)求λ的取值范围;(Ⅱ)当λ取何值时,ABO ∆的面积最大?最大面积等于多少?23 / 30本题综合考查直线和椭圆的相关问题,综合考查考生的运算求解能力. 解:(Ⅰ)设椭圆E 的半焦距为c ,根据题意得⎪⎪⎪⎩⎪⎪⎪⎨⎧+=+-====,,3)2()2(,222222222212c b a c PF c F F b a 解方程组得⎪⎩⎪⎨⎧===.2,1,1a b c∴椭圆E 的方程为1222=+y x . 由⎩⎨⎧=++=22,22y x m kx y ,得0224)21(222=-+++m kmx x k . 根据已知得关于x 的方程0224)21(222=-+++m kmx x k 有两个不相等的实数根.∴0)21(8)22)(21(416222222>-+=-+-=∆m k m k m k , 化简得:2221m k >+.设),(11y x A 、),(22y x B ,则⎪⎪⎩⎪⎪⎨⎧+-=+-=+.2122,2142221221k m x x k km x x 221212122)(kmm x x k y y +=++=+. (1)当0=λ时,点A 、B 关于原点对称,0=m ,满足题意; (2)当0≠λ时,点A 、B 关于原点不对称,0≠m .由OA OB OM λ+=u u r u u u r u u u r ,得⎪⎪⎩⎪⎪⎨⎧+=+=),(1),(12121y y y x x x M M λλ即⎪⎪⎩⎪⎪⎨⎧+=+-=.)21(2,)21(422k m y k km x M M λλ∵M 在椭圆E 上,∴1])21(2[])21(4[212222=+++-k m k km λλ, 化简得:)21(4222k m +=λ. ∵2221m k >+,∴2224m m λ>.24 / 30∵0≠m ,∴42<λ,即22<<-λ且0≠λ.综合(1)、(2)两种情况,得实数λ的取值范围是)2,2-(.(Ⅱ)当0=λ时,0=m ,此时,A 、B 、O 三点在一条直线上,不构成ABO ∆.∴为使ABO ∆的面积最大,0≠λ.∵⎪⎪⎩⎪⎪⎨⎧+-=+-=+,22212212122,214k m x x k km x x ∴2122124)(1x x x x kAB -++=22222121122km k k +-++=. ∵原点O 到直线m x k y +=的距离21km d +=,∴AOB ∆的面积d AB S ⋅=2122221212km k m +-+=.∵)21(4222k m +=λ,0≠λ, ∴222421λm k =+.∴4424142442422222222λλλλλλ-=-=-=m m m mS )4(4222λλ-=. ∵224)4(2222=-+≤-λλλλ,∴22≤S . “=” 成立⇔224λλ-=,即2±=λ.∴当2±=λ时,ABO ∆的面积最大,最大面积为22. 答题分析:1.由于题目较长,一些考生不能识别有效信息,未能救出椭圆E 的方程求.25 / 302. 第(Ⅰ)问,求λ的取值范围.其主要步骤与方法为:由0∆>,得关于k 、m 的不等式2221m k >+…… ①.由根与系数的关系、λ=+,M 在椭圆E 上,可以得到关于k 、m 、λ的等式)21(4222k m +=λ…… ②.把等式②代入①,可以达到消元的目的,但问题是这里一共有三个变量,就是消了m ,那还有关于k 和λ的不等式,如何求出λ的取值范围呢?这将会成为难点.事实上,在把等式②代入①的过程中,k 和m 一起被消掉,得到了关于λ的不等式.解之即可.3.第(Ⅱ)问要把ABO ∆的面积函数先求出来.用弦长公式求底,用点到直线的距离公式求高,得到AOB ∆的面积d AB S ⋅=2122221212km k m +-+=,函数中有两个自变量k 和m ,如何求函数的最大值呢?这又成为难点.这里很难想到把②代入面积函数中,因为②中含有三个变量,即使代入消掉一个后,面积函数依然有两个自变量.但这里很巧合的是:代入消掉k 后,事实上,m 也自动地消除了,于是得到了面积S 和自变量λ的函数关系S )4(4222λλ-=,再由第(Ⅰ)中所得到的λ的取值范围)2,2-(,利用均值不等式,即可求出面积的最大值了.4.解析几何的难点在于运算的繁杂,本题较好地体现了解解析几何题设题要求.对此,考生要有足够的心理准备.5.解答本题给我们的启示:不能死抱一些“结论”,比如两个未知数需要两个方程才能解出来等等.事实上,当那方程比较特殊的时候,即便是有多个未知数,也是可以把所有未知数都解出来的.很多时候的巧,会给我们山重水复疑无路,柳暗花明又一村的惊喜!26 / 30第22题:(本小题满分10分)选修14-:几何证明选讲如图,四边形ABCD 的外接圆为⊙O ,EA 是⊙O 的切线,CB 的延长线与EA 相交于点E ,AD AB =. 求证:CD BE AB ⋅=2.本题考查平面几何中的三角形相似以及圆的相关知识,考查推理论证能力 证明:连结AC .∵EA 是⊙O 的切线, ∴ACB EAB ∠=∠.∵AD AB =,∴ACB ACD ∠=∠. ∴EAB ACD ∠=∠.∵⊙O 是四边形ABCD 的外接圆, ∴ABE D ∠=∠. ∴CDA ∆∽ABE ∆. ∴BEDAAB CD =,即CD BE DA AB ⋅=⋅. ∵AD AB =, ∴CD BE AB ⋅=2.答题分析:作辅助线往往是解答平面几何证明的关键,本题也不例外. 第23题:(本小题满分10分)选修44-:坐标系与参数方程已知曲线C 的参数方程为35cos ,5sin , x y θθ=+⎧⎨=⎩θ(是参数),P 是曲线C 与y 轴正半轴的交点.以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,求经过点P 与曲线C 只有一个公共点的直线l 的极坐标方程.本题考查圆的参数方程和普通方程,考查直线的直角坐标方程和极坐标方程的27 / 30互化.解:把曲线C 的参数方程35cos ,5sin , x y θθ=+⎧⎨=⎩θ(是参数)化为普通方程得25)3(22=+-y x .∴曲线C 是圆心为)0,3(1P ,半径等于5的圆. ∵P 是曲线C 与y 轴正半轴的交点, ∴)4,0(P .根据已知得直线l 是圆C 经过点P 的切线.∵341-=PP k ,∴直线l 的斜率43=k . ∴直线l 的方程为01643=+-y x .∴直线l 的极坐标方程为016sin 4cos 3=+-θρθρ. 第24题:(本小题满分10分)选修54-:不等式选讲已知13-≥x ,关于x 的不等式0132151023≥+-+++--a x x x 的解集不是空集,求实数a 的取值范围.本题考查绝对值不等式,考查绝对值函数最大值的求法,考查绝对值不等式恒成立问题.解:设=)(x f 151023+++--x x x (13-≥x ),则228,135,()28,53,2, 3.x x f x x x x +-≤≤-⎧⎪=-+-<≤⎨⎪>⎩∴当513-≤≤-x 时,18)(2≤≤x f ; 当35≤<-x 时,18)(2<≤x f ; 当3>x 时,2)(=x f .∴=)(x f 151023+++--x x x (13-≥x )的最大值为18.∵关于x 的不等式0132151023≥+-+++--a x x x 的解集不是空28 / 30集的充要条件是)(x f 132+≥a 的解集不是空集,而)(x f 132+≥a 的解集不是空集的充要条件是)(x f 的最大值132+≥a ,即13218+≥a .解13218+≥a ,得422-≤≤-a . ∴实数a 的取值范围为422-≤≤-a .答题分析:1.本题解法是采用分离变量的方法进行的,分离之后,可以求出()f x 的最大值.2.一些考生对不等式的解集不是空集理解有误,有的甚至求成了()f x 的最小值.实际上)(x f 132+≥a 的解集不是空集,所以)(x f 的最大值132+≥a ,即13218+≥a ,解之即可.三、复习建议1.回归基础 :掌握基本知识、基本方法和基本题型在最后的复习阶段,考生要回归课本,理清数学的知识主线,构建思想方法体系,熟记数学概念、公理、定理、性质、法则、公式.考生应该把课本上的基本知识、基本方法和基本题型系统全面地再梳理一遍,并针对盲区和易错点及时查缺补漏.2.高度重视运算能力近年来的高考数学试题,对运算能力的要求都有所加强,在云南省第二次统一测试中也得到了较好地反映,比如第20题解析几何中的复杂运算,第21题函数中的代数变形,第18题概率大题中的繁杂数字计算等.因此要高度重视运算能力的培养.然而由于运算能力的培养并非一日之功,因此要坚持长期训练培养,在平时的学习中,凡是复杂计算,都必须认真演算完毕,而不能是懂算理算法后就停止了,平时不训练有素,考场上肯定是快不起来的,考试也一定是要吃大亏的.3.整理反思已做过的题临近高考,一味地做新题、难题将得不偿失.事实上,学生已经做过很多试题了(试卷已经有厚厚的一打),但是否真正掌握吃透了呢?你应该拿出你以前做过的习题来进行归纳总结:拿到一道题必须立即判断其题型、考点 ( 知识背景 ) ,常用解法及特殊解法,解法的具体步骤,解法的关键步,解法的易错步,此题的常见变式及其解决办法等,以上几点如果你在一两分钟内无法回答出来,则说明你还未真正掌握此类问题.在高三最后的冲刺阶段,这样的整理和反思训练远比埋头做题来得重要.具体可如下实施:(1)应把过去做过的题目分类梳理、整理.做这项工作时最好按照知识点的板块进行,同时兼顾按题型划分.(2)做好分类后,找出自己在基础知识方面的薄弱环节,同时应做专项练习,提高熟练程度.(3)最基础的定理、公式要熟记.此时的复习应做到回归课本,但回归课本不是简单地拿着书本翻阅,而是带着自己在梳理知识中遇到的问题去有重点地看课本.(4)找出自己做错的地方,认真反思错误原因,并记忆错误原因,争取做到在高考中不犯同样的错误.错误有很多种,有知识不足的问题,有概念不清的问题、有题型模式认识不清的问题、也有分类不清的问题,当然还有做题马虎的问题等等.考生要在前进中反思,在反思中前进.4.关注考试心理和考试技巧.数学难题、怪题千千万万,高考考场上遇到一些新题是再正常不过的,考场上需要保持一个平和的心态.比如本次省统测,选做题每题都只有一个问,这跟往常所见的很不一样,此时不能因为这种“新颖”就把自己给搞紧张了.要树立一个心态:考场上见到什么都是可能的!再比如,第9题,求递推数列的通项公式,由于一下子没能把等比数列或等差数列给配凑出来,会不会自己就紧张到连取特殊值排除验证的方法都抛到九霄云外了呢?5.答题时一般来说应该是先易后难,从前往后.有的考生喜欢先做大题,再做选择、填空题.我们认为这是不妥当的.通常试题的难易分布是按每一类题型从前向后,由易到难的.因此,解题顺序也宜按试卷题号从小到大,从前至后依次解答.当然,中间有难题出现时,可以先跳过29 / 30去,总之,总的原则是要先把容易得到的分数拿到手,先易后难,先选择、填空题,后解答题.6.字迹清晰,合理规划.这对任何一科考试都很重要,尤其是对“精确度”较高的数学,若字迹不清、较难辨认,极易造成阅卷教师的误判.例如写得较快时,数字1和7极易混淆等等.若不清晰就可能使本来正确的失了分.另外,答题卡上书写的位置和大小要计划好,尽量让卷面安排做到合理整洁,特别地,要在指定区域作答.总之,对于解答题,书写要规范,布局要合理,论述既要简明,又不能跳跃过大.只有这样才能避免“自己做对了”,但阅卷却被扣了分这种现象.30 / 30。

昆明市云南省2013届统测理科数学

昆明市云南省2013届统测理科数学

侧视图昆明市2013届高三摸底调研测试理科数学试卷一、选择题1.若复数(1)(1)z m m m i=-+-是纯虚数,其中m是实数,则1z=A.i B.i-C.2i D.2i-2.已知3sin45xπ⎛⎫-=⎪⎝⎭,则sin2x的值为A.725-B.725C.925D.16253.公比不为1等比数列{}na的前n项和为nS,且1233,,a a a--成等差数列,若11a=,则4S=A.20-B.0C.7D.404.如图,若一个空间几何体的三视图中,正视图和侧视图都是直角三角形,其直角边均为1,则该几何体的表面积为A.1+B.2+C.13D.2+5.变量U与V相对应的一组样本数据为(1,1.4),(2,2.2),(3,3),(4,3.8),由上述样本数据得到U与V的线性回归分析,2R表示解释变量对于预报变量变化的贡献率,则2R= A.35B.45C.1D.36.已知a是实数,则函数()cosf x a ax=的图像可能是A.B.C.D.7.某班有24名男生和26名女生,数据1250,,,a a a 是该班50名学生在一次数学学业水平模拟考试的成绩,下面的程序用来同时统计全班成绩的平均数:A ,男生平均分:M ,女生平均分:W ;为了便于区别性别,输入时,男生的成绩用正数,女生的成绩用其成绩的相反数,那么在图里空白的判断框和处理框中,应分别填入下列四个选项中的A .0?T >,50M W A +=B .0?T <,50M W A +=C .0?T <,50M W A -= D .0?T >,50M W A -=8.若曲线()cos f x a x=与曲线2()1g x x bx =++在交点(0,)m 处有公切线,则a b +=A .1-B .0 C .1D .2 9.已知函数224,0(),4,x x x f x x x x ⎧--≥⎪=⎨<-⎪⎩若(2)()0f a f a -+>,则实数a 的取值范围是A .1a <--1a >-+B .1a >C .3a <-3a >+D .1a <10.已知数列{}n a 满足11(2)n n n a a a n +-=-≥,11a =,23a =,记12n n S a a a =+++ ,则下列结论正确的是A .1001001,5a S =-=B .1001003,5a S =-=C .1001003,2a S =-=D .1001001,2a S =-=11.在平面直角坐标系xOy 中,抛物线2:2(0)C y px p =>的焦点为F ,M 是抛物线C 上一点,若O F M ∆的外接圆与抛物线C 的准线相切,且该圆面积为9π,则p =A .2B .4C .6D .812.设函数()f x 满足()()f x f x -=,且当0x ≥时,1()4xf x ⎛⎫= ⎪⎝⎭,又函数()|sin |g x x x π=,则函数()()()h x f x g x =-在1,22⎡⎤-⎢⎥⎣⎦上的零点个数为A .3B .4C .5D .6 二、填空题13.变量,x y 满足条件1000x y x y x +-≤⎧⎪-≤⎨⎪≥⎩,则2x y -的最大值为____________.14.已知(,0)F c 是双曲线2222:1(0,0)x y C a b ab-=>>的右焦点,若双曲线C 的渐近线与圆2221:()2E x c y c -+=相切,则双曲线C 的离心率为_________________.15.已知向量,a b 的夹角为120︒,且||1,||2==a b ,则向量-a b 在向量+a b 方向上的投影是_______.16.已知,,,A B C D四点在半径为2的球面上,且AC BD ==,5AD BC ==,A B C D =,则三棱锥D A B C -的体积是________. 三、解答题17.在A B C ∆中,角,,A B C 的对边分别为,,a b c ,若223cos cos222C A a c b +=.(Ⅰ)求证:a 、b 、c 成等差数列; (Ⅱ)若60,4B b ∠=︒=,求A B C ∆的面积.MPDB A18.气象部门提供了某地区今年六月份(30天)的日最高气温的统计表如下:由于工作疏忽,统计表被墨水污染,Y和Z数据不清楚,但气象部门提供的资料显示,六月份的日最高气温不高于32℃的频率为0.9.某水果商根据多年的销售经验,六月份的日最高气温t(单位:℃)对西瓜的销售影响如下表:(Ⅰ)求,Y Z的值;(Ⅱ)若视频率为概率,求六月份西瓜日销售额的期望和方差;(Ⅲ)在日最高气温不高于32℃时,求日销售额不低于5千元的概率.19.如图,在四棱锥P A B C D-中,A B C D为平行四边形,且B C⊥平面P A B,P A A B⊥,M为P B的中点,2PA AD==.(Ⅰ)求证:P D∥平面A M C;(Ⅱ)若1AB=,求二面角B AC M--的余弦值.20.已知平面内与两定点(2,0)A ,(2,0)B -连线的斜率之积等于14-的点P 的轨迹为曲线1C ,椭圆2C 以坐标原点为中心,焦点在y 5(Ⅰ)求1C 的方程;(Ⅱ)若曲线1C 与2C 交于M 、N 、P 、Q 四点,当四边形M NPQ 面积最大时,求椭圆2C 的方程及此四边形的最大面积.21.设()ln(1),(f x x ax a R =++∈且0)a ≠. (Ⅰ)讨论函数()f x 的单调性;(Ⅱ)若1a =,证明:(0,5)x ∈时,9()1x f x x <+成立.PACBD O选做题:22.选修4-1:几何证明选讲如图,已知P A 与圆O 相切于点A ,直径B C O P ⊥,连接A B 交P O 于点D(Ⅰ)求证:PA PD =;(Ⅱ)求证:A C A P A D O C ⋅=⋅.23.选修4-4:坐标系与参数方程 已知曲线C的参数方程是cos x a y ϕϕ=⎧⎪⎨=⎪⎩(ϕ为参数,0a >),直线l 的参数方程是31x ty t=+⎧⎨=--⎩(t 为参数),曲线C 与直线l 有一个公共点在x 轴上,以坐标原点为极点,x 轴的正半轴为极轴建立坐标系. (Ⅰ)求曲线C 普通方程; (Ⅱ)若点12324(,),(,),(,)33A B C ππρθρθρθ++在曲线C 上,求222111||||||OA OB OC ++的值.24.选修4-5:不等式选讲已知函数()|3|||f x x x a =++-(0a >).(Ⅰ)当4a =时,已知()7f x =,求x 的取值范围; (Ⅱ)若()6f x ≥的解集为{|4x x ≤-或2}x ≥,求a 的值.云南省2013届高三第一次高中毕业生复习统一检测数学(理)试题注意事项:1.本试卷分第1卷(选择题)和第1I 卷(非选择题)两部分。

2013年云南省第二次高中毕业生复习统一检测

2013年云南省第二次高中毕业生复习统一检测

2013年云南省第二次高中毕业生复习统一检测成绩分数段汇总结果
(一级完中)
云南省教育科学研究院
2013年4月28日
表一:总分统计表---文科合计
第1页
第2页
表二:总分统计表---理科合计
第3页
第4页
表三:分科统计表---文科语文、理科语文
第5页
第6页
表四:分科统计表---文科数学、理科数学
第7页
第8页
表五:分科统计表---文科英语、理科英语
第9页
第10页
表六:分科统计表---文科综合、理科综合
第11页
第12页
表七:理科综合分科统计表
第13页
第14页
第15页
表八:文科综合分科统计表
第16页
第17页
第18页。

2013年全国统一高考真题数学试卷(理科)(新课标ⅰ)(含答案及解析)

2013年全国统一高考真题数学试卷(理科)(新课标ⅰ)(含答案及解析)

