abaqus复合材料

合集下载

abaqus复合材料失效子程序

abaqus复合材料失效子程序

abaqus复合材料失效子程序摘要:一、引言1.复合材料的概念和应用背景2.abaqus 软件在复合材料失效分析中的重要性二、abaqus 复合材料失效子程序介绍1.子程序的定义和功能2.子程序的输入和输出参数3.子程序在abaqus 中的调用方法三、abaqus 复合材料失效子程序的使用方法1.材料属性的设置2.边界条件和加载条件的设定3.求解器和求解设置4.后处理工具在失效分析中的应用四、abaqus 复合材料失效子程序在实际工程中的应用1.应用案例一:复合材料梁的失效分析2.应用案例二:复合材料壳体的失效分析3.应用案例三:复合材料连接件的失效分析五、结论1.abaqus 复合材料失效子程序的优势和局限性2.未来发展趋势和前景正文:一、引言随着科技的发展,复合材料在航空航天、汽车制造、建筑结构等领域的应用越来越广泛。

复合材料具有轻质、高强、耐腐蚀等优点,但同时也存在着材料失效问题。

为了确保复合材料结构的安全性能,失效分析显得尤为重要。

abaqus 是一款强大的有限元分析软件,可以对复合材料进行失效分析。

本文将详细介绍abaqus 复合材料失效子程序的使用方法和应用案例。

二、abaqus 复合材料失效子程序介绍abaqus 复合材料失效子程序是基于abaqus 软件开发的,用于分析复合材料在各种工况下的失效行为。

该子程序集成了多种失效准则,可以分析包括纤维断裂、基体开裂、分层等在内的复合材料失效模式。

用户可以通过该子程序得到复合材料失效时的应力、应变、能量等数据,为结构设计提供依据。

三、abaqus 复合材料失效子程序的使用方法1.材料属性的设置:首先需要定义复合材料的各向异性属性,包括纤维和基体的弹性模量、泊松比、密度等。

2.边界条件和加载条件的设定:根据实际工况设置边界位移、固定约束、加载条件等。

3.求解器和求解设置:选择合适的求解器和求解设置,确保求解过程稳定且收敛。

4.后处理工具在失效分析中的应用:通过abaqus 的后处理工具,可以直观地观察到复合材料失效过程的应力、应变分布,以及失效模式。

abaqus复合材料

abaqus复合材料

abaqus复合材料
Abaqus是一种用于有限元分析的软件,可以用来进行复合材
料的分析和模拟。

复合材料是由两种或两种以上的材料组成的材料,具有比单一材料更好的性能和特性。

因此,在工程设计中,对复合材料的分析和模拟非常重要。

Abaqus可以对复合材料的力学特性进行研究和分析,包括应力、应变、刚度、强度等。

可以通过建立复合材料的宏观模型和微观模型来模拟复合材料的力学行为。

宏观模型可以通过宏观试验数据来建立,而微观模型可以通过模拟复合材料的微观结构来获得。

Abaqus提供了多种模拟复合材料的方法,包括纤维增强复合
材料、层合板、复合材料板、复合材料筋等。

可以通过定义材料的力学性能、纤维方向、层厚度等来模拟复合材料。

通过对模型进行加载和运算,可以得到复合材料在不同载荷下的应力应变分布、应力集中位置等。

Abaqus在复合材料的设计和分析中还提供了一些特殊的功能,如粘接接头和复合结构的分析。

粘接接头是将两个不同材料的部件连结在一起的方法,它可以通过Abaqus来模拟粘接接头
的强度和刚度,并进行设计优化。

复合结构是由多个复合材料部件组成的结构,可以通过Abaqus来分析复合结构的整体响
应和局部应力。

除了以上提到的功能外,Abaqus还提供了多种后处理工具和
结果图表,可以将分析结果输出为图形和表格,以便更好地理
解和展示复合材料的力学行为。

总之,Abaqus是一种功能强大的软件,特别适用于复合材料的分析和模拟。

它提供了多种模拟复合材料的方法和功能,可以帮助工程师和科研人员更好地理解复合材料的力学行为,优化设计和提高产品性能。

Abaqus针对复合材料优势

Abaqus针对复合材料优势

Abaqus针对复合材料优势四Abaqus在复合材料领域的优势4.1 复合材料介绍4.1.1 复合材料的应用复合材料有许多特性:1、制造工艺简单2、比强度高,比刚度大3、具有灵活的可设计性4、耐腐蚀,对疲劳不敏感5、热稳定性能、高温性能好由于复合材料的上述优点,在航空航天、汽车、船舶等领域,都有广泛的应用。

复合材料的大量应用对分析技术提出新的挑战。

4.1.2 复合材料的结构复合材料是一种至少由两种材料混合而成的宏观材料,其中的一种材料被称作基体,其它的材料称作纤维。

其中纤维可以包含很多不同的形式:离散的宏观粒子,任意方向的短纤维,规则排列的纤维和织物。

1)单向纤维层合板----冲击分析2)编织复合材料---- 挤压分析3)蜂窝夹心复合材料----不可见冲击损伤分析基体和纤维的存在形式以及材料属性对于复合材料的力学行为有着很大的影响。

