高中数学-古典概型

合集下载

高二数学必修3知识点整理:古典概型

高二数学必修3知识点整理:古典概型

【导语】以下是⽆忧考为⼤家推荐的有关⾼⼆数学必修3知识点整理:古典概型,如果觉得很不错,欢迎点评和分享~感谢你的阅读与⽀持! 古典概型的基本概念 1.基本事件:在⼀次试验中可能出现的每⼀个基本结果称为基本事件; 2.等可能基本事件:若在⼀次试验中,每个基本事件发⽣的可能性都相同,则称这些基本事件为等可能基本事件; 3.古典概型:满⾜以下两个条件的随机试验的概率模型称为古典概型①所有可能出现的基本事件只有有限个;②每个基本事件出现的可能性相等; 4.古典概型的概率:如果⼀次试验的等可能基本事件共有n个,那么每⼀个等可能基本事件发⽣的概率都是 1,如果某个事件A包含了其中m个等可能基本事件,那么事件A发⽣的概率为nP(A)?m.n 知识点⼀:古典概型的基本概念 *例1:从字母a,b,c,d中任意取出两个不同字母的试验中,有哪些基本事件?思路分析: 题意分析:本试题考查⼀次试验中⽤列举法列出所有基本事件的结果,⽽画树状图是列举法的基本⽅法. 解题思路:为了了解基本事件,我们可以按照字典排序的顺序,把所有可能的结果都列出来.或者利⽤树状图将它们之间的关系列出来.解答过程:解法⼀:所求的基本事件共有6个: A?{a,b},B?{a,c},C?{a,d}D?{b,c},E?{b,d},F?{c,d} 解法⼆:树状图 解题后的思考:⽤树状图求解⼀次试验中的基本事件数⽐较直观、形象,可做到不重不漏.掌握列举法,学会⽤数形结合、分类讨论的思想解决概率的计算问题. **例2:(1)向⼀个圆⾯内随机地投射⼀个点,如该点落在圆内任意⼀点都是等可能的,你认为这是古典概型吗?为什么? (2)如图,某同学随机地向⼀靶⼼射击,这⼀试验的结果只有有限个:命中10环、命中9环??命中5环和不中环.你认为这是古典概型吗?为什么? 思路分析: 题意分析:本题考查古典概型的概念.应明确什么是古典概型及其应具备什么样的条件.解题思路:结合古典概型的两个基本特征可进⾏判定解决.解答过程: 答:(1)不是古典概型,因为试验的所有可能结果是圆⾯内所有的点,试验的所有可能结果数是⽆限的,虽然每⼀个试验结果出现的“可能性相同”,但这个试验不满⾜古典概型的第⼀个条件. (2)不是古典概型,因为试验的所有可能结果只有7个,⽽命中10环、命中9环??命中5环和不中环的出现不是等可能的,即不满⾜古典概型的第⼆个条件. 解题后的思考:判定是不是古典概型,主要看两个⽅⾯,⼀是实验结果是不是有限的;另⼀个就是每个事件是不是等可能的. ***例3:单选题是标准化考试中常⽤的题型,⼀般是从A,B,C,D四个选项中选择⼀个正确答案.如果考⽣掌握了考查的内容,他可以选择正确的答案.假设考⽣不会做,他随机的选择⼀个答案,问他答对的概率是多少?思路分析: 题意分析:本题考查古典概型概率的求解运算. 解题思路:解本题的关键,即讨论这个问题什么情况下可以看成古典概型.如果考⽣掌握了全部或部分考查内容,这都不满⾜古典概型的第2个条件——等可能性,因此,只有在假定考⽣不会做,随机地选择了⼀个答案的情况下,才可将此问题看作古典概型. 解答过程:这是⼀个古典概型,因为试验的可能结果只有4个:选择A、选择B、选择C、选择D,即基本事件共有4个,考⽣随机地选择⼀个答案是选择A,B,C,D的可能性是相等的.从⽽由古典概型的概率计算公式得: P(答对\答对所包含的基本事件的个数1==0.25 基本事件的总数4解题后的思考:运⽤古典概型的概率公式求概率时,⼀定要先判定该试题是不是古典概型,然后明确试验的总的基本事件数,和事件A发⽣的基本事件数,再借助于概率公式运算.⼩结:本知识点的例题主要考查对古典概型及其概率概念的基本理解.把握古典概型的两个特征是解决概率问题的第⼀个关键点;理解⼀次试验中的所有基本事件数,和事件A发⽣的基本事件数,是解决概率问题的第⼆个关键点. 知识点⼆:古典概型的运⽤ *例4:同时掷两个骰⼦,计算:(1)⼀共有多少种不同的结果? (2)其中向上的点数之和是5的结果有多少种?