运输问题-表上作业法
4-02运输问题表上作业法
![4-02运输问题表上作业法](https://img.taocdn.com/s3/m/60747cdb5ef7ba0d4b733b1e.png)
用最小元素法确定例3-2初始调运方案
调 销地
运 量
B1
B2
B3
产量
产地
100 90
70 100 100 200 100
A1
X11
X12
X13
80 150 65 100 75 250 100
A2
X21
X22
X23
100
150
200
销量
100 450
得到初始调运方案为: x11=100,x13=100,x22=150,x23=100
量为该闭回路的顶点;其中 i1 , i2 ,, is 互不
相同, j1 , j2 ,, js 互不相同。
例 设m=3,n=4,决策变量xij表示从产地Ai 到销地Bj的调运量,列表如下,给出闭回路
{x11, x13 , x33 , x34 , x24 , x21} 在表中的表示法——
用折线连接起来的顶点变量。
最小元素法实施步骤口诀
《运价表》上找最小,《平衡表》上定产销; 满足销量划去“列”,修改“行产”要记
牢; (满足产量划去“行”,修改“列销”要记 牢) 划去列(行)对《运价》, 修改“行产(列销)”在《产销》; 余表再来找最小,方案很快就找到。
用西北角法确定例3-2初始调运方案
调 销地
运 量
B1
(3-6)
位势法计算非基变量xij检验数的公式
σij=cij-(ui+vj)
(3-8)
思考:试解释位势变量的含义(提示:写出运输问 题的对偶问题)
四、方案调整
当至少有一个非基变量的检验数是负值时, 说明作业表上当前的调运方案不是最优的,应 进行调整。
若检验数σij小于零,则首先在作业表上以xij 为起始变量作出闭回路,并求出调整量ε:
运输问题 表上作业法
![运输问题 表上作业法](https://img.taocdn.com/s3/m/05b4ff3043323968011c9246.png)
A B C 销量( 销量(bj)
第一步:从表4 中找出最小运价“1”, 第一步:从表4-1中找出最小运价“1”, 最小运 价所确定的供应关系为( ),在 价所确定的供应关系为(B,甲),在(B,甲) 的交叉格处填上“3”,形成表4 的交叉格处填上“3”,形成表4-2;将运价表的 甲列运价划去得表4 甲列运价划去得表4-3.
8.伏格尔法 8.伏格尔法
伏格尔法的基本步骤: 伏格尔法的基本步骤: 1.计算每行、列两个最小运价的差; 1.计算每行、列两个最小运价的差; 计算每行 2.找出最大差所在的行或列 找出最大差所在的行或列; 2.找出最大差所在的行或列; 3.找出该行或列的最小运价 确定供求关系, 找出该行或列的最小运价, 3.找出该行或列的最小运价,确定供求关系,最大量 的供应 ; 4.划掉已满足要求的行或 4.划掉已满足要求的行或 (和) 列,如果需要同时划 去行和列, 去行和列,必须要在该行或列的任意位置填个 0”; “0”; 5.在剩余的运价表中重复1~4步 在剩余的运价表中重复1~4 5.在剩余的运价表中重复1~4步,直到得到初始基可 行解。 行解。
2.表上作业法与单纯形法的关系 2.表上作业法与单纯形法的关系
表上作业法中的最小元素法和伏格尔法实质 上是在求单纯形表中的初始基可行解; 上是在求单纯形表中的初始基可行解; 表上作业法中的“位势法” 表上作业法中的“位势法”实质上是在求单 纯形表中的检验数; 纯形表中的检验数; 调运方案表中数字格的数实质上就是单纯形 法中基变量的值; 法中基变量的值; 调运方案表上的“闭回路法” 调运方案表上的“闭回路法”实质上是在做 单纯形表上的换基迭代。 单纯形表上的换基迭代。
甲 A B C 销量( 销量(bj) 表4-14 A B C
两最小元素之差
运输问题的求解方法(过程)——表上作业法的解题思路和原理、具体步骤。
![运输问题的求解方法(过程)——表上作业法的解题思路和原理、具体步骤。](https://img.taocdn.com/s3/m/9cdfe0e45122aaea998fcc22bcd126fff7055df6.png)
运输问题的求解方法(过程)——表上作业法的解题思路和原理、具体步骤。
运输问题是一种常见的工业应用问题,涉及到如何安排运输工具和货物,以最小化总成本或最大化利润。
表上作业法(Tableau Programming)是解决运输问题的一种有效方法,其解题思路和原理、具体步骤如下:1. 确定问题的状态在表上作业法中,我们需要先确定问题的状态。
状态是指某个特定时间段内,某个运输问题需要满足的条件。
例如,在一个例子中,我们可以将运输问题的状态定义为“需要从A城市运输货物到B城市,运输工具数量为3,运输距离为100公里”。
