总复习-1矩阵与行列式

合集下载

矩阵与行列式解析矩阵与行列式的性质与运算规律

矩阵与行列式解析矩阵与行列式的性质与运算规律

矩阵与行列式解析矩阵与行列式的性质与运算规律矩阵和行列式是线性代数中重要的概念和工具。

它们在数学、物理、工程等领域都有广泛的应用。

本文将详细解析矩阵与行列式的性质和运算规律。

一、矩阵的性质与运算规律1. 矩阵的定义矩阵是一个按照长方阵列排列的数。

它由m行n列元素组成,记作A=(a_ij),其中1≤i≤m,1≤j≤n。

矩阵的行数和列数分别称为矩阵的阶数或维数。

2. 矩阵的运算规律2.1 矩阵的加法和减法设A=(a_ij)和B=(b_ij)是两个同阶矩阵,则它们的和C=A+B的定义为C=(c_ij),其中c_ij=a_ij+b_ij。

矩阵的减法定义类似。

2.2 矩阵的数乘设A=(a_ij)是一个矩阵,k是一个数,则kA的定义为kA=(ka_ij),其中ka_ij=ka_ij。

2.3 矩阵的乘法设A=(a_ij)是一个m行n列的矩阵,B=(b_ij)是一个n行p列的矩阵,则它们的乘积C=AB的定义为C=(c_ij),其中c_ij=a_i1b_1j+...+a_inb_nj。

3. 矩阵的性质3.1 矩阵的转置设A=(a_ij)是一个m行n列的矩阵,A的转置记作A^T,定义为A^T=(a_ji)是一个n行m列的矩阵。

3.2 矩阵的逆设A是一个n阶方阵,若存在一个n阶方阵B,使得AB=BA=I,其中I为单位矩阵,则称矩阵A可逆,B为A的逆矩阵。

若A不可逆,则称为奇异矩阵。

3.3 矩阵的行列式矩阵A的行列式记作|A|,行列式是一个标量,它由矩阵元素按一定规则计算而得。

行列式的性质包括行列式的加法性、数乘性、转置性等。

二、行列式的性质与运算规律1. 行列式的定义行列式是一个方阵的特征值之一。

设A=(a_ij)是一个n阶方阵,行列式的定义为|A|=a_11a_22...a_nn-a_11a_23...a_n(n-1)-...-a_1n-1a_2n...a_n。