(3)向上的点数之和是5的概率是多少? (4)为什么要把两个骰⼦标上记号?如果不标记号会出现什么情况?你能解释其中的原因吗?思路分析: 题意分析:本题考查了古典概型的基本运算问题. 解题思路:先分析“同时掷两个骰⼦的所有事件数”,然后分析事件A:向上的点数之和为5的基本事件数,最后结合概率公式运算.同时可以运⽤举⼀反三的思想⾃⾏设问、解答. 解答过程: 解:(1)掷⼀个骰⼦的结果有6种,我们把两个骰⼦标上记号1,2以便区分,由于1号骰⼦的结果都可与2号骰⼦的任意⼀个结果配对,我们⽤⼀个“有序实数对”来表⽰组成同时掷两个骰⼦的⼀个结果(如表),其中第⼀个数表⽰掷1号骰⼦的结果,第⼆个数表⽰掷2号骰⼦的结果.(可由列表法得到)1号骰⼦2号骰⼦1(1,1)(2,1)(3,1)(4,1)(5,1)(6,1)2(1,2)(2,2)(3,2) (4,2)(5,2)(6,2)3(1,3)(2,3)(3,3)(4,3)(5,3)(6,3)4(1,4)(2,4)(3,4)(4,4)(5,4)(6,4)5(1,5)(2,5)(3,5)(4,5) (5,5)(6,5)6(1,6)(2,6)(3,6)(4,6)(5,6)(6,6)123456由表中可知同时掷两个骰⼦的结果共有36种.(2)在上⾯的结果中,向上的点数之和为5的结果有4种,分别为:(1,4),(2,3),(3,2),(4,1) (3)由于所有36种结果是等可能的,其中向上点数之和为5的结果(记为事件A)有4种,因此,由古典概型的概率计算公式可得 P(A)=A所包含的基本事件的个数41== 基本事件的总数369(4)如果不标上记号,类似于(1,2)和(2,1)的结果将没有区别.这时,所有可能的结果将是: (1,1)(1,2)(1,3)(1,4)(1,5)(1,6)(2,2)(2,3)(2,4)(2,5)(2,6)(3,3)(3,4)(3,5)(3,6)(4,4)(4,5)(4,6)(5,5) (5,6)(6,6)共有21种,和是5的结果有2个,它们是(1,4)(2,3),则所求的概率为 P(A)=A所包含的基本事件的个数2= 基本事件的总数21这就需要我们考察两种解法是否满⾜古典概型的要求了.可以通过展⽰两个不同的骰⼦所抛掷出来的点,感受第⼆种⽅法构造的基本事件不是等可能事件. 解题后的思考:考查同学们运⽤古典概型的概率计算公式时应注意验证所构造的基本事件是否满⾜古典概型的第⼆个条件. 对于同时抛掷的问题,我们要将骰⼦编号,因为这样就能反映出所有的情况,不⾄于把(1,2)和(2,1)看作相同的情况,保证基本事件的等可能性.我们也可将此试验通过先后抛掷来解决,这样就有顺序了,则基本事件的出现也是等可能的. **例5:从含有两件正品a1,a2和⼀件次品b1的三件产品中,每次任取⼀件,每次取出后不放回,连续取两次,求取出的两件产品中恰有⼀件次品的概率.思路分析: 题意分析:本题考查的是不放回抽样的古典概型概率的运⽤ 解题思路:⾸先注意到该题中取出的过程是有顺序的.同时明⽩⼀次试验指的是“不放回的,连续的取两次”. 先列举出试验中的所有基本事件数,然后求事件A的基本事件数,利⽤概率公式求解.解答过程: 解法1:每次取出⼀个,取后不放回地连续取两次,其⼀切可能的结果组成的基本事件有6个,即(a1,a2),(a1,b1),(a2,a1),(a2,b1),(b1,a1),(b1,a2).其中⼩括号内左边的字母表⽰第1次取出的产品,右边的字母表⽰第2次取出的产品. ⽤A表⽰“取出的两件中,恰好有⼀件次品”这⼀事件,则A=[(a1,b1),(a2,b1),(b1,a1),(b1,a2)]事件A由4个基本事件组成,因⽽P(A)= 42=63解法2:可以看作不放回3次⽆顺序抽样,先按抽取顺序(x,y)记录结果,则x有3种可能,y有2种可能,但(x,y),(y,x)是相同的,所以试验的所有结果有3×2÷2=3种,按同样的⽅法,事件B包含的基本事件个数为2×1÷1=2,因此P(B)= 23解题后的思考:关于不放回抽样,计算基本事件的个数时,既可以看作是有顺序的,也可以看作是⽆顺序的,其结果是⼀样的,但⽆论选择哪⼀种⽅式,观察的⾓度必须⼀致,否则会导致错误. ***例6:从含有两件正品a1,a2和⼀件次品b1的三件产品中,每次任取⼀件,每次取出后放回,连续取两次,求取出的两件产品中恰有⼀件次品的概率.