2013年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)已知集合A={x|x2﹣2x>0},B={x|﹣<x<},则()A.A∩B=∅B.A∪B=R C.B⊆A D.A⊆B2.(5分)若复数z满足(3﹣4i)z=|4+3i|,则z的虚部为()A.﹣4B.C.4D.3.(5分)为了解某地区中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是()A.简单的随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样4.(5分)已知双曲线C:(a>0,b>0)的离心率为,则C的渐近线方程为()A.y=B.y=C.y=±x D.y=5.(5分)执行程序框图,如果输入的t∈[﹣1,3],则输出的s属于()A.[﹣3,4]B.[﹣5,2]C.[﹣4,3]D.[﹣2,5] 6.(5分)如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器注水,当球面恰好接触水面时测得水深为6cm,如不计容器的厚度,则球的体积为()A.B.C.D.7.(5分)设等差数列{a n}的前n项和为S n,若S m﹣1=﹣2,S m=0,S m+1=3,则m=()A.3B.4C.5D.68.(5分)某几何体的三视图如图所示,则该几何体的体积为()A.16+8πB.8+8πC.16+16πD.8+16π9.(5分)设m为正整数,(x+y)2m展开式的二项式系数的最大值为a,(x+y)2m+1展开式的二项式系数的最大值为b,若13a=7b,则m=()A.5B.6C.7D.810.(5分)已知椭圆E:的右焦点为F(3,0),过点F的直线交椭圆E于A、B两点.若AB的中点坐标为(1,﹣1),则E的方程为()A.B.C.D.11.(5分)已知函数f(x)=,若|f(x)|≥ax,则a的取值范围是()A.(﹣∞,0]B.(﹣∞,1]C.[﹣2,1]D.[﹣2,0] 12.(5分)设△A n B n C n的三边长分别为a n,b n,c n,△A n B n C n的面积为S n,n=1,2,3…若b1>c1,b1+c1=2a1,a n+1=a n,,,则()A.{S n}为递减数列B.{S n}为递增数列C.{S2n﹣1}为递增数列,{S2n}为递减数列D.{S2n﹣1}为递减数列,{S2n}为递增数列二.填空题:本大题共4小题,每小题5分.13.(5分)已知两个单位向量,的夹角为60°,=t+(1﹣t).若•=0,则t=.14.(5分)若数列{a n}的前n项和为S n=a n+,则数列{a n}的通项公式是a n=.15.(5分)设当x=θ时,函数f(x)=sinx﹣2cosx取得最大值,则cosθ=.16.(5分)若函数f(x)=(1﹣x2)(x2+ax+b)的图象关于直线x=﹣2对称,则f(x)的最大值为.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)如图,在△ABC中,∠ABC=90°,AB=,BC=1,P为△ABC内一点,∠BPC=90°.(1)若PB=,求PA;(2)若∠APB=150°,求tan∠PBA.18.(12分)如图,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(Ⅰ)证明AB⊥A1C;(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB=2,求直线A1C与平面BB1C1C所成角的正弦值.19.(12分)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n.如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的产品是优质品的概率都为,且各件产品是否为优质品相互独立.(Ⅰ)求这批产品通过检验的概率;(Ⅱ)已知每件产品检验费用为100元,凡抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望.20.(12分)已知圆M:(x+1)2+y2=1,圆N:(x﹣1)2+y2=9,动圆P与圆M外切并与圆N内切,圆心P的轨迹为曲线C.(Ⅰ)求C的方程;(Ⅱ)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P 的半径最长时,求|AB|.21.(12分)已知函数f(x)=x2+ax+b,g(x)=e x(cx+d),若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.(Ⅰ)求a,b,c,d的值;(Ⅱ)若x≥﹣2时,f(x)≤kg(x),求k的取值范围.四、请考生在第22、23、24题中任选一道作答,并用2B铅笔将答题卡上所选的题目对应的题号右侧方框涂黑,按所涂题号进行评分;多涂、多答,按所涂的首题进行评分,不涂,按本选考题的首题进行评分.22.(10分)(选修4﹣1:几何证明选讲)如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于D.(Ⅰ)证明:DB=DC;(Ⅱ)设圆的半径为1,BC=,延长CE交AB于点F,求△BCF外接圆的半径.23.已知曲线C1的参数方程为(t为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sinθ.(1)把C1的参数方程化为极坐标方程;(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π).24.已知函数f(x)=|2x﹣1|+|2x+a|,g(x)=x+3.(Ⅰ)当a=﹣2时,求不等式f(x)<g(x)的解集;(Ⅱ)设a>﹣1,且当x∈[﹣,]时,f(x)≤g(x),求a的取值范围.2013年全国统一高考数学试卷(理科)(新课标Ⅰ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)已知集合A={x|x2﹣2x>0},B={x|﹣<x<},则()A.A∩B=∅B.A∪B=R C.B⊆A D.A⊆B【考点】1D:并集及其运算;73:一元二次不等式及其应用.【专题】59:不等式的解法及应用;5J:集合.【分析】根据一元二次不等式的解法,求出集合A,再根据的定义求出A∩B和A∪B.【解答】解:∵集合A={x|x2﹣2x>0}={x|x>2或x<0},∴A∩B={x|2<x<或﹣<x<0},A∪B=R,故选:B.【点评】本题考查一元二次不等式的解法,以及并集的定义,属于基础题.2.(5分)若复数z满足(3﹣4i)z=|4+3i|,则z的虚部为()A.﹣4B.C.4D.【考点】A5:复数的运算.【专题】5N:数系的扩充和复数.【分析】由题意可得z==,再利用两个复数代数形式的乘除法法则化简为+i,由此可得z的虚部.【解答】解:∵复数z满足(3﹣4i)z=|4+3i|,∴z====+i,故z的虚部等于,故选:D.【点评】本题主要考查复数的基本概念,两个复数代数形式的乘除法法则的应用,属于基础题.3.(5分)为了解某地区中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是()A.简单的随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样【考点】B3:分层抽样方法.【专题】21:阅读型.【分析】若总体由差异明显的几部分组成时,经常采用分层抽样的方法进行抽样.【解答】解:我们常用的抽样方法有:简单随机抽样、分层抽样和系统抽样,而事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.了解某地区中小学生的视力情况,按学段分层抽样,这种方式具有代表性,比较合理.故选:C.【点评】本小题考查抽样方法,主要考查抽样方法,属基本题.4.(5分)已知双曲线C:(a>0,b>0)的离心率为,则C的渐近线方程为()A.y=B.y=C.y=±x D.y=【考点】KC:双曲线的性质.【专题】5D:圆锥曲线的定义、性质与方程.【分析】由离心率和abc的关系可得b2=4a2,而渐近线方程为y=±x,代入可得答案.【解答】解:由双曲线C:(a>0,b>0),则离心率e===,即4b2=a2,故渐近线方程为y=±x=x,故选:D.【点评】本题考查双曲线的简单性质,涉及的渐近线方程,属基础题.5.(5分)执行程序框图,如果输入的t∈[﹣1,3],则输出的s属于()A.[﹣3,4]B.[﹣5,2]C.[﹣4,3]D.[﹣2,5]【考点】3B:分段函数的解析式求法及其图象的作法;EF:程序框图.【专题】27:图表型;5K:算法和程序框图.【分析】本题考查的知识点是程序框图,分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是计算一个分段函数的函数值,由条件为t<1我们可得,分段函数的分类标准,由分支结构中是否两条分支上对应的语句行,我们易得函数的解析式.【解答】解:由判断框中的条件为t<1,可得:函数分为两段,即t<1与t≥1,又由满足条件时函数的解析式为:s=3t;不满足条件时,即t≥1时,函数的解析式为:s=4t﹣t2故分段函数的解析式为:s=,如果输入的t∈[﹣1,3],画出此分段函数在t∈[﹣1,3]时的图象,则输出的s属于[﹣3,4].故选:A.【点评】要求条件结构对应的函数解析式,要分如下几个步骤:①分析流程图的结构,分析条件结构是如何嵌套的,以确定函数所分的段数;②根据判断框中的条件,设置分类标准;③根据判断框的“是”与“否”分支对应的操作,分析函数各段的解析式;④对前面的分类进行总结,写出分段函数的解析式.6.(5分)如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器注水,当球面恰好接触水面时测得水深为6cm,如不计容器的厚度,则球的体积为()A.B.C.D.【考点】LG:球的体积和表面积.【专题】11:计算题;5F:空间位置关系与距离.【分析】设正方体上底面所在平面截球得小圆M,可得圆心M为正方体上底面正方形的中心.设球的半径为R,根据题意得球心到上底面的距离等于(R﹣2)cm,而圆M的半径为4,由球的截面圆性质建立关于R的方程并解出R=5,用球的体积公式即可算出该球的体积.【解答】解:设正方体上底面所在平面截球得小圆M,则圆心M为正方体上底面正方形的中心.如图.设球的半径为R,根据题意得球心到上底面的距离等于(R﹣2)cm,而圆M的半径为4,由球的截面圆性质,得R2=(R﹣2)2+42,解出R=5,∴根据球的体积公式,该球的体积V===.故选:A.【点评】本题给出球与正方体相切的问题,求球的体积,着重考查了正方体的性质、球的截面圆性质和球的体积公式等知识,属于中档题.7.(5分)设等差数列{a n}的前n项和为S n,若S m﹣1=﹣2,S m=0,S m+1=3,则m=()A.3B.4C.5D.6【考点】83:等差数列的性质;85:等差数列的前n项和.【专题】11:计算题;54:等差数列与等比数列.【分析】由a n与S n的关系可求得a m+1与a m,进而得到公差d,由前n项和公式及S m=0可求得a1,再由通项公式及a m=2可得m值.【解答】解:a m=S m﹣S m﹣1=2,a m+1=S m+1﹣S m=3,所以公差d=a m﹣a m=1,+1S m==0,m﹣1>0,m>1,因此m不能为0,得a1=﹣2,所以a m=﹣2+(m﹣1)•1=2,解得m=5,另解:等差数列{a n}的前n项和为S n,即有数列{}成等差数列,则,,成等差数列,可得2•=+,即有0=+,解得m=5.又一解:由等差数列的求和公式可得(m﹣1)(a1+a m﹣1)=﹣2,m(a1+a m)=0,(m+1)(a1+a m+1)=3,可得a1=﹣a m,﹣2a m+a m+1+a m+1=+=0,解得m=5.故选:C.【点评】本题考查等差数列的通项公式、前n项和公式及通项a n与S n的关系,考查学生的计算能力.8.(5分)某几何体的三视图如图所示,则该几何体的体积为()A.16+8πB.8+8πC.16+16πD.8+16π【考点】L!:由三视图求面积、体积.【专题】16:压轴题;27:图表型.【分析】三视图复原的几何体是一个长方体与半个圆柱的组合体,依据三视图的数据,得出组合体长、宽、高,即可求出几何体的体积.【解答】解:三视图复原的几何体是一个长方体与半个圆柱的组合体,如图,其中长方体长、宽、高分别是:4,2,2,半个圆柱的底面半径为2,母线长为4.∴长方体的体积=4×2×2=16,半个圆柱的体积=×22×π×4=8π所以这个几何体的体积是16+8π;故选:A.【点评】本题考查了几何体的三视图及直观图的画法,三视图与直观图的关系,柱体体积计算公式,空间想象能力9.(5分)设m为正整数,(x+y)2m展开式的二项式系数的最大值为a,(x+y)2m+1展开式的二项式系数的最大值为b,若13a=7b,则m=()A.5B.6C.7D.8【考点】DA:二项式定理.【专题】5P:二项式定理.【分析】根据二项式系数的性质求得a和b,再利用组合数的计算公式,解方程13a=7b求得m的值.【解答】解:∵m为正整数,由(x+y)2m展开式的二项式系数的最大值为a,以及二项式系数的性质可得a=,同理,由(x+y)2m+1展开式的二项式系数的最大值为b,可得b==.再由13a=7b,可得13=7,即13×=7×,即13=7×,即13(m+1)=7(2m+1),解得m=6,故选:B.【点评】本题主要考查二项式系数的性质的应用,组合数的计算公式,属于中档题.10.(5分)已知椭圆E:的右焦点为F(3,0),过点F的直线交椭圆E于A、B两点.若AB的中点坐标为(1,﹣1),则E的方程为()A.B.C.D.【考点】K3:椭圆的标准方程.【专题】5D:圆锥曲线的定义、性质与方程.【分析】设A(x1,y1),B(x2,y2),代入椭圆方程得,利用“点差法”可得.利用中点坐标公式可得x1+x2=2,y1+y2=﹣2,利用斜率计算公式可得==.于是得到,化为a2=2b2,再利用c=3=,即可解得a2,b2.进而得到椭圆的方程.【解答】解:设A(x1,y1),B(x2,y2),代入椭圆方程得,相减得,∴.∵x1+x2=2,y1+y2=﹣2,==.∴,化为a2=2b2,又c=3=,解得a2=18,b2=9.∴椭圆E的方程为.故选:D.【点评】熟练掌握“点差法”和中点坐标公式、斜率的计算公式是解题的关键.11.(5分)已知函数f(x)=,若|f(x)|≥ax,则a的取值范围是()A.(﹣∞,0]B.(﹣∞,1]C.[﹣2,1]D.[﹣2,0]【考点】7E:其他不等式的解法.【专题】16:压轴题;59:不等式的解法及应用.【分析】由函数图象的变换,结合基本初等函数的图象可作出函数y=|f(x)|的图象,和函数y=ax的图象,由导数求切线斜率可得l的斜率,进而数形结合可得a的范围.【解答】解:由题意可作出函数y=|f(x)|的图象,和函数y=ax的图象,由图象可知:函数y=ax的图象为过原点的直线,当直线介于l和x轴之间符合题意,直线l为曲线的切线,且此时函数y=|f(x)|在第二象限的部分解析式为y=x2﹣2x,求其导数可得y′=2x﹣2,因为x≤0,故y′≤﹣2,故直线l的斜率为﹣2,故只需直线y=ax的斜率a介于﹣2与0之间即可,即a∈[﹣2,0]故选:D.【点评】本题考查其它不等式的解法,数形结合是解决问题的关键,属中档题.12.(5分)设△A n B n C n的三边长分别为a n,b n,c n,△A n B n C n的面积为S n,n=1,2,3…若b1>c1,b1+c1=2a1,a n+1=a n,,,则()A.{S n}为递减数列B.{S n}为递增数列C.{S2n﹣1}为递增数列,{S2n}为递减数列D.{S2n﹣1}为递减数列,{S2n}为递增数列【考点】82:数列的函数特性;8H:数列递推式.【专题】16:压轴题;54:等差数列与等比数列;55:点列、递归数列与数学归纳法.=a n可知△A n B n C n的边B n C n为定值a1,由b n+1+c n+1﹣【分析】由a n+12a1=及b1+c1=2a1得b n+c n=2a1,则在△A n B n C n中边长B n C n=a1为定值,另两边A n C n、A n B n的长度之和b n+c n=2a1为定值,由此可知顶点A n在以B n、C n为焦点的椭圆上,根据b n+1﹣c n+1=,得b n﹣c n=,可知n→+∞时b n→c n,据此可判断△A n B n C n的边B nC n的高h n随着n的增大而增大,再由三角形面积公式可得到答案.【解答】解:b1=2a1﹣c1且b1>c1,∴2a1﹣c1>c1,∴a1>c1,∴b1﹣a1=2a1﹣c1﹣a1=a1﹣c1>0,∴b1>a1>c1,又b1﹣c1<a1,∴2a1﹣c1﹣c1<a1,∴2c1>a1,∴,由题意,+a n,∴b n+1+c n+1﹣2a n=(b n+c n﹣2a n),∴b n+c n﹣2a n=0,∴b n+c n=2a n=2a1,∴b n+c n=2a1,由此可知顶点A n在以B n、C n为焦点的椭圆上,﹣c n+1=,∴=a1﹣b n,又由题意,b n+1﹣a1=,∴b n﹣a1=,∴b n+1∴,c n=2a1﹣b n=,∴[][]=[﹣]单调递增(可证当n=1时>0)故选:B.【点评】本题主要考查由数列递推式求数列通项、三角形面积海伦公式,综合考查学生分析解决问题的能力,有较高的思维抽象度,是本年度全国高考试题中的“亮点”之一.二.填空题:本大题共4小题,每小题5分.13.(5分)已知两个单位向量,的夹角为60°,=t+(1﹣t).若•=0,则t=2.【考点】9H:平面向量的基本定理;9O:平面向量数量积的性质及其运算.【专题】5A:平面向量及应用.【分析】由于•=0,对式子=t+(1﹣t)两边与作数量积可得=0,经过化简即可得出.【解答】解:∵,,∴=0,∴tcos60°+1﹣t=0,∴1=0,解得t=2.故答案为2.【点评】熟练掌握向量的数量积运算是解题的关键.14.(5分)若数列{a n}的前n项和为S n=a n+,则数列{a n}的通项公式是a n=(﹣2)n﹣1.【考点】88:等比数列的通项公式.【专题】54:等差数列与等比数列.【分析】把n=1代入已知式子可得数列的首项,由n≥2时,a n=S n﹣S n﹣1,可得数列为等比数列,且公比为﹣2,代入等比数列的通项公式分段可得答案.【解答】解:当n=1时,a1=S1=,解得a1=1当n≥2时,a n=S n﹣S n﹣1=()﹣()=,整理可得,即=﹣2,故数列{a n}从第二项开始是以﹣2为首项,﹣2为公比的等比数列,故当n≥2时,a n=(﹣2)n﹣1,经验证当n=1时,上式也适合,故答案为:(﹣2)n﹣1【点评】本题考查等比数列的通项公式,涉及等比数列的判定,属基础题.15.(5分)设当x=θ时,函数f(x)=sinx﹣2cosx取得最大值,则cosθ=﹣.【考点】GP:两角和与差的三角函数;H4:正弦函数的定义域和值域.【专题】16:压轴题;56:三角函数的求值.【分析】f(x)解析式提取,利用两角和与差的正弦函数公式化为一个角的正弦函数,由x=θ时,函数f(x)取得最大值,得到sinθ﹣2cosθ=,与sin2θ+cos2θ=1联立即可求出cosθ的值.【解答】解:f(x)=sinx﹣2cosx=(sinx﹣cosx)=sin(x﹣α)(其中cosα=,sinα=),∵x=θ时,函数f(x)取得最大值,∴sin(θ﹣α)=1,即sinθ﹣2cosθ=,又sin2θ+cos2θ=1,联立得(2cosθ+)2+cos2θ=1,解得cosθ=﹣.故答案为:﹣【点评】此题考查了两角和与差的正弦函数公式,同角三角函数间的基本关系,以及正弦函数的定义域与值域,熟练掌握公式是解本题的关键.16.(5分)若函数f(x)=(1﹣x2)(x2+ax+b)的图象关于直线x=﹣2对称,则f(x)的最大值为16.【考点】57:函数与方程的综合运用;6E:利用导数研究函数的最值.【专题】11:计算题;16:压轴题;51:函数的性质及应用;53:导数的综合应用.【分析】由题意得f(﹣1)=f(﹣3)=0且f(1)=f(﹣5)=0,由此求出a=8且b=15,由此可得f(x)=﹣x4﹣8x3﹣14x2+8x+15.利用导数研究f(x)的单调性,可得f(x)在区间(﹣∞,﹣2﹣)、(﹣2,﹣2+)上是增函数,在区间(﹣2﹣,﹣2)、(﹣2+,+∞)上是减函数,结合f(﹣2﹣)=f(﹣2+)=16,即可得到f(x)的最大值.【解答】解:∵函数f(x)=(1﹣x2)(x2+ax+b)的图象关于直线x=﹣2对称,∴f(﹣1)=f(﹣3)=0且f(1)=f(﹣5)=0,即[1﹣(﹣3)2][(﹣3)2+a•(﹣3)+b]=0且[1﹣(﹣5)2][(﹣5)2+a•(﹣5)+b]=0,解之得,因此,f(x)=(1﹣x2)(x2+8x+15)=﹣x4﹣8x3﹣14x2+8x+15,求导数,得f′(x)=﹣4x3﹣24x2﹣28x+8,令f′(x)=0,得x1=﹣2﹣,x2=﹣2,x3=﹣2+,当x∈(﹣∞,﹣2﹣)时,f′(x)>0;当x∈(﹣2﹣,﹣2)时,f′(x)<0;当x∈(﹣2,﹣2+)时,f′(x)>0;当x∈(﹣2+,+∞)时,f′(x)<0∴f(x)在区间(﹣∞,﹣2﹣)、(﹣2,﹣2+)上是增函数,在区间(﹣2﹣,﹣2)、(﹣2+,+∞)上是减函数.又∵f(﹣2﹣)=f(﹣2+)=16,∴f(x)的最大值为16.故答案为:16.【点评】本题给出多项式函数的图象关于x=﹣2对称,求函数的最大值.着重考查了函数的奇偶性、利用导数研究函数的单调性和函数的最值求法等知识,属于中档题.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)如图,在△ABC中,∠ABC=90°,AB=,BC=1,P为△ABC内一点,∠BPC=90°.(1)若PB=,求PA;(2)若∠APB=150°,求tan∠PBA.【考点】HP:正弦定理;HR:余弦定理.【专题】58:解三角形.【分析】(I)在Rt△PBC,利用边角关系即可得到∠PBC=60°,得到∠PBA=30°.在△PBA中,利用余弦定理即可求得PA.(II)设∠PBA=α,在Rt△PBC中,可得PB=sinα.在△PBA中,由正弦定理得,即,化简即可求出.【解答】解:(I)在Rt△PBC中,=,∴∠PBC=60°,∴∠PBA=30°.在△PBA中,由余弦定理得PA2=PB2+AB2﹣2PB•ABcos30°==.∴PA=.(II)设∠PBA=α,在Rt△PBC中,PB=BCcos(90°﹣α)=sinα.在△PBA中,由正弦定理得,即,化为.∴.【点评】熟练掌握直角三角形的边角关系、正弦定理和余弦定理是解题的关键.18.(12分)如图,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(Ⅰ)证明AB⊥A1C;(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB=2,求直线A1C与平面BB1C1C所成角的正弦值.【考点】LW:直线与平面垂直;LY:平面与平面垂直;MI:直线与平面所成的角.【专题】5F:空间位置关系与距离;5G:空间角.【分析】(Ⅰ)取AB的中点O,连接OC,OA1,A1B,由已知可证OA1⊥AB,AB ⊥平面OA1C,进而可得AB⊥A1C;(Ⅱ)易证OA,OA1,OC两两垂直.以O为坐标原点,的方向为x轴的正向,||为单位长,建立坐标系,可得,,的坐标,设=(x,y,z)为平面BB1C1C的法向量,则,可解得=(,1,﹣1),可求|cos <,>|,即为所求正弦值.【解答】解:(Ⅰ)取AB的中点O,连接OC,OA1,A1B,因为CA=CB,所以OC⊥AB,由于AB=AA1,∠BAA1=60°,所以△AA1B为等边三角形,所以OA1⊥AB,又因为OC∩OA1=O,所以AB⊥平面OA1C,又A1C⊂平面OA1C,故AB⊥A1C;(Ⅱ)由(Ⅰ)知OC⊥AB,OA1⊥AB,又平面ABC⊥平面AA1B1B,交线为AB,所以OC⊥平面AA1B1B,故OA,OA1,OC两两垂直.以O为坐标原点,的方向为x轴的正向,||为单位长,建立如图所示的坐标系,可得A(1,0,0),A1(0,,0),C(0,0,),B(﹣1,0,0),则=(1,0,),=(﹣1,,0),=(0,﹣,),设=(x,y,z)为平面BB1C1C的法向量,则,即,可取y=1,可得=(,1,﹣1),故cos<,>==,又因为直线与法向量的余弦值的绝对值等于直线与平面的正弦值,故直线A1C与平面BB1C1C所成角的正弦值为:.【点评】本题考查直线与平面所成的角,涉及直线与平面垂直的性质和平面与平面垂直的判定,属难题.19.(12分)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n.如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的产品是优质品的概率都为,且各件产品是否为优质品相互独立.(Ⅰ)求这批产品通过检验的概率;(Ⅱ)已知每件产品检验费用为100元,凡抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望.【考点】CG:离散型随机变量及其分布列;CH:离散型随机变量的期望与方差.【专题】5I:概率与统计.【分析】(Ⅰ)设第一次取出的4件产品中恰有3件优质品为事件A1,第一次取出的4件产品全是优质品为事件A2,第二次取出的4件产品全是优质品为事件B1,第二次取出的1件产品是优质品为事件B2,这批产品通过检验为事件A,依题意有A=(A1B1)∪(A2B2),且A1B1与A2B2互斥,由概率得加法公式和条件概率,代入数据计算可得;(Ⅱ)X可能的取值为400,500,800,分别求其概率,可得分布列,进而可得期望值.【解答】解:(Ⅰ)设第一次取出的4件产品中恰有3件优质品为事件A1,第一次取出的4件产品全是优质品为事件A2,第二次取出的4件产品全是优质品为事件B1,第二次取出的1件产品是优质品为事件B2,这批产品通过检验为事件A,依题意有A=(A1B1)∪(A2B2),且A1B1与A2B2互斥,所以P(A)=P(A1B1)+P(A2B2)=P(A1)P(B1|A1)+P(A2)P(B2|A2)==(Ⅱ)X可能的取值为400,500,800,并且P(X=800)=,P(X=500)=,P(X=400)=1﹣﹣=,故X的分布列如下:X 400 500 800P故EX=400×+500×+800×=506.25【点评】本题考查离散型随机变量及其分布列涉及数学期望的求解,属中档题.20.(12分)已知圆M:(x+1)2+y2=1,圆N:(x﹣1)2+y2=9,动圆P与圆M外切并与圆N内切,圆心P的轨迹为曲线C.(Ⅰ)求C的方程;(Ⅱ)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P 的半径最长时,求|AB|.【考点】J3:轨迹方程;J9:直线与圆的位置关系.【专题】5B:直线与圆.【分析】(I)设动圆的半径为R,由已知动圆P与圆M外切并与圆N内切,可得|PM|+|PN|=R+1+(3﹣R)=4,而|NM|=2,由椭圆的定义可知:动点P的轨迹是以M,N为焦点,4为长轴长的椭圆,求出即可;(II)设曲线C上任意一点P(x,y),由于|PM|﹣|PN|=2R﹣2≤4﹣2=2,所以R ≤2,当且仅当⊙P的圆心为(2,0)R=2时,其半径最大,其方程为(x﹣2)2+y2=4.分①l的倾斜角为90°,此时l与y轴重合,可得|AB|.②若l的倾斜角不为90°,由于⊙M的半径1≠R,可知l与x轴不平行,设l与x轴的交点为Q,根据,可得Q(﹣4,0),所以可设l:y=k(x+4),与椭圆的方程联立,得到根与系数的关系利用弦长公式即可得出.【解答】解:(I)由圆M:(x+1)2+y2=1,可知圆心M(﹣1,0);圆N:(x﹣1)2+y2=9,圆心N(1,0),半径3.设动圆的半径为R,∵动圆P与圆M外切并与圆N内切,∴|PM|+|PN|=R+1+(3﹣R)=4,而|NM|=2,由椭圆的定义可知:动点P的轨迹是以M,N为焦点,4为长轴长的椭圆,∴a=2,c=1,b2=a2﹣c2=3.∴曲线C的方程为(x≠﹣2).(II)设曲线C上任意一点P(x,y),由于|PM|﹣|PN|=2R﹣2≤3﹣1=2,所以R≤2,当且仅当⊙P的圆心为(2,0)R=2时,其半径最大,其方程为(x﹣2)2+y2=4.①l的倾斜角为90°,则l与y轴重合,可得|AB|=.②若l的倾斜角不为90°,由于⊙M的半径1≠R,可知l与x轴不平行,设l与x轴的交点为Q,则,可得Q(﹣4,0),所以可设l:y=k(x+4),由l于M相切可得:,解得.当时,联立,得到7x2+8x﹣8=0.∴,.∴|AB|===由于对称性可知:当时,也有|AB|=.综上可知:|AB|=或.【点评】本题综合考查了两圆的相切关系、直线与圆相切问题、椭圆的定义及其性质、直线与椭圆相交问题转化为方程联立得到根与系数的关系、弦长公式等基础知识,需要较强的推理能力和计算能力及其分类讨论的思想方法.21.(12分)已知函数f(x)=x2+ax+b,g(x)=e x(cx+d),若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.(Ⅰ)求a,b,c,d的值;(Ⅱ)若x≥﹣2时,f(x)≤kg(x),求k的取值范围.【考点】3R:函数恒成立问题;6H:利用导数研究曲线上某点切线方程.【专题】16:压轴题;53:导数的综合应用.【分析】(Ⅰ)对f(x),g(x)进行求导,已知在交点处有相同的切线及曲线y=f (x)和曲线y=g(x)都过点P(0,2),从而解出a,b,c,d的值;(Ⅱ)由(I)得出f(x),g(x)的解析式,再求出F(x)及它的导函数,通过对k的讨论,判断出F(x)的最值,从而判断出f(x)≤kg(x)恒成立,从而求出k的范围.【解答】解:(Ⅰ)由题意知f(0)=2,g(0)=2,f′(0)=4,g′(0)=4,而f′(x)=2x+a,g′(x)=e x(cx+d+c),故b=2,d=2,a=4,d+c=4,从而a=4,b=2,c=2,d=2;(Ⅱ)由(I)知,f(x)=x2+4x+2,g(x)=2e x(x+1)设F(x)=kg(x)﹣f(x)=2ke x(x+1)﹣x2﹣4x﹣2,则F′(x)=2ke x(x+2)﹣2x﹣4=2(x+2)(ke x﹣1),由题设得F(0)≥0,即k≥1,令F′(x)=0,得x1=﹣lnk,x2=﹣2,①若1≤k<e2,则﹣2<x1≤0,从而当x∈(﹣2,x1)时,F′(x)<0,当x∈(x1,+∞)时,F′(x)>0,即F(x)在(﹣2,x1)上减,在(x1,+∞)上是增,故F(x)在[﹣2,+∞)上的最小值为F(x1),而F(x1)=﹣x1(x1+2)≥0,x≥﹣2时F(x)≥0,即f(x)≤kg(x)恒成立.②若k=e2,则F′(x)=2e2(x+2)(e x﹣e﹣2),从而当x∈(﹣2,+∞)时,F′(x)>0,即F(x)在(﹣2,+∞)上是增,而F(﹣2)=0,故当x≥﹣2时,F(x)≥0,即f(x)≤kg(x)恒成立.③若k>e2时,F′(x)>2e2(x+2)(e x﹣e﹣2),而F(﹣2)=﹣2ke﹣2+2<0,所以当x>﹣2时,f(x)≤kg(x)不恒成立,综上,k的取值范围是[1,e2].【点评】此题主要考查利用导数研究曲线上某点切线方程,函数恒成立问题,考查分类讨论思想,解题的关键是能够利用导数工具研究函数的性质,此题是一道中档题.四、请考生在第22、23、24题中任选一道作答,并用2B铅笔将答题卡上所选的题目对应的题号右侧方框涂黑,按所涂题号进行评分;多涂、多答,按所涂的首题进行评分,不涂,按本选考题的首题进行评分.22.(10分)(选修4﹣1:几何证明选讲)如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于D.(Ⅰ)证明:DB=DC;(Ⅱ)设圆的半径为1,BC=,延长CE交AB于点F,求△BCF外接圆的半径.【考点】NC:与圆有关的比例线段.【专题】5B:直线与圆.【分析】(I)连接DE交BC于点G,由弦切角定理可得∠ABE=∠BCE,由已知角平分线可得∠ABE=∠CBE,于是得到∠CBE=∠BCE,BE=CE.由已知DB⊥BE,可知DE为⊙O的直径,Rt△DBE≌Rt△DCE,利用三角形全等的性质即可得到DC=DB.(II)由(I)可知:DG是BC的垂直平分线,即可得到BG=.设DE的中点为O,连接BO,可得∠BOG=60°.从而∠ABE=∠BCE=∠CBE=30°.得到CF⊥BF.进而得到Rt△BCF的外接圆的半径=.【解答】(I)证明:连接DE交BC于点G.由弦切角定理可得∠ABE=∠BCE,而∠ABE=∠CBE,∴∠CBE=∠BCE,BE=CE.又∵DB⊥BE,∴DE为⊙O的直径,∠DCE=90°.∴△DBE≌△DCE,∴DC=DB.(II)由(I)可知:∠CDE=∠BDE,DB=DC.故DG是BC的垂直平分线,∴BG=.设DE的中点为O,连接BO,则∠BOG=60°.从而∠ABE=∠BCE=∠CBE=30°.∴CF⊥BF.∴Rt△BCF的外接圆的半径=.【点评】本题综合考查了圆的性质、弦切角定理、等边三角形的性质、三角形全等、三角形的外接圆的半径等知识,需要较强的推理能力、分析问题和解决问题的能力.23.已知曲线C1的参数方程为(t为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sinθ.(1)把C1的参数方程化为极坐标方程;(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π).【考点】Q4:简单曲线的极坐标方程;QH:参数方程化成普通方程.【专题】11:计算题;35:转化思想;4R:转化法;5S:坐标系和参数方程.【分析】(1)曲线C1的参数方程消去参数t,得到普通方程,再由,能求出C1的极坐标方程.(2)曲线C2的极坐标方程化为直角坐标方程,与C1的普通方程联立,求出C1与C2交点的直角坐标,由此能求出C1与C2交点的极坐标.【解答】解:(1)将,消去参数t,化为普通方程(x﹣4)2+(y﹣5)2=25,即C1:x2+y2﹣8x﹣10y+16=0,将代入x2+y2﹣8x﹣10y+16=0,得ρ2﹣8ρcosθ﹣10ρsinθ+16=0.∴C1的极坐标方程为ρ2﹣8ρcosθ﹣10ρsinθ+16=0.(2)∵曲线C2的极坐标方程为ρ=2sinθ.∴曲线C2的直角坐标方程为x2+y2﹣2y=0,。

2013年普通高等学校招生全国统一考试数学理试题(新课标Ⅱ卷,含答案)

2013年普通高等学校招生全国统一考试数学理试题(新课标Ⅱ卷,含答案)

2013年普通高等学校招生全国统一考试(新课标Ⅱ卷)数 学(理科)注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前考生将自己的姓名\准考证号填写在本试卷和答题卡相应位置。

2. 回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号标黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3. 答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。

4. 考试结束,将试题卷和答题卡一并交回。

第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题。

每小题5分,共50分。

在每个小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知集合M={x|(x-1)2< 4,x ∈R },N={-1,0,1,2,3},则M ∩N =( ) (A ){0,1,2} (B ){-1,0,1,2} (C ){-1,0,2,3} (D ){0,1,2,3} (2)设复数z 满足(1-i )z=2 i ,则z =( ) (A )-1+i(B )-1-i(C )1+i(D )1-i(3)等比数列{a n }的前n 项和为S n ,已知S 3 = a 2 +10a 1 ,a 5 = 9,则a 1=( ) (A )13 (B )13- (C )19 (D )19- (4)已知m ,n 为异面直线,m ⊥平面α,n ⊥平面β。

直线l 满足l ⊥m ,l ⊥n ,,l l αβ⊄⊄,则()(A )α∥β且l ∥α(B )α⊥β且l ⊥β(C )α与β相交,且交线垂直于l(D )α与β相交,且交线平行于l(5)已知(1+ɑx )(1+x )5的展开式中x 2的系数为5,则ɑ=( ) (A )-4(B )-3(C )-2(D )-1(6)执行右面的程序框图,如果输入的N=10,那么输出的S=(A)111 12310 ++++L(B)11112!3!10!++++L(C)11112311++++L(D)11112!3!11!++++L(7)一个四面体的顶点在空间直角坐标系O-xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到正视图可以为(A) (B) (C) (D)(8)设a=log36,b=log510,c=log714,则(A)c>b>a (B)b>c>a(C)a>c>b (D)a>b>c(9)已知a>0,x,y满足约束条件()133xx yy a x⎧≥⎪+≤⎨⎪≥-⎩,若z=2x+y的最小值为1,则a=(A)14(B)12(C)1 (D)2(10)已知函数f(x)=x3+ax2+bx+c,下列结论中错误的是(A)∃xα∈R,f(xα)=0(B)函数y=f(x)的图像是中心对称图形(C)若xα是f(x)的极小值点,则f(x)在区间(-∞,xα)单调递减(D)若x0是f(x)的极值点,则()0'0f x=(11)设抛物线y2=3px(p>0)的焦点为F,点M在C上,|MF|=5,若以MF为直径的圆过点(0,2),则C的方程为(A)y2=4x或y2=8x (B)y2=2x或y2=8x(C)y2=4x或y2=16x (D)y2=2x或y2=16x(12)已知点A(-1,0);B(1,0);C(0,1),直线y=ax+b(a>0)将△ABC分割为面积相等的两部分,则b的取值范围是(A )(0,1)(B)11,22⎛⎫- ⎪ ⎪⎝⎭( C) 1123⎛⎤- ⎥ ⎦⎝(D) 11,32⎡⎫⎪⎢⎣⎭第Ⅱ卷本卷包括必考题和选考题,每个试题考生都必修作答。

2013年高考全国Ⅱ理科数学试题及答案(word解析版)

2013年高考全国Ⅱ理科数学试题及答案(word解析版)