2. 行列式的运算规律2.1 行列式的数乘若k是数,A是n阶方阵,则kA的行列式等于k的n次方乘以A 的行列式,即|kA|=k^n|A|。

线性代数知识点总结

线性代数知识点总结

大学线性代数知识点总结第一章 行列式 二三阶行列式N 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和 n nn nj j j j j j j j j n ij a a a a ...)1(21212121)..(∑-=τ奇偶排列、逆序数、对换行列式的性质:①行列式行列互换,其值不变.转置行列式T D D = ②行列式中某两行列互换,行列式变号.推论:若行列式中某两行列对应元素相等,则行列式等于零. ③常数k 乘以行列式的某一行列,等于k 乘以此行列式. 推论:若行列式中两行列成比例,则行列式值为零; 推论:行列式中某一行列元素全为零,行列式为零. ④行列式具有分行列可加性⑤将行列式某一行列的k 倍加到另一行列上,值不变 行列式依行列展开:余子式ij M 、代数余子式ij j i ij M A +-=)1(定理:行列式中某一行的元素与另一行元素对应余子式乘积之和为零.克莱姆法则:非齐次线性方程组 :当系数行列式0≠D 时,有唯一解:)21(n j DD x j j ⋯⋯==、齐次线性方程组 :当系数行列式01≠=D 时,则只有零解逆否:若方程组存在非零解,则D 等于零特殊行列式:①转置行列式:332313322212312111333231232221131211a a a a a a a a a a a a a a a a a a → ②对称行列式:ji ij a a =③反对称行列式:ji ij a a -= 奇数阶的反对称行列式值为零④三线性行列式:3331222113121100a a a a a a a 方法:用221a k 把21a 化为零,..化为三角形行列式⑤上下三角形行列式: 行列式运算常用方法主要行列式定义法二三阶或零元素多的 化零法比例化三角形行列式法、降阶法、升阶法、归纳法、第二章 矩阵矩阵的概念:n m A *零矩阵、负矩阵、行矩阵、列矩阵、n 阶方阵、相等矩阵矩阵的运算:加法同型矩阵---------交换、结合律 数乘n m ij ka kA *)(=---------分配、结合律乘法nm lkj ik n l kj l m ik b a b a B A *1**)()(*)(*∑==注意什么时候有意义一般AB=BA,不满足消去律;由AB=0,不能得A=0或B=0转置A A T T =)( T T T B A B A +=+)( T T kA kA =)( T T T A B AB =)(反序定理 方幂:2121k k k k A A A +=2121)(k k k kA A +=几种特殊的矩阵:对角矩阵:若AB 都是N 阶对角阵,k 是数,则kA 、A+B 、 AB 都是n 阶对角阵 数量矩阵:相当于一个数若…… 单位矩阵、上下三角形矩阵若…… 对称矩阵 反对称矩阵阶梯型矩阵:每一非零行左数第一个非零元素所在列的下方 都是0 分块矩阵:加法,数乘,乘法:类似,转置:每块转置并且每个子块也要转置注:把分出来的小块矩阵看成是元素逆矩阵:设A 是N 阶方阵,若存在N 阶矩阵B 的AB=BA=I 则称A 是可逆的, B A =-1非奇异矩阵、奇异矩阵|A|=0、伴随矩阵 初等变换1、交换两行列 2.、非零k 乘某一行列3、将某行列的K 倍加到另一行列初等变换不改变矩阵的可逆性 初等矩阵都可逆初等矩阵:单位矩阵经过一次初等变换得到的对换阵 倍乘阵 倍加阵等价标准形矩阵⎪⎪⎭⎫⎝⎛=O O O I D r r矩阵的秩rA :满秩矩阵 降秩矩阵 若A 可逆,则满秩 若A 是非奇异矩阵,则rAB=rB 初等变换不改变矩阵的秩求法:1定义2转化为标准式或阶梯形矩阵与行列式的联系与区别:都是数表;行列式行数列数一样,矩阵不一样;行列式最终是一个数,只要值相等,就相等,矩阵是一个数表,对应元素相等才相等;矩阵n ij n ij a k ka )()(=,行列式n ij nn ij a k ka =逆矩阵注:①AB=BA=I 则A 与B 一定是方阵 ②BA=AB=I 则A 与B 一定互逆;③不是所有的方阵都存在逆矩阵;④若A 可逆,则其逆矩阵是唯一的.矩阵的逆矩阵满足的运算律:1、可逆矩阵A 的逆矩阵也是可逆的,且A A =--11)(2、可逆矩阵A 的数乘矩阵kA 也是可逆的,且111)(--=A kkA 3、可逆矩阵A 的转置T A 也是可逆的,且T T A A )()(11--=4、两个可逆矩阵A 与B 的乘积AB 也是可逆的,且111)(---=A B AB 但是两个可逆矩阵A 与B 的和A+B 不一定可逆,即使可逆,但11)(--+≠+B A B AA 为N 阶方阵,若|A|=0,则称A 为奇异矩阵,否则为非奇异矩阵. 5、若A 可逆,则11--=A A伴随矩阵:A 为N 阶方阵,伴随矩阵:⎪⎪⎭⎫⎝⎛=22211211*A A A A A 代数余子式 特殊矩阵的逆矩阵:对1和2,前提是每个矩阵都可逆1、分块矩阵⎪⎪⎭⎫ ⎝⎛=C O B A D 则⎪⎪⎭⎫ ⎝⎛-=-----11111C O BC A AD 2、准对角矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=4321A A A A A , 则⎪⎪⎪⎪⎪⎭⎫⎝⎛=-----141312111A A A A A 3、 I A A A AA ==** 4、1*-=A A A A 可逆 5、1*-=n A A 6、()()A AA A 1*11*==--A 可逆7、()()**T TA A = 8、()***AB AB =判断矩阵是否可逆:充要条件是0≠A ,此时*11A AA =- 求逆矩阵的方法:定义法I AA =-1伴随矩阵法AA A *1=-初等变换法()()1||-=A I I A n n 只能是行变换初等矩阵与矩阵乘法的关系: 设()nm ij aA *=是mn 阶矩阵,则对A 的行实行一次初等变换得到的矩阵,等于用同等的m 阶初等矩阵左乘以A :对A 的列实行一次初等变换得到的矩阵,等于用同种n 阶初等矩阵右乘以A 行变左乘,列变右乘第三章 线性方程组消元法 非齐次线性方程组:增广矩阵→简化阶梯型矩阵rAB=rB=r 当r=n 时,有唯一解;当n r ≠时,有无穷多解 rAB ≠rB,无解齐次线性方程组:仅有零解充要rA=n 有非零解充要rA<n 当齐次线性方程组方程个数<未知量个数,一定有非零解 当齐次线性方程组方程个数=未知量个数,有非零解充要|A|=0齐次线性方程组若有零解,一定是无穷多个N 维向量:由n 个实数组成的n 元有序数组.希腊字母表示加法数乘 特殊的向量:行列向量,零向量θ,负向量,相等向量,转置向量 向量间的线性关系: 线性组合或线性表示向量组间的线性相关无:定义179P向量组的秩:极大无关组定义P188定理:如果rj j j ααα,.....,21是向量组s ααα,.....,21的线性无关的部分组,则它是 极大无关组的充要条件是:s ααα,.....,21中的每一个向量都可由rj j j ααα,.....,21线性表出.秩:极大无关组中所含的向量个数.定理:设A 为mn 矩阵,则r A r =)(的充要条件是:A 的列行秩为r.现性方程组解的结构:齐次非齐次、基础解系线性组合或线性表示注:两个向量αβ,若βαk =则α是β线性组合单位向量组任意向量都是单位向量组的线性组合 零向量是任意向量组的线性组合任意向量组中的一个都是他本身的线性组合 向量组间的线性相关无注: n 个n 维单位向量组一定是线性无关 一个非零向量是线性无关,零向量是线性相关 含有零向量的向量组一定是线性相关 若两个向量成比例,则他们一定线性相关向量β可由n ααα,..,21线性表示的充要条件是)...()...(2121T Tn TTTnTTr r βαααααα=判断是否为线性相关的方法:1、定义法:设n k k k ....21,求n k k k ....21适合维数低的2、向量间关系法183P :部分相关则整体相关,整体无关则部分无关3、分量法n 个m 维向量组180P :线性相关充要n r Tn T T <⇒)....(21ααα 线性无关充要n r T n T T =⇒)....(21ααα推论①当m=n 时,相关,则0321=T T T ααα;无关,则0321≠T T T ααα ②当m<n 时,线性相关推广:若向量s ααα,...,21组线性无关,则当s 为奇数时,向量组13221,...,αααααα+++s 也线性无关;当s 为偶数时,向量组也线性相关.定理:如果向量组βααα,,...,21s 线性相关,则向量β可由向量组s ααα,...,21线性表出,且 表示法唯一的充分必要条件是s ααα,...,21线性无关. 极大无关组注:向量组的极大无关组不是唯一的,但他们所含向量的个数是确定的;不全为零的向量组的极大无关组一定存在; 无关的向量组的极大无关组是其本身; 向量组与其极大无关组是等价的. 齐次线性方程组I 解的结构:解为...,21αα I 的两个解的和21αα+仍是它的解; I 解的任意倍数αk 还是它的解;I 解的线性组合s s c c c ααα+++....2211也是它的解,s c c c ,...,21是任意常数.非齐次线性方程组II 解的结构:解为...,21μμII 的两个解的差21μμ-仍是它的解;若μ是非齐次线性方程组AX=B 的一个解,v 是其导出组AX=O 的一个解,则u+v 是II 的一个解. 定理:如果齐次线性方程组的系数矩阵A 的秩n r A r <=)(,则该方程组的基础解系存在,且在每个基础解系中,恰含有n-r 个解.若μ是非齐次线性方程组AX=B 的一个解,v 是其导出组AX=O 的全部解,则u+v 是II 的全部解.第四章 向量空间向量的内积 实向量定义:α,β=n n T b a b a b a +++=....2211αβ 性质:非负性、对称性、线性性 α,k β=k α,β; k α,k β=2k α,β;α+β,δγ+=α,γ+α,δ+β,γ+β,δ;),(),(1111j i sj j ri i j sj j ri i i l k l k βαβα∑∑∑∑===== n R ∈δγβα,,,,向量的长度),(ααα=0=α的充要条件是α=0;α是单位向量的充要条件是α,α=1单位化 向量的夹角正交向量:αβ是正交向量的充要条件是α,β=0 正交的向量组必定线性无关 正交矩阵:n阶矩阵A I A A AA T T ==性质:1、若A 为正交矩阵,则A可逆,且T A A =-1,且1-A 也是正交矩阵;2、若A 为正交矩阵,则1±=A ;3、若A 、B为同阶正交矩阵,则AB也是正交矩阵; 4、n阶矩阵A=ij a 是正交矩阵的充要条件是A的列行向量组是 标准正交向量;第五章 矩阵的特征值和特征向量 特征值、特征向量A 是N 阶方阵,若数λ使AX=λX,即λI-A=0有非零解,则称λ为A 的一 个特征值,此时,非零解称为A 的属于特征值λ的特征向量. |A|=n λλλ...**21 注: 1、AX=λX2、求特征值、特征向量的方法0=-A I λ 求i λ 将i λ代入λI-AX=0求出所有非零解 3、对于不同的矩阵,有重根、单根、复根、实根主要学习的特殊:n I )(λ的特征向量为任意N 阶非零向量或)(21不全为零i n c c c c ⎪⎪⎪⎭⎫ ⎝⎛4、特征值: 若)0(≠λλ是A 的特征值则1-A --------λ1 则m A --------m λ则kA --------λk若2A =A 则-----------λ=0或1若2A =I 则-----------λ=-1或1若k A =O 则----------λ=0迹trA :迹A=nn a a a +⋯⋯++2211性质:1、N 阶方阵可逆的充要条件是A 的特征值全是非零的2、A 与1-A 有相同的特征值3、N 阶方阵A 的不同特征值所对应的特征向量线性无关4、5、P281相似矩阵定义P283:A 、B 是N 阶矩阵,若存在可逆矩阵P,满足B AP P =-1,则矩阵A 与B 相似,记作A~B性质1、自身性:A~A,P=I2、对称性:若A~B 则B~A B AP P =-1 1-=PBP A A BP P =---111)(3、传递性:若A~B 、B~C 则A~C B AP P =-111 C BP P =-212---C P P A P P =-)()(211214、若AB,则A 与B 同不可逆5、若A~B,则11~--B A B AP P =-1两边同取逆,111---=B P A P6、若A~B,则它们有相同的特征值. 特征值相同的矩阵不一定相似7、若A~B,则)()(B r A r = 初等变换不改变矩阵的秩例子:B AP P =-1则1100100-=P PB AO AP P =-1 A=OI AP P =-1 A=II AP P λ=-1 A=I λ矩阵对角化定理:N 阶矩阵A 与N 阶对角形矩阵相似的充要条件是A 有N 个线性无关的特征向量注:1、P 与^中的i i x λ与顺序一致2、A~^,则^与P 不是唯一的推论:若n 阶方阵A 有n 个互异的特征值,则~^A P281定理:n 阶方阵~^A 的充要条件是对于每一个i K 重特征根i λ,都有i i K n A I r -=-)(λ注:三角形矩阵、数量矩阵I λ的特征值为主对角线.约当形矩阵约当块:形如⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=λλλλ111J 的n 阶矩阵称为n 阶约当块; 约当形矩阵:由若干个约当块组成的对角分块矩阵⎪⎪⎪⎭⎫ ⎝⎛=n J J J J 21i J 是约当块称为约当形矩阵. 定理:任何矩阵A 都相似于一个约当形矩阵,即存在n 阶可逆矩阵J AP P =-1.第六章 二次型二次型与对称矩阵只含有二次项的n 元多项式f 称为一个n 元二次型,简称二次型. 标准型:形如 的二次型,称为标准型.规范型:形如 的二次型,称为规范型.线性变换矩阵的合同:设AB 是n 阶方阵,若存在一个n 阶可逆矩阵C,使得 则称A 与B 是合同的,记作A B.合同的性质:反身性、对称性、传递性、秩、化二次型为标准型:配方法、做变换二次型中不含有平方项。