2. 定义状态转移方程接下来,我们需要定义状态转移方程,以描述在不同状态下可能采取的行动。
例如,在这个问题中,我们可以定义一个状态转移方程,表示当运输工具数量为2时,货物可以运输到B城市,而运输距离为80公里。
3. 确定最优解一旦我们定义了状态转移方程,我们就可以计算出在不同状态下的最优解。
例如,在这个问题中,当运输工具数量为2时,货物可以运输到B城市,运输距离为80公里,总成本为200元。
因此,该状态下的最优解是运输距离为80公里,运输工具数量为2,总成本为200元。
4. 确定边界条件最后,我们需要确定边界条件,以确保问题的状态不会无限制地变化。
例如,在这个问题中,当运输工具数量为3时,运输距离为120公里,超过了B城市的运输距离范围。
因此,我们需要设置一个限制条件,以确保运输工具数量不超过3,且运输距离不超过120公里。
表上作业法是一种简单有效的解决运输问题的方法,其原理和具体步骤如下。
通过定义状态转移方程、确定最优解、确定边界条件,我们可以计算出问题的最优解,从而实现最小化总成本和最大化利润的目标。
管理运筹学 第七章 运输问题之表上作业法
![管理运筹学 第七章 运输问题之表上作业法](https://img.taocdn.com/s3/m/cc8717227f21af45b307e87101f69e314232fa5b.png)
最优解的判断与调整
最优解的判断
比较目标函数值,如果当前基础可行解 的目标函数值最优,则该解为最优解。
VS
最优解的调整
如果当前基础可行解不是最优解,需要对 其进行调整。通过比较不同运输路线的运 输费用,对运输量进行优化分配,以降低 总运输费用。
最优解的验证与
要点一
最优解的验证
对求得的最优解进行检验,确保其满足所有约束条件且目 标函数值最优。
01
将智能优化算法(如遗传算法、模拟退火算法等)与表上作业
法相结合,以提高求解效率和精度。
发展混合算法
02
结合多种算法的优势,发展混合算法以处理更复杂的运输问题。
拓展应用范围
03
在保持简单易行的基础上,拓展表上作业法的应用范围,使其
能够处理更多类型的运筹问题。
THANKS FOR WATCHING
果达到最优解,则确定最优解;如果未达到最优解,则确定次优解。
表上作业法的应用范围
总结词
表上作业法适用于解决供销平衡的运输问题,即供应量和需求量相等的情况。
详细描述
表上作业法适用于解决供销平衡的运输问题,即供应量和需求量相等的情况。在这种情况下,可以通过在运输表 格上填入数字来求解最小运输成本。此外,表上作业法还可以用于解决其他类型的线性规划问题,如资源分配问 题、生产计划问题等。
03 表上作业法的求解过程
初始基础可行解的求解
确定初始基础可行解
根据已知的发货地和收货地的供需关系,以及运输能力限制,通 过试算和调整,求得初始的基础可行解。
初始解的检验
检查初始解是否满足非负约束条件,即所有出发地到收货地的运输 量不能为负数。
初始解的调整
如果初始解不满足非负约束条件,需要对运输量进行调整,直到满 足所有约束条件。
第二节运输问题求解表上作业法-精品文档
![第二节运输问题求解表上作业法-精品文档](https://img.taocdn.com/s3/m/c1fe4a297cd184254a353515.png)
应用西北角法、最小元素法和 Vogel法,每次填完数,都只划去一 行或一列,只有最后一个元例外(同 时划去一行和一列)。当填上一个数 后行、列同时饱和时,也应任意划去 一行(列),在保留的列(行)中没 被划去的格内标一个0。
11
[例 3-2] 某食品公司下属的 A1、A2、 A3 ,3 个厂生产方便食品,要运输到 B1、 B2、B3、B4 ,4 个销售点,数据如下: 表1 B1 B2 A1 3 11 A2 1 9 A3 7 4 销量 bj 3 6 求最优运输方案。 B3 3 2 10 5 B4 产量 ai 10 7 8 4 5 9 6 20(产销平衡)
(1)西 北 角 法 B3 B4 10
产量 ai 7
8 2 5 3 6 6
4
9
销量 bj
3
6
5
20
14
( 2) 最 小 元 素 法 B1 B2 A1 3 11
B3 3 4 10
B4
产 量 ai 7 3
A2
1 3
9
2 1
8
4
A3
7
4 6
10
5 3 5 6
9
销 量 bj
3
6
2015
( 2) 最 小 元 素 法 B1 B2 A1 3 11
(4)若运输平衡表中所有的行与列均被 划去,则得到了一个初始基本可行解。否 则在剩下的运输平衡表中选下一个变量, 转(4)。
4
上述计算过程可用流程图描述如下
取未划去的单元格xij ,令 xij = min { ai , bj }
ai’ = ai - xij bj’ = bj - xij
否
ai’ = 0?