2013年普通高等学校招生全国统一考试(全国II )数学(理科)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)【2013年全国Ⅱ,理1,5分】已知集合{}2|(1)4),M x x x R =-<∈,{}1,0,1,2,3N =-,则M N = ( )(A ){}0,1,2 (B ){}1,0,1,2- (C ){}1,0,2,3- (D ){}0,1,2,3 【答案】A【解析】因为{}31|<<-=x x M ,{}3,2,1,0,1-=N ,所以{}0,1,2M N = ,故选A . (2)【2013年全国Ⅱ,理2,5分】设复数z 满足(1i)2i z -=则z =( )(A )1i -+ (B )1i -- (C )1i + (D )1i - 【答案】A【解析】2i 2i(1i)1i 1i (1i)(1i)z +===-+--+,故选A . (3)【2013年全国Ⅱ,理3,5分】等比数列{}n a 的前n 项和为n S ,已知32110S a a =+,59a =,则1a =( )(A )13 (B )13- (C )19(D )19-【答案】C【解析】设数列{}n a 的公比为q ,若1q =,则由59a =,得19a =,此时327S =,而211099a a +=,不满足题意,因此1q ≠.∵1q ≠时,33111(1)·101a q qa a S q -=-=+,∴31101q q q -=+-,整理得29q =. ∵451·9a a q ==,即1819a =,∴119a =,故选C .(4)【2013年全国Ⅱ,理4,5分】已知m ,n 为异面直线,m ⊥平面α,n ⊥平面β,直线l 满足l m ⊥,l n ⊥,l α⊄,l β⊄,则( )(A )//αβ且//l α (B )αβ⊥且l β⊥ (C )α与β相交,且交线垂直于l (D )α与β相交,且交线平行于l【答案】D【解析】因为m α⊥,l m ⊥,l α⊄,所以//l α.同理可得//l β.又因为m ,n 为异面直线,所以α与β相交,且l 平行于它们的交线,故选D .(5)【2013年全国Ⅱ,理5,5分】已知5(1)(1)ax x ++的展开式中2x 的系数是5,则a =( )(A )4- (B )3- (C )2- (D )1- 【答案】D【解析】因为5(1)x +的二项展开式的通项为5C 0)5(r rr r x ≤≤∈Z ,,则含2x 的项为221552C C 105()x ax x a x +⋅=+,所以1055a +=,1a =-,故选D . (6)【2013年全国Ⅱ,理6,5分】执行右面的程序框图,如果输入的10N =,那么输出的S =( )(A )1111+2310+++ (B )1111+2!3!10!+++ (C )1111+2311+++ (D )1111+2!3!11!+++【答案】D【解析】由程序框图知,当1k =,0S =,1T =时,1T =,1S =;当2k =时,12T =,1=1+2S ;当3k =时,123T =⨯,111+223S =+⨯;当4k =时,1234T =⨯⨯,1111+223234S =++⨯⨯⨯;…; 当10k =时,123410T =⨯⨯⨯⨯ ,1111+2!3!10!S =+++ ,k 增加1变为11,满足k N >,输出S ,所以B 正确,故选D .(7)【2013年全国Ⅱ,理7,5分】一个四面体的顶点在空间直角坐标系O xyz -中的坐标分别是()1,0,1,()1,1,0,()0,1,1,()0,0,0,画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到的正视图可以为( )(A ) (B ) (C ) (D )【答案】A【解析】如图所示,该四面体在空间直角坐标系O xyz -的图像为下图:则它在平面zOx 上的投影即正视图为A 图形,故选A .(8)【2013年全国Ⅱ,理8,5分】设3log 6a =,5log 10b =,7log 14c =,则( )(A )c b a >> (B )b c a >> (C )a c b >> (D )a b C >> 【答案】D【解析】根据公式变形,lg 6lg 21lg3lg3a ==+,lg10lg 21lg 5lg 5b ==+,lg14lg 21lg 7lg 7c ==+,因为lg 7lg5lg3>>, 所以lg 2lg 2lg 2lg 7lg5lg3<<,即c b a <<,故选D . (9)【2013年全国Ⅱ,理9,5分】已知0a >,,x y 满足约束条件13(3)x x y y a x ≥⎧⎪+≤⎨⎪≥-⎩,若2z x y =+的最小值是1,则a =( )(A )14 (B )12(C )1 (D )2【答案】B【解析】由题意作出13x x y ≥⎧⎨+≤⎩所表示的区域如图阴影部分所示,作直线21x y +=,因为直线21x y +=与直线1x =的交点坐标为(1)1-,,结合题意知直线()3y a x =-过点(1)1-,,代入得12a =,故选B . (10)【2013年全国Ⅱ,理10,5分】已知函数32()f x x ax bx c =+++,下列结论中错误的是( )(A )0x R ∃∈,0()0f x = (B )函数()y f x =的图象是中心对称图形(C )若0x 是()f x 的极小值点,则()f x 在区间0(,)x -∞单调递减(D )若0x 是()f x 的极值点,则0'()0f x = 【答案】C【解析】若0c =则有(0)0f =,所以A 正确.由32()f x x ax bx c =+++得32()f x c x ax bx -=++,因为函数32y x ax bx =++的对称中心为0,0(),所以32()f x x ax bx c =+++的对称中心为(0,)c ,所以B 正确.由三次函数的图象可知,若0x 是()f x 的极小值点,则极大值点在0x 的左侧,所以函数在区间0,x -∞()单调递减是错误的,D 正确,故选C .(11)【2013年全国Ⅱ,理11,5分】设抛物线22(0)y px p =≥的焦点为F ,点M 在C 上,5MF =,若以MF为直径的圆过点0,2(),则C 的方程为( )(A )24y x =或28y x = (B )22y x =或28y x = (C )24y x =或216y x = (D )22y x =或216y x = 【答案】C【解析】设点M 的坐标为00()x y ,,由抛物线的定义,得052P MF x =+=,则052x p =-.又点F 的坐标为,02p ⎛⎫⎪⎝⎭,所以以MF 为直径的圆的方程为()()0020p y y x x x y ⎛⎫- ⎭-⎪⎝-+=.将0x =,2y =代入得00840px y +-=,即0202480y y -+=,所以04y =.由0202y px =,得16252p p ⎛⎫=- ⎪⎝⎭,解之得2p =,或8p =. 所以C 的方程为24y x =或216y x =,故选C .(12)【2013年全国Ⅱ,理12,5分】已知1,0A -(),1,0B (),0,1C (),直线(0)y ax b a =+>将ABC ∆分割为面积相等的两部分,则b 的取值范围是( )(A )0,1() (B )112⎛⎫ ⎪ ⎪⎝⎭ (C )113⎛⎫- ⎪ ⎪⎝⎭ (D )11,32⎡⎫⎪⎢⎣⎭ 【答案】B第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上(13)【2013年全国Ⅱ,理13,5分】已知正方形ABCD 的边长为2,E 为CD 的中点,则AE BD ⋅=______. 【答案】2【解析】解法一:在正方形中,12AE AD DC =+ ,BD BA AD AD DC =+=-,所以2222111()()222222AE BD AD DC AD DC AD DC ⋅=+⋅-=-=-⨯= .解法二:以AB 所在直线为x 轴,AD 所在直线为y 轴建立平面直角坐标系,如图所示,则点A 的坐标为()0,0,点B 的坐标为()2,0,点D 的坐标为()0,2,点E 的坐标为()1,2,则()1,2AE =,()2,2BD =-,所以2AE BD ⋅= . (14)【2013年全国Ⅱ,理14,5分】从n 个正整数1,2,3,4,5,…,n 中任意取出两个不同的数,若其和为5的概率是114,则n =__ ____.【答案】8【解析】从1,2,…,n 中任取两个不同的数共有2C n种取法,两数之和为5的有()1,4,()2,3 2种,所以221C 14n=,即24111142n n n n ==(-)(-),解得8n =.(15)【2013年全国Ⅱ,理15,5分】设θ为第二象限角,若1tan()42πθ+=,则sin cos θθ+=_______.【答案】【解析】由π1tan 1tan 41tan 2θθθ+⎛⎫+== ⎪-⎝⎭,得1t a n 3θ=-,即1s i n c o s 3θθ=-.将其代入22sin cos 1θθ+=,得210cos 19θ=.因为θ为第二象限角,所以cos θ=,sin θ=sin cos θθ+=. (16)【2013年全国Ⅱ,理16,5分】等差数列{}n a 的前n 项和为n S ,已知100S =,1525S =,则n nS 的最小值为_______. 【答案】49-【解析】设数列{}n a 的首项为1a ,公差为d ,则1101109S =10210450a a d d ⨯=+=+,①115115141521510525d S a d a =+⨯==+.② 联立①②,得13a =-,23d =,所以2(1)211032333n n n n S n n --+⨯=-=.令()n f n nS =,则32110()33f n n n =-,220'()3f n n n =-.令()0f n '=,得0n =或203n =.当203n >时,()0f n '>,200<<3n 时,()0f n '<,所以当203n =时,()f n 取最小值,而n +∈N ,则()648f =-,()749f =-,所以当7n =时,()f n 取最小值49-.三、解答题:解答应写出文字说明,证明过程或演算步骤. (17)【2013年全国Ⅱ,理17,12分】ABC ∆的内角的对边分别为,,,a b c 已知cos cos a b C c B =+.(1)求B ;(2)若2b =,求ABC ∆的面积的最大值. 解:(1)由已知及正弦定理得sin sin cos sin sin A B C C B =+.① 又()A B C π=-+,故()sin sin sin cos cos sin A B C B C B C =+=+.② 由①,②和0()C π∈,得sin cos B B =, 又0()B π∈,,所以π4B =. (2)ABC ∆的面积1sin 2S ac B ==.由已知及余弦定理得22π2cos 44ac a c =+-. 又222a c ac +≥,故ac ≤a c =时,等号成立.因此ABC ∆.(18)【2013年全国Ⅱ,理18,12分】如图,直三棱柱111ABC A B C -中,D ,E 分别是AB ,1BB 的中点.1AA AC CB AB ===. (1)证明:1//BC 平面11A CD ;(2)求二面角1D ACE --的正弦值. 解:(1)连结1AC 交1A C 于点F ,则F 为1AC 中点.又D 是AB 中点,连结DF ,则1//BC DF . 因为DF ⊂平面1A CD ,1BC ⊄平面1A CD ,所以1//BC 平面1A CD .(2)由AC CB AB ==得,AC BC ⊥.以C 为坐标原点,CA 的方向为x 轴正方向,建立如图 所示的空间直角坐标系C xyz -.设2CA =,则()1,1,0D ,()0,2,1E ,()12,0,2A ,()1,1,0CD =, ()0,2,1CE = ,()12,0,2CA =.设111()x y z =n ,,是平面1A CD 的法向量,则100CD CA ⎧⋅=⎪⎨⋅=⎪⎩n n 即11110220x y x z +=⎧⎨+=⎩,可取11(1)=--n ,,.同理,设m 是平面A 1CE 的法向量, 则10CE CA ⎧⋅=⎪⎨⋅=⎪⎩m m 可取2,1()2=-m ,.从而||||o c s ==n?m n n m m 〈,〉,故sin ,=n m 即二面角1D ACE --(19)【2013年全国Ⅱ,理19,12分】经销商经销某种农产品,在一个销售季度内,每售出1 t 该产品获利润500元,未售出的产品,每1 t 亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130 t 该农产品.以X (单位:t ,100150X ≤≤)表示下一个销售季度内的市场需求量,T (单位:元)表示下一个销售季度内经销该农产品的利润 (1)将T 表示为X 的函数;(2)根据直方图估计利润T 不少于57000元的概率;(3)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,并以需求量落入该区间的频率作1为需求量取该区间中点值的概率(例如:若需求量[)100,110X ∈,则取105X =,且105X =的概率等于需求量落入[)100,110的频率),求T 的数学期望.解:(1)当[)100,130X ∈时,()50030013080039000T X X X =--=-,当[]130,150X ∈时,50013065000T =⨯=. 所以80039000,10013065000,130150X X T X -≤<⎧=⎨≤≤⎩.(2)由(1)知利润T 不少于57000元当且仅当120150X ≤≤.由直方图知需求量[]120,150X ∈的频率为0.7,所以下一个销售季度内的利润T 不少于57000元的概率的估计值为0.7. (3)依题意可得T所以450000.1ET =⨯+(20)【2013年全国Ⅱ,理20,12分】平面直角坐标系xOy 中,过椭圆M :2222=1x y a b +(0a b >>)右焦点的直线0x y +交M 于A ,B 两点,P 为AB 的中点,且OP 的斜率为12.(1)求M 的方程;(2)C ,D 为M 上两点,若四边形ACBD 的对角线CD AB ⊥,求四边形ACBD 面积的最大值.解:(1)设11()A x y ,,22()B x y ,,00()P x y ,,则221122=1x y a b+,222222=1x y a b +,2121=1y y x x ---, 由此可得2212122121=1b x x y y a y y x x (+)-=-(+)-.因为1202x x x +=,1202y y y +=,0012y x =,所以222a b =. 又由题意知,M 的右焦点为),故223ab -=.因此26a =,23b =.所以M 的方程为22=163x y +.(2)由220163x y xy⎧+-=⎪⎨+=⎪⎩,解得x y ⎧=⎪⎪⎨⎪=⎪⎩或0x y =⎧⎪⎨=⎪⎩AB =CD 的方程为: y x n n ⎛=+<<⎝,设33()C x y ,,44()D x y ,.由22163y x nx y =+⎧⎪⎨+=⎪⎩得2234260x nx n ++-=. 于是3,4x =CD 的斜率为1,所以43|x xCD -由已知,四边形ACBD 的面积1||||2S CD AB =⋅=. 当0n =时,S .所以四边形ACBD .(21)【2013年全国Ⅱ,理21,12分】已知函数()ln()x f x e x m =-+.(1)设0x =是()f x 的极值点,求m 并讨论()f x 的单调性; (2)当2m ≤时,证明()0f x >.解:(1)()1e x mf x x =-'+.由0x =是()f x 的极值点得()00f '=,所以1m =.于是()()e ln 1x f x x =-+,定义域为()1-+∞,,()1e 1x f x x =-+'.函数()1e 1x f x x =-+'在()1-+∞,单调递增,且()00f '=. 因此当()1,0x ∈-时,()0f x '<;当0()x ∈+∞,时,()0f x '>.所以()f x 在()1,0-单调递减,在(0)+∞, 单调递增.(2)当2m ≤,()x m ∈-+∞,时,()()ln ln 2x m x +≤+,故只需证明当2m =时,()0f x >.当2m =时,函数()1e 2x f x x =-+'在()2-+∞,单调递增.又()10f '-<,()00f '>, 故()0f x '=在()2-+∞,有唯一实根0x ,且()01,0x ∈-.当02()x x ∈-,时,()0f x '<; 当0()x x ∈+∞,时,()0f x '>,从而当0x x =时,()f x 取得最小值.由()00f x '=得001e 2x x =+, ()00ln 2x x +=-,故()()20000011022f x x x x f x x (+)+=≥>++=.综上,当2m ≤时,()0f x >. 请考生在(22)、(23)、(24)三题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做第一个题目计分,做答时请写清题号. (22)【2013年全国Ⅱ,理22,10分】(选修4-1:几何证明选讲)如图,CD 为ABC ∆外接圆的切线,AB 的延长线交直线CD 于点D ,E ,F 分别为弦AB 与弦AC 上的点,且 ··BC AE DC AF =,B ,E ,F ,C 四点共圆. (1)证明:CA 是ABC ∆外接圆的直径;(2)若DB BE EA ==,求过B ,E ,F ,C 四点的圆的面积与ABC ∆外接圆面积的比值.解:(1)因为CD 为ABC ∆外接圆的切线,所以DCB A ∠=∠,由题设知BC DCFA EA=,故CDB AEF ∆∆∽, 所以DBC EFA ∠=∠.因为B ,E ,F ,C 四点共圆,所以CFE DBC ∠=∠,故90EFA CFE ∠=∠=︒. 所以90CBA ∠=︒,因此CA 是ABC ∆外接圆的直径.(2)连结CE ,因为90CBE ∠=︒,所以过B ,E ,F ,C 四点的圆的直径为CE ,由D B B E =,有C E D C =, 又22·2BC DB BA DB ==,所以222246CA DB BC DB =+=.而22·3DC DB DA DB ==,故过B ,E ,F , C 四点的圆的面积与ABC ∆外接圆面积的比值为12.(23)【2013年全国Ⅱ,理23,10分】(选修4-4:坐标系与参数方程)已知动点P Q 、都在曲线2cos :2sin x tC y t =⎧⎨=⎩(t 为参数)上,对应参数分别为=t α与=2t α(02απ<<),M 为PQ 的中点. (1)求M 的轨迹的参数方程;(2)将M 到坐标原点的距离d 表示为α的函数,并判断M 的轨迹是否过坐标原点.解:(1)依题意有2cos (n )2si P αα,,2cos2(2)2sin Q αα,,因此cos cos ()2sin sin2M αααα++,. M 的轨迹的参数方程为cos cos 2sin sin 2x y αααα=+⎧⎨=+⎩(α为参数,02απ<<).(2)M点到坐标原点的距离)02d απ<<.当απ=时,0d =,故M 的轨迹过坐标原点.(24)【2013年全国Ⅱ,理24,10分】(选修4-5:不等式选讲)设a ,b ,c 均为正数,且1a b c ++=,证明:(1)13ab bc ac ++≤;(2)2221a b c b c a ++≥.解:(1)由222a b ab +≥,222b c bc +≥,222c a ca +≥,得222a b c ab bc ca ++≥++.由题设得()21a b c ++=,即2222221a b c a b b c c a +++++=.()31ab bc ca ∴++≤,即13a b b c c a ++≤.(2)因为22a b a b +≥,22b c b c +≥,22c a c a +≥,故()222(2)a b ca abc c a b c b +≥++++++,即222a b c a b c b c a ≥++++.所以2221a b cb c a++≥.。

2013年云南省统测理科数学试卷解析

2013年云南省统测理科数学试卷解析

一、选择题1、选C 。

平行于y 轴的直线倾斜角为2π。

2、选B 。

i i i i i ii -=-=-+-=+-22)1)(1()1(112。

3、选D 。

323272791)31(x x x x -+-=-,故972792713120-=--+=++a a a a 。

4、选A 。

)32sin(32)12(2sin 3)22sin(32cos 3ππππ+=⎥⎦⎤+⎢⎣⎡-=+==x x x x y 故选A 。

5、选D 。

由题意知输入的函数要为奇函数,可以排除)1(log )(23+=x x f ,函数要存在零点,可排除xx f 1)(=和x x x f -+=22)(。

故选D 。

6、选C 。

由题目可得 2)62sin(222cos 2sin 32sin 322cos 142cos cos sin 32cos 4cos sin)(244++=++=++⨯+-=++-=πx x x xxx xx x x x x f要)()(,,m f x f R x R m ≥∈∀∈∃,即取0)(min =x f 。

7、选A 。

分类①12≤<-x 时044)3(3)(22/<--+-=xx x f 此时)(x f 在12≤<-x 为减函数,且32)0(=f 故[]100)1()0(32)1(-<>⇒>+⇒=<+x x x x f x x f 或可得1012<<-<<-x x 或。

②21<<x 时,3254)(2+--=x x x f 为减函数,且0)1()(max <=f x f 即只需满足2)1(1<+<x x 解得1012<<-<<-x x 或。

8、选C 。

三视图原图为圆锥。

33832431ππ=⨯⨯=V 。

9、选B 。

21168=。

10、选B 。

261444423222)2)(2(cos 222222-=+⋅+⋅+⋅--⋅+=+⋅-+-=bb a a b b a a bb a a ba b a b a b a θ。