改变纤维和基体的属性目的就是在于生成一种复合材料具有如下性质:1)低成本:原型,大规模生产,零件合并,维修,技术成熟。

2)期望的重量:轻重量,比重分配合理。

3)改进的强度和刚度:高强度/高刚度比。

4)改进的表面属性:良好的耐腐蚀性,表面抛光性好。

5)期望的热属性:较低的热传导性,热膨胀系数较低。

6)独特的电属性:具有较高的绝缘强度,无磁性。

7)空间适应性:大部件,特殊的几何构型。

4.1.4 复合材料的有限元模拟根据不同的分析目的,可以采用不同的复合材料模拟技术:1)微观模拟:将纤维和基体都分别模拟为可变形连续体。

2)宏观模拟:将复合材料模拟为一个正交各向异性体或是完全各向异性体。

3)混合模拟:将复合材料模拟为一系列离散、可见的纤维层合板。

4)离散纤维模拟:采用离散单元或是其它模拟工具进行模拟。

5)子模型模拟:对于研究加强纤维周围点的应力集中问题比较有效。

微观模拟:纤维-基体的单胞模拟混合模拟:层合板的混合模拟Abaqus中复合材料的单元技术Abaqus中复合材料的单元技术主要为三种:分层壳单元、分层实体单元以及实体壳单元。

abaqus复合材料失效子程序

abaqus复合材料失效子程序

abaqus复合材料失效子程序摘要:1.复合材料失效子程序概述2.复合材料失效机制3.abaqus中复合材料失效子程序的编写4.应用案例及分析5.总结与展望正文:一、复合材料失效子程序概述复合材料因其优异的力学性能、轻质和高耐疲劳性等特点在各个领域得到了广泛应用。

然而,复合材料的失效分析一直是工程界面临的挑战。

为了更好地预测复合材料的失效行为,本文将介绍如何编写abaqus复合材料失效子程序。

二、复合材料失效机制复合材料的失效机制主要包括以下几点:1.纤维断裂:当复合材料中的纤维承受超过其拉伸强度或剪切强度时,纤维将发生断裂。

2.基体开裂:基体材料在受到外部载荷作用时,可能发生开裂,导致复合材料失效。

3.界面失效:当复合材料中的纤维与基体间的界面结合力不足以承受外部载荷时,界面发生失效。

4.宏观破裂:复合材料在受到外部载荷作用时,可能发生宏观破裂,导致整体失效。

三、abaqus中复合材料失效子程序的编写在abaqus中,可以通过编写复合材料失效子程序来实现对复合材料失效行为的模拟。

具体步骤如下:1.定义材料属性:根据复合材料的组成及性能,定义纤维、基体和界面的材料属性。

2.创建模型:建立复合材料的有限元模型,包括几何形状、边界条件和载荷。

3.编写失效子程序:根据复合材料的失效机制,编写相应的失效子程序。

例如,可以采用用户自定义的应力或应变作为失效判据。

4.求解:应用abaqus求解器,对复合材料模型进行求解。

5.后处理:分析失效模式、失效位置及失效原因。

四、应用案例及分析以下为一个复合材料梁的失效分析案例:1.建立模型:创建一个复合材料梁模型,考虑边界条件及外部载荷。

2.定义材料属性:设置纤维、基体和界面的材料属性。

3.编写失效子程序:根据实验数据,设置失效判据为纤维拉伸强度。

4.求解:对模型进行求解,得到失效模式及失效位置。

5.分析:分析失效原因,发现纤维强度不足是导致失效的主要原因。

五、总结与展望通过编写abaqus复合材料失效子程序,可以有效地预测复合材料的失效行为。

Abaqus复合材料

Abaqus复合材料


Copyright 2008 SIMILIA, Inc.
Virtual Crack Closure Technique (VCCT)
• VCCT • Has been used manually in the aerospace industry for many years • Based on Linear Elastic Fracture Mechanics (LEFM) concepts • Based on computing the energy release rates for normal and shear crack-tip deformation modes • Compare energy release rates to interlaminar fracture toughness
= 1 for B-K (2D shown): mixType
GIIC GIC + (GIIC − GIC ) G +G II I
m n

o
m
= 2 for Power law:
GI GII GIII + + G IC GIIC GIIIC
Solid Mesh
Copyright 2008 SIMILIA, Inc.
实体壳单元
• 实体壳单元是三维应力/位移单元,它的响应同壳类似,但是具有实体的拓扑 • 单元 – SC6R,SC8R • 属性定义 – *SHELL SECTION, COMPOSITE,STACKING DIRECTION={1|2|3|orientation} • 材料定义 – *ELASTIC, TYPE=ISOTROPIC, TYPE=LAMINA