第二节 运输问题求解 —表上作业法
第二节运输问题求解表上作业法
![第二节运输问题求解表上作业法](https://img.taocdn.com/s3/m/f81200f750e2524de5187e3f.png)
即从 Ai 向 Bj 运最大量(使行或列在 允许的范围内尽量饱和,即使一个约 束方程得以满足),填入 xij 的相应位 置; (2) 从 ai 或 bj 中分别减去 xij 的值,即调整 Ai 的拥有量及 Bj 的需 求量;
3
(3) 若 ai = 0 ,则划去对应的行(把 拥有的量全部运走),若 bj = 0 则划去 对应的列(把需要的量全部运来),且每 次只划去一行或一列(即每次要去掉且只 去掉一个约束);
—表上作业法
我们已经介绍过,可以通过增加虚 设产地或销地(加、减松弛变量)把问 题转换成产销平衡问题。
1.产量大于销量的情况
考虑 si > dj 的运输问题,得到的数学模 型为
i=1 j=1
39
m
n
2.运输问题求解
—表上作业法
Min f =
n m i=1 j=1
n
cij xij
s.t. xij si i = 1,2,…,m
10
应用西北角法、最小元素法和 Vogel法,每次填完数,都只划去一 行或一列,只有最后一个元例外(同 时划去一行和一列)。当填上一个数 后行、列同时饱和时,也应任意划去 一行(列),在保留的列(行)中没 被划去的格内标一个0。
11
表1
12
13
14
15
16
二、基本可行解的最优性检验
最优性检验就是检查所得到的方 案是不是最优方案。 检查的方法----计算检验数 由于目标要求极小,因此,当所 有的检验数都大于或等于零时该调运 方案就是最优方案;否则就不是最优, 需要进行调整。
第二节 运输问题求解 —表上作业法
运输问题的方法 —— 表上作业法: 1、确定一个初始基本可行解; 2 、根据最优性判别准则来检查这 个基本可行解是不是最优的。如果 是则计算结束;如果不是,则至3 3、换基,直至求出最优解为止。
运输问题的求解方法(过程)——表上作业法的解题思路和原理、具体步骤。
![运输问题的求解方法(过程)——表上作业法的解题思路和原理、具体步骤。](https://img.taocdn.com/s3/m/4733d3eb81eb6294dd88d0d233d4b14e85243e08.png)
运输问题的求解方法(过程)——表上作业法的解题思路和原理、具体步骤。
运输问题是指在给定的供应地和需求地之间,选择最佳的运输方案,使总运输成本最低的问题。
表上作业法是一种常用的解决运输问题的方法,它基于线性规划的思想,通过逐步逼近最优解的方式来求解运输问题。
表上作业法的原理是将运输问题转化为一个线性规划问题,通过构建一个供需平衡表来描述运输问题。
在该表中,将供应地和需求地分别作为行和列,并在表中填入运输量的变量。
同时,引入一个辅助表来记录每个供应地和需求地的运输量。
具体的求解步骤如下:1. 构建供需平衡表:将给定的供应地和需求地以及对应的运输量填入表格中,并计算每个供应地和需求地的供应总量和需求总量。
2. 确定初始基本可行解:根据运输量的限制条件,确定一个初始的基本可行解。
可以选择将某些运输量设置为0,使得每个供应地和需求地都满足其供应总量和需求总量。
3. 计算单位运输成本:根据给定的运输成本,计算每个供应地和需求地之间的单位运输成本,填入表格中。
4. 判断最优解条件:检查当前的基本可行解是否满足最优解的条件。
如果每个供应地和需求地都满足其供应总量和需求总量,并且没有其他更低成本的运输方案,则当前解为最优解。
5. 迭代改进解:如果当前解不满足最优解的条件,则需要进行迭代改进。
在每一次迭代中,选择一个非基本变量(即非0运输量)进行改变,并计算改变后的基本可行解。
6. 更新供需平衡表和辅助表:根据改变后的基本可行解,更新供需平衡表和辅助表的运输量,并重新计算单位运输成本。
7. 重复步骤4-6,直到找到最优解为止。
通过以上的步骤,表上作业法能够有效地求解运输问题,并得到最优的运输方案。