线性代数--总复习

线性代数--总复习
1 λ + 2 1 −4 − 5λ 1 −2
可见, 当λ=-4/5时, R(A)=2, R(A|b)=3, 方程组无解. 当λ≠-4/5, 且λ≠-1时 R(A)=R(A|b)=3, 方程组有唯一解.
当λ=-1时, 有
1 −1 −2 1 1 −1 0 3 ( A | b) → 0 0 1 1 → 0 0 1 1 0 0 1 1 0 0 0 0
第三章 向量 线性关系 秩
1. 理解n维向量的概念以及向量的线性运算; 2. 理解向量组的线性组合与线性表示的概念; 3. 理解向量组线性相关, 线性无关的定义, 了解并会用 向量组线性相关, 线性无关的有关性质及判别法; 4. 理解向量组的极大线性无关组和向量组的秩的概念, 会求向量组的极大无关组和秩,理解向量组等价的概念; 5. 理解矩阵秩的概念及与向量组秩的关系及其计算.
0 2/3 0 B = 6 0 3/ 4 0 0 0 6/ 7
−1
0 3 0 0 1/ 3 0 = 0 2 0 0 1/ 4 0 0 0 1/ 7 0 0 1
49页:10, 11, 12, 18
第六章 矩阵的特征值与特征向量
1. 了解矩阵的特征值和特征向量的概念及其求法; 2. 了解矩阵的特征值和特征向量的性质; 3. 了解相似矩阵的概念及性质; 4. 掌握将(实对称)矩阵(正交)相似对角化的方法.
第七章 二次型
1. 掌握二次型及其矩阵表示, 了解二次型秩的概念, 了解合同变换与合同矩阵的概念, 了解二次型的标准形和 规范形的概念以及惯性定理; 2. 掌握用正交变换化二次型为标准形的方法, 会用 配方法化二次型为标准形; 3. 理解正定二次型和正定矩阵的概念, 掌握其判别法.