abaqus复合材料

abaqus复合材料

abaqus复合材料复合材料不只是几种材料的混合物。

它具有普通材料所没有的一些特性。

它在潮湿和高温环境,冲击,电化学腐蚀,雷电和电磁屏蔽环境中具有与普通材料不同的特性。

复合材料的结构形式包括层压板,三明治结构,微模型,编织预成型件等。

复合材料的结构和材料具有同一性,并且可以在结构形成时同时确定材料分布。

它的性能与制造过程密切相关,但是制造过程很复杂。

由于复合结构不同层的材料特性不同,复合结构在复杂载荷作用下的破坏模式和破坏准则是多种多样的。

在ABAQUS中,复合材料的分析方法如下1,造型它的结构形式决定了它的建模方法,并且可以使用基于连续体的壳单元和常规壳单元。

复合材料被广泛使用,但是复合材料的建模是一个困难。

铺设复杂的结构光需要一个月2,材料使用薄片类型(层材料)建立材料参数。

材料参数可以工程参数的形式给出,或者材料强度数据可以通过子选项给出。

这种材料仅使用平面应力问题。

ABAQUS可以通过两种方式定义层压板:复合截面定义和复合层压板定义复合截面定义对每个区域使用相同的图层属性。

这样,我们只需要建立壳体组合即可将截面属性分配给二维(在网格中定义的常规壳体元素)或三维(三维的大小应与壳体中给定的厚度一致)。

基于网格中定义的连续体的壳单元)ABAQUS复合材料分析方法介绍复合叠加定义是由复合布局管理器定义的,它主要用于在模型的不同区域中构造不同的层。

因此,应在定义之前对区域进行划分,并且应将不同的层分配给不同的区域。

可以根据常规外壳的元素和属性进行定义。

传统的壳单元定义了每个层的厚度,并将其分配给二维模型。

应该给基于连续体的壳单元或实体单元提供3D模型(厚度是相对于单元长度的系数,因此厚度方向可以分为一层单元)。

提示:堆栈参考坐标系的定义(放置方向)和每个堆栈坐标系的定义(层方向)。

定义正确的层角度,层厚度和层顺序。

ABAQUS无法分析单层法线变化超过90度的情况,因此有必要定义多层。

坐标系可以任意定义。

abaqus复合材料

abaqus复合材料

abaqus复合材料Abaqus复合材料。

Abaqus是一款强大的有限元分析软件,广泛应用于工程领域的结构分析、材料仿真等方面。

在复合材料领域,Abaqus更是被广泛使用,因为它能够准确地模拟复合材料的力学行为,为工程师提供重要的设计和优化信息。

复合材料是由两种或两种以上的材料组成的材料,具有轻质、高强度、耐腐蚀等特点,被广泛应用于航空航天、汽车、船舶、建筑等领域。

Abaqus在复合材料的分析中发挥着重要作用,下面将介绍Abaqus在复合材料分析中的应用。

首先,Abaqus可以准确地模拟复合材料的各向异性特性。

复合材料的各向异性是指材料在不同方向上具有不同的力学性能,这对于工程设计来说是非常重要的。

Abaqus可以通过定义合适的材料模型和参数来准确地描述复合材料的各向异性特性,从而为工程师提供可靠的仿真结果。

其次,Abaqus能够模拟复合材料的损伤和破坏行为。

复合材料在使用过程中会受到各种外部载荷的作用,可能会发生损伤和破坏。

Abaqus可以通过使用适当的本构模型和损伤模型来模拟复合材料的损伤和破坏行为,帮助工程师预测材料的寿命和安全性能。

此外,Abaqus还可以进行复合材料的结构优化设计。

复合材料的结构设计需要考虑材料的各向异性、损伤和破坏行为等因素,这对工程师来说是一个复杂的问题。

Abaqus可以通过结合有限元分析和优化算法,帮助工程师进行复合材料结构的优化设计,提高材料的性能和效率。

总之,Abaqus在复合材料分析中具有重要的应用价值。

它可以准确地模拟复合材料的各向异性特性,损伤和破坏行为,以及进行结构优化设计,为工程师提供重要的设计和优化信息。

相信随着Abaqus软件的不断发展和完善,它在复合材料领域的应用将会更加广泛,为工程设计和科研工作带来更多的便利和帮助。

ABAQUS复材稳定性分析操作说明

ABAQUS复材稳定性分析操作说明

第7章 ABAQUS 复合材料平板稳定性7.3 复合材料平板稳定性计算复合材料具有比强度和比模量高、性能可设计和易于整体成形等诸多优异特性被广泛应用于航天、航空和航海等领域。

下面的以碳纤维树脂基复合材料的层压板为例介绍层压板的建模分析方法。

7.3.1 问题提出本例以层压板为例,600mm ×400mm 复合材料平板,四边简支,在一短边受100N/mm 压缩载荷作用下,进行平板稳定性分析。

板的铺层顺序为:[45/-45/90/0]s ,每层的厚度为0.125mm ,材料属性如表1所示。

表1 复合材料的材料参数表1E2E 3E 12υ 13υ 23υ 12G 13G 23G 144.7GPa 9.65GPa 9.65GPa 0.30 0.30 0.45 5.2GPa 5.2GPa 3.4GPa7.3.2 创建几何部件首先,打开【ABAQUS/CAE 】启动界面,在弹出的【Start Session 】对话框中单击【Create Model Database 】下的【With Standard/Explicit Model 】按钮,启动【ABAQUS/CAE 】。

进入【Part 】模块,单击【Create Part 】,进入如图1界面,选【Modeling Space :3D 】,类型Type: Deformable ,Base Feature: Shape: Shell ,Base Feature: Type: Planar ,Approximate size :1000(草图界面大小,根据所画草图的大小确定),单击【Continue 】按钮进入草图界面。

常按【Create Construction: Oblique Line Thru 2 Points 】弹出【Create Construction: Horizontal Line Thru Point 】单击,选中原点或在界面下方输入坐标“0,0”,建立水平横轴;继续常按【Create Construction: Horizontal Line Thru Point 】弹出【Create Construction: Vertical Line Thru Point 】,同理建立竖轴;单击【Add Constraint 】,弹出【Constraints 】界面单击其中【Fixed 】项,按住Shift 建,然后选中刚建立的横轴和竖轴,单击下方的【Done 】按钮完成对横轴和竖轴的约束。

abaqus复合材料方向定义

abaqus复合材料方向定义

abaqus复合材料方向定义
Abaqus在复合材料方向的应用
复合材料是由两种或两种以上的材料组成的复合材料,具有优异的力学性能和轻质化的特点,因此在航空航天、汽车、船舶等领域得到了广泛的应用。