思路分析: 题意分析:本题考查放回抽样的概率问题. 解题思路:⾸先注意到该题中取出的过程是有顺序的.同时明⽩⼀次试验指的是“有放回的,连续的取两次”. 解答过程:每次取出⼀个后放回,连续取两次,其⼀切可能的结果组成的基本事件有9个,即 (a1,a1),(a1,a2)和(a1,b1)(a2,a1),(a2,b1)和(a2,a2)(b1,a1),(b1,a2)和(b1,b1) 其中⼩括号内左边的字母表⽰第1次取出的产品,右边的字母表⽰第2次取出的产品.⽤A表⽰“取出的两件中,恰好有⼀件次品”这⼀事件,则A=[(b1,a1),(b1,a2),(a2,b1),(a1,b1)]事件A由4个基本事件组成,因此P(A)= 4.9解题后的思考:对于有放回抽样的概率问题我们要理解每次取的时候,总数是不变的,且同⼀个体可被重复抽取,同时,在求基本事件数时,要做到不重不漏.⼩结: (1)古典概型概率的计算公式是⾮常重要的⼀个公式,要深刻体会古典概型的概念及其概率公式的运⽤,为我们学好概率奠定基础. (2)体会求解不放回和有放回概率的题型. 知识点三:随机数产⽣的⽅法及随机模拟试验的步骤 **例7:某篮球爱好者,做投篮练习,假设其每次投篮命中的概率是40%,那么在连续三次投篮中,恰有两次投中的概率是多少?思路分析: 题意分析:本题考查的是近似计算⾮古典概型的概率. 解题思路:其投篮的可能结果有有限个,但是每个结果的出现不是等可能的,所以不能⽤古典概型的概率公式计算,我们⽤计算机或计算器做模拟试验可以模拟投篮命中的概率为40%.解答过程: 我们通过设计模拟试验的⽅法来解决问题,利⽤计算机或计算器可以⽣产0到9之间的取整数值的随机数. 我们⽤1,2,3,4表⽰投中,⽤5,6,7,8,9,0表⽰未投中,这样可以体现投中的概率是40%.因为是投篮三次,所以每三个随机数作为⼀组. 例如:产⽣20组随机数: 812,932,569,683,271,989,730,537,925,488907,113,966,191,431,257,393,027,556,458 这就相当于做了20次试验,在这组数中,如果恰有两个数在1,2,3,4中,则表⽰恰有两次投中,它们分别是812,932,271,191,393,即共有5个数,我们得到了三次投篮中恰有两次投中的概率近似为解题后的思考: (1)利⽤计算机或计算器做随机模拟试验,可以解决⾮古典概型的概率的求解问题.(2)对于上述试验,如果亲⼿做⼤量重复试验的话,花费的时间太多,因此利⽤计算机或计算器做随机模拟试验可以⼤⼤节省时间. (3)随机函数(RANDBETWEEN)(a,b)产⽣从整数a到整数b的取整数值的随机数. ⼩结:能够简单的体会模拟试验求解⾮古典概型概率的⽅法和步骤.⾼考对这部分内容不作更多的要求,了解即可.5=25%.20 【同步练习题】 1.(2014•惠州调研)⼀个袋中装有2个红球和2个⽩球,现从袋中取出1个球,然后放回袋中再取出1个球,则取出的2个球同⾊的概率为()A.12;B.13;C.14;D.25 答案:A[把红球标记为红1、红2,⽩球标记为⽩1、⽩2,本试验的基本事件共有16个,其中2个球同⾊的事件有8个:红1,红1,红1、红2,红2、红1,红2、红2,⽩1、⽩1,⽩1、⽩2,⽩2、⽩1,⽩2、⽩2,故所求概率为P=816=12.] 2.(2013•江西⾼考)集合A={2,3},B={1,2,3},从A,B中各任意取⼀个数,则这两数之和等于4的概率是 ()A.23B.12C.13D.16 答案:C[从A,B中各任取⼀个数有(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),共6种情况,其中两个数之和为4的有(2,2),(3,1),故所求概率为26=13.故选C.] 3.