Newton迭代法实例
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于牛顿迭代法的圆形断面临界水深直接计算
学院:建筑工程学院学号:2111206052 姓名:王瑞峰
、问题来源
圆形断面由于具有受力条件好、适应地形能力强、水力条件好等优点,已成为农田灌溉、城市给水排水等工程较常采用的断面形式。而临界水深的计算则是进行圆形断面
水力计算的关键,但其计算较繁杂,要求解高次隐函数方程,且未知量包含在三角函数中,求解难度大。自20世纪90年代,对圆形断面临界水深的计算进行了大量研究,获得了较多成果。鉴此,本文应用牛顿迭代算法,得到一种较简洁且可提供高精度算法程序的近似计算公式。
、数学模型
相应于断面单位能量最小值的水深称为临界水深,其计算公式为:
需满足的临界流方程为:
Qa - (2)
其中\亠八於一口•曲-;? ':芒
B r■缶由[附劄
式中,d为洞径;M为临界水深对应的圆心角,rad ;n为流速分布不均匀系数(不特殊说明时取1.0) ;Q为流量,m3ls;g为重力加速度(通常取9.81 m/s2);--分别为临界流对应的过水断面面积和水面宽度。
将式⑴、(3)、⑷代入式⑵得:
将式(5)整理即得临界水深的非线形方程:
f⑹• = * —呂(另?血£= 0 (6}
由此可知.式⑹ 为临界水深h。的高次隐函数方程,且未知量包含在三角函数中。即圆形断面临界水深的求解即为式(6)的求根问题。在现行工程实际中计算临界水深时均采用近似公式或试算法,所得结果精度不高且效率较低。
三、方法选择
牛顿迭代法是求方程根的重要方法之一,其最大优点是在方程f(x) = 0的单根附近具有平方收敛,而且该法还可以用来求方程的重根、复根。
解非线性方程f(x)=0的牛顿法是把非线性方程线性化的一种近似方法。把f(x)在x0点
附近展开成泰勒级数f(x) = f(xO)+(x —xO)f(xO)+(x —xO)A2*f'(xO)⑵+ •取其线性部分,作为非线性方程f(x) = 0的近似方程,即泰勒展开的前两项,则有f(xO)+f(xO)(x —
x0)=f(x)=0 设f(xO) 啖0其解为x1=x0 —f(xO)/f(xO)这样,得到牛顿法的一个迭代序列:
x(n +1)=x(n) —f(x(n))/f(x(n))。
在对式(6)的求解方法中,应首选牛顿迭代法,因为牛顿迭代法可快速求解出其他方法求不出或难以求出的解。
引入无量纲参数k:
将式⑺代入式⑹得:
>]* - =■ o te>
•:的一阶、二阶导函数分别为:
由牛顿迭代法可得:
fiU (10)
式中,'=0, 1, 2…为迭代次数;'■为’的初值。
将式(8)、(9)代入式(10),可得相应于式(6)临界水深对应中心角同的牛顿迭代公式:
H心如警片二更妙-C1D
、一彳■"(丽約cos
由式(11)迭代计算出临界水深对应的中心角国后,代入式(1)即可得临界水深。
根据文献,为避免渡状水面有可能接触洞顶引起水流封顶现象。洞内水面线以上的空间不宜小于隧洞断面面积的15%,且高度不小于0.4m。可得临界水深对应的中心角的最大值一般不超过4.692 ,相应可得无量纲参数日值的上限为0.5044。故取值范围为[0.000
0,0.504 4]。
查阅文献与耳的近似公式:
$=4* 53脊"+冷+6 023 0<*C0. 504 4 (12)
若将式(12)视为初值函数,代入式(11)进行一次迭代计算,不仅得到了直接计算的公式, 且提高了计算结果的精度。
02$ -------- ——~4T~~;------------ <133
】-石応Rin 豆)Cto cOa^j
其中氓一洽";七亠咚昭
将式(13)代入式⑴即得圆形断面临界水深。
计算实例:
某引水式电站输水隧洞为圆形断面,已知洞径d=3.0 m,试确定设计流量Q=8.0m3/s时的临界水深。
四、编程实现
本文采用Fortran软件求解,程序的代码如下: program ex01
implicit none
reald,Q,k,x,g,y,h
parameter(g=9.81)
prin t*," 请输入洞身的直径:”
read*,d
prin t*," 请输入设计流量:”
read*,Q
k=Q*Q/(g*d**5)
prin t*," 可得无量参数k:",k
x=4.53*k**0.14+k+0.023
prin t*," 临界水深对应的圆心角初值为:
",xy=x-(x-8*(k*s in (0.5*x))**(1.0/3.0)-si n(x)"(1-(4.0/3.0)*k**(1.0/3.0)*(si n( x/2))**(-
2.0/
3.0)*cos(0.5*x)-cos(x))
prin t*," 临界水深对应的圆心角为:",y
h=d*0.5*(1-cos(0.5*y))
prin t*," 临界水深为:”,h
end
源程序编程截图如下:
计算结果截图如下:
I "Uw 3-1D l rskLt-p ,iA''DefaiMy ,.T-,»i.ll
4
会出现明满流交替现象,而此现象在水工设计中应杜绝;当日 <0. 902时,水深很小,
可忽略。因此,只需对[O . 902, 4. 692]范围内的计算值与精确值进行比较。为验证本 文提出方法的有效性及便于与现有计算方法比较,引入相对临界水深
X = hjd CU>
根据水力要素条件计算出相对临界水深的 z 取值范围为0. 05W x < 0. 85。因此,在0.05
< X W 0.85范围给出一系列值,根据式⑴可计算出相对临界水深对应的 ’精确值,由式
(7)计算无量纲参数走,代入式 (13)求得计算值。再进行精度评价。设精确解为
-, 则相对误差为:
仙一捫"护 灯計
可以求得算例中相对误差仅为 0.005%。
六、实际意义分析
将牛顿迭代法原理应用于圆形断面临界水深所在的高次隐函数方程求解, 通过优化 计算得到了初值的近似公式, 从而得到了计算圆形断面临界水深的直接计算方法。 该方 法计算简单明确、结果可靠、实用性强, 且与其他方法相比在精度上有一定提高, 而计 算复杂程度并未增加,对实际工程实践有一定帮助。
五、误差要求
根据文献要求,临界水深对应的圆心角 ;最小值为0.902,最大值为4.692,当卜>4.692时, 2. N 自
-m? 3
t
* 亠目■:rr qhn 「刊空s k:的羽 t 甘
耳并M 晒
rLkkrr a 爭屐股凰KE