云南省2013年高中毕业生复习第二次统一检测数学理质量分析报告+试题详解

云南省2013年高中毕业生复习第二次统一检测数学理质量分析报告+试题详解

广丰一中2013年高中毕业生复习第二次统一检测数学理质量分析报告+试题详解一、抽样统计分析1.抽样全卷基本情况样本数满分值平均分难度标准差及格人数及格率最高分1058 150 78.86 0.53 23.4 364 34.4 1392.抽样分数段分数段0~49 50~59 60~69 70~79 80~89 抽样总数人数124 103 139 137 1911058 合计694分数段90~99 100~109 110~119 120~129 130~139 140~150人数145 119 69 25 6 0合计3643.各小题抽样情况(1)选择题题号满分值正确选项A人数A比例%B人数B比例%C人数C比例%D人数D比例%未(多)选人数未(多)选比例%1 5 D 63 5.95 1 0.09 4 0.38 982 92.82 8 0.762 5 B 35 3.31 884 83.55 106 10.02 23 2.17 10 0.953 5 A 910 86.01 54 5.1 34 3.21 52 4.91 8 0.764 5 B 65 6.14 842 79.58 119 11.25 21 1.98 11 1.045 5 C 21 1.98 52 4.91 949 89.7 26 2.46 10 0.956 5 C 182 17.2 205 19.38 567 53.59 93 8.79 11 1.047 5 D 53 5.01 119 11.25 94 8.88 784 74.1 8 0.768 5 A 545 51.51 243 22.97 154 14.56 106 10.02 10 0.959 5 C 42 3.97 89 8.41 843 79.68 74 6.99 10 0.9510 5 B 180 17.01 345 32.61 316 29.87 209 19.75 8 0.7611 5 D 70 6.62 243 22.97 182 17.2 553 52.27 10 0.9512 5 A 187 17.67 302 28.54 369 34.88 189 17.86 11 1.04题号满分值平均分难度区分度标准差满分人数满分率15 4.64 0.93 0.26 1.29 982 92.822013年云南省第二次统测理科数学质量分析报告·第1页(共25页)2013年云南省第二次统测理科数学质量分析报告·第2页(共25页)2 5 4.18 0.84 0.37 1.85 884 83.553 5 4.3 0.86 0.44 1.74 910 86.01 45 3.98 0.8 0.42 2.01 842 79.58 5 5 4.48 0.9 0.31 1.53 949 89.76 5 2.68 0.54 0.49 2.49 567 53.59 7 5 3.71 0.74 0.53 2.18 784 74.1 8 5 2.58 0.52 0.47 2.49 545 51.51 9 5 3.98 0.8 0.36 2.02 843 79.68 10 5 1.63 0.33 0.4 2.34 345 32.61 11 5 2.61 0.52 0.44 2.5 553 52.27 12 50.880.180.311.9118717.67(2)填空题题 号满 分 值平 均 分难 度区 分 度标 准 差及 格 人 数及 格 率满 分 人 数满 分 率最 高 分13 5 2.68 0.54 0.34 2.5 568 53.69 567 53.59 5 14 5 4.25 0.85 0.39 1.79 900 85.07 900 85.07 5 15 5 1.57 0.31 0.47 2.32 332 31.38 332 31.38 5 1651.04 0.21 0.462.02 219 20.7 218 20.6 5 填 空 题209.540.480.685.2329928.26817.6620(3)解答题题 号满 分 值平 均 分难 度区 分 度标 准 差及 格 人 数及 格 率满 分 人 数满 分 率最 高 分选 择 题60 39.66 0.66 0.86 11.57 64861.25423.97602013年云南省第二次统测理科数学质量分析报告·第3页(共25页)题 号满分值平 均 分难 度区 分 度标 准 差及 格 人 数及 格 率满 分 人 数满 分 率最 高 分17 12 4.87 0.41 0.61 2.63 69 6.52 18 1.7 12 18 127.9 0.66 0.62 4.2713 67.39 201191219 12 8.79 0.73 0.52 3.32 616 58.22 482 45.56 12 20 12 2.31 0.190.52.43 383.59 2 0.19 12 2112 0.52 0.04 0.371.140.3810选考105.27 0.53 0.61 3.68 469 44.33 284 26.84 10解 答 题70 29.66 0.42 0.88 11.21 151 14.270 0 60(4)第II 卷 题 号满分值平 均 分难 度区 分 度标 准 差及格人数及 格 率满分 人数满 分 率最 高 分第 II 卷9039.2 0.44 0.92 14.61 195 18.43 0 0 79选考题数据统计题号 满分值 选择人数 平均分 难度 标准差 及格人数 及格率% 最高分22 10 51 6.47 0.65 4.11 30 58.82 10 23 10 804 5.70 0.57 3.59 397 49.38 10 24102013.270.333.2042 20.9010二、各题质量分析一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.第1题:已知集合{}21,=S ,集合{}a T =,Φ表示空集,如果S T S ⋃=,那么a 的值是 (A )Φ (B )1(C )2(D )1或2本题考查集合的概念和运算.2013年云南省第二次统测理科数学质量分析报告·第4页(共25页)解:∵{}21,=S ,{}a T =,S T S ⋃=, ∴S a ∈.所以1=a 或2=a . 故选D.答题分析:下列解法是错误的:因为S T S ⋃=,所以T S ⊆,从而T 可以是空集Φ,因此选A.原因在于没有注意到{}a T =,从而T 是单元素集合.实际上{}1T =或{}2T =. 第2题:在92)1(xx -的二项式展开式中,常数项是 (A )504 (B )84(C )84-(D )504-本题考查二项式定理. 解:在92)1(x x -的二项式展开式中,通项公式r r r r xx C T )1(21891-=-+ r r r x C 3189)1(--=. ∵0318=-r ,∴6=r ,84)1(39696==-C C . ∴在92)1(xx -的二项式展开式中,常数项是84. 故选B.答题分析:解题时应记住二项展开通项公式:1r n r rr nT C a b -+=. 第3题:一个由实数组成的等比数列,它的前6项和是前3项和的9倍,则此数 列的公比为 (A )2(B )3(C )21(D )31本题考查等比数列的性质及相关计算.解法一: 设此数列的公比为q ,根据题意得qq a q q a --=--1)1(91)1(3161,解得2=q .故选A.解法二: 依题意得639S S =,故33339S q S S +=. ∴319q +=,解得2=q .2013年云南省第二次统测理科数学质量分析报告·第5页(共25页)故选A.第4题:已知a r 、b r 是平面向量,若(2)a a b ⊥-r r r,)2(a b b -⊥,则a r 与b r 的夹 角是(A )6π (B )3π (C )32π (D )65π 本题考查向量的概念及其与运算.考查向量垂直、两个向量夹角的求法.解:∵(2)a a b ⊥-r r r , ∴22.0a a b -=r r r. ∵)2(a b b -⊥, ∴022=-b a b . 设a r 与b r的夹角为θ, θcos b a b a =,则0cos 2222=-=-θb a a b a a , 0cos 2222=-=-θb a b b a b .∴θcos 22b a a =,θcos 22b a b =.若0=a 或0=b ,则a =0=b ,此时,(A )、(B )、(C )、(D )都正确.若0≠a 且0≠b ,解方程组得到21cos =θ. ∴3πθ=.故选B.第5题:如图是一个空间几何体的三视图,其中正视图和侧视图都是半径为2的 半圆,俯视图是半径为2的圆,则该几何体的体积等于(A )34π (B )38π (C )316π(D )332π本题以半球为载体,考查由三视图还原几何体的能力. 解: 由三视图知几何体是半径为2的半球,正视图俯视图 侧视图2013年云南省第二次统测理科数学质量分析报告·第6页(共25页)所以其体积等于316234213ππ=⨯⨯. 故选C .第6题:已知常数a 、b 、c 都是实数,34)(23-++=x c x b x a x f 的导函数为)(x f ',0)(≤'x f 的解集为{}32≤≤-x x ,若)(x f 的极小值等于115-,则a 的值是 (A )2281-(B )31(C )2(D )5本题考查函数与导数.考查函数极值、方程的思想方法. 解: ∵34)(23-++=x c x b x a x f ,∴c bx ax x f ++='23)(2.∵不等式0)(≤'x f 的解集为{}32≤≤-x x , ∴不等式0232≤++c bx ax 的解集为{}32≤≤-x x .∴⎪⎪⎪⎩⎪⎪⎪⎨⎧=⨯--=+->,332,3232,0a c a b a 即⎪⎩⎪⎨⎧-=-=>.18,23,0a c a b a ∴341823)(23---=ax x a x a x f . 根据已知得当2-=x 时,)(x f 取得极大值,当时3=x 时,)(x f 取得极小值. ∴115345422727)3(-=---=a aa f ,解得2=a . 故选C.答题分析:1.一些考生不能把条件“不等式0)(≤'x f 的解集为{}32≤≤-x x ”正确地进行等价转化.2.本题通过求a 的问题设置,引导考思考使用待定系数法,从而想到联立方程组.进而联想到题设条件,用原函数与导函数关系,列出方程组求解.3.本题较好地体现了高考类似设题思想,体现知识与方法的交汇.第7题:已知i 是虚数单位,复数z 的共轭复数是z ,如果i z z 48-=+,那么z 等于 (A )i 43-- (B )i 43+-(C )i 34+(D )i 43+本题考查复数、共轭复数的概念.考查复数的基本运算、方程的思想方法.2013年云南省第二次统测理科数学质量分析报告·第7页(共25页)解:设yi x z +=,x 、y 都是实数,则yi x y x z z -++=+22,∵i z z 48-=+,∴⎩⎨⎧=++-=-8422x y x y ,解方程组得⎩⎨⎧==34x y . ∴=z i 43+. 故选D .答题分析:本题解题方法是利用复数相等条件来列等式,求出未知数.复数 不能比较大小,但复数可以相等.本题体现了这一思想.第8题:已知⊙P 的半径等于6,圆心是抛物线x y 82=的焦点,经过点)2,1(-M 的直线l 将⊙P 分成两段弧,当优弧与劣弧之差最大时,直线l 的方程为 (A )032=++y x (B )052=--y x(C )02=+y x(D )052=--y x本题考查直线和圆的基本知识.解:∵⊙P 的半径等于6,圆心是抛物线x y 82=的焦点, ∴⊙P 的方程为16)2(22=+-y x .∵过点)2,1(-M 的直线l 将圆16)2(22=+-y x 分成两段弧,当优弧与 劣弧之差最大时,劣弧最短, ∴点)2,1(-M 是直线l 的中点.∵圆16)2(22=+-y x 的圆心为)0,2(P ,∴211-=-=PMl k k .∴直线l 的方程为)1(212--=+x y ,即032=++y x .故选A .答题分析:本题的难点在于理解条件“当优弧与劣弧之差最大时”,实际上,由于优弧和劣弧之和是定值圆周长,所以两弧之差最大劣弧最短.另外从几何的角度来看当直线l PM ⊥时,过点P 垂直于直线的弦长最长,从而劣弧最短.第9题:在数列{}n a 中,11=a ,22=a ,若2212+-=++n n n a a a ,则n a 等于 (A )5652513+-n n(B )49523-+-n n n(C )222+-n n(D )4522+-n n2013年云南省第二次统测理科数学质量分析报告·第8页(共25页)本题考查递推数列通项公式的求法.解法一(直接求通项公式):∵11=a ,22=a ,2212+-=++n n n a a a , ∴112=-a a ,2)()(112=---+++n n n n a a a a .∴{}n n a a -+1是首项为1,公差为2的等差数列. 所以121-=-+n a a n n . ∵2213211()()()22n n n a a a a a a a a n n -=-+-++-+=-+L . ∴222+-=n n a n .故选C .解法二(特值排除法):因为11=a ,22=a ,2212+-=++n n n a a a , ∴35a =,410a =,代入验证,可以排除A 、B 、D , 故选C.答题分析:若采用下列解法:∵2212+-=++n n n a a a ,不妨设()211n n n n a xa y z a xa y +++--=--, 则()21n n n a x z a xza y yz ++=+-+-,∴212x z xz y yz +=⎧⎪=⎨⎪-=⎩,解得1102x z =⎧⎪=⎨⎪=⎩,矛盾.说明这个数列并不能配凑成上述样子. 事实上,可以配凑成2)()(112=---+++n n n n a a a a ,但这需要一定配凑意识、观察能力和思维的灵活,而这正是解决本题的难点所在.第10题:已知)(x f 是定义域为实数集R 的偶函数,01≥∀x ,02≥∀x ,若21x x ≠,则0)()(1212<--x x x f x f .如果43)31(=f ,3)log (481>x f ,那么x 的取值范围为(A ))21,0( (B ))2,21((C )1(,1](2,)2⋃+∞(D )11(0,)(,2)82⋃ 本题综合考查函数的奇偶性、单调性. 解:∵01≥∀x ,02≥∀x ,21x x ≠,则0)()(1212<--x x x f x f ,∴定义在实数集R 上的偶函数)(x f 在),0[∞+上是减函数.2013年云南省第二次统测理科数学质量分析报告·第9页(共25页)∵3)log (481>x f , ∴43)log (81>x f , 即)31()log (81f x f >. ∴ ,31log ,0log 8181⎪⎩⎪⎨⎧<≥x x 或 ,31log ,0log 8181⎪⎩⎪⎨⎧-><x x 解得121≤<x 或21<<x . ∴221<<x . 故选B .答题分析:1.本题首先要看出函数)(x f 在),0[∞+上是减函数. 2.根据函数的单调性“去f ”:∵3)log (481>x f , ∴43)log (81>x f , 即)31()log (81f x f >,但这个不等式并不等价于181log 3x <,原因是函数)(x f 在),0[∞+上是减函数,但在(),0-∞上却是增函数.事实上,因为)(x f 是定义域为实数集R 的偶函数,所以上式可化为181log 3f x f ⎛⎫⎛⎫> ⎪ ⎪ ⎪⎝⎭⎝⎭,即181log 3x >,接下来分类讨论去绝对值即可. 第11题:两位同学一起参加某单位的招聘面试,单位负责人对他们说:“我们 要从面试的人中招聘3人,假设每位参加面试的人被招聘的概率相等,你们俩同 时被招聘的概率是701”.根据这位负责人的话可以推断出这次参加该单位招聘 面试的人有(A )44人(B )42人(C )22人(D )21人本题考查概率、古典概型的计算以及组合数的计算.解:设参加面试的人数为n ,根据已知得701312=-nn C C ,解得21=n . 故选D .第12题:在三棱锥ABC P -中,PC PB PA ==,底面ABC ∆是正三角形,M 、N 分别是侧棱PB 、PC 的中点.若平面⊥AMN 平面PBC ,则平面AMN 与平面ABC 所成二面角(锐角)的余弦值等于2013年云南省第二次统测理科数学质量分析报告·第10页(共25页)(A )630(B )621(C )66(D )63 本题考查空间线面位置关系及“无棱二面角”的求法.解: 设MN 的中点为D ,BC 的中点为E ,连接AD ,AE ,PE .在平面ABC 内作BC AF //,则平面ABC ⋂平面AF AMN =. 由已知得AN AM =. ∴MN AD ⊥.∵平面⊥AMN 平面PBC , ∴⊥AD 平面PBC . ∴⊥AD BC ,⊥AD PE .∵ABC ∆是等边三角形,BC 的中点为E , ∴⊥AE BC . ∵BC AF //, ∴AF AE ⊥,AF AD ⊥.∴DAE ∠是平面AMN 与平面ABC 所成二面角(锐角)的平面角. 设等边ABC ∆的边长为a ,侧棱长为b . ∵M 、N 分别是侧棱PB 、PC 的中点, ∴D 是PE 的中点. ∵⊥AD PE ,∴AE PA =. ∴a b 23=. ∴a BE PB PE DE 42212122=-==. ∴66sin ==∠AE DE DAE . N MCABPFED N MCABP2013年云南省第二次统测理科数学质量分析报告·第11页(共25页)∴630sin 1cos 2=∠-=∠DAE DAE . 故选A .答题分析:1.本题的关键在于对空间线面位置关系进行正确而有效的转化,只要哪一步思维卡壳,就很难做下去了.2.首先要找到平面AMN 与平面ABC 所成二面角(锐角)的平面角DAE ∠.接下来要逆用等腰三角形的性质,得出AE PA =,从而找到底面正三角形边长a 和侧棱长b 之间的等量关系,再计算平面角DAE ∠的余弦值.3.本题的难点在于:首先要找出所求的二面角的平面角,其次如何根据条件找到底面边长a 和侧棱长b 的等量关系.4.本题也可用建立空间直角坐标系的方法来求解. 二.填空题:本大题共4小题,每小题5分.第13题:如果执行下列程序框图,那么输出的S = .本题考查程序框图,考查等差数列前n 项和的求法. 解:根据程序框图的意义,得()212202021420S =⨯+++=⨯=L .第14题:一次射击训练,某小组的成绩只有7环、8环、9环三种情况,且该小组的平均成绩为15.8环,设该小组成绩为7环的有x 人,成绩为8环、9环的人数情况见下表:那么=x. 本题考查统计,考查方程的思想方法.解: 根据题意得)87(15.872567++=++x x ,解得5=x .第15题:已知a 、b 、c 分别为ABC ∆三个内角A 、B 、C 的对边,若bc c b a -+=222,132c b =+,则B tan 的值等于 .开始k =120?k ≤是否输出S结束环数(环)人数(人)2013年云南省第二次统测理科数学质量分析报告·第12页(共25页)本题考查解三角形,涉及正余弦定理、三角变换.解:根据余弦定理得:212cos 222=-+=bc a c b A . ∵A 是三角形的内角,∴3π=A .在ABC ∆中,B B A C -=--=32ππ. ∴B B C sin 21cos 23sin +=. 根据正弦定理和已知得:321sin sin 21cos 23sin sin +=+=B BB BC . ∴B B cos 23sin 3=. ∴21tan =B . 答题分析:1.解答本题的一个关键是要从bc c b a -+=222看出这是关于角A 的余弦定理,可得出3π=A .2.由于()sin 120sin 13sin sin 2B cC b B B ︒-===+,这个式子展开后,得3cos 1132sin 22B B +=+,解之即可.第16题:已知1F 、2F 是双曲线1222=-y ax 的两个焦点,点P 在此双曲线上,021=⋅PF PF ,如果点P 到x 轴的距离等于55,那么该双曲线的离心率等于 . 本题考查双曲线,考查离心率的求法. 解法一: ∵021=⋅PF PF , ∴21PF PF ⊥.∴21PF PF ⊥.∵点P 在双曲线1222=-y ax 上,∴22214)(a PF PF =-.2013年云南省第二次统测理科数学质量分析报告·第13页(共25页)∴221222142a PF PF PF PF =-+.∴221242)1(4a PF PF a =-+⨯. ∴221=PF PF . ∴2125512PF PF a =⨯+,解得42=a . ∴1422=-y x 的离心率等于25.解法二(方程思想):∵1222=-y ax ,∴()1,0F c -,()2,0F c .设5,5P m ⎛⎫ ⎪ ⎪⎝⎭,则22115m a -=……①由021=⋅PF PF 得22551,,0555c m c m m c ⎛⎫⎛⎫---⋅--=-+= ⎪ ⎪⎝⎭⎝⎭…… ② 又221a c +=…… ③解得5c =,2a =,∴1422=-y x 的离心率等于25.三.解答题:解答应写出文字说明,证明过程或演算步骤. 第17题:(本小题满分12分)已知21cos cos sin 3)(2+-=x x x x f . (Ⅰ)写出)(x f 的最小正周期T ; (Ⅱ) 求由)(x f y =)650(π≤≤x ,)650(0π≤≤=x y ,)01(65≤≤-=y x π,以及)021(0≤≤-=y x 围成的平面图形的面积. 本题考查三角函数的化简计算、定积分的应用.解:(Ⅰ)∵21cos 2cos sin 3)(2--=x x x x f)62sin(2cos 212sin 23π-=-=x x x ,2013年云南省第二次统测理科数学质量分析报告·第14页(共25页)∴ππ==22T . ∴)(x f 的最小正周期为π. (Ⅱ)设由)(x f y =)650(π≤≤x ,)650(0π≤≤=x y ,)01(65≤≤-=y x π,以及)021(0≤≤-=y x 围成的平面图形的面积为S , ∵)62sin()(π-=x x f ,∴123012sin(2)3sin (2)66S x dx x dx πππππ=--+-⎰⎰.∵)62sin(2)62cos(ππ-='⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--x x , ∴⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⨯--⨯+-⨯--⨯=2)632cos()6122cos(32)602(cos )6122(cos πππππππS 432-=. ∴由)(x f y =)650(π≤≤x ,)650(0π≤≤=x y ,)01(65≤≤-=y x π以及 )021(0≤≤-=y x 围成的平面图形的面积为432-.答题分析:1.解答第(Ⅱ)问,首先要正确画出示意图.2.要注意的是,当面积在x 轴上方的时候,定积分算出来是正数;当面积在x 轴下方的时候,定积分算出来是负数.很多考生没有注意到这一点而导致出错:123012sin(2)3sin(2)66S x dx x dx πππππ=-+-⎰⎰.3.充分运用对称性,否则就要计算三个定积分了. 第18题:(本小题满分12分)一次高中数学期末考试,选择题共有12个,每个选择题给出了四个选项,在给出的四个选2013年云南省第二次统测理科数学质量分析报告·第15页(共25页)项中,只有一项是符合题目要求的. 评分标准规定:对于每个选择题,不选或多选或错选得0分,选对得5分.在这次考试的选择题部分,某考生比较熟悉其中的8个题,该考生做对了这8个题.其余4个题,有一个题,因全然不理解题意,该考生在给出的四个选项中,随机选了一个;有一个题给出的四个选项,可判断有一个选项不符合题目要求,该考生在剩下的三个选项中,随机选了一个;还有两个题,每个题给出的四个选项,可判断有两个选项不符合题目要求,对于这两个题,该考生都是在剩下的两个选项中,随机选了一个选项.请你根据上述信息,解决下列问题:(Ⅰ)在这次考试中,求该考生选择题部分得60分的概率;(Ⅱ)在这次考试中,设该考生选择题部分的得分为X ,求X 的数学期望. 本题考查概率.考查随机变量分布列、数学期望的计算.解:设选对“全然不理解题意”的试题的选项为事件A ,选对“可判断有一个 选项不符合题目要求”试题的选项为事件B ,选对“可判断有两个选项不符 合题目要求”试题的选项为事件C ,根据题意得41)(=A P ,31)(=B P ,21)(=C P . (Ⅰ)在这次考试中,该考生选择题得60分的概率48121213141=⨯⨯⨯=P ; (Ⅱ)随机变量X 可能的取值为40,45,50,55,60,根据题意得8121213243)40(=⨯⨯⨯==X P , 4817212132432121314321213241)45(12=⨯⨯⨯⨯+⨯⨯⨯+⨯⨯⨯==C X P , 21213243212131432121324121213141)50(1212⨯⨯⨯+⨯⨯⨯⨯+⨯⨯⨯⨯+⨯⨯⨯==C C X P 4817=, 487212131432121324121213141)55(12=⨯⨯⨯+⨯⨯⨯+⨯⨯⨯⨯==C X P ,48121213141)60(=⨯⨯⨯==X P . ∴X 的数学期望48160487554817504817458140⨯+⨯+⨯+⨯+⨯=EX 12575=.答题分析: 1.本题以学生熟悉的背景设题,将得分与选择对、选错联系起来,感受随机事件与概率.因此,解题首先是要读懂题意.善于在熟悉的情境中理解题意,这是解概率题的关键.2013年云南省第二次统测理科数学质量分析报告·第16页(共25页)2.概率问题往往涉及到分类计算,这是由于分布列的特点需要分类进行计算.另由于选择各题时相对独立,独立事件也需要分类计算.3.概率题要求计算要准确,全功尽弃. 第19题:(本小题满分12分)如图,在长方体ABCD D C B A -1111中,4==CD AD ,51=AD ,M 是线段11D B 的中点. (Ⅰ)求证://BM 平面AC D 1;(Ⅱ)求直线1DD 与平面AC D 1所成角的正弦值.本题考查空间线面位置关系、线面平行、线面角的求法. (Ⅰ)证明:在长方体ABCD D C B A -1111中, ∵4=AD ,51=AD ,∴32211=-=AD AD DD .建立如图所示的空间直角坐标系xyz D -,设AC 的中点为N ,连接1ND ,根据题意得)0,0,4(A ,)0,4,4(B ,)0,4,0(C ,)0,0,0(D ,)3,4,4(1B ,)3,0,0(1D ,线段11D B 的中点为)3,2,2(M ,线段AC 的中点为)0,2,2(N .∴)3,2,2(--=BM , )3,2,2(1--=ND . ∴1//ND BM .∵⊄BM 平面AC D 1,⊂1ND 平面AC D 1,∴1//ND BM . ∴//BM 平面AC D 1.(Ⅱ)解:)3,0,0(1=DD ,)0,4,4(-=AC ,)3,0,4(1-=AD ,设平面AC D 1的一个法向量为),,z y x n (=,根据已知得⎩⎨⎧=+-=⋅=+-=⋅,034,0441z x AD n y x AC n 取1=x ,得⎪⎩⎪⎨⎧==.34,1z y ∴)34,1,1(=n 是平面AC D 1的一个法向量.D 1C 1B 1A 1A BCDM D 1C 1B 1A 1ABCNDMzxy2013年云南省第二次统测理科数学质量分析报告·第17页(共25页)D 1C 1B 1A 1ABC DMNO∴17342,cos 111=⋅=><nDD n DD n DD . ∴直线1DD 与平面AC D 1所成角的正弦值等于17342. 答题分析:1.本题的模型是长方体,因此采用坐标法不失为一个好的选择. 2.本题也可以采用几何法的方式进行求解. (Ⅰ)如图,连接BD ,交AC 于N ,可以证明四边形1BND M 是平行四边形, 从而1//BM ND ,进而可以证明//BM 平面AC D 1.(Ⅱ)过D 作1DO ND ⊥于O ,因为底面ABCD 是正方形,可以证明DO ⊥平面1A C D ,从而1D D O ∠即为所求角.接下来解之即可.第(Ⅱ)问也可以用等积的办法来求解. 设点D 到平面1D AC 的距离为d .在1D AC ∆中,115D A D C ==,42AC =,可得AC 边上的高等于25817-=,∴1142172342D A C S ∆=⨯⨯=.∵11D ADC D AD C V V --=,∴111443234323d ⎛⎫⨯⨯⨯⨯=⨯⨯ ⎪⎝⎭,解得1234d =.设直线1DD 与平面AC D 1所成角的大小为θ,则1124234sin 1734334d D D θ====⨯. ∴直线1DD 与平面AC D 1所成角的正弦值等于17342. 第20题:(本小题满分12分)已知22)1(ln 2)(+--=x x x x f . (Ⅰ)求)(x f 的单调递增区间;(Ⅱ)若函数a x x x f x F ++-=3)()(2在]2,21[-上只有一个零点,求实数a 的取值范围. 本题通过导函数考查函数的单调性、极值、零点、比较大小等知识.2013年云南省第二次统测理科数学质量分析报告·第18页(共25页)解: (Ⅰ))(x f 的定义域为{}1-≠x x . ∵22)1(ln 2)(+--=x x x x f∴1)2(21222)(2+-=+--='x x x x x f . 解1,()0,x f x ≠-⎧⎨'>⎩得21x -<<-或2x >.∴)(x f 的单调递增区间是(2,1)-- 和2,+∞( ). (Ⅱ)由已知得a x x x F ++-=2)1ln()(,且1-≠x .∴11121)(+-=+-='x x x x F . ∴当1-<x 或1>x 时,0)(>'x F ; 当11<<-x 时,0)(<'x F . ∴当121<<-x 时,0)(<'x F ,此时,)(x F 单调递减; 当21<<x 时,0)(>'x F ,此时,)(x F 单调递增.∵a a F >++-=-2ln 221)21(,a a F <+-=3ln 22)2(, ∴)2()21(F F >-. ∴)(x F 在]2,21[-上只有一个零点⎪⎩⎪⎨⎧<≥-⇔,0)2(,0)21(F F 或0)1(=F . 由⎪⎩⎪⎨⎧<≥-,0)2(,0)21(F F 得23ln 22ln 221-<≤-a ; 由0)1(=F ,得12ln 2-=a . ∴实数a 的取值范围为23ln 22ln 221-<≤-a 或12ln 2-=a . 答题分析:1.本题要注意函数的定义域{}1-≠x x .2.在比较11()2ln 222F a -=-++与(2)22ln3F a =-+的大小时,如果直接采用作差的方式进行比较:2013年云南省第二次统测理科数学质量分析报告·第19页(共25页)11()(2)2ln222ln322F F --=-++-+552ln 62ln 624⎛⎫=-+=- ⎪⎝⎭,则很难得出答案.实际上,因为a a F >++-=-2ln 221)21(,a a F <+-=3ln 22)2(,所以)2()21(F F >-.这提示我们处理问题的时候思维要相当灵活,要眼观六路,耳听八方,怎么好做就怎么做.3. 很多考生误认为)(x F 在]2,21[-上只有一个零点⎪⎩⎪⎨⎧<≥-⇔,0)2(,0)21(F F 事实上漏了0)1(=F . 第21题:(本小题满分12分)已知1F 、2F 分别是椭圆E : )0(12222>>=+b a b y a x 的左、右焦点,点)3,2(P 在直线ba x 2=上,线段1PF 的垂直平分线经过点2F .直线m x k y +=与椭圆E 交于不同的两点A 、B ,且椭圆E 上存在点M ,使OM OB OA λ=+,其中O 是坐标原点,λ是实数.(Ⅰ)求λ的取值范围;(Ⅱ)当λ取何值时,ABO ∆的面积最大?最大面积等于多少? 本题综合考查直线和椭圆的相关问题,综合考查考生的运算求解能力. 解:(Ⅰ)设椭圆E 的半焦距为c ,根据题意得⎪⎪⎪⎩⎪⎪⎪⎨⎧+=+-====,,3)2()2(,222222222212c b a c PF c F F b a 解方程组得⎪⎩⎪⎨⎧===.2,1,1a b c∴椭圆E 的方程为1222=+y x . 由⎩⎨⎧=++=22,22y x m kx y ,得0224)21(222=-+++m kmx x k . 根据已知得关于x 的方程0224)21(222=-+++m kmx x k 有两个不相等的实数根. ∴0)21(8)22)(21(416222222>-+=-+-=∆m k m k m k , 化简得:2221m k >+.2013年云南省第二次统测理科数学质量分析报告·第20页(共25页)设),(11y x A 、),(22y x B ,则⎪⎪⎩⎪⎪⎨⎧+-=+-=+.2122,2142221221k m x x k km x x 221212122)(kmm x x k y y +=++=+. (1)当0=λ时,点A 、B 关于原点对称,0=m ,满足题意; (2)当0≠λ时,点A 、B 关于原点不对称,0≠m .由OA OB OM λ+=u u r u u u r u u u r ,得⎪⎪⎩⎪⎪⎨⎧+=+=),(1),(12121y y y x x x M M λλ 即⎪⎪⎩⎪⎪⎨⎧+=+-=.)21(2,)21(422k m y k km x M M λλ∵M 在椭圆E 上,∴1])21(2[])21(4[212222=+++-k m k km λλ, 化简得:)21(4222k m +=λ. ∵2221m k >+,∴2224m m λ>. ∵0≠m ,∴42<λ,即22<<-λ且0≠λ.综合(1)、(2)两种情况,得实数λ的取值范围是)2,2-(.(Ⅱ)当0=λ时,0=m ,此时,A 、B 、O 三点在一条直线上,不构成ABO ∆.∴为使ABO ∆的面积最大,0≠λ.∵⎪⎪⎩⎪⎪⎨⎧+-=+-=+,22212212122,214k m x x k km x x ∴2122124)(1x x x x kAB -++=22222121122k m k k +-++=.∵原点O 到直线m x k y +=的距离21km d +=,∴AOB ∆的面积d AB S ⋅=2122221212k m k m +-+=.∵)21(4222k m +=λ,0≠λ,2013年云南省第二次统测理科数学质量分析报告·第21页(共25页)∴222421λm k =+.∴4424142442422222222λλλλλλ-=-=-=m m m mS )4(4222λλ-=. ∵224)4(2222=-+≤-λλλλ,∴22≤S . “=” 成立⇔224λλ-=,即2±=λ. ∴当2±=λ时,ABO ∆的面积最大,最大面积为22. 答题分析:1.由于题目较长,一些考生不能识别有效信息,未能救出椭圆E 的方程求. 2. 第(Ⅰ)问,求λ的取值范围.其主要步骤与方法为:由0∆>,得关于k 、m 的不等式2221m k >+…… ①.由根与系数的关系、OM OB OA λ=+,M 在椭圆E 上,可以得到关于k 、m 、λ的等式)21(4222k m +=λ…… ②.把等式②代入①,可以达到消元的目的,但问题是这里一共有三个变量,就是消了m ,那还有关于k 和λ的不等式,如何求出λ的取值范围呢?这将会成为难点.事实上,在把等式②代入①的过程中,k 和m 一起被消掉,得到了关于λ的不等式.解之即可. 3.第(Ⅱ)问要把ABO ∆的面积函数先求出来.用弦长公式求底,用点到直线的距离公式求高,得到AOB ∆的面积d AB S ⋅=2122221212k m k m +-+=,函数中有两个自变量k 和m ,如何求函数的最大值呢?这又成为难点.这里很难想到把②代入面积函数中,因为②中含有三个变量,即使代入消掉一个后,面积函数依然有两个自变量.但这里很巧合的是:代入消掉k 后,事实上,m 也自动地消除了,于是得到了面积S 和自变量λ的函数关系S )4(4222λλ-=,再由第(Ⅰ)中所得到的λ的取值范围)2,2-(,利用均值不等式,即可求出面积的最大值了.4.解析几何的难点在于运算的繁杂,本题较好地体现了解解析几何题设题要求.对此,考生要2013年云南省第二次统测理科数学质量分析报告·第22页(共25页)有足够的心理准备.5.解答本题给我们的启示:不能死抱一些“结论”,比如两个未知数需要两个方程才能解出来等等.事实上,当那方程比较特殊的时候,即便是有多个未知数,也是可以把所有未知数都解出来的.很多时候的巧,会给我们山重水复疑无路,柳暗花明又一村的惊喜! 第22题:(本小题满分10分)选修14-:几何证明选讲如图,四边形ABCD 的外接圆为⊙O ,EA 是⊙O 的切线,CB 的延长线与EA 相交于点E ,AD AB =.求证:CD BE AB ⋅=2.本题考查平面几何中的三角形相似以及圆的相关知识,考查推理论证能力证明:连结AC .∵EA 是⊙O 的切线, ∴ACB EAB ∠=∠.∵AD AB =,∴ACB ACD ∠=∠. ∴EAB ACD ∠=∠.∵⊙O 是四边形ABCD 的外接圆, ∴ABE D ∠=∠. ∴CDA ∆∽ABE ∆. ∴BEDAAB CD =,即CD BE DA AB ⋅=⋅. ∵AD AB =, ∴CD BE AB ⋅=2.答题分析:作辅助线往往是解答平面几何证明的关键,本题也不例外. 第23题:(本小题满分10分)选修44-:坐标系与参数方程已知曲线C 的参数方程为35cos ,5sin ,x y θθ=+⎧⎨=⎩θ(是参数),P 是曲线C 与y 轴正半轴的交点.以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,求经过点P 与曲线C 只有一个公共点的直线l 的极坐标方程.本题考查圆的参数方程和普通方程,考查直线的直角坐标方程和极坐标方程的互化.解:把曲线C 的参数方程35cos ,5sin , x y θθ=+⎧⎨=⎩θ(是参数)化为普通方程得AEB CD.O AE BCD.O2013年云南省第二次统测理科数学质量分析报告·第23页(共25页)25)3(22=+-y x .∴曲线C 是圆心为)0,3(1P ,半径等于5的圆. ∵P 是曲线C 与y 轴正半轴的交点, ∴)4,0(P .根据已知得直线l 是圆C 经过点P 的切线.∵341-=PP k ,∴直线l 的斜率43=k . ∴直线l 的方程为01643=+-y x .∴直线l 的极坐标方程为016sin 4cos 3=+-θρθρ. 第24题:(本小题满分10分)选修54-:不等式选讲已知13-≥x ,关于x 的不等式0132151023≥+-+++--a x x x 的解集不是空集,求实数a 的取值范围.本题考查绝对值不等式,考查绝对值函数最大值的求法,考查绝对值不等式恒成立问题. 解:设=)(x f 151023+++--x x x (13-≥x ),则228,135,()28,53,2, 3.x x f x x x x +-≤≤-⎧⎪=-+-<≤⎨⎪>⎩∴当513-≤≤-x 时,18)(2≤≤x f ; 当35≤<-x 时,18)(2<≤x f ; 当3>x 时,2)(=x f .∴=)(x f 151023+++--x x x (13-≥x )的最大值为18.∵关于x 的不等式0132151023≥+-+++--a x x x 的解集不是空集的充要条件是)(x f 132+≥a 的解集不是空集,而)(x f 132+≥a 的解集不是空集的充要条件是)(x f 的最大值132+≥a ,即13218+≥a .解13218+≥a ,得422-≤≤-a . ∴实数a 的取值范围为422-≤≤-a .2013年云南省第二次统测理科数学质量分析报告·第24页(共25页)答题分析:1.本题解法是采用分离变量的方法进行的,分离之后,可以求出()f x 的最大值. 2.一些考生对不等式的解集不是空集理解有误,有的甚至求成了()f x 的最小值.实际上)(x f 132+≥a 的解集不是空集,所以)(x f 的最大值132+≥a ,即13218+≥a ,解之即可.三、复习建议1.回归基础 :掌握基本知识、基本方法和基本题型在最后的复习阶段,考生要回归课本,理清数学的知识主线,构建思想方法体系,熟记数学概念、公理、定理、性质、法则、公式.考生应该把课本上的基本知识、基本方法和基本题型系统全面地再梳理一遍,并针对盲区和易错点及时查缺补漏.2.高度重视运算能力近年来的高考数学试题,对运算能力的要求都有所加强,在云南省第二次统一测试中也得到了较好地反映,比如第20题解析几何中的复杂运算,第21题函数中的代数变形,第18题概率大题中的繁杂数字计算等.因此要高度重视运算能力的培养.然而由于运算能力的培养并非一日之功,因此要坚持长期训练培养,在平时的学习中,凡是复杂计算,都必须认真演算完毕,而不能是懂算理算法后就停止了,平时不训练有素,考场上肯定是快不起来的,考试也一定是要吃大亏的.3.整理反思已做过的题临近高考,一味地做新题、难题将得不偿失.事实上,学生已经做过很多试题了(试卷已经有厚厚的一打),但是否真正掌握吃透了呢?你应该拿出你以前做过的习题来进行归纳总结:拿到一道题必须立即判断其题型、考点 ( 知识背景 ) ,常用解法及特殊解法,解法的具体步骤,解法的关键步,解法的易错步,此题的常见变式及其解决办法等,以上几点如果你在一两分钟内无法回答出来,则说明你还未真正掌握此类问题.在高三最后的冲刺阶段,这样的整理和反思训练远比埋头做题来得重要.具体可如下实施:(1)应把过去做过的题目分类梳理、整理.做这项工作时最好按照知识点的板块进行,同时兼顾按题型划分.(2)做好分类后,找出自己在基础知识方面的薄弱环节,同时应做专项练习,提高熟练程度. (3)最基础的定理、公式要熟记.此时的复习应做到回归课本,但回归课本不是简单地拿着书本翻阅,而是带着自己在梳理知识中遇到的问题去有重点地看课本.(4)找出自己做错的地方,认真反思错误原因,并记忆错误原因,争取做到在高考中不犯同样的错误.错误有很多种,有知识不足的问题,有概念不清的问题、有题型模式认识不清的问题、也有分类不清的问题,当然还有做题马虎的问题等等.考生要在前进中反思,在反思中前进.4.关注考试心理和考试技巧.数学难题、怪题千千万万,高考考场上遇到一些新题是再正常不过的,考场上需要保持一个平和的心态.比如本次省统测,选做题每题都只有一个问,这跟往常所见的很不一样,此时不能因为这种“新颖”就把自己给搞紧张了.要树立一个心态:考场上见到什么都是可能的!再比如,第9题,求递推数列的通项公式,由于一下子没能把等比数列或等差数列给配凑出来,会不会自己就紧张到连取特殊值排除验证的方法都抛到九霄云外了呢?5.答题时一般来说应该是先易后难,从前往后.有的考生喜欢先做大题,再做选择、填空题.我们认为这是不妥当的.通常试题的难易分布是按每一类题型从前向后,由易到难的.因此,解题顺序也宜按试卷题号从小到大,从前至后依次解答.当然,中间有难题出现时,可以先跳过去,总之,总的原则是要先把容易得到的分数拿到手,先易后难,先选择、填空题,后解答题.6.字迹清晰,合理规划.这对任何一科考试都很重要,尤其是对“精确度”较高的数学,若字迹不清、较难辨认,极易造成阅卷教师的误判.例如写得较快时,数字1和7极易混淆等等.若不清晰就可能使本来正确的失了分.另外,答题卡上书写的位置和大小要计划好,尽量让卷面安排做到合理整洁,特别地,要在指定区域作答.总之,对于解答题,书写要规范,布局要合理,论述既要简明,又不能跳跃过大.只有这样才能避免“自己做对了”,但阅卷却被扣了分这种现象.2013年云南省第二次统测理科数学质量分析报告·第25页(共25页)。

2013年全国统一高考数学试卷(理科)(大纲版)(含解析版)

2013年全国统一高考数学试卷(理科)(大纲版)(含解析版)