(2014•宿州质检)⼀颗质地均匀的正⽅体骰⼦,其六个⾯上的点数分别为1、2、3、4、5、6,将这⼀颗骰⼦连续抛掷三次,观察向上的点数,则三次点数依次构成等差数列的概率为()A.112B.118C.136D.7108 答案:A[基本事件总数为6×6×6,事件“三次点数依次成等差数列”包含的基本事件有(1,1,1),(1,2,3),(3,2,1),(2,2,2),(1,3,5),(5,3,1),(2,3,4),(4,3,2),(3,3,3),(2,4,6),(6,4,2),(3,4,5),(5,4,3),(4,4,4),(4,5,6),(6,5,4),(5,5,5),(6,6,6)共18个,所求事件的概率P=186×6×6=112.] 4.(2013•安徽⾼考)若某公司从五位⼤学毕业⽣甲、⼄、丙、丁、戊中录⽤三⼈,这五⼈被录⽤的机会均等,则甲或⼄被录⽤的概率为 ()A.23B.25C.35D.910 答案:D[五⼈录⽤三⼈共有10种不同⽅式,分别为:{丙,丁,戊},{⼄,丁,戊},{⼄,丙,戊},{⼄,丙,丁},{甲,丁,戊},{甲,丙,戊},{甲,丙,丁},{甲,⼄,戊},{甲,⼄,丁},{甲,⼄,丙}. 其中含甲或⼄的情况有9种,故选D.] 5.(理)(2014•安徽⽰范⾼中联考)在棱长分别为1,2,3的长⽅体上随机选取两个相异顶点,若每个顶点被选取的概率相同,则选到两个顶点的距离⼤于3的概率为()A.47B.37C.27D.314 答案:B[从8个顶点中任取两点有C28=28种取法,其线段长分别为1,2,3,5,10,13,14.①其中12条棱长度都⼩于等于3;②其中4条,棱长为1,2的⾯对⾓线长度为5<3;故长度⼤于3的有28-12-4=12,故两点距离⼤于3的概率为12C28=37,故选B.]。

高中数学知识点精讲精析 古典概型的特征和概率计算公式

高中数学知识点精讲精析 古典概型的特征和概率计算公式

3.2.1 古典概型的特征和概率计算公式1.基本事件:在一次试验中可能出现的每一个基本结果称为基本事件.2.等可能性事件:若在一次试验中,每个基本事件发生的可能性相同,则称这些基本事件为等可能基本事件.3.古典概型的特点:⑴所有的基本事件只有有限个;⑵每个基本事件发生的概率相等,⑶不需要通过大量重复的试验,只要通过对一次试验可能出现的结果进行分析即可.4.古典概型的概率公::如果一次试验的等可能基本事件共有n 个,那么每个等可能基本事件发生的概率都是1n ,如果某个事件A 包含了其中m 个等可能基本事件,那么事件A 发生的概率为P(A)= mn.5.从集合的角度来理解古典概型的概率:把一次试验中等可能出现的所有结果组成全集I ,把事件A 发生的结果组成集合A ,则A 是I 的一个子集,则有P(A) =card(A)card(t).6.古典概型的公式推导如:在20瓶饮料中,有1瓶已经过了保质期,从中任取1瓶,取到已过保质期的饮料的概率是多少?在20瓶饮料中,有2瓶已经过了保质期了呢?(1/20,2/20=1/10)在n 瓶饮料中,有m 瓶已经过了保质期,从中任取1瓶,取到已过保质期的饮料的概率是多少?(m/n)假设有n 个等可能基本事件,某个事件A 包含了其中m 个等可能基本事件,那么事件A 发生的概率是多少?分析:有n 个等可能基本事件,则每个基本事件发生的概率是多少?答:1/n 事件A 包含了其中m 个等可能基本事件,那么事件A 发生的概率是多少?答:nm 1⨯公式:假设有n 个等可能基本事件,某个事件A 包含了其中m 个等可能基本事件,那么事件A 发生的概率nm A P =)(1.连续掷3枚硬币,观察落地后这3枚硬币出现正面还是反面. (1)写出这个试验的基本事件空间; (2)求这个试验的基本事件的总数;(3)“恰有两枚正面向上”这一事件包含哪几个基本事件?分析:理解并运用各定义.解:(1)这个试验的基本事件空间Ω={(正,正,正),(正,正,反),(正,反,正),(正,反,反),(反,正,正),(反,正,反),(反,反,正),(反,反,反)};(2)基本事件的总数是8.(3)“恰有两枚正面向上”包含以下3个基本事件:(正,正,反),(正,反,正),(反,正,正).2.