矩阵与行列式的运算与特性总结

矩阵与行列式的运算与特性总结

矩阵与行列式的运算与特性总结矩阵与行列式是线性代数中重要的概念,它们在许多数学和科学领域中都有广泛的应用。

本文将对矩阵与行列式的运算法则和特性进行总结。

一、矩阵的定义与运算矩阵是一个按照矩形排列的数的集合,常用大写字母表示。

一个m×n 的矩阵 A 可以表示为:A = [a[ij]](m×n),其中 a[ij] 表示矩阵 A 的第 i 行第 j 列的元素。

常见的矩阵运算有加法、减法和数乘运算。

1. 矩阵的加法:两个相同大小的矩阵相加,只需对应元素相加。

A +B = [a[ij] + b[ij]](m×n)2. 矩阵的减法:两个相同大小的矩阵相减,只需对应元素相减。

A -B = [a[ij] - b[ij]](m×n)3. 矩阵的数乘:将矩阵的每个元素都乘以一个实数 k。

kA = [ka[ij]](m×n)二、矩阵的乘法矩阵的乘法是一个重要的运算,不同于加法和减法,矩阵的乘法需要满足一定的条件。

设 A 是一个 m×n 的矩阵,B 是一个 n×p 的矩阵,则矩阵 A 与矩阵B 的乘积 C 是一个 m×p 的矩阵,记作 C = AB。

矩阵乘法的计算方法是,C 中第 i 行第 j 列的元素等于矩阵 A 的第 i 行与矩阵 B 的第 j 列对应位置的元素乘积之和。

即 C 的元素 c[ij] 等于 a[i1]×b[1j] + a[i2]×b[2j] + ... + a[in]×b[nj]。

三、行列式的定义、特性与运算行列式是一个与矩阵对应的数,它在线性代数中有广泛的应用,常用竖线括起来表示。

一个 n 阶行列式的定义如下:D = |a[ij]|(n×n),其中 a[ij] 表示行列式 D 的第 i 行第 j 列的元素。

行列式具有以下的特性与运算法则:1. 行列式的性质:(1) 互换行列式的两行(列),行列式的值变号。

线性代数下的行列式和矩阵

线性代数下的行列式和矩阵

线性代数下的行列式和矩阵线性方程组一般有 m 个常数项,n 个未知数,m * n 个系数。

若常数项全为 0 ,则为齐次线性方程组;若未知数全为0 ,则称为零解。

于是我们考虑的问题是:齐次方程组:1.是否存在非零解,以及存在的条件2.通解的结构与性质3.解法非齐次方程组:1.是否有解,以及有解的条件是什么2.有多少解以及对应解数量的条件是什么3.多解的结构与性质4.解法行列式二,三阶行列式行列式的初始作用是解线性方程组!例如:最简单的二元线性方程组\left\{ \begin{aligned} a_{11}x_1 + a_{12}x_2 = b_1 \\ a_{21}x_1 + a_{22}x_2 = b_2 \end{aligned} \right.\Rightarrow 消元 \Rightarrow \left\{ \begin{aligned}x_1 = \frac{b_1a_{22} - b_2a_{12}}{a_{11}a_{22} -a_{12}a_{21}} \\ x_1 = \frac{b_2a_{21} -b_1a_{21}}{a_{11}a_{22} - a_{12}a_{21}} \end{aligned} \right.可以得出结论,答案是由方程的四个系数和常数决定的。

所以记住四个系数作为行列式,指定行列式的值是上式的分母:\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22}\end{bmatrix} = a_{11}a_{22} - a_{12}a_{21}于是有了这么一个行列式之后,我们就可以得到:D = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \ D_1 = \begin{bmatrix} b_1 & a_{12} \\ b_2 & a_{22} \end{bmatrix} \ D_2 = \begin{bmatrix}a_{21} & b_1 \\ a_{21} & b_2 \end{bmatrix} \\Rightarrow \\ x_1 = \frac{D_1}D, x_2 = \frac{D_2}D同理可以推广到三元线性方程组,定义三阶行列式。

考研线性代数知识点全面总结

考研线性代数知识点全面总结

《线性代数》复习提纲第一章、行列式1.行列式的定义:用2n 个元素ij a 组成的记号称为n 阶行列式。

(1)它表示所有可能的取自不同行不同列的n 个元素乘积的代数和; (2)展开式共有n!项,其中符号正负各半;<2.行列式的计算一阶|α|=α行列式,二、三阶行列式有对角线法则; N 阶(n ≥3)行列式的计算:降阶法定理:n 阶行列式的值等于它的任意一行(列)的各元素与其对应的代数余子式乘积的和。

方法:选取比较简单的一行(列),保保留一个非零元素,其余元素化为0,利用定理展开降阶。

~特殊情况:上、下三角形行列式、对角形行列式的值等于主对角线上元素的乘积;◊行列式值为0的几种情况:Ⅰ 行列式某行(列)元素全为0; Ⅱ 行列式某行(列)的对应元素相同;Ⅲ 行列式某行(列)的元素对应成比例; Ⅳ 奇数阶的反对称行列式。

3.概念:全排列、排列的逆序数、奇排列、偶排列、余子式ij M 、代数余子式ij j i ij M A +-=)1(。

定理:一个排列中任意两个元素对换,改变排列的奇偶性。

奇排列变为标准排列的对换次数为基数,偶排列为偶数。

n 阶行列式也可定义:n q q q na a a ⋯=∑21t211-D )(,t 为n q q q ⋯21的逆序数4.行列式性质:1、行列式与其转置行列式相等。

%2、互换行列式两行或两列,行列式变号。

若有两行(列)相等或成比例,则为行列式0。

3、行列式某行(列)乘数k,等于k 乘此行列式。

行列式某行(列)的公因子可提到外面。

4、行列式某行(列)的元素都是两数之和,则此行列式等于两个行列式之和。

5、行列式某行(列)乘一个数加到另一行(列)上,行列式不变。

6、行列式等于他的任一行(列)的各元素与其对应代数余子式的乘积之和。

(按行、列展开法则)}7、行列式某一行(列)与另一行(列)的对应元素的代数余子式乘积之和为0.5.克拉默法则::若线性方程组的系数行列式0D ≠,则方程有且仅有唯一解DD D Dx D D n =⋯==n 2211x ,x ,,。