它在实践中广泛应用于物流管理、供应链优化等领域,为运输问题的决策提供了科学的依据。
运输问题的表上作业法
![运输问题的表上作业法](https://img.taocdn.com/s3/m/109e3767f6ec4afe04a1b0717fd5360cba1a8dd7.png)
表八
B1
B2
B3
B4
行差额
A1
3
1
3
10
0
A2
1
9
2
8
1
A3
7
4
10
5
1
列差额 2
5
1
3
(2)在行差额和列差额中选出最大者,并选择其所对应的行或列中的最小元素来 安排调运方案。本例中,差额最大为“5”,是列差,该列中最小运价为“4”,即 A3首先供应B2,观察产销平衡表,A3仓库储存9吨,零售店B2需求6吨,则运往6吨, B2的需求全部被满足,在单位运价表中划去B2列,如表十一所示。
产地 销地 A1 A2 A3 销量
产地 销地 A1 A2 A3
表三 产销平衡表
B1
B2
B3
B4
3
1
3
6
5
6
表四 单位运价表
B1
B2
B3
3
11
3
1
9
2
7
4
10
产量 7 4 9
B4 10 8 5
(3)在单位运价表中未划去的元素中找到最小运价“3”(A1到B3的运价),A1存储 量为7吨,B3还缺少4吨,故从A1配送给B34吨,B3的需求全部被满足,A1剩余7-4=3吨, 在单位运价表中划去B3所在列。结果如表五和表六所示。
表五 产销平衡表
产地
B1
销地
A1
A2
3
A3
销量
3
B2
B3
B4
4 1
6
5
6
表六 单位运价表
产量
7 4 9
产地
B1
B2
经济管理决策分析方法第六章2-运输问题-表上作业法
![经济管理决策分析方法第六章2-运输问题-表上作业法](https://img.taocdn.com/s3/m/cd5bcb0d7375a417866f8f88.png)
A B C
销量(bj)
3
6
5
6
第三步:在表4-5中再找出最小运价“3”, 这样一步步地进行下去,直到单位运价表上 的所有元素均被划去为止。
表4-6 A B C 销量(bj) 表4-7 甲 乙 甲 3 1 7 3 乙 11 9 4 6 丙 3 2 10 5 丙 4 1 6 6 3 5 6 丁 10 8 5 6 丁 3 产量(ai) 7 4 9
表上作业法
第一步 确定初始基可行解
与一般的线性规划不同,产销平衡的运输问
题一定具有可行解(同时也一定存在最优 解)。 最小元素法(the least cost rule)。
最小元素法
最小元素法的基本思想是就近供应,即从单位 运价表中最小的运价开始确定产销关系,依此 类推,一直到给出基本方案为止.
450
非基变量X12的检验数:
12 =(c12+c23)-(c13+c22)
=70+75-(100+65)=-20, 非基变量X21的检验数:
21 =(c +c )-(c +c ) 21 13 11 23
=80+100-(90+75)=15。 经济含义:在保持产销平衡的条件下,该非 基变量增加一个单位运量而成为基变量时目 标函数值的变化量。
表4-30 A B
甲 11 = 1 3
31 = 10 3 销量(bj) C
乙 12 = 2 22 = 1 6 6
丙 4 1 33 = 12 5
丁 3
24 = -1 3 6
产量(ai) 7 4 9
表4-33 乙 12 = 2 22 = 1 6 31 = 10 3 6 销量(bj) A B C 表4-34 甲 乙 丙 4 1 丁 3
运输问题的表上作业法
![运输问题的表上作业法](https://img.taocdn.com/s3/m/0b9ff55da7c30c22590102020740be1e650eccb1.png)
2 0
6
产量 4 4 3
退化的处理〔第2步〕
产地
销地
S1
S2
S3 销量
2024/9/22
运输表
D1
D2
8
5
2
0
49
4 2
1 3
3
3
5
2
D3
产量
7
4
4
6
2
4
2
02
3
6
单位物品的运价是cij; 问题:如何调运物品才能使总运费最小?