甲.乙两人做出拳游戏(锤子.剪刀.布),求:(1)平局的概率;(2)甲赢的概率;(3)乙赢的概率.分析:研究此试验是否为古典概型,如果是,基本事件总数n,事件A包含的基本事件数m各为多少.解:甲有3种不同的出拳方法,每一种出法是等可能的,乙同样有等可能的3种不同出法.一次出拳游戏共有3×3=9种不同的结果,可以认为这9种结果是等可能的.所以一次游戏(试验)是古典概型.它的基本事件总数为9.平局的含义是两人出法相同,例如都出了锤.甲赢的含义是甲出锤且乙出剪,甲出剪且乙出布,甲出布且乙出锤这3种情况.乙赢的含义是乙出锤且甲出剪,乙出剪且甲出布,乙出布且甲出锤这3种情况.设平局为事件A,甲赢为事件B,乙赢为事件C.由图3-2-1容易得到:图3-2-1(1)平局含3个基本事件(图中的△);(2)甲赢含3个基本事件(图中的⊙);(3)乙赢含3个基本事件(图中的※).由古典概率的计算公式,可得P (A )3193==; P (B )3193==; P (C )3193==. 3.甲.乙两个均匀的正方体玩具,各个面上分别刻有1,2,3,4,5,6六个数字,将这两个玩具同时掷一次.(1)若甲上的数字为十位数,乙上的数字为个位数,问可以组成多少个不同的数,其中个位数字与十位数字均相同的数字的概率是多少?(2)两个玩具的数字之和共有多少种不同结果?其中数字之和为12的有多少种情况?数字之和为6的共有多少种情况?分别计算这两种情况的概率.分析:(1)准确求出基本事件总数n 和事件A 包含的基本事件个数m . (2)可采用列表的方法求m .n .解:(1)甲有6种不同的结果,乙也有6种不同的结果,故基本事件总数为6×6=36个.其中十位数字共有6种不同的结果,若十位数字与个位数字相同,十位数字确定后,个位数字也即确定.故共有6×1=6种不同的结果,即概率为61366=. (2)两个玩具同时掷的结果可能出现的情况如下表.①每次取一件,取后不放回地连续取两次,其一切可能的结果组成的基本事件空间为 Ω={(a 1,a 2),(a 1,b 1),(a 2,a 1),(a 2,b 1),(b 1,a 1),(b 1,a 2)},其中小括号内左边的字母表示第1次取出的产品,右边的字母表示第2次取出的产品.Ω由6个基本事件组成,而且可以认为这些基本事件的出现是等可能的.用A 表示“取出的两件中,恰好有一件次品”这一事件,则A ={(a 1,b 1),(a 2,b 1),(b 1,a 1),(b 1,a 2)}.事件A 由4个基本事件组成.因而P (A )3264==. ②有放回地连续取出两件,其一切可能的结果组成的基本事件空间Ω={(a 1,a 1),(a 1,a 2),(a 1,b 1),(a 2,a 1),(a 2,a 2),(a 2,b 1),(b 1,a 1),(b 1,a 2),(b 1,b 1)},由9个基本事件组成.由于每一件产品被取到的机会均等,因此可以认为这些基本事件的出现是等可能的.用B 表示“恰有一件次品”这一事件,则B ={(a 1,b 1),(a 2,b 1),(b 1,a 1),(b 1,a 2)}.事件B 由4个基本事件组成,因而P (B )=94. 4.判断下列命题的真假.⑴掷两枚硬币,可能出现“两个正面”.“两个反面”.“一正一反”3种等可能的结果; ⑵某口袋中装有大小和形状完全一样的三个红球.两个黑球和一个白球,那么每一种颜色的球被模到的可能相同;⑶从-3,-2,-1,0,1,2,3中任取一个数,则此数小于0与不小于0的可能相同; ⑷分别从3名男生和4名女生中各选取一名代表,那么某个同学当选的可能性相同.解:以上命题均不正确.⑴如果仅考虑这三种结果,则它们不是等可能的,若要是等可能的,则有(正,正),(正,反),(反,正)和(反,反)4种结果,故本小题总是错的;⑵应是摸到每一个球的可能相同,而三种颜色的球的数量是不相同的; ⑶小于0的有3个,而不小于0的有4个;⑷分别从男生和女生中各选取一个人,对男生或女生内部来说是等可能的,而对所有的同学来说男生是3选1,而女生是4选1,显然每个被选取的可能性不同.