而Abaqus作为一款强大的有限元分析软件,也在复合材料方向得到了广泛的应用。

Abaqus可以用于复合材料的建模和分析。

在建模方面,Abaqus 提供了多种建模方法,如层合板法、单元法、宏观本构法等,可以根据不同的复合材料结构和应用场景选择合适的建模方法。

在分析方面,Abaqus可以进行静态分析、动态分析、疲劳分析等多种分析,可以对复合材料的力学性能进行全面的评估。

Abaqus可以用于复合材料的优化设计。

在复合材料的设计中,需要考虑多种因素,如材料的强度、刚度、重量、成本等。

Abaqus 可以通过有限元分析和优化算法,对复合材料的设计进行优化,得到最优的设计方案。

Abaqus可以用于复合材料的损伤分析和寿命预测。

复合材料在使用过程中会受到多种因素的影响,如疲劳、冲击、温度等,会导致复合材料的损伤和寿命的降低。

Abaqus可以通过有限元分析和损伤模型,对复合材料的损伤进行分析和预测,为复合材料的使用提供科学的依据。

Abaqus在复合材料方向的应用非常广泛,可以用于复合材料的建模、分析、优化设计、损伤分析和寿命预测等多个方面。

随着复合材料在各个领域的应用越来越广泛,Abaqus在复合材料方向的应用也将越来越重要。

复合材料ABAQUS分析___精讲版

复合材料ABAQUS分析___精讲版

复合材料Abaqus仿真分析——精讲版本文以一个非常简单的复合材料层合板为例,应用Abaqus/CAE对其进行线性静态分析。

一块边长为254mm的方形两层层合板,两层厚度均为2.54mm,第一层铺层角45°,第二层铺层角-45°;板的四边完全固支,板的上表面受到689.4kpa的压强。

各单层的材料相同,材料属性如下:E1=276GPa,E2=6.9GPa,E3=5.2GPa,γ12=0.25,G12=3.4GPa,G13=3.4GPa,G23=3.4G。

定义模型的几何形状创建一个具有平面壳体单元基本特征的三维变形体,在草图环境绘制板的几何形状如下图:定义材料属性和局部材料方向Create coordinate system定义局部坐标系,对于像本例这样的简单几何体,本可以不用另外建立局部坐标系,但笔者还是在本例中用了局部坐标系,主要是考虑到以后再复杂问题中会经常用到这一方法。

创建铺层或者使用菜单栏此处使用全局坐标系使用用户自定义坐标系Rotation angle depends on the coordinate systemdefined by user. Par example, if x-axe in the userdefined system is parallel to the direction of fiber;we should replace the angles by 0 and 90.使用全局坐标系和局部坐标系的区别在下面这一步可以查看如果使用全局坐标系,会有方向指示,如果使用用户自定义坐标系,在层中没有方向指示可以通过’工具——查询’来检查铺层(Tool ---- Q uery----ply stack plot)Case 1 全局坐标系使用局部坐标系生成装配件、定义分析步和输出要求定义分析步,保留各项默认值即可。

场输出要求和历史输出要求都按默认的输出方式。

abaqus变厚度复合材料单元类型

abaqus变厚度复合材料单元类型

abaqus变厚度复合材料单元类型abaqus变厚度复合材料单元类型1. 引言在工程领域中,复合材料广泛应用于结构设计和制造过程中。

abaqus 是一种常用的有限元分析软件,它提供了多种材料模型和单元类型供工程师选择。

其中,变厚度复合材料单元类型在多层厚度可变的复合材料模拟中起着至关重要的作用。

本文将介绍abaqus中常见的变厚度复合材料单元类型,并对其进行评估和分析。

2. 变厚度复合材料单元类型概述变厚度复合材料单元类型用于模拟具有不同层厚度的复合材料结构。

在abaqus中,常见的变厚度复合材料单元类型有以下几种:2.1 SHELL63单元类型SHELL63单元类型是一种平面三角形刚度单元,适用于变厚度复合材料结构的模拟。

该单元类型可以模拟不同层厚度的复合材料,具有较高的计算效率和精度。

2.2 SHELL181单元类型SHELL181单元类型是abaqus中最通用的变厚度复合材料单元类型之一。

它可以模拟包括复合材料在内的各种厚度可变结构。

SHELL181单元类型具有较高的弯曲和剪切刚度,适用于复杂结构的分析。

2.3 COMPOSITE SHELL单元类型COMPOSITE SHELL单元类型是abaqus中专门用于复合材料模拟的单元类型。

它可以模拟复杂的复合材料结构,包括不同层的厚度、纤维角度和层间应力。

COMPOSITE SHELL单元类型充分考虑了复合材料的各向异性特性,适用于复杂的力学分析。

3. 变厚度复合材料单元类型的评估为了全面评估变厚度复合材料单元类型的性能和适用性,我们需要考虑以下几个方面:3.1 计算效率计算效率是评估单元类型的重要指标之一。

SHELL63单元类型具有较高的计算效率,适用于大型模型的快速分析。

SHELL181单元类型计算效率较低,适用于中小型模型的分析。

COMPOSITE SHELL单元类型具有较高的计算效率,适用于复杂模型的分析。

3.2 精度精度是评估单元类型的另一个重要指标。

abaqus复合材料计算

abaqus复合材料计算

abaqus复合材料计算【实用版】目录1.引言2.Abaqus 软件介绍3.复合材料概述4.Abaqus 复合材料计算方法5.复合材料计算应用案例6.总结正文1.引言随着科技的不断发展,复合材料在航空航天、汽车、新能源等领域的应用越来越广泛。