2024/9/22
数学模型
mn
min z
c ij x ij
i1 j1
n
x ij si , i 1,2 , , m
j1
s .t .
m
x ij
di,
j 1,2, , n
i1
x
ij
0,
i
1, 2 ,
,m;
j
1, 2 ,
运价为15,故增加15
(S2, D5)
减少17
(S1, D5)
增加13
(S1, D3)
减少13
(S2, D3)
目标函数总变化:15-17+13-13=-2,即增加(2,5)一单位运量可使总运费降低2单位。
2024/9/22
解的改进
换入量确实定:检验数为负数且绝对值最大的 那个空格为换入量;
换出量确实定: 以闭合回路顺时针方向,空格为第1个奇数顶
点,编号为1,依次对所有顶点编号。 可分为奇数顶点和偶数顶点 偶数顶点中的运输量最小顶点,作为空格所要
增加的运量 奇数顶点和偶数顶点的计算
2024/9/22
第四章-运输问题
![第四章-运输问题](https://img.taocdn.com/s3/m/5cb9999ff18583d048645919.png)
初始基本可行解
是否最优解? Y
结束
寻找新的基本可行解 N
步骤1:初始基本可行解的确定
❖西北角法:从 x11开始分配,从西北向东南方 向逐个分配;
❖ 最小元素法:采用最小费用优先分配的原则;
步骤2:最优解的检验-位势法
检验数的公式为:
ijcij(ui vj)
其中 u i , v j 分别称为行位势、列位势。
结论:
(1)基变量所对应的检验数: ijcij(uivj)0 (2)若非基变量所对应的检验数 ijcij(uivj)0
当前解即为最优解;
步骤3:寻找新的基本可行解-闭回路法
闭回路: 从进基变量的空格出发,沿水平或垂直方向前进,每
碰到数字格转90o(有些情况也可以不改变方向)继续前 进,直到回到出发的空格为止,由此形成的封闭的折线称 为闭回路。
销地 产地
A1 A2 销量
B1 7 10 300
B2 6 4 350
B3 8 5 250
产量
400 200
❖ 其中, B3的销量必须得到满足。请问,应如何调运产 品,使得总运费最少?
4.某公司有从三个产地A1,A2, A3 ,将物品运送到三 个销地B1,B2,B3,各产地的产量、各销地的销量、 各产地到各销地的单位运价如下表所示:
9
销量
3
6
5
6
❖ 请用最小元素法确定初始基本可行解,并用闭回路法检验初始基 本可行解是否为最优解。
2.表上作业法(产销不平衡的运输问题)
❖ 总产量>总销量
某公司有从三个产地A1,A2,A3,将物品运送到三个销地B1 ,B2,B3,各产地的产量、各销地的销量、各产地到各销地的单 位运价如下表所示:
运输问题表上作业法
![运输问题表上作业法](https://img.taocdn.com/s3/m/058eada118e8b8f67c1cfad6195f312b3169eb03.png)
A1
X11
X12
X13
80 150 65 100 75 250
A2
X21
X22
X23
100
150
200
销量
450
非基变量X12的检验数:
12 =(c12+c23)-(c13+c22)
=70+75-(100+65)=-20,
非基变量X21的检验数:
21 =(c21+c13)-(c11+c23)
=80+100-(90+75)=15。
得到初始调运方案为: x11=100,x13=100,x22=150,x23=100
总运价为: 9* 0 10 100 *100 60* 5 15 100 *100 3087
2西北角法
不是优先考虑具有最小单位运价的供销业 务,而是优先满足运输表中西北角左上角 上空格的供销要求
用西北角法确定初始调运方案
取
中ij最小0者对应的变量为换
入变量;
2、当迭代到运输问题的最优解时,如果 有某非基变量的检验数等于0,则说明该 运输问题有多重最优解;
3当运输问题某部分产地的产量和,与某部分销 地的销量和相等时,在迭代过程中间有可能有某 个格填入一个运量时需同时划去运输表的一行 和一列,这时就出现了退化.为了使表上作业法 的迭代工作能顺利进行下去,退化时应在同时划 去的一行或一列中的某个格中填入0,表示这个 格中的变量是取值为0的基变量,使迭代过程中 基变量个数恰好为m+n-1个.