说明:对硬币的问题,我们不管抛掷是否有先后顺序,还是一起抛掷的,都必须看成有 先后顺序,否则它们就不是等可能的.若先后抛掷n 次或一次抛掷n 枚,基本事件总数都应是2n个.5.将骰子先后抛掷两次,求:⑴向上的点数之和为几的概率最大?最大值是多少? ⑵向上的点数之和是5的倍数的概率是多少? ⑶个向上的点数中至少有一个是6点的概率? ⑷两个点数中有2或3的的概率;⑸第一次得到的点数比第二次的点数大的概率. 解:将骰子先后抛掷两次,得到的点数情况如下表:统计向上点数和的情况如下:⑴向上点数之和是7的概率最大,最大值是636 = 16;⑵向上的点数之和是5的倍数的有(1,4),(2,3),(3,2),(4,1),(4,6),(5,5),(6,4)7个,⑶至少有一个是6点的共有11个,则其概率为1136;⑷两个点数之和是2的倍数或是3的倍数,按列计算,有2+6+6+2+2+2=20个,其概率为2036 = 59;⑹去掉相等的共有6个,剩下的一半是前面的数字大,一半是后面的数字大,有15个,其概率为1536 = 512.说明:⑴骰子问题与硬币问题一样,都要考虑先后顺序,且n 个骰子的基本事件总数是2n;⑵当基本事件总数不大时,用枚举法较方便;⑶若能用一个表格来表示这些问题,可使问题直观明了.6.从数字1,2,3,4,5中任取2个,组成没有重复数字的两位数.试求: ⑴这个两位数是5的倍数的概率; ⑵这个两位数是偶数的概率; ⑶这个两位数大于40的概率.解:“从数字1,2,3,4,5中任取2个,组成没有重复数字的两位数”,共有基本事件总数5×4=20个.⑴设事件A 为“这个两位数是5的倍数”,则事件A 包含的基本事件为:个位数字是5,共有4个, ∴P(A)= 420 =15;⑵设事件B 为“这个两位数是偶数” 则事件B 包含的基本事件为:个位数字是2或4,共有8个, ∴P(A)= 820 =25;⑶设事件C 为“这个两位数大于40” 则事件C 包含的基本事件为:个十位数字是4或5,也有8个, ∴P(A)= 820 =25.说明:⑴数字问题要考虑先后顺序;⑵常把问题转换成个位数或首位数的问题,学会用到分类讨论的思想;⑶若含有0,还要考虑0不能在首位的特殊要求,这是最容易出错的地方.7.一只口袋内装有大小相同的5只球,其中3只白球,2只黑球,从中一次摸出两只球. ⑴摸出的两只球都是白球的概率是多少? ⑵摸出的两只球是一白一黑的概率是多少?解:从中摸出两球,可分有先后顺序(有序)和无先后顺序(无序)两种情况.设摸出的2只球都是白球的事件为A ,一白一黑的事件为B .有序:从5只球中摸出2只球,其基本事件总数为5×4=20. ⑴摸到2只白球的基本事件数是3×2=6,∴P(A)=620 =310;⑵摸到1只白球和一只黑球的基本事件数是(先白后黑)3×2 +(先黑后白)2×3 =12, ∴P(A)=1220 =35.无序:从5只球中摸出2只球,其基本事件总数为5×42=10.⑴摸到2只白球的基本事件数是3×2 2=3 ∴P(A)= 310;⑵摸到1只白球和一只黑球的基本事件数是3×2 =6, ∴P(A)=610 =35.说明:某些摸球问题是否考虑先后顺序,对问题的答案没有区别,但必须正确理解题意. 8.袋中有红.黄.白色球各一个,每次任取一个,有放回抽三次,计算下列事件的概率: (1)三次颜色各不同;(2)三种颜色不全相同;(3)三次取出的球无红色或无黄色; 解:基本事件有3327=个,是等可能的,(1)记“三次颜色各不相同”为A ,332()279A P A ==; (2)记“三种颜色不全相同”为B ,2738()279P B -==; (3)记“三次取出的球无红色或无黄色”为C ,332215()279P C +-==; 9.将一枚骰子先后掷两次,求所得的点数之和为6的概率。

高中数学人教B版2019必修第二册古典概型

高中数学人教B版2019必修第二册古典概型
10 2
【类题·通】 解决古典概型综合问题的两个关键点
(1)审读题干:对于实际问题要认真读题,深入理解题意, 计算基本事件总数要做到不重不漏,这是解决古典概型 问题的关键.