矩阵的行列式与逆矩阵

矩阵的行列式与逆矩阵

矩阵的行列式与逆矩阵矩阵是线性代数中的一种基本概念,它是由数个数按照矩形排列而成的有限集合。

而矩阵的行列式与逆矩阵是矩阵运算中非常重要的概念与方法。

本文将详细介绍矩阵的行列式以及逆矩阵的定义、性质和计算方法。

1. 矩阵的行列式矩阵的行列式是一个标量,它与矩阵的元素及其排列有关。

对于n 阶方阵A=[a_ij],其中a_ij表示矩阵A的第i行第j列的元素,行列式的定义如下:det(A) = ∑[(-1)^(i+j) * a_ij * det(A_ij)]其中A_ij表示将矩阵A的第i行和第j列剔除后的(n-1)阶矩阵,det(A_ij)表示该(n-1)阶矩阵的行列式。

该定义可以通过递推公式简化计算。

行列式具有很多重要的性质,比如:- 行列式的转置等于行列式本身的值:det(A) = det(A^T)- 行列式相等的矩阵具有相同的行列式:如果A=B,则det(A) = det(B)- 互换矩阵的两行(或两列)会改变行列式的符号:如果B是通过交换A的两行得到的,则det(B) = -det(A)行列式的计算方法包括拉普拉斯展开和三角形展开等,根据矩阵的性质选择最合适的方法进行计算。

2. 逆矩阵对于n阶矩阵A,如果存在一个n阶矩阵B,使得AB=BA=I,其中I为n阶单位矩阵,则称矩阵A为可逆矩阵,矩阵B为矩阵A的逆矩阵,记作A^(-1)。

可逆矩阵一定是方阵。

逆矩阵是矩阵运算中的重要工具,具有以下性质:- 若A为可逆矩阵,则A^(-1)也是可逆矩阵,(A^(-1))^(-1) = A- 若A、B都是可逆矩阵,则AB也是可逆矩阵,(AB)^(-1) = B^(-1)A^(-1)- 若A是可逆矩阵,则det(A)不等于0,且det(A^(-1)) = 1/det(A)逆矩阵的计算方法一般有初等变换法、伴随矩阵法和矩阵的分块法等。

其中初等变换法是最常用的方法,通过对矩阵A施行一系列初等行变换或初等列变换,将其化为阶梯形矩阵,再通过代换求解出逆矩阵。

第十一讲:矩阵、行列式和线性规划期末复习(学生版)

第十一讲:矩阵、行列式和线性规划期末复习(学生版)

知识点一、矩阵的概念:1、矩阵的定义:由m n ⨯个数排成的m 行、n 列的矩形数表叫做矩阵,即111212122212n n m m mn a a a a a a a a a ⎛⎫⎪ ⎪⎪⎪⎝⎭, 矩阵中的每个数ij a (1i m ≤≤,1j n ≤≤,i 、j ∈N *)叫做矩阵的元素,ij a 表示第i 行第j 列上的元素。

矩阵通常用大写字母表示:()m n ij A a ⨯=(表示m n ⨯阶矩阵),可简记为A ; 2、矩阵的意义:矩形数表;3、相关概念: 1. 行向量、列向量;2. 方矩阵(方阵)、方矩阵的阶;3. 单位矩阵、零矩阵。

二、矩阵的运算:1、矩阵的相等:若()ij A a =、()ij B b =是两个行数与行数相等、列数与列数相等的矩阵,当且仅当它们对应位置的元素都相等时,即ij ij a b =(i =1,2,…,m ;j =1,2,…,n ),称两矩阵相等,记作A B =;2、矩阵的加减:当两个矩阵A 、B 的行数与列数分别相等时,将它们对应位置上的元素相加ij ij ij c a b =+(相减ij ij ij c a b =-),i =1,2,…,m ;j =1,2,…,n ,所得到的矩阵()ij c 称为矩阵A 、B 的和(差),记作A B +(A B -);3、用矩阵变换的方法解下列线性方程组:(1)25324x y x y +=⎧⎨-=⎩; (2)63252310x y z x y z x y z ++=⎧⎪+-=⎨⎪-+=⎩。

4、在n 行n 列矩阵12321234113*********n n n n n n n n n n ⋅⋅⋅--⎛⎫ ⎪⋅⋅⋅- ⎪⎪⋅⋅⋅⎪⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ ⎪ ⎪⋅⋅⋅---⎝⎭中,记位于第i 行第j 列的数为ij a (i ,j =1,2……,n )。

当9n =时,11223399a a a a +++⋅⋅⋅+=_________。

矩阵行列式复习总结

矩阵行列式复习总结

7
设 A为n方阵, 证明
(1) A 0 A 0 ( 2)

A A

n 1
证明:(1)如果A=O, 则结论显然成立. 如果A≠O,反证法 假设 A 0 ,则 A 可逆,由 AA A E O 两边右乘
( A ) 1 得A=O ,矛盾。
(2) 如果 A 0 , 由(1)结论成立。如果 A 0 ,
ai1 A j1 ai 2 A j 2 ain A j 2 a1i A1 j a2i A2 j ani Anj
例1 解:
1 1 求 A ( 2 A ) 5 A 设A为3阶方阵, , 2 A AA
1
1
1 1 A 2

( 2 A)
1 1 5 1 5 A A A 2 A1 2 2
-32-
E (1,2) A B
B BB
*
1
A A E (1,2)
1
1
A E (1,2)
*
9
A (ai j )mn , B (bi j )nl ,证明AB=0的充分必要条件
是B的每一列都是齐次线性方程组AX=0的解.
证 将A分成1 1块, B分成1 n块,
AB AB1 , AB2 ,
上下三角行列式的值对角线上元素之积3性质4特殊关系式baabn阶方阵的行列式n阶方阵的行列式5展开定理ijijnjnibaab当是奇数阶的时候成立成立baabbabaababab13a111154125当a与b可交换时有下面二项展开式称为纯量矩阵它与任何方阵可交换
矩阵
1. 矩阵的定义
一些特殊的矩阵:零矩阵、行矩阵、列矩阵、方阵、
1