u 1 v1 c11 90
u u
1 2
v3 v2
c13 c 22
100 65
u 2 v 3 c 23 75
运输问题的模型及表上作业法
![运输问题的模型及表上作业法](https://img.taocdn.com/s3/m/bcad0961bc64783e0912a21614791711cc797906.png)
04
CATALOGUE
表上作业法的实际应用
货物调运问题
总结词
货物调运问题是指如何合理安排货物的运输 ,以最小化运输成本。
详细描述
在货物调运问题中,需要考虑货物的来源、 目的地、运输方式、运输距离和运输成本等 因素。通过表上作业法,可以找到最优的运
输方案,使得总运输成本最低。
车辆调度问题
总结词
车辆调度问题是指如何合理安排车辆的运行,以最小化车辆的空驶和等待时间。
资源限制
运输问题的资源限制包括供应量 、需求量、运输能力等,这些限 制条件要求在运输过程中不能超 过资源的最大供应或需求量。
距离限制
运输问题的距离限制通常以运输 距离或运输时间为标准,要求在 运输过程中尽量缩短距离或时间 。
质量限制
在某些情况下,运输问题的质量 限制包括货物的质量、运输工具 的质量等,要求在运输过程中保 证货物的质量和运输工具的安全 。
02
CATALOGUE
运输问题的数学模型
变量与参数
变量
表示各供应地应向各需求地运输的货物量。
参数
包括各供应地的供应量、各需求地的需求量、各供应地到各需求地的单位运输费用和各货物的单位运 价。
目标函数
• 最小化总费用:目标是找到一组 运输方案,使得总运输费用最小 。
约束条件
供需平衡约束
每个供应地的供应量等于其对应需求地的需求量。
运输问题的模型及 表上作业法
contents
目录
• 运输问题概述 • 运输问题的数学模型 • 表上作业法 • 表上作业法的实际应用 • 表上作业法的优化与改进
01
CATALOGUE运输问题概述Fra bibliotek定义与特性
运筹学运输问题表上作业法资料
![运筹学运输问题表上作业法资料](https://img.taocdn.com/s3/m/b6fab7537cd184254a35354e.png)
3
3
10
7
1
9
2
3
1
84
7
4
6
10
5
3
9
36
56
34
31 Z
cij xij 3 4 10 3 1 3 21 4 6 5 3 86
i1 j1
最小元素法的优劣?
也很简单哦
最优解可望,但还 是有一定距离的
32
伏格尔法
A1 A2 A3 销量
B1 B2 B3 B4 产量
3
11
3
10 7
D
M
0
M 0M 0
根据表上作业法计算,可以求得这个问题的最优方案
需 求 地 区 Ⅰ Ⅰ’ Ⅱ Ⅲ Ⅳ Ⅳ’
利润
产地
Ⅰ
10 5 6 7 250
Ⅱ
8 2 7 6 250
Ⅲ
9 3 4 8 500
销量 150 200 300 350
“总利润最大”而不是“运费最小”,“最小元素”怎么找?
38
闭回路 法
最优性 检验
位势法
39
最优性检验——闭回路法
表示什么?
每个空格都能找到闭回路 吗?有的话,是否唯一?
运筹学
李细霞 2013物流工程1班 2014~2015学年第二学期
课程主要内容
绪论
线性规划及 单纯形法
对偶理论与 灵敏度分析
目标规划
整数规划
运输问题
动态规划
图与网络
第三章 运输问题
Transportation problem
3
学习目标
什么是运 输问题?
复杂运输 问题
如何解决运 输问题?
运输问题的求解方法
![运输问题的求解方法](https://img.taocdn.com/s3/m/139892b91a37f111f1855bf1.png)
产销平衡表与单位运价表
表上作业法
产销不平衡的运输问题的求解方法
一、产销平衡表与单位运价表
运输问题还可用产销平衡表与单位运价表 进行描述。 假设某种物资有m个生产地点Ai(i=1, 2,…,m),其产量(供应量)分别为ai(i=1, 2,…,m),有n个销地Bj(j=1,2,…,n), 其销量(需求量)分别为bj(j=1,2,…,n)。 从Ai到Bj运输单位物资的运价(单价)为Cij。将 这些数据汇总可以得到产销平衡表和单位运价 表5.3.1。
P ,P ,P ,P ,P B ik lk ls us uj
而这些向量构成了闭回路见图
位势法
一种较为简便的求检验数的方法。
设 u1, , u2 ,, um ; v1 , v2 ,, vn 是对应运输问题的m+n 个约束条件的对偶变量。B是含有一个人工变量Xa的初始 基矩阵。 Xa在目标函数中的系数Ca ,由线性规划的对 偶理论可知