2013年全国统一高考数学试卷(理科)(大纲版)一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={1,2,3},B={4,5},M={x|x=a+b,a∈A,b∈B},则M中元素的个数为()A.3B.4C.5D.62.(5分)=()A.﹣8B.8C.﹣8i D.8i3.(5分)已知向量=(λ+1,1),=(λ+2,2),若(+)⊥(﹣),则λ=()A.﹣4B.﹣3C.﹣2D.﹣14.(5分)已知函数f(x)的定义域为(﹣1,0),则函数f(2x+1)的定义域为()A.(﹣1,1)B .C.(﹣1,0)D .5.(5分)函数f(x)=log2(1+)(x>0)的反函数f﹣1(x)=()A .B .C.2x﹣1(x∈R)D.2x﹣1(x>0)6.(5分)已知数列{a n}满足3a n+1+a n=0,a2=﹣,则{a n}的前10项和等于()A.﹣6(1﹣3﹣10)B .C.3(1﹣3﹣10)D.3(1+3﹣10)7.(5分)(1+x)3(1+y)4的展开式中x2y2的系数是()A.5B.8C.12D.188.(5分)椭圆C :的左、右顶点分别为A1、A2,点P在C上且直线PA2斜率的取值范围是[﹣2,﹣1],那么直线PA1斜率的取值范围是()A .B .C .D .9.(5分)若函数f(x)=x2+ax +是增函数,则a的取值范围是()A.[﹣1,0]B.[﹣1,+∞)C.[0,3]D.[3,+∞)10.(5分)已知正四棱柱ABCD﹣A1B1C1D1中,AA1=2AB,则CD与平面BDC1所成角的正弦值等于()A .B .C .D .11.(5分)已知抛物线C:y2=8x的焦点为F,点M(﹣2,2),过点F且斜率为k的直线与C交于A,B 两点,若,则k=()A .B .C .D.212.(5分)已知函数f(x)=cosxsin2x,下列结论中不正确的是()A.y=f(x)的图象关于(π,0)中心对称B .C .D.f(x)既是奇函数,又是周期函数二、填空题:本大题共4小题,每小题5分.13.(5分)已知α是第三象限角,sinα=﹣,则co tα=.14.(5分)6个人排成一行,其中甲、乙两人不相邻的不同排法共有种.(用数字作答)15.(5分)记不等式组所表示的平面区域为D.若直线y=a(x+1)与D有公共点,则a 的取值范围是.16.(5分)已知圆O和圆K是球O的大圆和小圆,其公共弦长等于球O的半径,,则球O的表面积等于.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(10分)等差数列{a n}的前n项和为S n.已知S3=a22,且S1,S2,S4成等比数列,求{a n}的通项式.18.(12分)设△ABC的内角A,B,C的内角对边分别为a,b,c,满足(a+b+c)(a﹣b+c)=ac.(Ⅰ)求B.(Ⅱ)若sinAsinC=,求C.19.(12分)如图,四棱锥P﹣ABCD中,∠ABC=∠BAD=90°,BC=2AD,△PAB与△PAD都是等边三角形.(Ⅰ)证明:PB⊥CD;(Ⅱ)求二面角A﹣PD﹣C的大小.20.(12分)甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判,设各局中双方获胜的概率均为,各局比赛的结果都相互独立,第1局甲当裁判.(Ⅰ)求第4局甲当裁判的概率;(Ⅱ)X表示前4局中乙当裁判的次数,求X的数学期望.21.(12分)已知双曲线C :=1(a>0,b>0)的左、右焦点分别为F1,F2,离心率为3,直线y=2与C 的两个交点间的距离为.(I)求a,b;(II)设过F2的直线l与C的左、右两支分别相交于A、B两点,且|AF1|=|BF1|,证明:|AF2|、|AB|、|BF2|成等比数列.22.(12分)已知函数.(I)若x≥0时,f(x)≤0,求λ的最小值;(II)设数列{a n}的通项a n=1+.2013年全国统一高考数学试卷(理科)(大纲版)参考答案与试题解析一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={1,2,3},B={4,5},M={x|x=a+b,a∈A,b∈B},则M中元素的个数为()A.3B.4C.5D.6【考点】13:集合的确定性、互异性、无序性;1A:集合中元素个数的最值.【专题】11:计算题.【分析】利用已知条件,直接求出a+b,利用集合元素互异求出M中元素的个数即可.【解答】解:因为集合A={1,2,3},B={4,5},M={x|x=a+b,a∈A,b∈B},所以a+b的值可能为:1+4=5、1+5=6、2+4=6、2+5=7、3+4=7、3+5=8,所以M中元素只有:5,6,7,8.共4个.故选:B.【点评】本题考查集合中元素个数的最值,集合中元素的互异性的应用,考查计算能力.2.(5分)=()A.﹣8B.8C.﹣8i D.8i【考点】A5:复数的运算.【分析】复数分子、分母同乘﹣8,利用1的立方虚根的性质(),化简即可.【解答】解:故选:A.【点评】复数代数形式的运算,是基础题.3.(5分)已知向量=(λ+1,1),=(λ+2,2),若(+)⊥(﹣),则λ=()A.﹣4B.﹣3C.﹣2D.﹣1【考点】9T:数量积判断两个平面向量的垂直关系.【专题】5A:平面向量及应用.【分析】利用向量的运算法则、向量垂直与数量积的关系即可得出.【解答】解:∵,.∴=(2λ+3,3),.∵,∴=0,∴﹣(2λ+3)﹣3=0,解得λ=﹣3.故选:B.【点评】熟练掌握向量的运算法则、向量垂直与数量积的关系是解题的关键.4.(5分)已知函数f(x)的定义域为(﹣1,0),则函数f(2x+1)的定义域为()A.(﹣1,1)B .C.(﹣1,0)D .【考点】33:函数的定义域及其求法.【专题】51:函数的性质及应用.【分析】原函数的定义域,即为2x+1的范围,解不等式组即可得解.【解答】解:∵原函数的定义域为(﹣1,0),∴﹣1<2x+1<0,解得﹣1<x <﹣.∴则函数f(2x+1)的定义域为.故选:B.【点评】考查复合函数的定义域的求法,注意变量范围的转化,属简单题.5.(5分)函数f(x)=log2(1+)(x>0)的反函数f﹣1(x)=()A .B .C.2x﹣1(x∈R)D.2x﹣1(x>0)【考点】4R:反函数.【专题】51:函数的性质及应用.【分析】把y看作常数,求出x:x=,x,y互换,得到y=log2(1+)的反函数.注意反函数的定义域.【解答】解:设y=log2(1+),把y看作常数,求出x:1+=2y,x=,其中y>0,x,y互换,得到y=log2(1+)的反函数:y=,故选:A.【点评】本题考查对数函数的反函数的求法,解题时要认真审题,注意对数式和指数式的相互转化.6.(5分)已知数列{a n}满足3a n+1+a n=0,a2=﹣,则{a n}的前10项和等于()A.﹣6(1﹣3﹣10)B .C.3(1﹣3﹣10)D.3(1+3﹣10)【考点】89:等比数列的前n项和.【专题】11:计算题;54:等差数列与等比数列.【分析】由已知可知,数列{a n}是以﹣为公比的等比数列,结合已知可求a1,然后代入等比数列的求和公式可求【解答】解:∵3a n+1+a n=0∴∴数列{a n}是以﹣为公比的等比数列∵∴a1=4由等比数列的求和公式可得,S10==3(1﹣3﹣10)故选:C.【点评】本题主要考查了等比数列的通项公式及求和公式的简单应用,属于基础试题7.(5分)(1+x)3(1+y)4的展开式中x2y2的系数是()A.5B.8C.12D.18【考点】DA:二项式定理.【专题】11:计算题.【分析】由题意知利用二项展开式的通项公式写出展开式的通项,令x的指数为2,写出出展开式中x2的系数,第二个因式y2的系数,即可得到结果.【解答】解:(x+1)3的展开式的通项为T r+1=C3r x r令r=2得到展开式中x2的系数是C32=3,(1+y)4的展开式的通项为T r+1=C4r y r令r=2得到展开式中y2的系数是C42=6,(1+x)3(1+y)4的展开式中x2y2的系数是:3×6=18,故选:D.【点评】本题考查利用二项展开式的通项公式解决二项展开式的特定项问题,本题解题的关键是写出二项式的展开式,所有的这类问题都是利用通项来解决的.8.(5分)椭圆C :的左、右顶点分别为A1、A2,点P在C上且直线PA2斜率的取值范围是[﹣2,﹣1],那么直线PA1斜率的取值范围是()A .B .C .D .【考点】I3:直线的斜率;KH:直线与圆锥曲线的综合.【专题】5D:圆锥曲线的定义、性质与方程.【分析】由椭圆C :可知其左顶点A1(﹣2,0),右顶点A2(2,0).设P(x0,y0)(x0≠±2),代入椭圆方程可得.利用斜率计算公式可得,再利用已知给出的的范围即可解出.【解答】解:由椭圆C :可知其左顶点A1(﹣2,0),右顶点A2(2,0).设P(x0,y0)(x0≠±2),则,得.∵=,=,∴==,∵,∴,解得.故选:B.【点评】熟练掌握椭圆的标准方程及其性质、斜率的计算公式、不等式的性质等是解题的关键.9.(5分)若函数f(x)=x2+ax +是增函数,则a的取值范围是()A.[﹣1,0]B.[﹣1,+∞)C.[0,3]D.[3,+∞)【考点】6B:利用导数研究函数的单调性.【专题】53:导数的综合应用.【分析】由函数在(,+∞)上是增函数,可得≥0在(,+∞)上恒成立,进而可转化为a ≥﹣2x 在(,+∞)上恒成立,构造函数求出﹣2x 在(,+∞)上的最值,可得a的取值范围.【解答】解:∵在(,+∞)上是增函数,故≥0在(,+∞)上恒成立,即a ≥﹣2x 在(,+∞)上恒成立,令h(x)=﹣2x,则h′(x)=﹣﹣2,当x ∈(,+∞)时,h′(x)<0,则h(x)为减函数.∴h(x)<h ()=3∴a≥3.故选:D.【点评】本题考查的知识点是利用导数研究函数的单调性,恒成立问题,是导数的综合应用,难度中档.10.(5分)已知正四棱柱ABCD﹣A1B1C1D1中,AA1=2AB,则CD与平面BDC1所成角的正弦值等于()A .B .C .D .【考点】MI:直线与平面所成的角.【专题】15:综合题;16:压轴题;5G:空间角;5H:空间向量及应用.【分析】设AB=1,则AA1=2,分别以的方向为x轴、y轴、z轴的正方向建立空间直角坐标系,设=(x,y,z)为平面BDC1的一个法向量,CD与平面BDC1所成角为θ,则sinθ=||,在空间坐标系下求出向量坐标,代入计算即可.【解答】解:设AB=1,则AA1=2,分别以的方向为x轴、y轴、z轴的正方向建立空间直角坐标系,如下图所示:则D(0,0,2),C1(1,0,0),B(1,1,2),C(1,0,2),=(1,1,0),=(1,0,﹣2),=(1,0,0),设=(x,y,z)为平面BDC1的一个法向量,则,即,取=(2,﹣2,1),设CD与平面BDC1所成角为θ,则sinθ=||=,故选:A.【点评】本题考查直线与平面所成的角,考查空间向量的运算及应用,准确理解线面角与直线方向向量、平面法向量夹角关系是解决问题的关键.11.(5分)已知抛物线C:y2=8x的焦点为F,点M(﹣2,2),过点F且斜率为k的直线与C交于A,B 两点,若,则k=()A .B .C .D.2【考点】9O:平面向量数量积的性质及其运算;K8:抛物线的性质.【专题】11:计算题;5D:圆锥曲线的定义、性质与方程.【分析】斜率k存在,设直线AB为y=k(x﹣2),代入抛物线方程,利用=(x1+2,y1﹣2)•(x2+2,y2﹣2)=0,即可求出k的值.【解答】解:由抛物线C:y2=8x得焦点(2,0),由题意可知:斜率k存在,设直线AB为y=k(x﹣2),代入抛物线方程,得到k2x2﹣(4k2+8)x+4k2=0,△>0,设A(x1,y1),B(x2,y2).∴x1+x2=4+,x1x2=4.∴y1+y2=,y1y2=﹣16,又=0,∴=(x1+2,y1﹣2)•(x2+2,y2﹣2)==0∴k=2.故选:D.【点评】本题考查直线与抛物线的位置关系,考查向量的数量积公式,考查学生的计算能力,属于中档题.12.(5分)已知函数f(x)=cosxsin2x,下列结论中不正确的是()A.y=f(x)的图象关于(π,0)中心对称B .C .D.f(x)既是奇函数,又是周期函数【考点】H1:三角函数的周期性;HW:三角函数的最值.【专题】11:计算题;57:三角函数的图像与性质.【分析】根据函数图象关于某点中心对称或关于某条直线对称的公式,对A、B两项加以验证,可得它们都正确.根据二倍角的正弦公式和同角三角函数的关系化简,得f(x)=2sinx(1﹣sin2x),再换元:令t=sinx,得到关于t的三次函数,利用导数研究此函数的单调性可得f(x)的最大值为,故C不正确;根据函数周期性和奇偶性的定义加以验证,可得D项正确.由此可得本题的答案.【解答】解:对于A,因为f(π+x)=cos(π+x)sin(2π+2x)=﹣cosxsin2x,f(π﹣x)=cos(π﹣x)sin(2π﹣2x)=cosxsin2x,所以f(π+x)+f(π﹣x)=0,可得y=f(x)的图象关于(π,0)中心对称,故A正确;对于B,因为f (+x)=cos (+x)sin(π+2x)=﹣sinx(﹣sin2x)=sinxsin2x,f (﹣x)=cos (﹣x)sin(π﹣2x)=sinxsin2x,所以f (+x)=f (﹣x),可得y=f(x)的图象关于直线x=对称,故B正确;对于C,化简得f(x)=cosxsin2x=2cos2xsinx=2sinx(1﹣sin2x),令t=sinx,f(x)=g(t)=2t(1﹣t2),﹣1≤t≤1,∵g(t)=2t(1﹣t2)的导数g'(t)=2﹣6t2=2(1+t)(1﹣t)∴当t∈(﹣1,﹣)时或t ∈(,1)时g'(t)<0,函数g(t)为减函数;当t ∈(﹣,)时g'(t)>0,函数g(t)为增函数.因此函数g(t)的最大值为t=﹣1时或t=时的函数值,结合g(﹣1)=0<g ()=,可得g(t )的最大值为.由此可得f(x )的最大值为而不是,故C不正确;对于D,因为f(﹣x)=cos(﹣x)sin(﹣2x)=﹣cosxsin2x=﹣f(x),所以f(x)是奇函数.因为f(2π+x)=cos(2π+x)sin(4π+2x)=cosxsin2x=f(x),所以2π为函数的一个周期,得f(x)为周期函数.可得f(x)既是奇函数,又是周期函数,得D 正确.综上所述,只有C项不正确.故选:C.【点评】本题给出三角函数式,研究函数的奇偶性、单调性和周期性.着重考查了三角恒等变换公式、利用导数研究函数的单调性和函数图象的对称性等知识,属于中档题.二、填空题:本大题共4小题,每小题5分.13.(5分)已知α是第三象限角,sinα=﹣,则cotα=2.【考点】GG:同角三角函数间的基本关系.【专题】56:三角函数的求值.【分析】根据α是第三象限的角,得到cosα小于0,然后由sinα的值,利用同角三角函数间的基本关系求出cosα的值,进而求出cotα的值.【解答】解:由α是第三象限的角,得到cosα<0,又sinα=﹣,所以cosα=﹣=﹣则cotα==2故答案为:2【点评】此题考查学生灵活运用同角三角函数间的基本关系化简求值,是一道基础题.学生做题时注意α的范围.14.(5分)6个人排成一行,其中甲、乙两人不相邻的不同排法共有480种.(用数字作答)【考点】D9:排列、组合及简单计数问题.【专题】11:计算题.【分析】排列好甲、乙两人外的4人,然后把甲、乙两人插入4个人的5个空位中即可.【解答】解:6个人排成一行,其中甲、乙两人不相邻的不同排法:排列好甲、乙两人外的4人,有中方法,然后把甲、乙两人插入4个人的5个空位,有种方法,所以共有:=480.故答案为:480.【点评】本题考查了乘法原理,以及排列的简单应用,插空法解答不相邻问题.15.(5分)记不等式组所表示的平面区域为D.若直线y=a(x+1)与D有公共点,则a 的取值范围是[,4] .【考点】7C:简单线性规划.【专题】16:压轴题;59:不等式的解法及应用.【分析】本题考查的知识点是简单线性规划的应用,我们要先画出满足约束条件的平面区域,然后分析平面区域里各个角点,然后将其代入y=a(x+1)中,求出y=a(x+1)对应的a的端点值即可.【解答】解:满足约束条件的平面区域如图示:因为y=a(x+1)过定点(﹣1,0).所以当y=a(x+1)过点B(0,4)时,得到a=4,当y=a(x+1)过点A(1,1)时,对应a=.又因为直线y=a(x+1)与平面区域D有公共点.所以≤a≤4.故答案为:[,4]【点评】在解决线性规划的小题时,我们常用“角点法”,其步骤为:①由约束条件画出可行域⇒②求出可行域各个角点的坐标⇒③将坐标逐一代入目标函数⇒④验证,求出最优解.16.(5分)已知圆O和圆K是球O的大圆和小圆,其公共弦长等于球O的半径,,则球O的表面积等于16π.【考点】LG:球的体积和表面积.【专题】16:压轴题;5F:空间位置关系与距离.【分析】正确作出图形,利用勾股定理,建立方程,即可求得结论.【解答】解:如图所示,设球O的半径为r,AB是公共弦,∠OCK是面面角根据题意得OC=,CK=在△OCK中,OC2=OK2+CK2,即∴r2=4∴球O的表面积等于4πr2=16π故答案为16π【点评】本题考查球的表面积,考查学生分析解决问题的能力,属于中档题.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(10分)等差数列{a n}的前n项和为S n.已知S3=a22,且S1,S2,S4成等比数列,求{a n}的通项式.【考点】85:等差数列的前n项和;88:等比数列的通项公式.【专题】11:计算题;54:等差数列与等比数列.【分析】由,结合等差数列的求和公式可求a2,然后由,结合等差数列的求和公式进而可求公差d,即可求解通项公式【解答】解:设数列的公差为d由得,3∴a2=0或a2=3由题意可得,∴若a2=0,则可得d2=﹣2d2即d=0不符合题意若a2=3,则可得(6﹣d)2=(3﹣d)(12+2d)解可得d=0或d=2∴a n=3或a n=2n﹣1【点评】本题主要考查了等差数列的通项公式及求和公式的应用,等比数列的性质的简单应用,属于基础试题18.(12分)设△ABC的内角A,B,C的内角对边分别为a,b,c,满足(a+b+c)(a﹣b+c)=ac.(Ⅰ)求B.(Ⅱ)若sinAsinC=,求C.【考点】GP:两角和与差的三角函数;HR:余弦定理.【专题】58:解三角形.【分析】(I)已知等式左边利用多项式乘多项式法则计算,整理后得到关系式,利用余弦定理表示出cosB,将关系式代入求出cosB的值,由B为三角形的内角,利用特殊角的三角函数值即可求出B的度数;(II)由(I)得到A+C的度数,利用两角和与差的余弦函数公式化简cos(A﹣C),变形后将cos(A+C)及2sinAsinC的值代入求出cos(A﹣C)的值,利用特殊角的三角函数值求出A﹣C的值,与A+C 的值联立即可求出C的度数.【解答】解:(I)∵(a+b+c)(a﹣b+c)=(a+c)2﹣b2=ac,∴a2+c2﹣b2=﹣ac,∴cosB==﹣,又B为三角形的内角,则B=120°;(II)由(I)得:A+C=60°,∵sinAsinC=,cos(A+C)=,∴cos(A﹣C)=cosAcosC+sinAsinC=cosAcosC﹣sinAsinC+2sinAsinC=cos(A+C)+2sinAsinC=+2×=,∴A﹣C=30°或A﹣C=﹣30°,则C=15°或C=45°.【点评】此题考查了余弦定理,两角和与差的余弦函数公式,以及特殊角的三角函数值,熟练掌握余弦定理是解本题的关键.19.(12分)如图,四棱锥P﹣ABCD中,∠ABC=∠BAD=90°,BC=2AD,△PAB与△PAD都是等边三角形.(Ⅰ)证明:PB⊥CD;(Ⅱ)求二面角A﹣PD﹣C的大小.【考点】LW:直线与平面垂直;M5:共线向量与共面向量.【专题】11:计算题;5G:空间角.【分析】(I)取BC的中点E,连接DE,过点P作PO⊥平面ABCD于O,连接OA、OB、OD、OE.可证出四边形ABED是正方形,且O为正方形ABED的中心.因此OE⊥OB,结合三垂线定理,证出OE⊥PB,而OE是△BCD的中位线,可得OE∥CD,因此PB⊥CD;(II)由(I)的结论,证出CD⊥平面PBD,从而得到CD⊥PD.取PD的中点F,PC的中点G,连接FG,可得FG∥CD,所以FG⊥PD.连接AF,可得AF⊥PD,因此∠AFG为二面角A﹣PD﹣C的平面角,连接AG、EG,则EG∥PB,可得EG⊥OE.设AB=2,可求出AE、EG、AG、AF和FG的长,最后在△AFG中利用余弦定理,算出∠AFG=π﹣arccos,即得二面角A﹣PD﹣C的平面角大小.【解答】解:(I)取BC的中点E,连接DE,可得四边形ABED是正方形过点P作PO⊥平面ABCD,垂足为O,连接OA、OB、OD、OE∵△PAB与△PAD都是等边三角形,∴PA=PB=PD,可得OA=OB=OD因此,O是正方形ABED的对角线的交点,可得OE⊥OB∵PO⊥平面ABCD,得直线OB是直线PB在内的射影,∴OE⊥PB∵△BCD中,E、O分别为BC、BD的中点,∴OE∥CD,可得PB⊥CD;(II)由(I)知CD⊥PO,CD⊥PB ∵PO、PB是平面PBD内的相交直线,∴CD⊥平面PBD∵PD⊂平面PBD,∴CD⊥PD取PD的中点F,PC的中点G,连接FG,则FG为△PCD有中位线,∴FG∥CD,可得FG⊥PD连接AF,由△PAD是等边三角形可得AF⊥PD,∴∠AFG为二面角A﹣PD﹣C的平面角连接AG、EG,则EG∥PB∵PB⊥OE,∴EG⊥OE,设AB=2,则AE=2,EG=PB=1,故AG==3在△AFG中,FG=CD=,AF=,AG=3∴cos∠AFG==﹣,得∠AFG=π﹣arccos,即二面角A﹣PD﹣C的平面角大小是π﹣arccos.【点评】本题给出特殊的四棱锥,求证直线与直线垂直并求二面角平面角的大小,着重考查了线面垂直的判定与性质、三垂线定理和运用余弦定理求二面的大小等知识,属于中档题.20.(12分)甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判,设各局中双方获胜的概率均为,各局比赛的结果都相互独立,第1局甲当裁判.(Ⅰ)求第4局甲当裁判的概率;(Ⅱ)X表示前4局中乙当裁判的次数,求X的数学期望.【考点】CB:古典概型及其概率计算公式;CH:离散型随机变量的期望与方差.【专题】5I:概率与统计.【分析】(I)令A1表示第2局结果为甲获胜,A2表示第3局甲参加比赛时,结果为甲负,A表示第4局甲当裁判,分析其可能情况,每局比赛的结果相互独立且互斥,利用独立事件、互斥事件的概率求解即可.(II)X的所有可能值为0,1,2.分别求出X取每一个值的概率,列出分布列后求出期望值即可.【解答】解:(I)令A1表示第2局结果为甲获胜.A2表示第3局甲参加比赛时,结果为甲负.A表示第4局甲当裁判.则A=A1•A2,P(A)=P(A1•A2)=P(A1)P(A2)=;(Ⅱ)X的所有可能值为0,1,2.令A3表示第3局乙和丙比赛时,结果为乙胜.B1表示第1局结果为乙获胜,B2表示第2局乙和甲比赛时,结果为乙胜,B3表示第3局乙参加比赛时,结果为乙负,则P(X=0)=P(B1B 2)=P(B1)P(B2)P ()=.P(X=2)=P (B3)=P ()P(B3)=.P(X=1)=1﹣P(X=0)﹣P(X=2)=.从而EX=0×+1×+2×=.【点评】本题考查互斥、独立事件的概率,离散型随机变量的分布列和期望等知识,同时考查利用概率知识解决问题的能力.21.(12分)已知双曲线C :=1(a>0,b>0)的左、右焦点分别为F1,F2,离心率为3,直线y=2与C 的两个交点间的距离为.(I)求a,b;(II)设过F2的直线l与C的左、右两支分别相交于A、B两点,且|AF1|=|BF1|,证明:|AF2|、|AB|、|BF2|成等比数列.【考点】K4:椭圆的性质;KH:直线与圆锥曲线的综合.【专题】14:证明题;15:综合题;16:压轴题;35:转化思想;5D:圆锥曲线的定义、性质与方程.【分析】(I)由题设,可由离心率为3得到参数a,b的关系,将双曲线的方程用参数a表示出来,再由直线建立方程求出参数a即可得到双曲线的方程;(II)由(I)的方程求出两焦点坐标,设出直线l的方程设A(x1,y1),B(x2,y2),将其与双曲线C的方程联立,得出x1+x2=,,再利用|AF1|=|BF1|建立关于A,B坐标的方程,得出两点横坐标的关系,由此方程求出k的值,得出直线的方程,从而可求得:|AF2|、|AB|、|BF2|,再利用等比数列的性质进行判断即可证明出结论.【解答】解:(I )由题设知=3,即=9,故b2=8a2所以C的方程为8x2﹣y2=8a2将y=2代入上式,并求得x=±,由题设知,2=,解得a2=1所以a=1,b=2(II)由(I)知,F1(﹣3,0),F2(3,0),C的方程为8x2﹣y2=8 ①由题意,可设l的方程为y=k(x﹣3),|k|<2代入①并化简得(k2﹣8)x2﹣6k2x+9k2+8=0设A(x1,y1),B(x2,y2),则x1≤﹣1,x2≥1,x1+x2=,,于是|AF1|==﹣(3x1+1),|BF1|==3x2+1,|AF1|=|BF1|得﹣(3x1+1)=3x2+1,即故=,解得,从而=﹣由于|AF2|==1﹣3x1,|BF2|==3x2﹣1,故|AB|=|AF2|﹣|BF2|=2﹣3(x1+x2)=4,|AF2||BF2|=3(x1+x2)﹣9x1x2﹣1=16因而|AF2||BF2|=|AB|2,所以|AF2|、|AB|、|BF2|成等比数列【点评】本题考查直线与圆锥曲线的综合关系,考查了运算能力,题设条件的转化能力,方程的思想运用,此类题综合性强,但解答过程有其固有规律,一般需要把直线与曲线联立利用根系关系,解答中要注意提炼此类题解答过程中的共性,给以后解答此类题提供借鉴.22.(12分)已知函数.(I)若x≥0时,f(x)≤0,求λ的最小值;(II)设数列{a n}的通项a n=1+.【考点】6E:利用导数研究函数的最值;8E:数列的求和;8K:数列与不等式的综合.【专题】16:压轴题;35:转化思想;53:导数的综合应用;54:等差数列与等比数列.【分析】(I)由于已知函数的最大值是0,故可先求出函数的导数,研究其单调性,确定出函数的最大值,利用最大值小于等于0求出参数λ的取值范围,即可求得其最小值;(II)根据(I)的证明,可取λ=,由于x>0时,f(x)<0得出,考察发现,若取x=,则可得出,以此为依据,利用放缩法,即可得到结论【解答】解:(I)由已知,f(0)=0,f′(x)==,∴f′(0)=0欲使x≥0时,f(x)≤0恒成立,则f(x)在(0,+∞)上必为减函数,即在(0,+∞)上f′(x)<0恒成立,当λ≤0时,f′(x)>0在(0,+∞)上恒成立,为增函数,故不合题意,若0<λ<时,由f′(x)>0解得x <,则当0<x <,f′(x)>0,所以当0<x <时,f(x)>0,此时不合题意,若λ≥,则当x>0时,f′(x)<0恒成立,此时f(x)在(0,+∞)上必为减函数,所以当x>0时,f(x)<0恒成立,综上,符合题意的λ的取值范围是λ≥,即λ的最小值为(II)令λ=,由(I)知,当x>0时,f(x)<0,即取x=,则于是a2n﹣a n +=++…++====>=ln2n﹣lnn=ln2所以【点评】本题考查了数列中证明不等式的方法及导数求最值的普通方法,解题的关键是充分利用已有的结论再结合放缩法,本题考查了推理判断的能力及转化化归的思想,有一定的难度。

云南省昆明市2013届高三复习教学质量检测数学(理)试题 Word版含答案.pptx

云南省昆明市2013届高三复习教学质量检测数学(理)试题 Word版含答案.pptx

y
2
1 2
t
轴为极轴建立极坐标系. I. 求点T 的极坐标;
II. 将曲线 c 上所有点的纵坐标伸长为原来的 3 倍(横坐标不变)后得到曲线 W,过
点 T 作直线 m,若直线 m 被曲线 W 截得的线段长为2 3 ,求直线 m 的极坐标方程.
学海无涯
24.(本小题满分 10 分)选修 4-5:不等式选讲
学海无涯
云南昆明市
2013 届高三复习教学质量检测
数学(理)试题
本试卷分第 I 卷(选择题)和第 II 卷(非选择题)两部分.考试结束后,将本试卷和答 题卡一并交回.满分 150 分,考试用时 120 分钟 注意事项:
1.答题前,考生务必用黑色碳素笔将自己的姓名.准考证号、考场号、座位号在答题 卡上填写清楚,并认真核准条形码上的准考证号,姓名、考场号、座位号,在规定的 位 置贴好条形码. 2.每小题选出答案后,用 2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动用 橡皮擦干净后,再选涂其它答案标号,答在试卷上的答案无效
13.等比数列{a n}
的前
n
项和为
S
n, a2
2a1, 则
S4 a4
的值是

14.将 4 名学生分配方案共有

(用数学作答);
15.已知直线 y
b2 a
与椭圆C
:
x2 a2
y2 b2
1(a b 0) 交于P、Q 两点,F 是 C 的右焦点,
B. 2x2 y2 1 2
C. y2 x2 1或2x2 y2 1
2
2
5.若 a<b<0,则下列不等式一定成立的是
y2
D.
x2
1或x2

云南省部分名校2013届高三数学第二次统一考试试题 理(玉溪一中 昆明三中 楚雄一中)新人教A版

云南省部分名校2013届高三数学第二次统一考试试题 理(玉溪一中 昆明三中 楚雄一中)新人教A版

云南省部分名校2013届高三复习联合统一测试理科数学本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。

总分150分,考试时间120分钟。

第I 卷(选择题共60分)一、选择题:本大题共12个小题, 每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.在复平面内,复数1i i-的共轭复数的对应点在A .第一象限B .第二象限C .第三象限D .第四象限2.函数lg(1)y x =-的定义域为A ,函数3xy =的值域为B ,则A B =A .(0,1)B .(1,3)C .RD .∅3.给出两个命题p :x x =的充要条件是x 为正实数;q :命题“0x R ∃∈,2000x x ->”的否定是“x R ∀∈,20x x -≤”.则下列命题是假命题的是A .p 且qB .p 或qC .p ⌝且qD .p ⌝或q4.若423401234(1)x a a x a x a x a x -=++++,则024a a a ++的值为A .9B .8C .7D .65.已知直线l ⊥平面α,直线m ⊂平面β,下面有三个命题:①α∥β⇒l ⊥m ;②α⊥β⇒l ∥m ;③l ∥m ⇒α⊥β; 则真命题的个数为A .0B .1C .2D .36.茎叶图中7个互不相等的连续正整数,它们的平均数20x =,中位数是20,则这组数的方差是A .3B .13C .4D .147.执行下面的程序框图,如果输入5N =,则输出的数等于A .54 B .45 C .56D .678.将函数()sin()f x x ωϕ=+的图象向左平移2π个单位,若所得图象与原图象重合,则ω的值不可能等于 A .4 B .6 C .8D .129.等比数列{}n a 中,36a =,前三项和3304S xdx =⎰,则公比q 的值为A .1B .12-C .1或12-D .1-或12-10.已知点(,)P x y 满足条件202500x y x y y a --≤⎧⎪+-≥⎨⎪-≤⎩,点(2,1)A ,且cos OP AOP ⋅∠的最大值为25,则a 的值等于 A .2-B .1C .1-D .211.若偶函数()f x 满足(1)(1)f x f x -=+,且在[0,1]x ∈时,2()f x x =,则关于x 的方程 1()()10x f x =在10[0,]3上的根的个数是A .1B .2C .3D .412.设圆C 的圆心与双曲线22212x y a -=(0)a >的右焦点重合,且该圆与双曲线的渐近线相切,若直线l :30x y -=被圆C 截得的弦长等于2,则a 的值为 A .2B .3C .2D .3第II 卷(非选择题共90分)二、填空题:本大题共4小题;每小题5分,共20分,把答案填在题中横线上。

云南省2013年7月普通高中学业水平考试数学试卷及答案(word版)(可打印修改) (2)