考研数学知识点总结

考研数学知识点总结

考研数学知识点总结在考研的所有科目中,数学可以算得上是拉分差距最明显的科目了。

每年成绩出来,数学接近满分的同学很多,未满及格线的同学也是一抓一大把。

那么接下来给大家分享一些关于,希望对大家有所帮助。

考研数学知识点第一章行列式1、行列式的定义2、行列式的性质3、特殊行列式的值4、行列式展开定理5、抽象行列式的计算第二章矩阵1、矩阵的定义及线性运算2、乘法3、矩阵方幂4、转置5、逆矩阵的概念和性质6、伴随矩阵7、分块矩阵及其运算8、矩阵的初等变换与初等矩阵9、矩阵的等价10、矩阵的秩第三章向量1、向量的概念及其运算2、向量的线性组合与线性表出3、等价向量组4、向量组的线性相关与线性无关5、极大线性无关组与向量组的秩6、内积与施密特正交化7、n维向量空间(数学一)第四章线性方程组1、线性方程组的克莱姆法则2、齐次线性方程组有非零解的判定条件3、非齐次线性方程组有解的判定条件4、线性方程组解的结构第五章矩阵的特征值和特征向量1、矩阵的特征值和特征向量的概念和性质2、相似矩阵的概念及性质3、矩阵的相似对角化4、实对称矩阵的特征值、特征向量及其相似对角矩阵第六章二次型1、二次型及其矩阵表示2、合同变换与合同矩阵3、二次型的秩4、二次型的标准型和规范型5、惯性定理6、用正交变换和配方法化二次型为标准型7、正定二次型及其判定考研数学复习之拿高分方法一、理性分析三个组成部分,各个击破我们知道数学整个试卷的组成部分是:高数82分+线代34分+概率论34分;很明显微积分占了绝大部分;另外概率论里面很多题目要用到微积分的工具,实际上微积分的分数比82分要高,应该是能到100分左右。

所以同学们在前期复习的时候一定要把微积分的基础打扎实;线性代数再难,毕竟内容不多。

而且矩阵、向量、线性方程组、特征根与特征值、二次型本质思想都是一致的。

用来用去的基本工具就是对矩阵做初等变换,求线性方程组解的结构,线代难是难在每个部分的基本思想都是一样的,但却是不同的概念。

线性代数各章要点整理

线性代数各章要点整理

第一章行列式主要知识点一、行列式的定义和性质1.余子式和代数余子式的定义2.行列式按一行或一列展开的公式1)2)3.行列式的性质1)2)用数k乘行列式的某一行(列)所得新行列式=原行列式的k倍. 推论3)互换行列式的任意两行(列)所得新行列式等于原行列式的相反数. 推论4)如果行列式中两行(列)对应元素成比例,则行列式值为0.5)行列式可以按任一行(列)拆开.6)行列式的某一行(列)的k倍加到另一行(列)上,所得新行列式与原行列式的值相等.二、行列式的计算1.二阶行列式和三角形行列式的计算.2.对一般数字行列式,利用行列式的性质将其降阶以化成二阶行列式或三角形(或对角形)行列式的计算.3.对行列式中有一行或一列中只有一个或两个非零元的情况,用这一行或一列展开.4.行列式中各行元素之和为一个常数的类型.5.范德蒙行列式的计算公式第二章矩阵主要知识点一、矩阵的概念1.要分清矩阵与行列式的区别2.几种特殊矩阵(0矩阵,单位阵,三角阵,对角阵,数量阵)二、矩阵的运算1.矩阵A , B的加、减、乘有意义的充分必要条件2.矩阵运算的性质比较矩阵运算(包括加、减、数乘、乘法等)的性质与数的运算性质的相同点和不同点(加法、乘法的交换律和结合律;乘法关于加法的分配律)重点是矩阵乘法没有交换律(由此产生了矩阵运算公式与数的运算的公式的不同点).3.转置对称阵和反对称阵1)转置的性质2)若A T=A (A T= - A),则称A为对称(反对称)阵4.逆矩阵1)方阵A可逆(也称非异,非奇异,满秩)的充分必要条件是.当A可逆时,.2)方阵A的伴随阵的定义。

重要公式;与A -1的关系(当方阵A可逆时,)3)重要结论:若n阶方阵A,B满足AB=E,则A,B都可逆,且A-1=B ,B-1=A.4)逆矩阵的性质:; ; .5)消去律:设方阵A可逆,且AB=AC(BA=CA),则必有B=C。

(若不知A可逆,仅知A≠0结论不一定成立。

第一讲行列与矩阵

第一讲行列与矩阵

第一讲 行列式与矩阵一、内容提要(一)n 阶行列式的定义∑-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=nn j j j njn j j j j j nn n n n n a a a a a a a a a a a a D ΛΛΛΛΛΛΛΛΛ21212211)(212222111211)1(τ(二)行列式的性质1.行列式与它的转置行列式相等,即T D D =; 2.交换行列式的两行(列),行列式变号;3.行列式中某行(列)元素的公因子可提到行列式外面来; 4.行列式中有两行(列)元素相同,则此行列式的值为零;5.行列式中有两行(列)元素对应成比例,则此行列式的值为零; 6.若行列式中某行(列)的元素是两数之和,即nm n n in in i i i i na a ab a b a b a a a a D ΛΛΛΛΛΛΛΛΛ21221111211+++=, 则nnn n in i n nnn n in i n a a a b b b a a a a a a a a a a a a D ΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛ21121112112112111211+= 7.将行列式某行(列)的k 倍加到另一行(列)上去,行列式的值不变。

(三)行列式依行(列)展开 1.余子式与代数余子式(1)余子式的定义去掉n 阶行列式D 中元素ij a 所在的第i 行和第j 列元素,剩下的元素按原位置次序所构成的n-1阶行列式称为元素ij a 的余子式,记为ij M(2)代数余子式的定义ij a 的代数余子式的记为ij j i ij ij M A A +-=)1(, 2.n 阶行列式D 依行(列)展开 (1)按行展开公式∑=⎩⎨⎧≠==nj kj ij k i ki DA a 10 (2)按列展开公式∑=⎩⎨⎧≠==ni is ij sj sj DA a 10 (四)范德蒙行列式∏≤<≤----==nj i i jn nn n nnx xx x x x x x x x x D 1112112222121)(111ΛΛΛΛΛΛΛ(五)矩阵的概念1.矩阵的定义由m×n 个数),,2,1;,,2,1(n j m i a ij ΛΛ==组成的m 行n 列的矩形数表⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=mn m m n n a a a a a a a a a A ΛΛΛΛΛΛ212222111211 称为m×n 矩阵,记为n m ij a A ⨯=)(2.特殊的矩阵(1)方阵:行数与列数相等的矩阵;(2)上(下)三角阵:主对角线以下(上)的元素全为零的方阵称为上(下)三角阵;(3)对角阵:主对角线以外的元素全为零的方阵; (4)数量矩阵:主对角线上元素相同的对角阵;(5)单位矩阵:主对角线上元素全是1的对角阵,记为E ; (6)零矩阵:元素全为零的矩阵。