(1)确定初始调运方案,即找出初始 基可行解,在产销平衡表上给出 m+n-1个数 字格。
(2)求非基变量的检验数,即在表上计算 空格的检验数,判别是否达到最优解:是否存 在负的检验数?如果存在负的检验数,则初始 调运方案不是最优方案;如果所有检验数都非 负,则初始调运方案已经是最优方案了。如果 已经得到最优调运方案,则停止计算,否则转 入下一步。
考虑多余的物资在哪一个产地就地储存的问题。 xi ,n1 设 是产地Ai的储存量,于是有
n n 1 xij xi,n1 xij ai (i 1,2,, m) j 1 m j 1 xij b j ( j 1,2, n) m i 1 m n x i ,n 1 ai b j bn 1 i 1 j 1 i 1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.表上作业法的基本步骤
(1)找出初始基可行解: m+n-1个数字格(基变
量); (2)求各非基变量(空格)的检验数。
(3)确定入基变量,若min{ ij | ij 0} lk ,那么
选取xij为入基变量;
(4)确定出基变量,找出入基变量的闭合回路; (5)在表上用闭合回路法调整运输方案; (6)重复2、3、4、5步骤,直到得到最优解。
下面就以表4-6中给出的初始基可行解(最 小元素法所给出的初始方案)为例,讨论闭合 回路法。
表4-24 甲 A B C (+3) 3 -1) ( 6 6 乙 丙 4(-3) 1 (+2) 3 6 丁 3 产量(ai) 7 4 9
3 5 销量(bj) 从表4-6给定的初始方案的任一空格出发寻找闭合回路,如对 于空格(A,甲)在初始方案的基础上将A生产的产品调运一个 单位给甲,为了保持新的平衡,就要依次在(A,丙)处减少 一个单位、(B,丙)处增加一个单位、(B,甲)处减少一个 单位;即要寻找一条除空格(A,甲)之外其余顶点均为有数 字格(基变量)组成的闭合回路。表4-24中用虚线画出了这条 闭合回路。闭合回路顶点所在格括号内的数字是相应的单位运
最小元素法的应用(以引例4-1为例)
表4-1
A B C 销量(bj) 甲 3 1 7 3 乙 11 9 4 6 丙 3 2 10 5 丁 10 8 5 6 产量(ai) 7 4 9
第一步:从表4-1中找出最小运价“1”, 最小运 价所确定的供应关系为(B,甲),在(B,甲) 的交叉格处填上“3”,形成表4-2;将运价表的 甲列运价划去得表4-3.
2.表上作业法与单纯形法的关系
表上作业法中的最小元素法和伏格尔法实质
上是在求单纯形表中的初始基可行解; 表上作业法中的“位势法”实质上是在求单 纯形表中的检验数; 调运方案表中数字格的数实质上就是单纯形 法中基变量的值; 调运方案表上的“闭回路法”实质上是在做 单纯形表上的换基迭代。
4.2
表上作业法
表上作业法 表上作业法与单纯形法的关系 表上作业法的基本步骤 确定初始基可行解 最小元素法的基本步骤 伏格尔法
三、 运输问题的求解
1.表上作业法
运输问题的求解采用表上作业法,即用列 表的方法求解线性规划问题中的运输模型的 计算方法,实质上是单纯形法。 表上作业法是一种特定形式的单纯形法, 它与单纯形法有着完全相同的解题步骤,所 不同的只是完成各步采用的具体形式。
表4-24 甲 A 乙
B C
销量(bj)
(+3) 3 -1) (
3 6 6
丙 4(-3)
丁 3 3 6
产量(ai) 7
1 (+2)
5
4 9
对应这样的方案调整,运费会有什么变化呢?可以
看出(A,甲)处增加一个单位,运费增加3个单位; 在(A,丙)处减少一个单位,运费减少3个单位;在 (B,丙)处增加一个单位,运费增加2个单位;在 (B,甲)处减少一个单位,运费减少1个单位。增减 相抵后,总的运费增加了1个单位。由检验数的经济 含义可以知道,(A,甲)处单位运量调整所引起的 运费增量就是(A,甲)的检验数,即σ 11=1。
仿照此步骤可以计算初始方案中所有空
格的检验数,表4-25~表4-30展示了各 检验数的计算过程,表4-30给出了最终 结果。可以证明,对初始方案中的每一 个空格来说“闭合回路存在且唯一”。
表4-25
甲
A B
11 = 1 3
乙
(+11)
丙
4 1
丁
3(-10)
产量(ai)
7 4
C
销量(bj) 表4-26
4.2.2
基可行解的最优性检验
对初始基可行解的最优性检验有闭合回路法
和位势法两种基本方法。闭合回路法具体、 直接,并为方案调整指明了方向;而位势法 具有批处理的功能,提高了计算效率。 所谓闭合回路是在已给出的调运方案的运输 表上从一个代表非基变量的空格出发,沿水 平或垂直方向前进,只有遇到代表基变量的 填入数字的格才能向左或右转90度(当然也 可以不改变方向)继续前进,这样继续下去, 直至回到出发的那个空格,由此形成的封闭 折线叫做闭合回路。一个空格存在唯一的闭 回路。