为了提高复合材料的性能和降低成本,研究人员需要对其进行深入的研究。

Abaqus 是一款广泛应用于材料力学分析和计算的软件,可以为研究人员提供强大的复合材料计算功能。

本文将介绍 Abaqus 软件及其在复合材料计算方面的应用。

2.Abaqus 软件介绍Abaqus 是一款法国达索系统公司开发的大型通用有限元分析软件,广泛应用于各种工程领域。

它提供了一个图形用户界面和一个脚本接口,用户可以通过这两种方式进行模型的创建、编辑和分析。

Abaqus 支持多种材料模型和求解器,可以解决从简单的线性问题到复杂的非线性、非均匀、瞬态和动力学问题。

3.复合材料概述复合材料是由两种或两种以上不同性质的材料通过一定的方式组合而成的新材料,它具有较好的综合性能。

复合材料的性能可以通过调整组成、结构和工艺来实现优化。

复合材料主要包括纤维增强复合材料、颗粒增强复合材料和纳米增强复合材料等。

4.Abaqus 复合材料计算方法Abaqus 提供了丰富的复合材料计算方法,包括:(1) 纤维增强复合材料:Abaqus 支持多种纤维增强复合材料的计算,如单层板、多层板、蜂窝结构等。

用户可以根据实际需求选择相应的模型进行计算。

(2) 颗粒增强复合材料:Abaqus 提供了颗粒增强复合材料的体积分数和形状分布控制功能,用户可以根据实际需求创建颗粒增强复合材料模型。

(3) 纳米增强复合材料:Abaqus 支持纳米增强复合材料的计算,可以模拟纳米颗粒在基体中的分布和作用。

5.复合材料计算应用案例Abaqus 在复合材料计算方面的应用案例非常丰富,以下举两个例子:(1) 飞机机翼的复合材料结构分析:通过 Abaqus 软件,研究人员可以对飞机机翼的复合材料结构进行静力学和动力学分析,以评估机翼在飞行过程中的性能和安全性。

ABAQUS复合材料仿真到底有多强

ABAQUS复合材料仿真到底有多强

ABAQUS复合材料仿真到底有多强复合材料具有制造工艺简单、重量轻、比强度高、比刚度大、耐腐蚀等特点,因而其在航空航天、汽车、船舶等领域,都有着广泛的应用。

复合材料的大量应用对分析技术提出新的挑战。

Abaqus针对复合材料的应用有许多独特的优势,包括前后处理建模、静强度分析(包括稳定性分析)、热分析、碰撞分析、失效分析、以及断裂分析等。

一、复合材料固化成型复合材料热固化的过程,可以认为是复合材料预浸料经历一系列温度变化的热固耦合过程。

典型的温度变化过程为:由室温升温30分钟到185℃,保持1个小时,继续升温到195℃,保持2个小时,然后降温到70℃以下。

整个过程可以采用热固耦合分析,由于基体材料和纤维增强材料的热膨胀系数不一样,一系列的温度变化导致热应力产生,致使结构发生翘曲变形。

下图表示的是采用Abaqus中的热固耦合功能分析某复合材料结构在热固化后结构发生变形。

二、复合材料后屈曲行为模拟许多情况下复合材料层合板的屈曲以及后屈曲行为是要重点考虑的。

Abaqus/Standard中Buckling和Riks分析步能够很好的模拟屈曲行为。

三、 Abaqus中复合材料的失效准则和损伤模型Abaqus中的复合材料失效准则主要有:ü MSTRS 最大应力理论失效准则ü TSAIH Tsai-Hill理论失效准则ü TSAIW Tsai-Wu理论失效准则ü AZZIT Azzi-Tsai-Hill理论失效准则ü MSTRIN 最大应变理论失效准则四、 Abaqus中复合材料分层破坏的模拟复合材料的分层破坏是很严重的失效形式。

如何有效的模拟复合材料的分层破坏,是很重要的问题。

Abaqus中复合材料分层破坏的模拟有两种方式:VCCT(虚拟裂纹闭合技术)和Cohesive技术。

虚拟裂纹闭合技术(VCCT)VCCT基于线弹性断裂力学的概念,通过计算不同形式裂纹尖端的能力释放率,与复合材料层间开裂的临界能量释放率相比较。

复合材料的abaqus建模

复合材料的abaqus建模
6、宏观建模时通常用于研究结构失效(屈服),不 考虑材料失效(分层、脱粘)。
7、宏观模型计算量较小,相对来说比较简单,适用于 分析较简单的问题。
3
混合模型
在混合建模时可以把复合材料分成若干层每一层的材料 属性都为各向异性,也可以把复合材料建成连续的几层。复 合材料在混合建模时又可以选择不同的单元如:层和壳单元、 连续壳单元、连续薄壳网格单元以及连续实体单元。在仿真 时应了解每种单元的优缺点根据实际问题选择最佳方案,以 求仿真结果的准确性。
2020/4/9
7
在定义复合材料的属性时有三个方向需要注意: 1、Layup orientation 2、Ply orientation 3、Additional rotation
2020/4/9
8
独立的网格部件可以利用节点偏移生成一层或者几层实体单元,实体 单元衍生的方向是沿着部件的法线方向。
2、连续实体单元
1、 复合材料用实体单元仿真时仅限于用立体的六面体单元,这种单元只有 位移上的自由度。 2、连续实体单元大都用于简单的复合材料建模或者作为辅助单元和连续壳 单元一起应用于复合材料的建模。
3、但在下列情况时必须要采用连续实体单元建模:横向剪切应力占主导作 用时、不能忽略正应力时以及需要精确的层间应力时。
2复合材料通常被认为是弹性的3各向异性塑性模型通常用来仿真复合材料的非弹性变形4它的形变场是均匀的5宏观建模是用来模拟复合材料的整体行为以此建模时材料的非线性以及局部失效都不被考虑进去6宏观建模时通常用于研究结构失效屈服不考虑材料失效分层脱粘
复合材料的建模
2
1
复 合 材 料 建 模 的 三 种 常 用 模 型
对实体部件进行优化 并将其转变成薄壳
画网格并将其 变成网格部件