线性代数总复习

线性代数总复习

性质1
例5---相似矩阵 设3阶矩阵A、B相似,A-1的特征值分别为1,2,3, 求 (1)A的特征值; (2) 解 (1)因为A-1的特征值分别为1,2,3,所以A的特征值
分别为 (2) 因为A、B相似,所以A,B的特征值相同,所以B的 特征值分别为 所以6B-E的特征值为
3---特征向量的性质 1)方阵A的不同特征值所对应的特征向量必线性无关。
1、定义 由m×n个数
排成的m行n列数表
(i=1,2, …,m ; j=1,2, …,n)
称为一个m行n列矩阵, 简称为m×n矩阵,
矩阵的秩(续) 3、关于秩的重要结论:
例题2 ---(矩阵3)

例题3---(逆阵2)

2)
例题3---(逆阵3) 3、设方阵 A满足2A2-5A-8E = 0,证明 A-2E 可逆,
6---例8(1)---几个证明1 1、设A~B,证明: A2~B2; tA-E~tB-E, t是实数
2. 设1,2 是A的两个不同的特征值,1, 2 是相应的 特征向量, 证明:1, 2必线性无关;
3. 设1,2 是A的两个不同的特征值,1, 2 是相应的 特征向量, 证明:1 2 必不是 A的特征向量
3)正交向量组必是线性无关组。
4---n阶方阵A可对角化的条件、方法 1、一个充分必要条件: n阶方阵A可对角化 A有n个线性无关的特征向量 2、两个充分条件: 1)如果A有n个互不相同的特征值,则A必可对角化 2)如果A是实对称矩阵,则A必可用正交矩阵对角化。
3、对角化方法:
4、正交对角化
5---例6---对角化 分别求可逆矩阵P、正交矩阵Q, 将矩阵A对角化。 解 1)
向量4---例题4

矩阵知识点归纳

矩阵知识点归纳

矩阵知识点归纳矩阵是线性代数中一种重要的数学工具,它广泛应用于科学、工程、计算机科学等领域。

本文将对矩阵的基本概念、运算法则以及常见的矩阵类型进行归纳总结。

一、矩阵的基本概念1. 矩阵的定义:矩阵是由m行n列的元素排列而成的矩形阵列,用大写字母表示,如A。

其中,m表示矩阵的行数,n表示矩阵的列数。

2. 元素:矩阵中的数值称为元素,用小写字母表示,如a。

矩阵A的第i行第j列的元素表示为a_ij。

3. 零矩阵:所有元素都为0的矩阵,用0表示。

4. 单位矩阵:主对角线上的元素为1,其他元素为0的矩阵,用I表示。

5. 行向量和列向量:只有一行的矩阵称为行向量,只有一列的矩阵称为列向量。

二、矩阵的运算法则1. 矩阵的加法:两个相同维数的矩阵相加,即对应位置的元素相加。

2. 矩阵的减法:两个相同维数的矩阵相减,即对应位置的元素相减。

3. 矩阵的数乘:用一个数乘以矩阵的每个元素。

4. 矩阵的乘法:矩阵乘法需要满足左矩阵的列数等于右矩阵的行数。

若A是m×n的矩阵,B是n×p的矩阵,那么A与B的乘积AB是m×p的矩阵,且AB的第i行第j列元素为A的第i行与B的第j列对应元素的乘积之和。

5. 转置:将矩阵的行和列对调得到的矩阵称为原矩阵的转置。

若A为m×n的矩阵,其转置记作A^T,即A的第i行第j列元素等于A^T的第j行第i列元素。

三、常见的矩阵类型1. 方阵:行数和列数相等的矩阵称为方阵。

2. 对角矩阵:主对角线以外的元素都为0的方阵称为对角矩阵。

3. 上三角矩阵:主对角线以下的元素都为0的方阵称为上三角矩阵。

4. 下三角矩阵:主对角线以上的元素都为0的方阵称为下三角矩阵。

5. 对称矩阵:元素满足a_ij=a_ji的方阵称为对称矩阵。

6. 反对称矩阵:元素满足a_ij=-a_ji的方阵称为反对称矩阵。

7. 单位矩阵:主对角线上的元素为1,其他元素为0的方阵称为单位矩阵。

四、矩阵的性质1. 矩阵的零点乘法:任何矩阵与零矩阵相乘,结果都是零矩阵。

西安交大西工大 考研备考期末复习 线性代数 行列式和矩阵运算

西安交大西工大 考研备考期末复习 线性代数 行列式和矩阵运算

例1 设 A 1 1, B 1 2 1 2, 1 1 1 2 1 2
AB BA E, B是A的一个逆矩阵.
例2
设 A 2 1
1 , 0
求A的逆阵.


B a c
b d
是 A 的逆矩阵,
则 AB 2 1 a b 1 0 1 0 c d 0 1
2a c 2b d 1 0 a b 0 1
|
1 P
|
P*
10 6
0 0 0
1 0 1
0 A11 0 A21 0 A31
A12 A22 A32
A13 A23 A33
5 3
A12 0 A12
A22 0 A22
A32 0 A32

12
1 1
1 1
A12
1
1 3 , A22 1
1 0, A32 1
3, 2
于是
1 0 1
1 0
0 2n
1 2
4 1
12
1 2
11
2n1 2n2
4 1
12
1 2
4 4
2n1 2n2
2n1 2n2
2 2
2 2n 2 2n1
22nn111 .
三、矩阵多项式
1. 定义
设 (x) = a0 + a1x + ···+ amxm 为 x 的 m 次多
项式,A 为 n 阶方阵,记
(A) = a0 E + a1 A + ···+ am A m ,
0 0 1 1 2 0 0 1 0
2 0 11 0 0 1 4 3 0 0 1
1 2 0 0 1 0
2 1 0 1 3 4.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