云南省2013年7月普通高中学业水平考试数学试卷及答案(word版)(可打印修改) (2)

某城市有一条长 49km 的地铁新干线,市政府通过多次价格听证,规定
地铁运营公司按以下函数关系收费,
y
=
ìïïïïïïïïïíïïïïïïïïïî
2, (0 < x £ 4) 3, (4 < x £ 9) 4, (9 < x £ 16) 5, (16 < x £ 25) 6, (25 < x £ 36) 7, (36 < x £ 49)
∴ A1 C1∥AC………………………………..。。。。2 分 ∵ 又 A1 C1 平面 ABCD,AC 平面 ABCD
∴ A1 C1∥ 平面 ABCD。。。。。。。。。。。。。。。。。。。。。。。4 分
第5页共7页
(2)解:∵ C1C⊥平面 ABCD
∴ AC 是 AC1 在底面上的射影,
∴ ∠C1AC 是 AC1 与底面 ABCD 所成的角,。。。。。。。6 分
4
4
2
函数的最小正周期T分 2 ..............4 2
(2)Qsi n2x的最大值,最小值分别为1,- 1. 。。。。。。6分
24.(1
f ( x) 的最大值为0,最小值为- 2。。。。。。。。。。。。8分
)证明:连结 AC。
由题知 AA1∥C1C 且 A1A=C1C ∴ 四边形 A1ACC1 为平行四边形
∵x=49∈(36,49〕, ∴y=7(元) 。。。。。。。。。。。。。。。。。5 分
甲在行程内每千米的平均价格为: 5 = 1(元),。。。。。。。6 分
25 5
乙在行程内每千米的平均价格为: 7 = 1(元),。。。。。。。7 分
49 7
∴ 乙在行程内每千米的平均价格较低。。。。。。。。。。。。。。8 分

2013年高考理科数学 云南

2013年高考理科数学 云南

绝密★启用前2013年普通高等学校招生全国统一考试(新课标Ⅱ卷)数学(理科)注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前考生将自己的姓名\准考证号填写在本试卷和答题卡相应位置。

2. 回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号标黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3. 答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。

4. 考试结束,将试题卷和答题卡一并交回。

第Ⅰ卷(选择题共50分)一、选择题:本大题共10小题。

每小题5分,共50分。

在每个小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知集合M={x|(x+1)2 < 4,x∈R},N={-1,0,1,2,3},则M∩N=()(A){0,1,2}(B){-1,0,1,2}(C){-1,0,2,3} (D){0,1,2,3}(2)设复数z满足(1-i)z=2 i,则z= ()(A)-1+i (B)-1-i (C)1+i (D)1-i(3)等比数列{a n}的前n项和为S n,已知S3 = a2 +10a1 ,a5 = 9,则a1= ()(A)(B)-(C)(D)-(4)已知m,n为异面直线,m⊥平面α,n⊥平面β。

直线l满足l ⊥m,l ⊥n,lβ,则()(A)α∥β且l ∥α(B)α⊥β且l⊥β(C)α与β相交,且交线垂直于l (D)α与β相交,且交线平行于l(5)已知(1+ɑx)(1+x)5的展开式中x2的系数为5,则ɑ=(A)-4 (B)-3 (C)-2 (D)-1(6)执行右面的程序框图,如果输入的N=10,那么输出的s=(A )1++ +…+(B )1++ +…+(C )1++ +…+(D )1++ +…+(7)一个四面体的顶点在空间直角坐标系O-xyz 中的坐标分别是(1,0,1),(1,1,0),(1,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为搞影面,则得到正视图可以为(A) (B) (C) (D)(8)设ɑ=log 36,b=log 510,c=log 714,则(A )c >b >a (B )b >c >a(C )a >c >b (D)a >b >c(9)已知a >0,x ,y 满足约束条件 ,若z=2x+y 的最小值为1,则a=(A)(B) (C)1 (D)2(10)已知函数f(x)=x2+αx2+bx+,下列结论中错误的是(A )∑x α∈R f(x α)=0(B )函数y=f(x)的图像是中心对称图形(C )若x α是f(x)的极小值点,则f(x)在区间(-∞,x α)单调递减(D )若xn 是f (x )的极值点,则f 1(x α)=0(11)设抛物线y2=3px(p ≥0)的焦点为F ,点M 在C 上,|MF|=5若以MF 为直径的园过点(0,3),则C 的方程为(A )y2=4x 或y2=8x (B )y2=2x 或y2=8xx ≥1,x+y ≤3, y ≥a(x-3). {(C)y2=4x或y2=16x (D)y2=2x或y2=16x(12)已知点A(-1,0);B(1,0);C(0,1),直线y=ax+b(a>0)将△ABC分割为面积相等的两部分,则b的取值范围是(A)(0,1)(B)(1-,1/2)( C)(1-,1/3)(D)[ 1/3, 1/2)第Ⅱ卷本卷包括必考题和选考题,每个试题考生都必修作答。

云南省2013年高三数学第二次毕业生复习统一检测试题 文(云南省二模,含解析)新人教A版

云南省2013年高三数学第二次毕业生复习统一检测试题 文(云南省二模,含解析)新人教A版

2013年云南省第二次高中毕业生复习统一检测文科数学质量分析报告一、抽样统计分析1.抽样全卷基本情况2.抽样分数段3.各小题抽样情况(1)选择题题号满分值正确选项A人数A比例%B人数B比例%C人数C比例%D人数D比例%未(多)选人数未(多)选比例%1 5 C 9 1.04 25 2.9 811 93.97 12 1.39 6 0.72 5 A 540 62.57 100 11.59 78 9.04 139 16.11 6 0.73 5 B 67 7.76 684 79.26 46 5.33 60 6.956 0.74 5 D 65 7.53 65 7.53 117 13.56 607 70.34 9 1.045 5 C 20 2.32 88 10.2 717 83.08 31 3.59 7 0.816 5 B 84 9.73 645 74.74 73 8.46 55 6.37 6 0.77 5 A 472 54.69 71 8.23 179 20.74 132 15.3 9 1.048 5 D 105 12.17 139 16.11 79 9.15 533 61.76 7 0.819 5 D 17 1.97 10 1.16 168 19.47 660 76.48 8 0.93 10 5 B166 19.24 228 26.42 290 33.6 171 19.81 8 0.931 5 C 69 8 100 11.59 655 75.9 32 3.71 7 0.81(2)填空题(3)解答题(4)第II 卷选考题数据统计二、各题质量分析一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.第1题:已知集合{}10,=S ,集合{}0=T ,Φ表示空集,那么=T S (A )Φ(B ){}0(C ){}10,(D ){}010,,本题考查集合的概念和运算.解: ∵{}10,=S ,{}0=T , ∴=T S {}10,. 故选C .第2题:抛物线281x y =的焦点坐标为 (A ))2,0( (B ))321,0((C ))0,2((D ))0,321(本题考查抛物线的标准方程. 解: ∵281x y =, ∴y y x 4282⨯==. ∴281x y =的焦点坐标为)2,0(. 故选A.答题分析:解答本题首先要把抛物线的方程281x y =化为标准方程28x y =,这样才能得出正确答案.这也是考生容易出错的地方.第3题:一个由正数组成的等比数列,它的前4项和是前2项和的5倍,则此数列的公比为 (A )1 (B )2(C )3(D )4本题考查等比数列的概念及其相关运算.解:设此数列的公比为q ,根据题意得0>q ,且qq a q q a --=--1)1(51)1(2141,解得2=q . 故选B.答题分析:考生容易忽视条件“一个由正数组成的等比数列”,如果改为填空题,考生容易得出错误答案2q =±.第4题:已知平面向量)2,1(=a ,)1,(x b =,如果向量b a 2+与b a -2平行,那么a 与b 的数量积b a ⋅等于(A )2-(B )1-(C )23(D )25 本题考查向量的概念及其与运算,考查向量平行,考查两个向量的数量积.解:∵)2,1(=a ,)1,(x b =,∴)4,212x b a +=+(,)3,2(2x b a -=-.∵ b a 2+与b a -2平行,∴0)2(4)21(3=--+x x ,解得21=x . ∴)1,21(=b .∴b a ⋅25=. 故选D.第5题:如图是一个空间几何体的三视图,其中正视图和侧视图都是半径为1的半圆,俯视图是半径为1的圆,则该几何体的体积等于 (A )π4(B )34π (C )32π(D )3π本题以半球为载体,考查由三视图还原几何体的能力. 解: 由三视图知几何体是半球,体积为32314213ππ=⨯⨯. ∴故选C .第6题:曲线x x x x y ln 3)2)(1(---=在点)0,1(处的切线方程为 (A )044=--y x (B )044=-+y x(C )033=--y x(D )033=-+y x本题考查导函数的求法,考查曲线上一点处的切线方程的求法. 解: ∵xx x x x x y 3])2)(1[()2)(1(-'--+--=' xx x x x x x 3)1()2()2)(1(--+-+--=, ∴当1=x 时,4-='y .∴曲线x x x x y ln 3)2)(1(---=在点)0,1(处的切线方程为044=-+y x.正视图 俯视图侧视图∴故选B.答题分析:1.题中涉及三项乘积的导数的求法,一些考生不能把它转化为两项乘积的导数来求解.2.也可以把三项的乘积展开后再求导数,即[](1)(2)x x x '--()()23223232362x x x x x x x x ''⎡⎤=-+=-+=-+⎣⎦. 第7题:已知i 是虚数单位,如果复数z 满足i z z +=+1,那么=z (A )i(B )i -(C )i +1 (D )i -1本题考查复数,考查复数的基本运算,考查方程的思想方法. 解: 设yi x z +=,x 、y 都是实数,则yi x y x z z +++=+22,∵i z z +=+1,∴⎩⎨⎧=++=1122x y x y ,解方程得⎩⎨⎧=++=1122x y x y . ∴=z i . ∴故选A.答题分析:本题解题方法是利用复数相等条件来列等式,求出未知数.复数 不能比较大小,但复数可以相等.本题体现了这一思想.第8题:已知直线l 经过点)3,2(M ,当l 截圆9)3()2(22=++-y x 所得弦长 最长时,直线l 的方程为 (A )042=+-y x (B )01843=-+y x(C )03=+y (D )02=-x本题考查直线和圆的基本知识.解: ∵l 截圆9)3()2(22=++-y x 所得弦长最长,∴直线l 经过圆9)3()2(22=++-y x 的圆心)3,2(-. 由已知得直线l 经过点)3,2(M 和圆心)3,2(-. ∴直线l 的方程为02=-x .∴故选D.第9题:从分别写有1,2,3,4,5的五张卡片中任取两张,假设每张卡片被 取到的概率相等,且每张卡片上只有一个数字,则取到的两张卡片上的数字之和 为偶数的概率为(A )54 (B )2516 (C )2513 (D )52 本题考查概率的古典概型,考查用枚举法求概率.解: 从分别写有1,2,3,4,5的五张卡片中任取两张,总的情况为: )2,1(,)3,1(,)4,1(,)5,1(,)1,2(,)3,2(,)4,2(,)5,2(,)1,3(,)2,3(,)4,3(,)5,3(,)1,4(,)2,4(,)3,4(,)5,4(, )1,5(,)2,5(,)3,5(,)4,5(共20种情况.两张卡片上的数字之和为偶数的有:)3,1(,)5,1(, )4,2(,)1,3(,)5,3(,)2,4(,)1,5(,)3,5(共8种情况.∴从分别写有1,2,3,4,5的五张卡片中任取两张,这两张卡片上的数字之和为偶数的概率52208==P . 故选D.第10题:已知)(x f 是定义域为实数集R 的偶函数,01≥∀x ,02≥∀x ,若21x x ≠,则0)()(1212<--x x x f x f .如果43)31(=f ,3)log (481>x f ,那么x 的取值范围为(A ))21,0((B ))2,21((C )),2(]1,21(∞+ (D ))2,21()81,0( 本题综合考查函数的奇偶性、单调性. 解:∵01≥∀x ,02≥∀x ,21x x ≠,则0)()(1212<--x x x f x f ,∴定义在实数集R 上的偶函数)(x f 在),0[∞+上是减函数.∵3)log (481>x f , ∴43)log (81>x f , 即)31()log (81f x f >. ∴,31log ,0log 8181⎪⎩⎪⎨⎧<≥x x 或,31log ,0log 8181⎪⎩⎪⎨⎧-><x x 解得121≤<x 或21<<x . ∴221<<x . 故选B ..答题分析:1.本题首先要看出函数)(x f 在),0[∞+上是减函数.2.根据函数的单调性“去f ”:∵3)log (481>x f , ∴43)log (81>x f , 即)31()log (81f x f >,但这个不等式并不等价于181log 3x <,原因是函数)(x f 在),0[∞+上是减函数,但在(),0-∞上却是增函数.事实上,∵)(x f 是定义域为实数集R 的偶函数,∴上式可化为181log 3f x f ⎛⎫⎛⎫> ⎪ ⎪ ⎪⎝⎭⎝⎭,即181log 3x >,接下来分类讨论去绝对值即可. 第11题:某学校高一年级、高二年级、高三年级共有学生3500人,其中高三年级学生数是高一年级学生数的两倍,高二年级学生比高一年级学生多300人,现按年级用分层抽样的方法从高一年级、高二年级、高三年级抽取一个学生样本. 如果在这个样本中,有高三年级学生32人,那么为得到这个样本,在从高二年级抽取学生时,高二年级每个学生被取到的概率为 (A )201(B )301(C )501(D )1001本题考查统计中分层抽样的计算. 解: 设高三学生数为x ,则高一学生数为2x ,高二学生数为3002+x, ∴有350030022=+++xx x ,解得1600=x ,高三学生数为1600. ∵在这个样本中,高三年级学生有32人,∴每个学生被抽到的概率为.501160032= 故选C .答题分析:本题不是求高二年级这一层将抽到多少学生,这是与以往不同的地方.我们所学习的三种抽样方法都是等概率抽样,即每个个体被抽到的概率都相等,据此便可解答本题.第12题:在三棱锥ABC P -中,PC PB PA ==,底面ABC ∆是正三角形,M 、N 分别是侧棱PB 、PC 的中点. 若平面⊥AMN 平面PBC ,则侧棱PB 与平面ABC 所成角的正切值是(A )52(B )32(C )22 (D )63本题考查空间线面的位置关系,考查线面角的求法.解: 设MN 的中点为D ,BC 的中点为E ,连接AD ,AE ,PE .∵PC PB PA ==,∴P 在平面ABC 内的射影是等边ABC ∆的中心O . ∴PBO ∠是侧棱PB 与平面ABC 所成的角.由已知得AN AM =,设MN 的中点为D ,则MN AD ⊥. ∵平面⊥AMN 平面PBC , ∴⊥AD 平面PBC .∵M ,N 分别是侧棱PB ,PC 的中点, ∴D 是PE 的中点. ∵⊥AD PE , ∴AE PA =.O设等边ABC ∆的边长为a ,侧棱长为b ,则a b 23=. ∵6153,3322a ab PO a BO =-==, ∴25tan ==∠BO PO PBO . ∴故选A.答题分析:1.本题的关键在于对空间线面位置关系进行正确而有效的转化,只要哪一步思维卡壳,就很难做下去了.2.首先要找到侧棱PB 与平面ABC 所成角PBO ∠.接下来要用面面垂直推出线面垂直,进而推出线线垂直.然后再逆用等腰三角形的性质,得出AE PA =.从而找到底面正三角形边长a 和侧棱长b 之间的等量关系.最后才是计算PBO ∠的正切值.3.本题的难点在于:首先要找出所求的线面角,其次如何根据条件找到底面边长a 和侧棱长b 的等量关系.二.填空题:本大题共4小题,每小题5分.第13题:如果执行下列程序框图,那么输出的S = .本题考查程序框图,考查等差数列前n 项和的求法.解:根据程序框图的意义,得()212202021420S =⨯+++=⨯=.第14题:已知ABC ∆的面积等于S ,在ABC ∆的边AB 上任取一点P ,则PBC ∆的面积不小于7S的概率等于 .本题考查几何概型的计算.解:设ABC ∆底边AB 上的高为h ,1P 在ABC ∆的边AB 上,且71ABB P =, 761ABAP =. 则有1111111..227727P BC AB S PB h h AB h S ∆=⋅⋅==⋅⋅⋅=, 同理有167P ACS S ∆=. ∵PBC ∆的面积不小于7S,∴点P 只能在线段1AP 上. ∴PBC ∆的面积不小于7S的概率等于76.答题分析:1.几何概型是将概率问题转化为几何图形问题.本题是将面积概率问题转化为线段长问题,由于线段1CP 上有无数个点P ,在线段1CP 上任取一点P ,都有7PBC SS ∆>.由于总面积S 相当于线段长BC ,PBC S ∆相当于线段长1PC ,所以得PBC ∆的面积不小于7S的概率等于76.解题时应注意体会几何概型事件的无限性与古典概型事件的有限性.2.有的考生填写的是17,可能是把“不小于”看成了“小于”.这提示我们,读题要慢,审题要细,只有这样才能减少失分.第15题:设1F 、2F 为双曲线1222=-y ax 的两个焦点,点P 在此双曲线上,021=⋅PF PF ,如果此双曲线的离心率等于25,那么点P 到x 轴的距离等于 . 本题考查双曲线,考查双曲线的焦点三角形,离心率等知识和方法.解法一: ∵ 1222=-y ax 的离心率等于25,∴45122=+a a . ∴42=a . ∵021=⋅PF PF , ∴21PF PF ⊥. ∴21PF PF ⊥.∵点P 在双曲线1422=-y x 上, ∴16)(221=-PF PF . ∴162212221=-+PF PF PF PF .∴162)14(421=-+⨯PF PF . ∴221=PF PF .设点P 到x 轴的距离等于d ,则21142PF PF d =⨯+. ∴55=d . 解法二(方程思想):∵1222=-y ax ,∴()1,0F c -,()2,0F c .∵ 1222=-y ax 的离心率等于25,∴45122=+a a ,42=a ,c =∴,双曲线方程为2244x y -=. 设(),P m n ,则2244m n -=①由021=⋅PF PF 得()()22,,50c m n c m n m n ---⋅--=-+= ②解得5n =±,从而点P 到x 轴的距离等于5.第16题:已知a 、b 、c 分别为ABC ∆三个内角A 、B 、C 的对边,若1222=-+bc a c b,12c b =+B tan 的值等于 . 本题考查解三角形,涉及正余弦定理、三角变换.解: 根据余弦定理得:212cos 222=-+=bc a c b A . ∵A 是三角形的内角, ∴3π=A .在ABC ∆中,B B A C -=--=32ππ. ∴B B C sin 21cos 23sin +=. 根据正弦定理和已知得:321sin sin 21cos 23sin sin +=+=B BB BC . ∴B B cos 23sin 3=. ∴21tan =B . 答题分析:1.解答本题的一个关键是要从1222=-+bca cb 看出这是关于角A 的余弦定理,可得出3π=A .2.因为()sin 120sin 1sin sin 2B cC b B B ︒-===+,这个式子展开后,得cos 112sin 22B B +=+,解之即可.三.解答题:解答应写出文字说明,证明过程或演算步骤. 第17题:(本小题满分12分)已知21cos 2sin 23)(2+-=x x x f . (Ⅰ)写出)(x f 的最小正周期T ;(Ⅱ)若)(x f y =的图象关于直线m x =对称,并且65<<m ,求m 的值. 本题考查三角函数的化简计算,考查三角函数的周期性和对称性. 解:(Ⅰ)∵)(x f )62sin(2cos 212sin 23π-=-=x x x , ∴)(x f 的最小正周期ππ==22T .(Ⅱ)∵)(x f y =的图象关于直线m x =对称,∴262πππ+=-k m ,Z k ∈.∴32ππ+=k m ,Z k ∈. ∵65<<m ,∴611π=m .第18题:(本小题满分12分)某投资公司年初用98万元购置了一套生产设备并即刻生产产品,已知与生产产品相关的各种配套费用第一年需要支出12万元,第二年需要支出16万元,第三年需要支出20万元,……,每年都比上一年增加支出4万元,而每年的生产收入都为50万元.假设这套生产设备投入使用n 年,*∈N n ,生产成本等于生产设备购置费与这n 年生产产品相关的各种配套费用的和,生产总利润)(n f 等于这n 年的生产收入与生产成本的差. 请你根据这些信息解决下列问题:(Ⅰ)若0)(≥n f ,求n 的值;(Ⅱ)若干年后,该投资公司对这套生产设备有两个处理方案:方案一:当年平均生产利润取得最大值时,以26万元的价格出售该套设备; 方案二:当生产总利润)(n f 取得最大值时,以8万元的价格出售该套设备. 你认为哪个方案更合算?请说明理由.本题考查考生的阅读和建模能力,综合考查考生运用函数、数列、均值不等式等知识和方法解决实际问题能力.解:(Ⅰ)由题意知该公司这n 年需要支出与生产产品相关的各种配套费用是以12为首项,4为公差的等差数列的前n 项和.∴()5098[1216(48)]f n n n =--++++984022-+-=n n .由()0f n ≥得0984022≥-+-n n ,解得51105110+≤≤-n . ∵*∈N n ,∴3=n ,4,5,……,17. ∴0)(≥n f 的解集为{}173,≤≤∈*n N n n .(Ⅱ)(1) 由已知得年平均生产利润为)49(240)(nn n n f +-=. ∵122840)49(240)(=-≤+-=nn n n f , “=”成立⇔)(49*∈=N n nn ,即7=n ,∴当7=n 时,年平均生产利润取得最大值,若执行方案一,总收益为11026127=+⨯(万元).(2) ∵)(n f 984022-+-=n n 102)10(22+--=n ,*∈N n , ∴当10=n 时,生产总利润取得最大值,若执行方案二,总收益为1108102=+(万元).∴无论执行方案一还是方案二,总收益都为110万元. ∵107<,∴从投资收益的角度看,方案一比方案二更合算.注:第(Ⅱ)问答案不唯一,只要言之有理即可.答题分析:1.由于文字叙述较长,很多考生对题意不甚了了,所建立的函数模型也是错误百出,从而导致本题的得分是很低的.2.第(Ⅰ)问中,很多考生在求()f n 的时候,都把等差数列的前n 项和错误理解为第n 项n a 了,即()()5098[1241]f n n n =--+-.3.第(Ⅱ)问中,一些考生不理解“年平均生产利润取得最大值”、“生产总利润)(n f 取得最大值”的含义,从而无法建立模型.4. 第(Ⅱ)问中,所建立的模型是对的,并且也求出了n 分别等于7和11,但之后就不知道应该选择哪一个量作为标准,来判断哪个方案更好.第19题:(本小题满分12分)如图,在长方体ABCD D C B A -1111中,a AB =,b AD =,c AA =1,M 是线段11D B 的中点.(Ⅰ)求证://BM 平面AC D 1; (Ⅱ)求平面AC D 1把长方体ABCD D C B A -1111分成的两部分的体积比.本题考查空间线面位置关系,考查线面平行,考查三棱锥体积的求法. (Ⅰ)证明:设AC 的中点为O ,连接1OD ,BD .根据题意得AC BD O ⋂=, BO 1//MD ,且BO 1MD =. ∴四边形M BOD 1是平行四边形. ∴1//OD BM .∵⊄BM 平面AC D 1,⊂1OD 平面AC D 1, ∴//BM 平面AC D 1.(Ⅱ)解:∵63111abcD D S V ADC ADC D =⨯⨯=∆-, abc D D DC AD V D C B A ABCD =⨯⨯=-11111,∴空间几何体ABC D C B A 1111的体积=V ADC D D C B A ABCD V V ---11111656abcabc abc =-=. ∴5:1:1=-V V ADC D 或1:5:1=-ADC D V V ,即平面AC D 1把长方体ABCD D C B A -1111分成的两部分的体积比为5:1或1:5.答题分析:1. 第(Ⅰ)问有一点难度,需要作辅助线,这几乎是用几何法证明线面平行、线面垂直的必经之路了,对此考生要有意识.2.第(Ⅱ)问的解决比较简单,并且不依赖于第(Ⅰ)问,有的考生第(Ⅰ)问没有做D 1C 1B 1A 1ABCDMD 1C 1A 1ABCODM出来,但第(Ⅱ)问做出来了,这是一种好的现象,说明考生能够把会做的做对了. 第20题:(本小题满分12分)已知1F 、2F 分别是椭圆E : )0(12222>>=+b a b y a x 的左、右焦点,点)3,2(P 在直线ba x 2=上,线段1PF 的垂直平分线经过点2F .直线m x k y +=与椭圆E 交于不同的两点A 、B ,且椭圆E 上存在点M ,使OM OB OA λ=+,其中O 是坐标原点,λ是实数.(Ⅰ)求λ的取值范围;(Ⅱ)当λ取何值时,ABO ∆的面积最大?最大面积等于多少? 本题综合考查直线和椭圆的相关问题,综合考查考生的运算求解能力. 解:(Ⅰ)设椭圆E 的半焦距为c ,根据题意得⎪⎪⎪⎩⎪⎪⎪⎨⎧+=+-====,,3)2()2(,222222222212c b a c PF c F F b a 解方程组得⎪⎩⎪⎨⎧===.2,1,1a b c∴椭圆E 的方程为1222=+y x . 由⎩⎨⎧=++=22,22y x m kx y ,得0224)21(222=-+++m kmx x k . 根据已知得关于x 的方程0224)21(222=-+++m kmx x k 有两个不相等的实数根. ∴0)21(8)22)(21(416222222>-+=-+-=∆m k m k m k ,化简得:2221m k >+.设),(11y x A 、),(22y x B ,则⎪⎪⎩⎪⎪⎨⎧+-=+-=+.2122,2142221221k m x x k km x x221212122)(k mm x x k y y +=++=+.(1)当0=λ时,点A 、B 关于原点对称,0=m ,满足题意; (2)当0≠λ时,点A 、B 关于原点不对称,0≠m .由OA OB OM λ+=,得⎪⎪⎩⎪⎪⎨⎧+=+=),(1),(12121y y y x x x M M λλ即⎪⎪⎩⎪⎪⎨⎧+=+-=.)21(2,)21(422k m y k km x M M λλ∵M 在椭圆E 上,∴1])21(2[])21(4[212222=+++-k mk km λλ, 化简得:)21(4222k m +=λ. ∵2221m k >+,∴2224m m λ>. ∵0≠m ,∴42<λ,即22<<-λ且0≠λ.综合(1)、(2)两种情况,得实数λ的取值范围是)2,2-(.(Ⅱ)当0=λ时,0=m ,此时,A 、B 、O 三点在一条直线上,不构成ABO ∆.∴为使ABO ∆的面积最大,0≠λ.∵⎪⎪⎩⎪⎪⎨⎧+-=+-=+,22212212122,214k m x x k km x x ∴2122124)(1x x x x kAB -++=22222121122k m k k +-++=.∵原点O 到直线m x k y +=的距离21km d +=,∴AOB ∆的面积d AB S ⋅=2122221212km k m +-+=.∵)21(4222k m +=λ,0≠λ,∴222421λm k =+. ∴4424142442422222222λλλλλλ-=-=-=m m m m S )4(4222λλ-=. ∵224)4(2222=-+≤-λλλλ, ∴22≤S . “=” 成立⇔224λλ-=,即2±=λ. ∴当2±=λ时,ABO ∆的面积最大,最大面积为22.答题分析:1.由于题目较长,一些考生不能识别有效信息,未能救出椭圆E 的方程求.2. 第(Ⅰ)问,求λ的取值范围.其主要步骤与方法为:由0∆>,得关于k 、m 的不等式2221m k >+…… ①. 由根与系数的关系、OM OB OA λ=+,M 在椭圆E 上,可以得到关于k 、m 、λ的等式)21(4222k m +=λ…… ②.把等式②代入①,可以达到消元的目的,但问题是这里一共有三个变量,就是消了m ,那还有关于k 和λ的不等式,如何求出λ的取值范围呢?这将会成为难点.事实上,在把等式②代入①的过程中,k 和m 一起被消掉,得到了关于λ的不等式.解之即可.3.第(Ⅱ)问要把ABO ∆的面积函数先求出来.用弦长公式求底,用点到直线的距离公式求高,得到AOB ∆的面积d AB S ⋅=2122221212k m k m +-+=,函数中有两个自变量k 和m ,如何求函数的最大值呢?这又成为难点.这里很难想到把②代入面积函数中,因为②中含有三个变量,即使代入消掉一个后,面积函数依然有两个自变量.但这里很巧合的是:代入消掉k 后,事实上,m 也自动地消除了,于是得到了面积S 和自变量λ的函数关系S )4(4222λλ-=,再由第(Ⅰ)中所得到的λ的取值范围)2,2-(,利用均值不等式,即可求出面积的最大值了. 4.解析几何的难点在于运算的繁杂,本题较好地体现了解解析几何题设题要求.对此,考生要有足够的心理准备.5.解答本题给我们的启示:不能死抱一些“结论”,比如两个未知数需要两个方程才能解出来等等.事实上,当那方程比较特殊的时候,即便是有多个未知数,也是可以把所有未知数都解出来的.很多时候的巧,会给我们山重水复疑无路,柳暗花明又一村的惊喜!第21题:(本小题满分12分)已知常数a 、b 、c 都是实数,函数16)(23-++=x c x b x a x f 的导函数为)(x f ',0)(≥'x f 的解集为{}32≤≤-x x .(Ⅰ)若)(x f 的极大值等于65,求)(x f 的极小值;(Ⅱ)设不等式06)(≥+'x a x f 的解集为集合T ,当T x ∈时,函数16)()(+-=ma x f x F 只有一个零点,求实数m 的取值范围.本题通过导数综合考查函数的单调性、极值、零点、比较大小等知识.解:(Ⅰ)∵16)(23-++=x c x b x a x f ,∴c bx ax x f ++='23)(2.∵不等式0)(≥'x f 的解集为{}32≤≤-x x ,∴不等式0232≥++c bx ax 的解集为{}32≤≤-x x . ∴⎪⎪⎪⎩⎪⎪⎪⎨⎧=⨯--=+-<,332,3232,0a c a b a 即⎪⎩⎪⎨⎧-=-=<.18,23,0a c a b a ∴161823)(23---=ax x a x a x f , )2)(3(31833)(2+-=--='x x a a ax ax x f .∴当)2,(-∞-∈x 或),3(∞+∈x 时,0)(<'x f ,即)(x f 为单调递减函数; 当)3,2(-∈x 时,0)(>'x f ,即)(x f 为单调递增函数.∴当3=x 时,)(x f 取得极大值,当2-=x 时,)(x f 取得极小值. 由已知得65165422727)3(=---=a a a f ,解得2-=a . ∴163632)(23-++-=x x x x f .∴)(x f 的极小值60)2(-=-f .(Ⅱ)∵0<a ,a ax ax x f 1833)(2--=',06)(≥+'ax x f ,∴062≤-+x x ,解得23≤≤-x ,即{}23≤≤-=x x T .∵16)()(+-=ma x f x F ,∴)()(x f x F '='.∴当)2,(-∞-∈x 或),3(∞+∈x 时,0)(<'x F ,即)(x F 为单调递减函数; 当)3,2(-∈x 时,0)(>'x F ,即)(x F 为单调递增函数.∴当)2,3(--∈x 时,)(x F 为单调递减函数;当)2,2(-∈x 时,)(x F 为单调递增函数. ∵ma a ma f F -=+--=-22716)3()3(, ma a ma f F --=+-=3416)2()2(,0<a ,∴)2()3(F F <-.∴)(x F 在]2,3[-上只有一个零点⎩⎨⎧≥<-⇔,0)2(,0)3(F F 或0)2(=-F . 由⎩⎨⎧≥<-,0)2(,0)3(F F 得22734<≤-m ; 由0)2(=-F ,即016)2(=+--ma f ,得22=m .∴实数m 的取值范围为22734<≤-m 或22=m .∴当22734<≤-m 或22=m 时,函数16)()(+-=ma x f x F 在]2,3[-上只有一个零点. 答题分析:1.第(Ⅰ)的解答还是要破费周折的.首先要求出导函数c bx ax x f ++='23)(2.然后根据0)(≥'x f 的解集为{}32≤≤-x x ,通过解混合组,得到⎪⎩⎪⎨⎧-=-=<.18,23,0a c a b a 进而得到161823)(23---=ax x a x a x f . 接下来通过研究函数()f x 的单调性,由)(x f 的极大值等于65,可解得2-=a ,这样就可以求出()f x 的极小值60)2(-=-f .2.第(Ⅱ)问先由不等式06)(≥+'x a x f 的解集为集合T ,可以解得{}23≤≤-=x x T .然后研究16)()(+-=ma x f x F 的单调性,值得注意的是)()(x f x F '=',换句话说方程两边对x 求导数,m 、a 应看作是常数.单调性弄清楚后,还要比较(3)F -、(2)F 的大小.然后根据()F x 只有一个零点,列出(3)0,(2)0,F F -<⎧⎨≥⎩或0)2(=-F ,最后解之即可.值得注意的是,很多考生漏了0)2(=-F . 第22题:(本小题满分10分)选修14-:几何证明选讲如图,四边形ABCD 的外接圆为⊙O ,EA 是⊙O 的切线,CB 的延长线与EA 相交于点E ,AD AB =.求证:CD BE AB ⋅=2.本题考查平面几何中的三角形相似以及圆的相关知识,考查推理论证能力证明:连结AC .∵EA 是⊙O 的切线,∴ACB EAB ∠=∠.∵AD AB =,∴ACB ACD ∠=∠.∴EAB ACD ∠=∠.∵⊙O 是四边形ABCD 的外接圆,∴ABE D ∠=∠.∴CDA ∆∽ABE ∆. ∴BEDA AB CD =,即CD BE DA AB ⋅=⋅. ∵AD AB =,∴CD BE AB ⋅=2.答题分析:作辅助线往往是解答平面几何证明的关键,本题也不例外.第23题:(本小题满分10分)选修44-:坐标系与参数方程已知曲线C 的参数方程为35cos ,5sin ,x y θθ=+⎧⎨=⎩θ(是参数),P 是曲线C 与y 轴正半轴的交点.以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,求经过点P 与曲线C 只有一个公共点的直线l 的极坐标方程.本题考查圆的参数方程和普通方程,考查直线的直角坐标方程和极坐标方程的互化.解:把曲线C 的参数方程35cos ,5sin , x y θθ=+⎧⎨=⎩θ(是参数)化为普通方程得 25)3(22=+-y x .∴曲线C 是圆心为)0,3(1P ,半径等于5的圆.∵P 是曲线C 与y 轴正半轴的交点,∴)4,0(P .根据已知得直线l 是圆C 经过点P 的切线.∵341-=PP k , ∴直线l 的斜率43=k .∴直线l 的方程为01643=+-y x .∴直线l 的极坐标方程为016sin 4cos 3=+-θρθρ.第24题:(本小题满分10分)选修54-:不等式选讲已知13-≥x ,关于x 的不等式0132151023≥+-+++--a x x x 的解集不是空集,求实数a 的取值范围.本题考查绝对值不等式,考查绝对值函数最大值的求法,考查绝对值不等式恒成立问题. 解:设=)(x f 151023+++--x x x (13-≥x ),则228,135,()28,53,2, 3.x x f x x x x +-≤≤-⎧⎪=-+-<≤⎨⎪>⎩∴当513-≤≤-x 时,18)(2≤≤x f ;当35≤<-x 时,18)(2<≤x f ;当3>x 时,2)(=x f .∴=)(x f 151023+++--x x x (13-≥x )的最大值为18.∵关于x 的不等式0132151023≥+-+++--a x x x 的解集不是空集的充要条件是)(x f 132+≥a 的解集不是空集,而)(x f 132+≥a 的解集不是空集的充要条件是)(x f 的最大值132+≥a ,即13218+≥a . 解13218+≥a ,得422-≤≤-a .∴实数a 的取值范围为422-≤≤-a .答题分析:1.本题解法是采用分离变量的方法进行的,分离之后,可以求出()f x 的最大值.2.一些考生对不等式的解集不是空集理解有误,有的甚至求成了()f x 的最小值.实际上)(x f 132+≥a 的解集不是空集,所以)(x f 的最大值132+≥a ,即13218+≥a ,解之即可.三、教学建议1.回归基础:掌握基本知识、基本方法和基本题型.在最后的复习阶段,考生要回归课本,理清数学的知识主线,构建思想方法体系,熟记数学概念、公理、定理、性质、法则、公式.考生应该把课本上的基本知识、基本方法和基本题型系统全面地再梳理一遍,并针对盲区和易错点及时查缺补漏.2.高度重视运算能力.近年来的高考数学试题,对运算能力的要求都有所加强,在云南省第二次统一测试中也得到了较好地反映,比如第20题解析几何中的复杂运算,第21题函数中的代数变形,第18题概率大题中的繁杂数字计算等.因此要高度重视运算能力的培养.然而由于运算能力的培养并非一日之功,因此要坚持长期训练培养,在平时的学习中,凡是复杂计算,都必须认真演算完毕,而不能是懂算理算法后就停止了,平时不训练有素,考场上肯定是快不起来的,考试也一定是要吃大亏的.3.整理反思已做过的题.临近高考,一味地做新题、难题将得不偿失.事实上,学生已经做过很多试题了(试卷已经有厚厚的一打),但是否真正掌握吃透了呢?你应该拿出你以前做过的习题来进行归纳总结:拿到一道题必须立即判断其题型、考点 ( 知识背景 ) ,常用解法及特殊解法,解法的具体步骤,解法的关键步,解法的易错步,此题的常见变式及其解决办法等,以上几点如果你在一两分钟内无法回答出来,则说明你还未真正掌握此类问题.在高三最后的冲刺阶段,这样的整理和反思训练远比埋头做题来得重要.具体可如下实施:(1)应把过去做过的题目分类梳理、整理.做这项工作时最好按照知识点的板块进行,同时兼顾按题型划分.(2)做好分类后,找出自己在基础知识方面的薄弱环节,同时应做专项练习,提高熟练程度.(3)最基础的定理、公式要熟记.此时的复习应做到回归课本,但回归课本不是简单地拿着书本翻阅,而是带着自己在梳理知识中遇到的问题去有重点地看课本.(4)找出自己做错的地方,认真反思错误原因,并记忆错误原因,争取做到在高考中不犯同样的错误.错误有很多种,有知识不足的问题,有概念不清的问题、有题型模式认识不清的问题、也有分类不清的问题,当然还有做题马虎的问题等等.考生要在前进中反思,在反思中前进.4.关注考试心理和考试技巧.数学难题、怪题千千万万,高考考场上遇到一些新题是再正常不过的,考场上需要保持一个平和的心态.比如本次省统测,选做题每题都只有一个问,这跟往常所见的很不一样,此时不能因为这种“新颖”就把自己给搞紧张了.要树立一个心态:考场上见到什么都是可能的!再比如,第9题,求递推数列的通项公式,由于一下子没能把等比数列或等差数列给配凑出来,会不会自己就紧张到连取特殊值排除验证的方法都抛到九霄云外了呢?5.答题时一般来说应该是先易后难,从前往后.有的考生喜欢先做大题,再做选择、填空题.我们认为这是不妥当的.通常试题的难易分布是按每一类题型从前向后,由易到难的.因此,解题顺序也宜按试卷题号从小到大,从前至后依次解答.当然,中间有难题出现时,可以先跳过去,总之,总的原则是要先把容易得到的分数拿到手,先易后难,先选择、填空题,后解答题.6.字迹清晰,合理规划.这对任何一科考试都很重要,尤其是对“精确度”较高的数学,若字迹不清、较难辨认,极易造成阅卷教师的误判.例如写得较快时,数字1和7极易混淆等等.若不清晰就可能使本来正确的失了分.另外,答题卡上书写的位置和大小要计划好,尽量让卷面安排做到合理整洁,特别地,要在指定区域作答.总之,对于解答题,书写要规范,布局要合理,论述既要简明,又不能跳跃过大.只有这样才能避免“自己做对了”,但阅卷却被扣了分这种现象.。