abaqus复合材料建模材料参数

abaqus复合材料建模材料参数

Abaqus复合材料建模材料参数一、引言本文档旨在介绍如何在A ba qu s中建立复合材料模型以及相应的材料参数设置。

复合材料是由两种或两种以上不同性质的材料按一定的方式组合而成,具有轻质、高强度、高模量等特点,在航空航天、汽车工程等领域得到广泛应用。

二、复合材料建模方法1.宏观模型在A ba qu s中,建立复合材料模型的一种常用方法是使用宏观模型。

该方法将复合材料视为等效各向同性材料,通过指定等效材料的弹性常数和热膨胀系数来描述其宏观性能。

2.细观模型对于复材的更精细模拟,可以采用细观模型。

细观模型考虑了材料内部的细观数值,常用的方法包括单元层模型和单元纤维模型。

三、复合材料模型参数设置1.宏观模型参数设置宏观模型中的材料参数包括弹性常数和热膨胀系数。

弹性常数包括Y o un g'sM od ul us(杨氏模量)、Sh ea rM o du lu s(剪切模量)和P o is so n'sR at io(泊松比)。

热膨胀系数描述了材料在温度变化时的尺寸变化情况。

2.细观模型参数设置在细观模型中,除了上述宏观模型参数外,还需要设置与材料内部细观数值相关的参数。

例如,单元层模型需要设定层间剪切刚度和层内剪切刚度,单元纤维模型需要设置纤维体积分数、纤维方向和纤维间隔等。

四、复合材料模型示例下面通过一个简单的示例来说明复合材料模型的建立和参数设置过程。

1.示例问题描述考虑一个平面应力状态下的复合材料层合板,包含两层材料:上层为碳纤维复合材料,下层为环氧树脂基复合材料。

2.宏观模型参数设置示例对于这个示例,我们可以使用宏观模型来建立模型。

假设上层和下层材料的弹性常数已知,分别为:上层材料:-Y ou ng's Mo du lu s:200G Pa-S he ar Mo du lu s:80G P a-P oi ss on's Ra ti o:0.2下层材料:-Y ou ng's Mo du lu s:50GP a-S he ar Mo du lu s:20G P a-P oi ss on's Ra ti o:0.3同时,我们需要给定材料的热膨胀系数,用于考虑温度变化对材料性能的影响。

abaqus复合材料的堆叠方向

abaqus复合材料的堆叠方向

一、概述随着工程材料科学的发展,复合材料作为一种新型材料得到了广泛的应用。

它具有重量轻、强度高、耐腐蚀等优点,因此在航空航天、汽车、船舶、建筑等领域得到了广泛的应用。

在abaqus有限元分析中,复合材料的堆叠方向对材料的性能有着重要的影响。

二、复合材料的堆叠方向1. 定义复合材料的堆叠方向是指复合材料中纤维的排列方向。

通常复合材料是由多个方向不同的纤维叠加而成,这些纤维的堆叠方向对材料的力学性能、传热性能、电磁性能等都有着重要的影响。

2. 堆叠方向的分类复合材料的堆叠方向通常可以分为单向堆叠、双向堆叠和多向堆叠三种。

- 单向堆叠单向堆叠是指所有的纤维都沿着同一个方向排列。

这种堆叠方式使得复合材料在这个方向上具有很高的强度,但在垂直于这个方向的力学性能较差。

- 双向堆叠双向堆叠是指复合材料中的纤维沿着两个方向排列。

这种堆叠方式可以使得复合材料在这两个方向上都有较高的强度,但是强度方向较多向堆叠要弱。

- 多向堆叠多向堆叠是指复合材料中的纤维沿着多个方向排列。

这种堆叠方式可以使得复合材料在多个方向上都有较高的强度,但在特定方向上的强度较单向堆叠要弱。

3. 堆叠方向的选择选择合适的堆叠方向可以使得复合材料在特定的应用场合有更好的性能。

- 在承受受拉力较大的部位,可以选择单向堆叠,以获得更高的拉伸强度。

- 在承受受压力较大的部位,可以选择双向堆叠,以获得更高的压缩强度。

- 在需要在多个方向上具有较高强度的部位,可以选择多向堆叠。

三、abaqus中的堆叠方向模拟在使用abaqus进行复合材料的有限元分析时,需要考虑材料的堆叠方向对模拟结果的影响。

1. 材料定义在abaqus中,需要在材料定义中指定复合材料的堆叠方向。

可以通过指定纤维角度、纤维取向等参数来定义复合材料的堆叠方向。

2. 模拟设置在进行有限元分析时,需要在模拟设置中考虑复合材料的堆叠方向。

可以通过定义材料的各向异性参数、指定材料的弹性模量、屈服强度等参数来考虑堆叠方向对模拟结果的影响。

Abaqus中的复合材料分析

Abaqus中的复合材料分析

Abaqus中的复合材料分析Abaqus提供了不同方式对复合结构进行建模的功能。

根据被建模的复合材料的类型,可用的材料数据,边界条件以及期望的结果,某种特定方法可能比其他方法更好。

什么是复合结构?复合材料是嵌入基质材料内的增强材料的宏观混合物。

复合结构由复合材料制成,并且可以具有许多形式,如单向纤维复合材料,织物或蜂窝结构。

Abaqus使用几种不同的方法来模拟复合结构1)微观:在这种方法中,基体和增强材料被建模为单独的可变形连续体2)宏观:在这种方法中,基体和增强材料被建模为整体可变形连续体。