I 矩阵、行列式
一、矩阵的概念及其初等变换 矩阵概念
矩阵与行列式的区别:
矩阵(数表)
行列式(数)
记号:1111n m n m a a a a ⎛⎫

⎪ ⎪⎝⎭
m n A ⨯ ()ij m n a ⨯
1111
n m n
n a a a a n A
ij n
a 化简:1111m n m n a a a a ⎛⎫

⎪ ⎪→⎝⎭
1111n
m n
n a a a a =
矩阵的初等变换理论
定义:(看书) 结论一
对任一m n ⨯矩阵A ,设()R A r =,有
1,11,1000000000110r n r r rn m n c c c c A A ++⨯⎛⎫
⎪ ⎪ ⎪−−−→ ⎪
⎪ ⎪ ⎪ ⎪⎝⎭
行变
(的行最简形矩阵)
应用1 高斯消元法解线性方程组
增广矩阵A −−−→行变
行最简形矩阵(可直接写出解)
应用2 列摆行变法判定向量组的线性相关性及求最大无关组、秩和线性表示式
1,1111,12100(,,,)(,,,)0000000011,,r n r r r n r n r n c c c c J J εαααε+++⎛⎫

⎪ ⎪
−−−→=
⎪ ⎪


⎪⎝⎭
行变

则12,,,n ααα 与11,,,,,r r n J J εε+ 有相同的线性相关性。

应用3 行初等变换法求逆矩阵A -1、A -1B
1(,)(,)A E E A -−−−→行变
1(,)(,)A B E A B -−−−→行变
结论二
对任一m n ⨯矩阵A ,设()R A r =,有
000r m n E A A ⨯⎛⎫
−−−−→ ⎪
⎝⎭
列行变和变
(的相抵标准形)
应用1 初等变换法求矩阵的秩(可作列变)
应用2 标准形思路:,,0
00r
E
A P Q P Q ⎛⎫
= ⎪⎝⎭
其中是可逆矩阵. 结论三 初等变换与初等矩阵的转化关系:箭号等号关系(“左行右列”)
二、矩阵的运算
加法、数乘、乘法、转置 关于矩阵乘法,注意:
(1) 矩阵乘法与数的乘法不同之处
不满足交换律
AB BA ≠
222()2A B A AB B +≠++ 22()()A B A B A B -≠+- ()k k k AB A B ≠
注意:,A B 设均为方阵,则
错误!未找到引用源。

,AB E BA E AB ===若则 错误!未找到引用源。

AB BA A B ==
⏹ 两个非零矩阵的乘积可能是零矩阵.
000AB A B =≠== 或
0,00AB A B =≠≠= ,0)0(0A AB B =≠⇒=但 200
(A A A =≠= 实对称矩阵可对角化但当是或时成立?)
2.A E A E =≠>=± 20A A A A E =≠>==或
⏹ 不满足消去律
,0AB AC A B C =≠≠>=A ≠0(但当时成立) ,0BA CA A B C =≠≠>=A ≠0(但当时成立)
(2) 矩阵乘法的应用
线性方程组的矩阵形式 AX =b 二次型的矩阵形式 T X AX
线性替换的矩阵形式 X CY =
列向量组线性表示式的矩阵形式 1212(,,,)(,,,)l m K βββααα= (P110:作业10,11)
三、可逆矩阵
1. 可逆矩阵(伴随矩阵)的概念与性质(看书) 1(A A A A *-=当可逆时)
A A A A A E
*
*
==
2. 矩阵可逆的充要条件
n A n B AB E ⇔=定义
阶可逆存在阶方阵,使得方阵
0A ⇔≠
12,s i A PP P P ⇔= 其中为初等矩阵 0A ≠注: ()R A n ⇔=
A ⇔的行(列)向量组线性无关
0AX ⇔=只有零解
A ⇔的特征值全不为0
3. 逆矩阵的求法
定义法:化出?A E =或?A E =(一“式”二鸟)(P54: 作业13,12) 伴随矩阵法:11A A A
-*
=
(只用于2阶矩阵:
“两调一除法”) 初等变换法:1
(,)(,)A E E A
-−−−→行变 分块矩阵法:
1
11A A B B ---⎛⎫⎛⎫=
⎪ ⎪⎝⎭⎝
⎭ , 1
11B B A A
---⎛


⎫= ⎪ ⎪⎝⎭⎝⎭
00A B ≠≠(以上均要求,)
四、矩阵的秩
矩阵秩的概念、定理
()010m n m n A r A r r ⨯⨯=⇔≠+=义
秩中有一个阶子式,所有阶子式定
特别:()0n n n n n A A ⨯⨯=⇔≠秩
()A A A ==定理
秩的的列行秩三秩(秩相等)
常用秩公式
1.()()()A B A B +≤+秩秩秩
2.()(),()m n n s A B A B ⨯⨯≤秩秩秩.
特别:(()()()()())A A B B B B A A ==当可逆时;秩秩当秩可逆时秩 3.()(),0.kA A k =≠秩秩其中 4.()()T A A =秩秩
5.= 0()+()m n n s A n B A B ⨯⨯≤若,则秩秩
五、方阵的行列式
1.行列式的定义及展开式
1212121112121222)
121
21n n
n
n
n
j j j j j nj j j j n n nn
a a a a a a a a a a a a τ
=
-∑
(定义
()
(完全展开式) 11221122(1,2,,)()(1,2,,)()
i i i i in in
j j j j nj nj
a A a A a A i n i a A a A a A j n j ⎧+++=⎪=⎨+++=⎪⎩ 按行的展开式按列的展开式
注:1122,(1,2,,)0,()
j j n i j n i i A i j
a A a A a A i n i j ⎧=⎪
+++==⎨
⎪≠⎩ 错位展开式 展开式的应用: 降阶法求行列式 证明A A AA A E **==
2.行列式的性质
n kA k A =,AB A B =等
3.行列式的计算
化三角形法:直竖造零(技巧:累加、提公因子、相抵消、准三角形等) 降阶法 拆项法
特征值法:1212,,,=n n n n A A λλλλλλ⨯⇒ 若是的特征值 000n n A E A λλ⨯-=⇔若是的特征值 4.行列式的应用
线性方程组n n A X ⨯=有唯一解b 0A ⇔≠(克拉默法则) n 个n 维向量线性无关(相关)00⇔≠=行列的式由其构成() 实对称矩阵A 正定0A ⇔>的各阶顺序子式主。

相关文档
最新文档