2013高考全国2卷数学理科试题及答案详解

2013高考全国2卷数学理科试题及答案详解

2013年普通高等学校招生全国统一考试数学(全国新课标卷II)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2013课标全国Ⅱ,理1)已知集合M={x|(x-1)2<4,x∈R},N={-1,0,1,2,3},则M∩N=( ).A.{0,1,2} B.{-1,0,1,2} C.{-1,0,2,3} D.{0,1,2,3}2.(2013课标全国Ⅱ,理2)设复数z满足(1-i)z=2i,则z=( ).A.-1+i B.-1-I C.1+i D.1-i3.(2013课标全国Ⅱ,理3)等比数列{a n}的前n项和为S n.已知S3=a2+10a1,a5=9,则a1=( ).A.13 B .13-C.19 D.19-4.(2013课标全国Ⅱ,理4)已知m,n为异面直线,m⊥平面α,n⊥平面β.直线l满足l⊥m,l⊥n,lα,lβ,则( ).A.α∥β且l∥α B.α⊥β且l⊥βC.α与β相交,且交线垂直于l D.α与β相交,且交线平行于l5.(2013课标全国Ⅱ,理5)已知(1+ax)(1+x)5的展开式中x2的系数为5,则a=( ).A.-4 B.-3 C.-2 D.-16.(2013课标全国Ⅱ,理6)执行下面的程序框图,如果输入的N=10,那么输出的S=( ).A .111 1+2310+++B.111 1+2!3!10!+++C.111 1+2311+++D.111 1+2!3!11!+++7.(2013课标全国Ⅱ,理7)一个四面体的顶点在空间直角坐标系O-xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到的正视图可以为( ).8.(2013课标全国Ⅱ,理8)设a=log36,b=log510,c=log714,则( ).A.c>b>a B.b>c>a C.a>c>b D.a>b>c9.(2013课标全国Ⅱ,理9)已知a>0,x,y满足约束条件1,3,3.xx yy a x≥⎧⎪+≤⎨⎪≥(-)⎩若z=2x+y的最小值为1,则a=( ).A.14 B.12 C.1 D.210.(2013课标全国Ⅱ,理10)已知函数f(x)=x3+ax2+bx+c,下列结论中错误的是( ).A.∃x0∈R,f(x0)=0B.函数y=f(x)的图像是中心对称图形C.若x0是f(x)的极小值点,则f(x)在区间(-∞,x0)单调递减D.若x0是f(x)的极值点,则f′(x0)=011.(2013课标全国Ⅱ,理11)设抛物线C:y2=2px(p>0)的焦点为F,点M在C上,|MF|=5,若以MF为直径的圆过点(0,2),则C的方程为( ).A.y2=4x或y2=8x B.y2=2x或y2=8xC.y2=4x或y2=16x D.y2=2x或y2=16x12.(2013课标全国Ⅱ,理12)已知点A(-1,0),B(1,0),C(0,1),直线y=ax+b(a>0)将△ABC分割为面积相等的两部分,则b的取值范围是( ).A.(0,1) B.112⎛⎫-⎪⎪⎝⎭ C.113⎛⎤⎥⎝⎦ D.11,32⎡⎫⎪⎢⎣⎭第Ⅱ卷本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个试题考生都必须做答。

云南省2013年高三数学第二次毕业生复习统一检测试题 理(云南省二模)新人教A版

云南省2013年高三数学第二次毕业生复习统一检测试题 理(云南省二模)新人教A版

2013年云南省第二次高中毕业生复习统一检测理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.● 参考公式: ● 样本数据12,,,n x x x 的标准差●● 其中x 为样本平均数 ● 柱体体积公式V Sh = ● 其中S 为底面面积,h 为高● 锥体体积公式 ● 13V Sh =● 其中S 为底面面积,h 为高● 球的表面积,体积公式 ● 24R S π=,334R V π=● 其中R 为球的半径第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}1,2S =,集合{}T a =,∅表示空集,如果ST S =,那么a 的值是A .∅B .1C .2D .1或22.在291()x x-的二项式展开式中,常数项是A .504B .84C .84-D .504-3.一个由实数组成的等比数列,它的前6项和是前3项和的9倍,则此数列的公比为A .2B .3C .12D .134.已知,a b 是平面向量,若(2)a a b ⊥-,(2)b b a ⊥-,则a 与b 的夹角是A .6π B .3π C .23π D .56π 5.如图是一个空间几何体的三视图,其中正视图和侧视图都是半径为2的半径,俯视图是半径为2的圆,则该几何体的体积等于A .43πB .83πC .163πD .323π6.已知常数a 、b 、c 都是实数,32()34f x ax bx cx =++-的导函数为()f x ',()0f x '≤的解集为{}|23x x -≤≤,若()f x 的极小值等于-115,则a 的值是正视图 侧视图俯视图A .8122-B .13C .2D .57.已知i 是虚数单位,复数z 的共轭复数是z ,如果||84z z i +=-,那么z 等于A .34i --B .34i -+C .43i +D .34i +8.已知P 的半径等于6,圆心是抛物线28y x =的焦点,经过点(1,2)M -的直线l 将P分成两段弧,当优弧与劣弧之差最大时,直线l 的方程为A .230x y ++=B .250x y --=C .20x y +=D .250x y --=9.在数列{}n a 中,11a =,22a =,若2122n n n a a a ++=-+,则n a 等于A .3126555n n -+B .32594n n n -+-C .222n n -+D .2254n n -+10.已知()f x 是定义域为实数集R 的偶函数,10x ∀≥,20x ∀≥,若12x x ≠,则1212()()0f x f x x x -<-.如果13()34f =,184(log )3f x >,那么x 的取值范围为A .10,2⎛⎫ ⎪⎝⎭B .1,22⎛⎫ ⎪⎝⎭C .()1,12,2⎛⎤+∞⎥⎝⎦D .110,,282⎛⎫⎛⎫⎪⎪⎝⎭⎝⎭11.两位同学一起参加某单位的招聘面试,单位负责人对他们说:“我们要从面试的人中招聘3人,假设每位参加面试的人被招聘的概率相等,你们俩同时被招聘的概率是170”.根据这位负责人的话可以推断出这次参加该单位招聘面试的人有A .44人B .42人C .22人D .21人12.在三棱锥P ABC -中,PA PB PC ==,底面△ABC 是正三角形,M 、N 分别是侧棱PB 、PC 的中点.若平面AMN ⊥平面PBC ,则平面AMN 与平面ABC 所成二面角(锐角)的余弦值等于A .6B .6ABCPMNCD第Ⅱ卷(非选择题共90分)注意事项:用钢笔或圆珠笔直接答在答题卡上.二、填空题:本大题共4小题,每小题5分,共20分,把答案填在题中横线上. 13.如果执行下列程序框图,那么输出的S = . 14.一个射击训练,某小组的成绩只有7环、8环、9环三种情况,且该小组的平均成绩为8.15环,设该小组成绩为7环的有x 人,成绩为8环、9环的人数情况见下表:那么x = .15.已知a 、b 、c 分别为△ABC 三个内角A 、B 、C 的对边,若222a b c bc =+-,12c b =+tan B 的值等于 . 16.已知1F 、2F是双曲线2221x y a-=的两个焦点,点P 在双曲线上,120PF PF ⋅=,如果点P 到x 轴的距离等于5,那么该双曲线的离心率等于 . 三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知21()cos cos 2f x x x x =-+. (1)写出()f x 的最小正周期T ; (2)求由5()(0)6y f x x π=≤≤,50(0)6y x π=≤≤,5(10)6x y π=-≤≤,10(0)2x y =-≤≤围成的平面图形的面积.18.(本小题满分12分)一次高中数学期末考试,选择题共有12个,每个选择题给出了四个选项,在给出的四个选项中,只有一项是符合题目要求的.评分标准规定:对于每个选择题,不选或多选或错选得0分,选对得5分.在这次考试的选择题部分,某考生比较熟悉其中的8个题,该考生做对了这8个题.其余4个题,有一个题因全然不理解题意,该考生在给出的四个选项中,随机选了一个;有一个题给出的四个选项,可判断有一个选项不符合题目要求,该考生在剩下的三个选项中,随机选了一个;还有两个题,每个题给出的四个选项,可判断有两选项不符合题目要求,对于这两个题该考生都是在剩下的两个选项中,随机选了一个选项.请你根据上述信息,解决下列问题:(1)在这次考试中,求该考生选择题部分得60分的概率;(2)在这次考试中,设该考生选择题部分的得分为X ,求X 的数学期望.19.(本小题满分12分)如图,在长方体1111ABCD A B C D -中,4AD CD ==,15AD =,M 是线段11B D 的中点.(1)求证:BM ∥平面1D AC ;(2)求直线1DD 与平面1D AC 所成角的正弦值.20.(本小题满分12分)已知22()2ln(1)f x x x x =--+. (1)求()f x 的单调递增区间;(2)若函数2()()3F x f x x x a =-++在1,22⎡⎤-⎢⎥⎣⎦上只有一个零点,求实数a 的取值范围.21.(本小题满分12分)已知1F 、2F 分别是椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,点P 在直线2a x b=上,线段1PF 的垂直一部分线经过点2F .直线y kx m =+与椭圆E 交于不同的两点A 、B ,且椭圆E 上存在点M ,使OA OB OM λ+=,其中O 是坐标原点,λ是实数.(1)求λ的取值范围;(2)当λ为何值时,△ABO 的面积最大?最大面积等于多少?请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一ABCA 1D B 1C 1D 1M题记分.作答时请写清题号. 22.(本小题满分10分)【选修4-1:几何选讲】 如图,四边形ABCD 的外接圆为O ,EA 是O 的切线,CB 的延长线与EA 相交于点E ,AB AD =.求证:2AB BE CD =⋅23.(本小题满分10分)【选修4-4:坐标系与参数方程】 已知曲线C 的参数方程为35cos ,5sin ,x y θθ=+⎧⎨=⎩(θ为参数),P 是曲线C 与y 轴正半轴的交点.以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,求经过点P 与曲线C 只有一个公共点的直线l 的极坐标方程. 24.(本小题满分10分)【选修4-5:不等式选讲】 已知13x ≥-,关于x 的不等式|3||210|152|13|0x x x a --+++-+≥的解集不是空集,求实数a 的取值范围.。