当单个纤维的微观行为及其与基体的相互作用不太重要的时,可以使用这种方法。

3)混合建模:在该方法中,复合结构被建模为单一正交各向异性(或各向异性)材料。

当结构的整体行为比微观层面的行为更重要时,这一点很重要。

单个材料定义(通常是各向异性的)足以预测全局行为。

复合材料层压板的分析:复合层压材料由多层制成。

每层具有独自的厚度,并且每层中的增强纤维以不同方式对齐。

布置层以形成层压板的顺序称为叠层或堆叠顺序。

在Abaqus中对此进行建模的最简单方法是使用混合建模方法。

这将包括为每个层定义正交各向异性,厚度,纤维取向和堆叠顺序,这反过来又决定其结构行为。

通常,层压性能直接从实验或其他应用中获得。

这些性质可以是A,B,D基质的形式,其定义了层压材料的刚度。

在这种情况下,宏观方法可用于层压板的结构分析。

这种方法在本质上可以被认为是宏观的,因为在Abaqus部分定义中导出并使用等效的截面属性。

还可以认为它是一种混合建模方法,因为截面刚度是基于层板铺设得出的。

下面的示例显示了A,B,D矩阵是如何从可用的上层信息中派生出来的,并在Abaqus的General Shell Section定义中使用。

经典层压理论的假设:这里显示的层压复合材料的宏观建模方法基于经典层压理论(CLT)。

为了准确实现CLT,假设需要满足:·通过层压材料的厚度的位移分量是连续的,并且在层压材料的相邻层之间没有滑动。

abaqus复合材料单元类型

abaqus复合材料单元类型

文章标题:深度解析abaqus中的复合材料单元类型在abaqus中,复合材料单元类型是一个重要而复杂的主题。

复合材料在工程实践中被广泛应用,因此了解abaqus中的复合材料单元类型对于工程师和研究人员来说至关重要。

本文将深入探讨abaqus中的复合材料单元类型,包括其基本概念、应用场景和特点,并结合个人观点和理解对其进行综合评价。

一、基本概念1.1 什么是abaqus中的复合材料单元类型在abaqus中,复合材料单元类型是一种用于描述复合材料行为的元素类型,它可以模拟复合材料在受力下的力学性能和应力分布。

复合材料单元类型可以根据不同的复合材料材料特性和几何形态进行选择和调整,以实现对复合材料结构的准确建模和分析。

1.2 复合材料单元类型的分类abaqus中的复合材料单元类型按照不同的材料特性和结构形态可以分为多种类型,包括但不限于壳单元、梁单元和体单元等。

每种类型的复合材料单元都有其独特的特点和适用范围,工程实践中需要根据具体情况进行选择和使用。

二、应用场景和特点2.1 复合材料单元类型的应用场景在实际工程中,复合材料单元类型可以广泛应用于航空航天、汽车制造、船舶工程等领域。

在航空航天领域的飞机结构设计中,复合材料单元类型可以用于模拟飞机机翼、机身等复合材料结构在受力状态下的应力分布和变形情况,为结构设计和强度分析提供重要参考。

2.2 复合材料单元类型的特点复合材料单元类型具有高度的可调性和精度,可以满足复材料结构分析的高要求。

复合材料单元类型还具有较强的通用性和适应性,在不同的复合材料结构和受力条件下都能够发挥良好的模拟效果。

这使得工程师和研究人员可以更加灵活和准确地进行复合材料结构分析和设计优化。

三、个人观点和理解作为一名工程师,我深知复合材料在现代工程实践中的重要性和广泛应用。

abaqus中的复合材料单元类型为工程师提供了强大的分析工具,使得我们能够更加准确地理解和预测复合材料结构的力学行为。

复合材料的abaqus建模

复合材料的abaqus建模

1、 连续壳单元
连续壳单元适用于较薄的结构,在线弹性范围内和非线弹性范围内均 可适用,它的分析结果比传统壳单元更加准确。
传统壳单元
位移和角度方向都 不受约束
被建模的物体
连续壳单元
仅位移方向不受约束
在abaqus中连续壳单元的拓扑结构包括两种:
面5 面2 面2 面5
面6
面4 面4 面1 面3 面1
面3
SC6R
SC8R
六节点三角形单元和八节点六面体单元它们在堆积(厚度)方向的运动响应 有所不同。再用SC8R时它的堆积方向有限元软件容易混淆,所以要定义清楚
而对SC6R单元它的每一个面都可以当成底面。 应用连续壳单元时的局限性: 1、建模时若采用连续壳单元则不能用于分析超弹性材料。 2、在分析同一个问题时连续壳单元和传统壳单元相比 增量步会明显增加。对于很薄的壳,在计算分析时 很难达到收敛。
利用节点偏移 产生实体单元给网格属性利用独立网格部件建模:
连续壳单元建模实例:
6、宏观建模时通常用于研究结构失效(屈服),不 考虑材料失效(分层、脱粘)。 7、宏观模型计算量较小,相对来说比较简单,适用于 分析较简单的问题。
混合模型
在混合建模时可以把复合材料分成若干层每一层的材料 属性都为各向异性,也可以把复合材料建成连续的几层。复 合材料在混合建模时又可以选择不同的单元如:层和壳单元、 连续壳单元、连续薄壳网格单元以及连续实体单元。在仿真 时应了解每种单元的优缺点根据实际问题选择最佳方案,以 求仿真结果的准确性。
复合材料的建模
复 合 材 料 建 模 的 三 种 常 用 模 型
1、 微观模型:把基体和增强材料 都作为连续的可变性体进行独立 建模,通常在仿真中用到较少。