丙
4(+3) 1(-2)
丁
3(-10) (+8) 3
产量(ai)
7 4 9
5
6
表4-28
甲 A
11 = 1
乙
12 = 2
丙
4(-3)
丁
3(+10)
产量(ai)
7
B C
销量(bj)
3
22 = 1
6 6
1
(+10) 5
24 = -1
3(-5) 6
4
9
3
表4-29 甲 A B C 销量(bj) 表4-30 A
甲
A B C 销量(bj) 3 3 甲 3 1 7 3
表4-2 乙
丙
丁
产量(ai) 7 4 9
6 表4-3 乙 11 9 4 6
5 丙 3 2 10 5
6 丁 10 8 5 6 产量(ai) 7 4 9
A B C
销量(bj)
表4-3 A B C 销量(bj) 甲 3 1 7 3 乙 11 9 4 6 丙 3 2 10 5 丁 10 8 5 6 产量(ai) 7 4 9
表4-6 A B C 甲 3 1 7 乙 11 9 4 丙 3 2 10 丁 10 8 5 6 丁 3 3 5 6 产量(ai) 7 4 9
销量(bj)
表4-7
3
甲
6
乙
5
丙 4 1
A B C
销量(bj)
3 3 6 6
产量(ai) 7 4 9
最后在产销平衡表上得到一个调运方案,见
表4-6。这一方案的总运费为86个单位。
4、确定初始基可行解
与一般的线性规划不同,产销平衡的运输问
题一定具有可行解(同时也一定存在最优 解)。 最小元素法(the least cost rule)和伏格尔法 (Vogel’s approximation method)。 最小元素法 最小元素法的基本思想是就近供应,即从单位 运价表中最小的运价开始确定产销关系,依此 类推,一直到给出基本方案为止.
产量(ai) 4 4 12
8.伏格法尔法
每次从当前运价表上,计算各行各列 中两个最小运价之差值(行差值hi,列差 值kj),优先取最大差值的行或列中最小 的格来确定运输关系,直到求出初始方案。
8.伏格尔法
伏格尔法的基本步骤:
1.计算每行、列两个最小运价的差; 2.找出最大差所在的行或列; 3.找出该行或列的最小运价,确定供求关系,最大量 的供应 ; 4.划掉已满足要求的行或 (和) 列,如果需要同时划 去行和列,必须要在该行或列的任意位置填个 “0”; 5.在剩余的运价表中重复1~4步,直到得到初始基可 行解。
表4-1 A B C 甲 3 1 7 乙 11 9 4 丙 3 2 10 丁 10 8 5 产量(ai) 7 4 9
销量(bj)
表4-12 A B C
两最小元素之差
3
甲 3 1 7
6
乙 11 9
5
丙 3 2 10 丁 10 8 5
6
两最小元素之差
4
0 1 1
2
5
1
3
表4-13
甲 A B C 销量(bj) 3 甲 3 乙 丙 丁 产量(ai) 7 4 9 5 乙 11 丙 3 6 丁 10
1.闭合回路
所谓闭合回路法,就是对于代表非基变量的
空格(其调运量为零),把它的调运量调整 为1,由于产销平衡的要求,我们必须对这个 空格的闭回路的顶点的调运量加上或减少1。 最后我们计算出由这些变化给整个运输方案 的总运输费带来的变化。如果所有代表非基 变量的空格的检验数也即非基变量的检验数 都大于等于零,则已求得最优解,否则继续 迭代找出最优解。
2
表4-17
甲
A B
乙
丙
丁
3
3
C
销量(bj) 表4- 18 A B C
两最小元素之差
6
6 5
3
6
产量(ai) 7 4 9
甲 3 1 7
乙 11 9 4
丙
3
2 10
丁 10 8 5
两最小元素之差
7
6
1
2
表4-19
甲
A B C 销量(bj) 表4-20 甲 3 1 7
两最小元素之差
乙
丙
丁
5
3 6
3 6 5
3
6(-4)
6 5
3(+5)
6
9
乙 甲 A B C 销量(bj)
11 = 1 3 12 = 2 (+9) 6(-4) 3 6
丙
4(+3) 1(-2)
丁
3(-10)
产量(ai)
7 4
3(+5) 5 6
9
表4-27
甲
A B C 销量(bj)
3 11 = 1 3
乙
12 = 2 22 = 1 6 6
两最小元素之差
6
6
表4-14
A
B C
两最小元素之差
1 7
9 4
5
2 10
8
5 3
0 1 2
2
1
表4-15 甲 乙 丙 丁
A B C 销量(bj)
表4-16
6
3
甲 3
3
5
丙 3 2 10 丁 10 8 5
产量(ai) 7 4 9
6