2013年全国统一高考新课标版Ⅱ卷全国2卷理科数学试卷及参考答案与解析

2013年全国统一高考新课标版Ⅱ卷全国2卷理科数学试卷及参考答案与解析

2013年全国统一高考新课标版Ⅱ卷全国2卷理科数学试卷及参考答案与解析一、选择题:本大题共12小题.每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合M={x|(x﹣1)2<4,x∈R},N={﹣1,0,1,2,3},则M∩N=( )A.{0,1,2}B.{﹣1,0,1,2}C.{﹣1,0,2,3}D.{0,1,2,3}2.(5分)设复数z满足(1﹣i)z=2i,则z=( )A.﹣1+iB.﹣1﹣iC.1+iD.1﹣i3.(5分)等比数列{an }的前n项和为Sn,已知S3=a2+10a1,a5=9,则a1=( )A. B. C. D.4.(5分)已知m,n为异面直线,m⊥平面α,n⊥平面β.直线l满足l⊥m,l⊥n,l⊄α,l ⊄β,则( )A.α∥β且l∥αB.α⊥β且l⊥βC.α与β相交,且交线垂直于lD.α与β相交,且交线平行于l5.(5分)已知(1+ax)(1+x)5的展开式中x2的系数为5,则a=( )A.﹣4B.﹣3C.﹣2D.﹣16.(5分)执行右面的程序框图,如果输入的N=10,那么输出的S=( )A. B.C. D.7.(5分)一个四面体的顶点在空间直角坐标系O﹣xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到正视图可以为( )A. B. C. D.8.(5分)设a=log36,b=log510,c=log714,则( )A.c>b>aB.b>c>aC.a>c>bD.a>b>c9.(5分)已知a>0,实数x,y满足:,若z=2x+y的最小值为1,则a=( )A.2B.1C.D.10.(5分)已知函数f(x)=x3+ax2+bx+c,下列结论中错误的是( )A.∃x0∈R,f(x)=0B.函数y=f(x)的图象是中心对称图形C.若x0是f(x)的极小值点,则f(x)在区间(﹣∞,x)单调递减D.若x0是f(x)的极值点,则f′(x)=011.(5分)设抛物线C:y2=2px(p>0)的焦点为F,点M在C上,|MF|=5,若以MF为直径的圆过点(0,2),则C的方程为( )A.y2=4x或y2=8xB.y2=2x或y2=8xC.y2=4x或y2=16xD.y2=2x或y2=16x12.(5分)已知点A(﹣1,0),B(1,0),C(0,1),直线y=ax+b(a>0)将△ABC分割为面积相等的两部分,则b的取值范围是( )A.(0,1)B.C.D.二、填空题:本大题共4小题,每小题5分.13.(5分)已知正方形ABCD的边长为2,E为CD的中点,则•=.14.(5分)从n个正整数1,2,…,n中任意取出两个不同的数,若取出的两数之和等于5的概率为,则n=.15.(5分)设θ为第二象限角,若tan(θ+)=,则sinθ+cosθ=.16.(5分)等差数列{an }的前n项和为Sn,已知S10=0,S15=25,则nSn的最小值为.三.解答题:解答应写出文字说明,证明过程或演算步骤:17.(12分)△ABC在内角A、B、C的对边分别为a,b,c,已知a=bcosC+csinB. (Ⅰ)求B;(Ⅱ)若b=2,求△ABC面积的最大值.18.(12分)如图,直棱柱ABC﹣A1B1C1中,D,E分别是AB,BB1的中点,AA1=AC=CB=AB.(Ⅰ)证明:BC1∥平面A1CD(Ⅱ)求二面角D﹣A1C﹣E的正弦值.19.(12分)经销商经销某种农产品,在一个销售季度内,每售出1t该产品获利润500元,未售出的产品,每1t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130t该农产品.以x(单位:t,100≤x≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.(Ⅰ)将T表示为x的函数;(Ⅱ)根据直方图估计利润T不少于57000元的概率;(Ⅲ)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,并以需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若x∈[100,110))则取x=105,且x =105的概率等于需求量落入[100,110)的频率,求T的数学期望.20.(12分)平面直角坐标系xOy中,过椭圆M:(a>b>0)右焦点的直线x+y﹣=0交M于A,B两点,P为AB的中点,且OP的斜率为.(Ⅰ)求M的方程(Ⅱ)C,D为M上的两点,若四边形ACBD的对角线CD⊥AB,求四边形ACBD面积的最大值.21.(12分)已知函数f(x)=e x﹣ln(x+m)(Ι)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性;(Ⅱ)当m≤2时,证明f(x)>0.选考题:(第22题~第24题为选考题,考生根据要求作答.请考生在第22、23、24题中任选择一题作答,如果多做,则按所做的第一部分评分,作答时请写清题号)22.(10分)【选修4﹣1几何证明选讲】如图,CD为△ABC外接圆的切线,AB的延长线交直线CD于点D,E、F分别为弦AB与弦AC 上的点,且BC•AE=DC•AF,B、E、F、C四点共圆.(1)证明:CA是△ABC外接圆的直径;(2)若DB=BE=EA,求过B、E、F、C四点的圆的面积与△ABC外接圆面积的比值.23.已知动点P、Q都在曲线(β为参数)上,对应参数分别为β=α与β=2α(0<α<2π),M为PQ的中点.(1)求M的轨迹的参数方程;(2)将M到坐标原点的距离d表示为α的函数,并判断M的轨迹是否过坐标原点.24.【选修4﹣﹣5;不等式选讲】设a,b,c均为正数,且a+b+c=1,证明:(Ⅰ)(Ⅱ).2013年全国统一高考数学试卷(理科)(新课标Ⅱ)参考答案与试题解析一、选择题:本大题共12小题.每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合M={x|(x﹣1)2<4,x∈R},N={﹣1,0,1,2,3},则M∩N=( )A.{0,1,2}B.{﹣1,0,1,2}C.{﹣1,0,2,3}D.{0,1,2,3}【分析】求出集合M中不等式的解集,确定出M,找出M与N的公共元素,即可确定出两集合的交集.【解答】解:由(x﹣1)2<4,解得:﹣1<x<3,即M={x|﹣1<x<3},∵N={﹣1,0,1,2,3},∴M∩N={0,1,2}.故选:A.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.(5分)设复数z满足(1﹣i)z=2i,则z=( )A.﹣1+iB.﹣1﹣iC.1+iD.1﹣i【分析】根据所给的等式两边同时除以1﹣i,得到z的表示式,进行复数的除法运算,分子和分母同乘以分母的共轭复数,整理成最简形式,得到结果.【解答】解:∵复数z满足z(1﹣i)=2i,∴z==﹣1+i故选:A.【点评】本题考查代数形式的除法运算,是一个基础题,这种题目若出现一定是一个送分题目,注意数字的运算.3.(5分)等比数列{an }的前n项和为Sn,已知S3=a2+10a1,a5=9,则a1=( )A. B. C. D.【分析】设等比数列{an}的公比为q,利用已知和等比数列的通项公式即可得到,解出即可.【解答】解:设等比数列{an}的公比为q,∵S3=a2+10a1,a5=9,∴,解得.∴.故选:C.【点评】熟练掌握等比数列的通项公式是解题的关键.4.(5分)已知m,n为异面直线,m⊥平面α,n⊥平面β.直线l满足l⊥m,l⊥n,l⊄α,l ⊄β,则( )A.α∥β且l∥αB.α⊥β且l⊥βC.α与β相交,且交线垂直于lD.α与β相交,且交线平行于l【分析】由题目给出的已知条件,结合线面平行,线面垂直的判定与性质,可以直接得到正确的结论.【解答】解:由m⊥平面α,直线l满足l⊥m,且l⊄α,所以l∥α,又n⊥平面β,l⊥n,l⊄β,所以l∥β.由直线m,n为异面直线,且m⊥平面α,n⊥平面β,则α与β相交,否则,若α∥β则推出m∥n,与m,n异面矛盾.故α与β相交,且交线平行于l.故选:D.【点评】本题考查了平面与平面之间的位置关系,考查了平面的基本性质及推论,考查了线面平行、线面垂直的判定与性质,考查了学生的空间想象和思维能力,是中档题.5.(5分)已知(1+ax)(1+x)5的展开式中x2的系数为5,则a=( )A.﹣4B.﹣3C.﹣2D.﹣1【分析】由题意利用二项展开式的通项公式求得展开式中x2的系数为+a•=5,由此解得a的值.【解答】解:已知(1+ax)(1+x)5=(1+ax)(1+x+x2+x3+x4+x5)展开式中x2的系数为+a•=5,解得a=﹣1,故选:D.【点评】本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.6.(5分)执行右面的程序框图,如果输入的N=10,那么输出的S=( )A. B.C. D.【分析】从赋值框给出的两个变量的值开始,逐渐分析写出程序运行的每一步,便可得到程序框图表示的算法的功能.【解答】解:框图首先给累加变量S和循环变量i赋值,S=0+1=1,k=1+1=2;判断k>10不成立,执行S=1+,k=2+1=3;判断k>10不成立,执行S=1++,k=3+1=4;判断k>10不成立,执行S=1+++,k=4+1=5;…判断i>10不成立,执行S=,k=10+1=11;判断i>10成立,输出S=.算法结束.故选:B.【点评】本题考查解决程序框图中的循环结构时,常采用写出前几次循环的结果,找规律.7.(5分)一个四面体的顶点在空间直角坐标系O﹣xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到正视图可以为( )A. B. C. D.【分析】由题意画出几何体的直观图,然后判断以zOx平面为投影面,则得到正视图即可. 【解答】解:因为一个四面体的顶点在空间直角坐标系O﹣xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),几何体的直观图如图,是正方体的顶点为顶点的一个正四面体,所以以zOx平面为投影面,则得到正视图为:故选:A.【点评】本题考查几何体的三视图的判断,根据题意画出几何体的直观图是解题的关键,考查空间想象能力.8.(5分)设a=log36,b=log510,c=log714,则( )A.c>b>aB.b>c>aC.a>c>bD.a>b>c【分析】利用loga (xy)=logax+logay(x、y>0),化简a,b,c然后比较log32,log52,log72大小即可.【解答】解:因为a=log36=1+log32,b=log510=1+log52,c=log714=1+log72,因为y=log2x是增函数,所以log27>log25>log23,∵,,所以log32>log52>log72,所以a>b>c,故选:D.【点评】本题主要考查不等式与不等关系,对数函数的单调性的应用,不等式的基本性质的应用,属于基础题.9.(5分)已知a>0,实数x,y满足:,若z=2x+y的最小值为1,则a=( )A.2B.1C.D.【分析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即先确定z的最优解,然后确定a的值即可.【解答】解:作出不等式对应的平面区域,(阴影部分)由z=2x+y,得y=﹣2x+z,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点C时,直线y=﹣2x+z的截距最小,此时z最小.即2x+y=1,由,解得,即C(1,﹣1),∵点C也在直线y=a(x﹣3)上,∴﹣1=﹣2a,解得a=.故选:C.【点评】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法. 10.(5分)已知函数f(x)=x3+ax2+bx+c,下列结论中错误的是( )A.∃x0∈R,f(x)=0B.函数y=f(x)的图象是中心对称图形C.若x0是f(x)的极小值点,则f(x)在区间(﹣∞,x)单调递减D.若x0是f(x)的极值点,则f′(x)=0【分析】利用导数的运算法则得出f′(x),分△>0与△≤0讨论,列出表格,即可得出. 【解答】解:f′(x)=3x2+2ax+b.2①x2是函数f(x)的极小值点,但是f(x)在区间(﹣∞,x2)不具有单调性,故C不正确.②∵+f(x)=+x3+ax2+bx+c=﹣+2c,=,∵+f(x)=,∴点P为对称中心,故B正确.③由表格可知x1,x2分别为极值点,则,故D正确.④∵x→﹣∞时,f(x)→﹣∞;x→+∞,f(x)→+∞,函数f(x)必然穿过x轴,即∃xα∈R,f(xα)=0,故A正确.(2)当△≤0时,,故f(x)在R上单调递增,①此时不存在极值点,故D 正确,C不正确;②B同(1)中②正确;③∵x→﹣∞时,f(x)→﹣∞;x→+∞,f(x)→+∞,函数f(x)必然穿过x轴,即∃x∈R,f(x)=0,故A正确.综上可知:错误的结论是C.由于该题选择错误的,故选:C.【点评】熟练掌握导数的运算法则、中心得出的定义、单调性与极值的关系等基础知识与方法,考查了分类讨论的思想方法等基本方法.11.(5分)设抛物线C:y2=2px(p>0)的焦点为F,点M在C上,|MF|=5,若以MF为直径的圆过点(0,2),则C的方程为( )A.y2=4x或y2=8xB.y2=2x或y2=8xC.y2=4x或y2=16xD.y2=2x或y2=16x【分析】根据抛物线方程算出|OF|=,设以MF为直径的圆过点A(0,2),在Rt△AOF中利用勾股定理算出|AF|=.再由直线AO与以MF为直径的圆相切得到∠OAF=∠AMF,Rt△AMF中利用∠AMF的正弦建立关系式,从而得到关于p的方程,解之得到实数p的值,进而得到抛物线C的方程.【解答】解:∵抛物线C方程为y2=2px(p>0),∴焦点F坐标为(,0),可得|OF|=,∵以MF为直径的圆过点(0,2),∴设A(0,2),可得AF⊥AM,Rt△AOF中,|AF|==,∴sin∠OAF==,∵根据抛物线的定义,得直线AO切以MF为直径的圆于A点,∴∠OAF=∠AMF,可得Rt△AMF中,sin∠AMF==,∵|MF|=5,|AF|=∴=,整理得4+=,解之可得p=2或p=8因此,抛物线C的方程为y2=4x或y2=16x.故选:C.方法二:∵抛物线C方程为y2=2px(p>0),∴焦点F(,0),设M(x,y),由抛物线性质|MF|=x+=5,可得x=5﹣,因为圆心是MF的中点,所以根据中点坐标公式可得,圆心横坐标为=,由已知圆半径也为,据此可知该圆与y轴相切于点(0,2),故圆心纵坐标为2,则M点纵坐标为4,即M(5﹣,4),代入抛物线方程得p2﹣10p+16=0,所以p=2或p=8.所以抛物线C的方程为y2=4x或y2=16x.故选:C.【点评】本题给出抛物线一条长度为5的焦半径MF,以MF为直径的圆交抛物线于点(0,2),求抛物线的方程,着重考查了抛物线的定义与简单几何性质、圆的性质和解直角三角形等知识,属于中档题.12.(5分)已知点A(﹣1,0),B(1,0),C(0,1),直线y=ax+b(a>0)将△ABC分割为面积相等的两部分,则b的取值范围是( )A.(0,1)B.C.D.【分析】解法一:先求得直线y=ax+b(a>0)与x轴的交点为M(﹣,0),由﹣≤0可得点M在射线OA上.求出直线和BC的交点N的坐标,①若点M和点A重合,求得b=;②若点M在点O和点A之间,求得<b<;③若点M在点A的左侧,求得>b>1﹣.再把以上得到的三个b的范围取并集,可得结果.解法二:考查临界位置时对应的b值,综合可得结论.【解答】解:解法一:由题意可得,三角形ABC的面积为=1,由于直线y=ax+b(a>0)与x轴的交点为M(﹣,0),由直线y=ax+b(a>0)将△ABC分割为面积相等的两部分,可得b>0,故﹣≤0,故点M在射线OA上.设直线y=ax+b和BC的交点为N,则由可得点N的坐标为(,).①若点M和点A重合,则点N为线段BC的中点,故N(,),把A、N两点的坐标代入直线y=ax+b,求得a=b=.②若点M在点O和点A之间,此时b>,点N在点B和点C之间,由题意可得三角形NMB的面积等于,即=,即=,可得a=>0,求得 b<,故有<b<.③若点M在点A的左侧,则b<,由点M的横坐标﹣<﹣1,求得b>a.设直线y=ax+b和AC的交点为P,则由求得点P的坐标为(,),此时,由题意可得,三角形CPN的面积等于,即•(1﹣b)•|xN ﹣xP|=,即(1﹣b)•|﹣|=,化简可得2(1﹣b)2=|a2﹣1|.由于此时 b>a>0,0<a<1,∴2(1﹣b)2=|a2﹣1|=1﹣a2 .两边开方可得(1﹣b)=<1,∴1﹣b<,化简可得 b>1﹣,故有1﹣<b<.再把以上得到的三个b的范围取并集,可得b的取值范围应是,故选:B.解法二:当a=0时,直线y=ax+b(a>0)平行于AB边,由题意根据三角形相似且面积比等于相似比的平方可得=,b=1﹣,趋于最小.由于a>0,∴b>1﹣.当a逐渐变大时,b也逐渐变大,当b=时,直线经过点(0,),再根据直线平分△ABC的面积,故a不存在,故b<.综上可得,1﹣<b<,故选:B.【点评】本题主要考查确定直线的要素,点到直线的距离公式以及三角形的面积公式的应用,还考察运算能力以及综合分析能力,分类讨论思想,属于难题.二、填空题:本大题共4小题,每小题5分.13.(5分)已知正方形ABCD的边长为2,E为CD的中点,则•= 2 .【分析】根据两个向量的加减法的法则,以及其几何意义,可得要求的式子为()•(),再根据两个向量垂直的性质,运算求得结果.【解答】解:∵已知正方形ABCD的边长为2,E为CD的中点,则=0,故=( )•()=()•()=﹣+﹣=4+0﹣0﹣=2,故答案为 2.【点评】本题主要考查两个向量的加减法的法则,以及其几何意义,两个向量垂直的性质,属于中档题.14.(5分)从n个正整数1,2,…,n中任意取出两个不同的数,若取出的两数之和等于5的概率为,则n=8 .【分析】列出从n个正整数1,2,…,n中任意取出两个不同的数的所有取法种数,求出和等于5的种数,根据取出的两数之和等于5的概率为列式计算n的值.【解答】解:从n个正整数1,2,…,n中任意取出两个不同的数,取出的两数之和等于5的情况有:(1,4),(2,3)共2种情况;从n个正整数1,2,…,n中任意取出两个不同的数的所有不同取法种数为,由古典概型概率计算公式得:从n个正整数1,2,…,n中任意取出两个不同的数,取出的两数之和等于5的概率为p=.所以,即,解得n=8.故答案为8.【点评】本题考查了古典概型及其概率计算公式,考查了组合数公式,解答此题时既可以按有序取,也可以按无序取,问题的实质是一样的.此题是基础题.15.(5分)设θ为第二象限角,若tan(θ+)=,则sinθ+cosθ=﹣.【分析】已知等式利用两角和与差的正切函数公式及特殊角的三角函数值化简,求出tanθ的值,再根据θ为第二象限角,利用同角三角函数间的基本关系求出sinθ与cosθ的值,即可求出sinθ+cosθ的值.【解答】解:∵tan(θ+)==,∴tanθ=﹣,而cos2θ==,∵θ为第二象限角,∴cosθ=﹣=﹣,sinθ==,则sinθ+cosθ=﹣=﹣.故答案为:﹣【点评】此题考查了两角和与差的正切函数公式,以及同角三角函数间的基本关系,熟练掌握公式是解本题的关键.16.(5分)等差数列{an }的前n项和为Sn,已知S10=0,S15=25,则nSn的最小值为﹣49 .【分析】由等差数列的前n项和公式化简已知两等式,联立求出首项a1与公差d的值,结合导数求出nSn的最小值.【解答】解:设等差数列{an }的首项为a1,公差为d,∵S10=10a1+45d=0,S15=15a1+105d=25,∴a1=﹣3,d=,∴Sn =na1+d=n2﹣n,∴nSn =n3﹣n2,令nSn=f(n),∴f′(n)=n2﹣n,∴当n=时,f(n)取得极值,当n<时,f(n)递减;当n>时,f(n)递增;因此只需比较f(6)和f(7)的大小即可.f(6)=﹣48,f(7)=﹣49,故nSn的最小值为﹣49.故答案为:﹣49.【点评】此题考查了等差数列的性质,以及等差数列的前n项和公式,熟练掌握性质及公式是解本题的关键.三.解答题:解答应写出文字说明,证明过程或演算步骤:17.(12分)△ABC在内角A、B、C的对边分别为a,b,c,已知a=bcosC+csinB.(Ⅰ)求B;(Ⅱ)若b=2,求△ABC面积的最大值.【分析】(Ⅰ)已知等式利用正弦定理化简,再利用两角和与差的正弦函数公式及诱导公式变形,求出tanB的值,由B为三角形的内角,利用特殊角的三角函数值即可求出B的度数;(Ⅱ)利用三角形的面积公式表示出三角形ABC的面积,把sinB的值代入,得到三角形面积最大即为ac最大,利用余弦定理列出关系式,再利用基本不等式求出ac的最大值,即可得到面积的最大值.【解答】解:(Ⅰ)由已知及正弦定理得:sinA=sinBcosC+sinBsinC①,∵sinA=sin(B+C)=sinBcosC+cosBsinC②,∴sinB=cosB,即tanB=1,∵B为三角形的内角,∴B=;(Ⅱ)S△ABC=acsinB=ac,由已知及余弦定理得:4=a2+c2﹣2accos≥2ac﹣2ac×,整理得:ac≤,当且仅当a=c时,等号成立,则△ABC面积的最大值为××=××(2+)=+1.【点评】此题考查了正弦、余弦定理,三角形的面积公式,两角和与差的正弦函数公式,以及基本不等式的运用,熟练掌握定理及公式是解本题的关键.18.(12分)如图,直棱柱ABC﹣A1B1C1中,D,E分别是AB,BB1的中点,AA1=AC=CB=AB.(Ⅰ)证明:BC1∥平面A1CD(Ⅱ)求二面角D﹣A1C﹣E的正弦值.【分析】(Ⅰ)通过证明BC1平行平面A1CD内的直线DF,利用直线与平面平行的判定定理证明BC1∥平面A1CD(Ⅱ)证明DE⊥平面A1DC,作出二面角D﹣A1C﹣E的平面角,然后求解二面角平面角的正弦值即可.【解答】解:(Ⅰ)证明:连结AC1交A1C于点F,则F为AC1的中点,又D是AB中点,连结DF,则BC1∥DF,因为DF⊂平面A1CD,BC1⊄平面A1CD,所以BC1∥平面A1CD.(Ⅱ)因为直棱柱ABC﹣A1B1C1,所以AA1⊥CD,由已知AC=CB,D为AB的中点,所以CD⊥AB,又AA1∩AB=A,于是,CD⊥平面ABB1A1,设AB=2,则AA1=AC=CB=2,得∠ACB=90°,CD=,A1D=,DE=,A1E=3故A1D2+DE2=A1E2,即DE⊥A1D,所以DE⊥平面A1DC,又A1C=2,过D作DF⊥A1C于F,∠DFE为二面角D﹣A1C﹣E的平面角,在△A1DC中,DF==,EF==,所以二面角D﹣A1C﹣E的正弦值.sin∠DFE=.【点评】本题考查直线与平面平行的判定定理的应用,二面角的平面角的求法,考查空间想象能力与计算能力.19.(12分)经销商经销某种农产品,在一个销售季度内,每售出1t该产品获利润500元,未售出的产品,每1t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130t该农产品.以x(单位:t,100≤x≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.(Ⅰ)将T表示为x的函数;(Ⅱ)根据直方图估计利润T不少于57000元的概率;(Ⅲ)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,并以需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若x∈[100,110))则取x=105,且x=105的概率等于需求量落入[100,110)的频率,求T的数学期望.【分析】(Ⅰ)由题意先分段写出,当x∈[100,130)时,当x∈[130,150)时,和利润值,最后利用分段函数的形式进行综合即可.(Ⅱ)由(I)知,利润T不少于57000元,当且仅当120≤x≤150.再由直方图知需求量X∈[120,150]的频率为0.7,利用样本估计总体的方法得出下一个销售季度的利润T不少于57000元的概率的估计值.(Ⅲ)利用利润T的数学期望=各组的区间中点值×该区间的频率之和即得.【解答】解:(Ⅰ)由题意得,当x∈[100,130)时,T=500x﹣300(130﹣x)=800x﹣39000,当x∈[130,150)时,T=500×130=65000,∴T=.(Ⅱ)由(Ⅰ)知,利润T不少于57000元,当且仅当120≤x≤150.由直方图知需求量X∈[120,150]的频率为0.7,所以下一个销售季度的利润T不少于57000元的概率的估计值为0.7.61000×0.3+65000×0.4=59400.【点评】本题考查用样本的频率分布估计总体分布及识图的能力,求解的重点是对题设条件及直方图的理解,了解直方图中每个小矩形的面积的意义,是中档题.20.(12分)平面直角坐标系xOy中,过椭圆M:(a>b>0)右焦点的直线x+y﹣=0交M于A,B两点,P为AB的中点,且OP的斜率为.(Ⅰ)求M的方程(Ⅱ)C,D为M上的两点,若四边形ACBD的对角线CD⊥AB,求四边形ACBD面积的最大值.【分析】(Ⅰ)把右焦点(c,0)代入直线可解得c.设A(x1,y1),B(x2,y2),线段AB的中点P(x,y),利用“点差法”即可得到a,b的关系式,再与a2=b2+c2联立即可得到a,b,c. (Ⅱ)由CD⊥AB,可设直线CD的方程为y=x+t,与椭圆的方程联立得到根与系数的关系,即可得到弦长|CD|.把直线x+y﹣=0与椭圆的方程联立得到根与系数的关系,即可得到弦长|AB|,利用S四边形ACBD=即可得到关于t的表达式,利用二次函数的单调性即可得到其最大值.【解答】解:(Ⅰ)把右焦点(c,0)代入直线x+y﹣=0得c+0﹣=0,解得c=.设A(x1,y1),B(x2,y2),线段AB的中点P(x,y),则,,相减得,∴,∴,又=,∴,即a2=2b2.联立得,解得,∴M的方程为.(Ⅱ)∵CD⊥AB,∴可设直线CD的方程为y=x+t,联立,消去y得到3x2+4tx+2t2﹣6=0,∵直线CD与椭圆有两个不同的交点,∴△=16t2﹣12(2t2﹣6)=72﹣8t2>0,解﹣3<t<3(*).设C(x3,y3),D(x4,y4),∴,.∴|CD|===.联立得到3x2﹣4x=0,解得x=0或,∴交点为A(0,),B,∴|AB|==.∴S四边形ACBD===,∴当且仅当t=0时,四边形ACBD面积的最大值为,满足(*).∴四边形ACBD面积的最大值为.【点评】本题综合考查了椭圆的定义、标准方程及其性质、“点差法”、中点坐标公式、直线与椭圆相交问题转化为方程联立得到一元二次方程根与系数的关系、弦长公式、四边形的面积计算、二次函数的单调性等基础知识,考查了推理能力、数形结合的思想方法、计算能力、分析问题和解决问题的能力.21.(12分)已知函数f(x)=e x﹣ln(x+m)(Ι)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性;(Ⅱ)当m≤2时,证明f(x)>0.【分析】(Ⅰ)求出原函数的导函数,因为x=0是函数f(x)的极值点,由极值点处的导数等于0求出m的值,代入函数解析式后再由导函数大于0和小于0求出原函数的单调区间;(Ⅱ)证明当m≤2时,f(x)>0,转化为证明当m=2时f(x)>0.求出当m=2时函数的导函数,可知导函数在(﹣2,+∞)上为增函数,并进一步得到导函数在(﹣1,0)上有唯一零点x,则当x=x0时函数取得最小值,借助于x是导函数的零点证出f(x)>0,从而结论得证.【解答】(Ⅰ)解:∵,x=0是f(x)的极值点,∴,解得m=1.所以函数f(x)=e x﹣ln(x+1),其定义域为(﹣1,+∞).∵.设g(x)=e x(x+1)﹣1,则g′(x)=e x(x+1)+e x>0,所以g(x)在(﹣1,+∞)上为增函数,又∵g(0)=0,所以当x>0时,g(x)>0,即f′(x)>0;当﹣1<x<0时,g(x)<0,f′(x)<0.所以f(x)在(﹣1,0)上为减函数;在(0,+∞)上为增函数;(Ⅱ)证明:当m≤2,x∈(﹣m,+∞)时,ln(x+m)≤ln(x+2),故只需证明当m=2时f(x)>0.当m=2时,函数在(﹣2,+∞)上为增函数,且f′(﹣1)<0,f′(0)>0.故f′(x)=0在(﹣2,+∞)上有唯一实数根x0,且x∈(﹣1,0).当x∈(﹣2,x0)时,f′(x)<0,当x∈(x,+∞)时,f′(x)>0,从而当x=x时,f(x)取得最小值.由f′(x0)=0,得,ln(x+2)=﹣x.故f(x)≥=>0.综上,当m≤2时,f(x)>0.【点评】本题考查了利用导数研究函数的单调性,利用导数求函数在闭区间上的最值,考查了不等式的证明,考查了函数与方程思想,分类讨论的数学思想,综合考查了学生分析问题和解决问题的能力.熟练函数与导数的基础知识是解决该题的关键,是难题.选考题:(第22题~第24题为选考题,考生根据要求作答.请考生在第22、23、24题中任选择一题作答,如果多做,则按所做的第一部分评分,作答时请写清题号)22.(10分)【选修4﹣1几何证明选讲】如图,CD为△ABC外接圆的切线,AB的延长线交直线CD于点D,E、F分别为弦AB与弦AC 上的点,且BC•AE=DC•AF,B、E、F、C四点共圆.(1)证明:CA是△ABC外接圆的直径;(2)若DB=BE=EA,求过B、E、F、C四点的圆的面积与△ABC外接圆面积的比值.【分析】(1)已知CD为△ABC外接圆的切线,利用弦切角定理可得∠DCB=∠A,及BC•AE=DC •AF,可知△CDB∽△AEF,于是∠CBD=∠AFE.利用B、E、F、C四点共圆,可得∠CFE=∠DBC,进而得到∠CFE=∠AFE=90°即可证明CA 是△ABC外接圆的直径;(2)要求过B、E、F、C四点的圆的面积与△ABC外接圆面积的比值.只需求出其外接圆的直径的平方之比即可.由过B、E、F、C四点的圆的直径为CE,及DB=BE,可得CE=DC,利用切割线定理可得DC2=DB•DA,CA2=CB2+BA2,都用DB表示即可.【解答】(1)证明:∵CD为△ABC外接圆的切线,∴∠DCB=∠A,∵BC•AE=DC•AF,∴.∴△CDB∽△AEF,∴∠CBD=∠AFE.∵B、E、F、C四点共圆,∴∠CFE=∠DBC,∴∠CFE=∠AFE=90°.∴∠CBA=90°,∴CA是△ABC外接圆的直径;(2)连接CE,∵∠CBE=90°,∴过B、E、F、C四点的圆的直径为CE,由DB=BE,得CE=DC,又BC2=DB•BA=2DB2,∴CA2=4DB2+BC2=6DB2.而DC2=DB•DA=3DB2,故过B、E、F、C四点的圆的面积与△ABC面积的外接圆的面积比值==. 【点评】熟练掌握弦切角定理、相似三角形的判定与性质、四点共圆的性质、直径的判定、切割线定理、勾股定理等腰三角形的性质是解题的关键.23.已知动点P、Q都在曲线(β为参数)上,对应参数分别为β=α与β=2α(0<α<2π),M为PQ的中点.(1)求M的轨迹的参数方程;(2)将M到坐标原点的距离d表示为α的函数,并判断M的轨迹是否过坐标原点.【分析】(1)利用参数方程与中点坐标公式即可得出;(2)利用两点之间的距离公式、三角函数的单调性即可得出.【解答】解:(1)依题意有P(2cosα,2sinα),Q(2cos2α,2sin2α),因此M(cosα+cos2α,sinα+sin2α).M的轨迹的参数方程为为参数,0<α<2π).(2)M点到坐标原点的距离d=(0<α<2π).当α=π时,d=0,故M的轨迹过坐标原点.【点评】本题考查了参数方程与中点坐标公式、两点之间的距离公式、三角函数的单调性,考查了推理能力与计算能力,属于中档题.24.【选修4﹣﹣5;不等式选讲】设a,b,c均为正数,且a+b+c=1,证明:(Ⅰ)(Ⅱ).【分析】(Ⅰ)依题意,由a+b+c=1⇒(a+b+c)2=1⇒a2+b2+c2+2ab+2bc+2ca=1,利用基本不等式可得3(ab+bc+ca)≤1,从而得证;(Ⅱ)利用基本不等式可证得:+b≥2a,+c≥2b,+a≥2c,三式累加即可证得结论.【解答】证明:(Ⅰ)由a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ca得:a2+b2+c2≥ab+bc+ca,由题设得(a+b+c)2=1,即a2+b2+c2+2ab+2bc+2ca=1,所以3(ab+bc+ca)≤1,即ab+bc+ca≤.(Ⅱ)因为+b≥2a,+c≥2b,+a≥2c,故+++(a+b+c)≥2(a+b+c),即++≥a+b+c.所以++≥1.【点评】本题考查不等式的证明,突出考查基本不等式与综合法的应用,考查推理论证能力,属于中档题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013年云南省第二次高中毕业生复习统一检测理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.参考公式: 样本数据12,,,n x x x 的标准差(n s x x =++-其中x 为样本平均数 柱体体积公式VSh =其中S 为底面面积,h 为高锥体体积公式13V Sh =其中S 为底面面积,h 为高球的表面积,体积公式24R S π=,334R V π=其中R 为球的半径第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}1,2S =,集合{}T a =,∅表示空集,如果ST S =,那么a 的值是A .∅B .1C .2D .1或22.在291()x x-的二项式展开式中,常数项是A .504B .84C .84-D .504-3.一个由实数组成的等比数列,它的前6项和是前3项和的9倍,则此数列的公比为A .2B .3C .12D .134.已知,a b 是平面向量,若(2)a a b ⊥-,(2)b b a ⊥-,则a 与b 的夹角是A .6π B .3π C .23π D .56π 5.如图是一个空间几何体的三视图,其中正视图和侧视图都是半径为2的半径,俯视图是半径为2的圆,则该几何体的体积等于A .43πB .83πC .163πD .323π6.已知常数a 、b 、c 都是实数,32()34f x ax bx cx =++-的导函数为()f x ',()0f x '≤的解集为{}|23x x-≤≤,若()f x 的极小值等于-115,则a 的值是正视图 侧视图俯视图A .8122-B .13C .2D .57.已知i 是虚数单位,复数z 的共轭复数是z ,如果||84z z i +=-,那么z 等于A .34i --B .34i -+C .43i +D .34i +8.已知P 的半径等于6,圆心是抛物线28y x =的焦点,经过点(1,2)M -的直线l 将P 分成两段弧,当优弧与劣弧之差最大时,直线l 的方程为A .230x y ++=B .250x y --=C .20x y +=D .250x y --=9.在数列{}n a 中,11a =,22a =,若2122n n n a a a ++=-+,则n a 等于A .3126555n n -+ B .32594n n n -+-C .222n n -+D .2254n n -+10.已知()f x 是定义域为实数集R 的偶函数,10x ∀≥,20x ∀≥,若12x x ≠,则1212()()0f x f x x x -<-.如果13()34f =,184(log )3f x >,那么x 的取值范围为A .10,2⎛⎫ ⎪⎝⎭B .1,22⎛⎫ ⎪⎝⎭C .()1,12,2⎛⎤+∞⎥⎝⎦D .110,,282⎛⎫⎛⎫⎪⎪⎝⎭⎝⎭11.两位同学一起参加某单位的招聘面试,单位负责人对他们说:“我们要从面试的人中招聘3人,假设每位参加面试的人被招聘的概率相等,你们俩同时被招聘的概率是170”.根据这位负责人的话可以推断出这次参加该单位招聘面试的人有A .44人B .42人C .22人D .21人12.在三棱锥P ABC -中,PA PB PC ==,底面△ABC 是正三角形,M 、N 分别是侧棱PB、PC 的中点.若平面AMN ⊥平面PBC ,则平面AMN 与平面ABC 所成二面角(锐角)的余弦值等于A .6B .6C D ABCPMN第Ⅱ卷(非选择题共90分)注意事项:用钢笔或圆珠笔直接答在答题卡上.二、填空题:本大题共4小题,每小题5分,共20分,把答案填在题中横线上.13.如果执行下列程序框图,那么输出的S = . 14.一个射击训练,某小组的成绩只有7环、8环、9环三种情况,且该小组的平均成绩为8.15环,设该小组成绩为7环的有x 人,成绩为8环、9环的人数情况见下表:那么x =.15.已知a 、b 、c 分别为△ABC 三个内角A 、B 、C 的对边,若222a b c bc =+-,12cb =+则tan B 的值等于 .16.已知1F 、2F 是双曲线2221x y a-=的两个焦点,点P 在双曲线上,120PF PF ⋅=,如果点P 到x,那么该双曲线的离心率等于 . 三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)已知21()cos cos 2f x x x x =-+. (1)写出()f x 的最小正周期T ; (2)求由5()(0)6y f x x π=≤≤,50(0)6y x π=≤≤,5(10)6x y π=-≤≤,10(0)2x y =-≤≤围成的平面图形的面积.18.(本小题满分12分)一次高中数学期末考试,选择题共有12个,每个选择题给出了四个选项,在给出的四个选项中,只有一项是符合题目要求的.评分标准规定:对于每个选择题,不选或多选或错选得0分,选对得5分.在这次考试的选择题部分,某考生比较熟悉其中的8个题,该考生做对了这8个题.其余4个题,有一个题因全然不理解题意,该考生在给出的四个选项中,随机选了一个;有一个题给出的四个选项,可判断有一个选项不符合题目要求,该考生在剩下的三个选项中,随机选了一个;还有两个题,每个题给出的四个选项,可判断有两选项不符合题目要求,对于这两个题该考生都是在剩下的两个选项中,随机选了一个选项.请你根据上述信息,解决下列问题:(1)在这次考试中,求该考生选择题部分得60分的概率;(2)在这次考试中,设该考生选择题部分的得分为X ,求X 的数学期望.19.(本小题满分12分)如图,在长方体1111ABCD A B C D -中,4AD CD ==,15AD =,M 是线段11B D 的中点.(1)求证:BM ∥平面1D AC ;(2)求直线1DD 与平面1D AC 所成角的正弦值. 20.(本小题满分12分)已知22()2ln(1)f x x x x =--+. (1)求()f x 的单调递增区间;(2)若函数2()()3F x f x x x a =-++在1,22⎡⎤-⎢⎥⎣⎦上只有一个零点,求实数a 的取值范围.21.(本小题满分12分)已知1F 、2F 分别是椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,点P 在直线2a x b=上,线段1PF 的垂直一部分线经过点2F .直线y kx m =+与椭圆E 交于不同的两点A 、B ,且椭圆E 上存在点M ,使OA OB OM λ+=,其中O 是坐标原点,λ是实数.(1)求λ的取值范围;(2)当λ为何值时,△ABO 的面积最大?最大面积等于多少?请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.作答时请写清题号. 22.(本小题满分10分)【选修4-1:几何选讲】 如图,四边形ABCD 的外接圆为O ,EA 是O 的切线,CB 的延长线与EA 相交于点E ,AB AD =.求证:2AB BE CD =⋅ 23.(本小题满分10分)【选修4-4:坐标系与参数方程】 已知曲线C 的参数方程为35cos ,5sin ,x y θθ=+⎧⎨=⎩(θ为参数),P 是曲线C 与y 轴正半轴的交点.以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,求经过点P 与曲线C 只有一个公共点的直线l 的极坐标方程.AB CA 1D B 1C 1D 1M24.(本小题满分10分)【选修4-5:不等式选讲】已知13x ≥-,关于x 的不等式|3||210|152|13|0x x x a --+++-+≥的解集不是空集,求实数a 的取值范围.2013年云南省第二次高中毕业生复习统一检测理科数学参考答案一、选择题,本题考查基础知识,基本概念和基本运算能力二、填空题.本题考查基础知识,基本概念和基本运算技巧13.420 14.515.1216.5三、解答题17.解:(1)T π=;(2)2-18.解:(1)1148P =;(2)1(40)8P X ==,17(45)48P X ==,17(50)48P X ==,7(55)48P X ==,1(60)48P X ==,57512EX =19.解:(1)略;(2)1720.解:(1)()f x 的单调递增区间是(1)-和)+∞; (2){}12ln 2,2ln 322ln 212a ⎡⎫∈---⎪⎢⎣⎭21.解:(1)(2,2)λ∈-;(2)当λ=ABO 的面积最大,最大面积为222.解:略23.解:3cos 4sin 160ρθρθ-+= 24.[]22,4a ∈--。

相关文档
最新文档