Abaqus中复合材料弹性属性的设定

Abaqus中复合材料弹性属性的设定

一、定义材料的刚度矩阵从弹性力学理论可以知道,各向异性材料的刚度矩阵由于有对称性,刚度系数有最初的36个减少到21个,如下图:在实际应用中,大多数工程材料都有对称的内部结构,因此材料具有弹性对称性,这种对称性可以进一步简化上述的刚度矩阵。

1、有一个弹性对称面的材料(如结晶学中的单斜体)例如取x-y平面为对称面,则D1112= D1113= D2212= D2213= D3312= D3313= D1223= D1323=0,刚度系数又减少8个,剩下13个。

2、有两个正交(相互垂直)弹性对称面的材料例如进一步取x-z平面为对称面,则D1123= D2223= D3323= D1213=0,刚度系数又减少4个,剩下9个,如下图:在Abaqus编辑材料中进行个刚度系数的设定。

3、有三个正交弹性对称面的材料如果材料有三个相互垂直的弹性对称面,没有新的刚度系数为零,也只有9个。

4、横观各项同性材料若经过弹性体材料一轴线,在垂直该轴线的平面内,各点的弹性性能在各方向上都相同,我们称此材料横观各向同性材料,如单向复合材料。

对于这种材料最终的刚度系数只剩下D1111,D1122,D1133,D3333,D1212五项,其余各项均为零。

在复合材料中,经常遇到正交各项异性和横观各项同性两种材料。

二、定义材料工程弹性常数通过指定工程弹性常数定义线弹性正交各向异性材料是最便捷的一种方法,根据复合材料力学理论,用工程弹性常数表示的柔度矩阵表示如下:其中,γij/Ei=γji/Ej,所以用9个独立弹性常数可以表征材料属性,即三个材料主方向上的弹性模量E1,E2,E3,三个泊松比γ12,γ13,γ23,三个平面内的剪切弹性模量G12,G13,G23。

例如测得复合材料一组材料数据为:E1=39GPa,E2=8.4GPa,E3=5.2GPa,γ12=0.26,γ13=0.3,γ23=0.28,G12=4.2GPa,G13=3.6GPa,G23=2.4GPa(随便给出的)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

复合材料不只是几种材料的混合物。

它具有普通材料所没有的一些特性。

它在潮湿和高温环境,冲击,电化学腐蚀,雷电和电磁屏蔽环境中具有与普通材料不同的特性。

复合材料的结构形式包括层压板,三明治结构,微模型,编织预成型件等。

复合材料的结构和材料具有同一性,并且可以在结构形成时同时确定材料分布。

它的性能与制造过程密切相关,但是制造过程很复杂。

由于复合结构不同层的材料特性不同,复合结构在复杂载荷作用下的破坏模式和破坏准则是多种多样的。

在ABAQUS中,复合材料的分析方法如下
1,造型
它的结构形式决定了它的建模方法,并且可以使用基于连续体的壳单元和常规壳单元。

复合材料被广泛使用,但是复合材料的建模是一个困难。

铺设复杂的结构光需要一个月
2,材料
使用薄片类型(层材料)建立材料参数。

材料参数可以工程参数的形式给出,或者材料强度数据可以通过子选项给出。

这种材料仅使用平面应力问题。

ABAQUS可以通过两种方式定义层压板:复合截面定义和复合层压板定义
复合截面定义对每个区域使用相同的图层属性。

这样,我们只需要建立壳体组合即可将截面属性分配给二维(在网格中定义的常规壳体元素)或三维(三维的大小应与壳体中给定的厚度一致)。

基于网格中定义的连续体的壳单元)
ABAQUS复合材料分析方法介绍
复合叠加定义是由复合布局管理器定义的,它主要用于在模型的不同区域中构造不同的层。

因此,应在定义之前对区域进行划分,并且应将不同的层分配给不同的区域。

可以根据常规外壳的元素和属性进行定义。

传统的壳单元定义了每个层的厚度,并将其分配给二维模型。

应该给基于连续体的壳单元或实体单元提供3D模型(厚度是相对于单元长度的系数,因此厚度方向可以分为一层单元)。

提示:堆栈参考坐标系的定义(放置方向)和每个堆栈坐标系的定义(层方向)。

定义正确的层角度,层厚度和层顺序。

ABAQUS无法分析单层法线变化超过90度的情况,因此有必要定义多层。

坐标系可以任意定义。

选择后,可以定义绕轴的旋转角度以获得正确的坐标系。

ABAQUS复合材料分析方法介绍
经典示例:
ABAQUS复合材料分析方法介绍
型号说明:简支夹心结构,复合板的1/4模型。

正常法向压力均匀地加载在板上。

它分为三层:两层硬皮和一层软芯
材料常数如下:E1 = 1.0×107 psi,E2 = 4.0×106 psi,R12 = 0.3,G12 = G13 = G23 = 1.875×106 psi。

核心:E1 = 10.0 psi,E2 = 10.0 psi,r12 = 0,G12 = G13 = G23 = 1.875×106 psi 可用的建模方法如下:
1.传统壳单元模型:36个S4R单元49个节点
2.连续壳元素模型:36个sc8r元素98个节点
3.纯连续壳元素模型:108个sc8r元素196个节点
4.连续壳单元模型和传统单元模型混合模型108个单元(72个S4R,36个sc8r),98个节点。

相关文档
最新文档