(2)编号:分析实际问题时,往往对要研究的对象进行编 号或者用字母代替,使复杂的实际意义变为简单的数字 和字母,方便寻找对象间的关系,这是解决古典概型的 问题时主要的解题技巧.
【解析】1.选C.样本空间为:Ω ={甲乙丙、甲丙乙、 乙甲丙、乙丙甲、丙甲乙、丙乙甲}共六个,甲站在中 间的事件包括乙甲丙、丙甲乙共2个,所以甲站在中间 的概率: P= 2 = 1 .
63
2.(1)用树状图表示所有的结果为:
所以样本空间为Ω ={ab,ac,ad,ae,bc,bd,be,cd, ce,de}.
如图所示,本题中的等可能样本点共有24个.
(1)设事件A为“这四人恰好都坐在自己的席位上”,则 事件A只包含1个样本点,所以P(A)=1 .
24
(2)设事件B为“这四人恰好都没坐在自己席位上”,则 事件B包含9个样本点,所以P(B)= 9 = 3 .
24 8
(3)设事件C为“这四人恰好有1位坐在自己席位上”, 则事件C包含8个样本点,所以P(C)= 8 = 1 .
8
类型三 复杂的古典概型问题 【典例】袋中有五张卡片,其中红色卡片三张,标号分 别为1,2,3;蓝色卡片两张,标号分别为1,2;现从袋中任 取两张卡片. (1)若把所取卡片的所有不同情况作为基本事件,则共 有多少个基本事件?是古典概型吗?
(2)若把所取出卡片的标号之和作为基本事件,则共有 多少个基本事件?是古典概型吗? (3)求所取卡片标号之和小于4的概率.
(2)记“恰好摸出1个黑球和1个红球”为事件A,

人教版高中数学必修三概率论-古典概型ppt课件

人教版高中数学必修三概率论-古典概型ppt课件

推广1. n个元素分成 ( r1 rk n) k组,每组有 rk 个元素, n! rk r1 r2 分法有 C n 种 C n r1 C rk r1 ! rk !
2. n个元素有2类,每类分别有m , ( n m )个,每
r1 r2 类分别取r1 , r2个, 取法有C m Cn m种
3. n个元素有k类,每类分别有n1 ,, nk 个,每类
rk r1 r2 分别取r1 , , rk 个, 取法有C n C C n2 nk 种 1
例1 袋中有外形相同的5个白球,3个黑球,一次任取两个, 求取出两个都是白球的概率
解 设A {取出两个都是白球}
2 n C8 2 0 m C5 C3
基本计数原理
3.基本计数原理: (1) 加法原理 设完成一件事有m种方式, 第一种方式有n1种方法, 则完成这件事总共有 第二种方式有n2种方法, …, n1 + n2 + … + nm 种方法 . 第m种方式有nm种方法, 无论通过哪种方法都可以完成这件事,
(2) 乘法原理 设完成一件事有m个步骤, 第一个步骤有n1种方法, 第二个步骤有n2种方法, n
6 A6 例5 6人排成一排,有多少种排法? 6! 若某人必须排在排尾 ( 排除法 ) 5! (捆绑法 ) 5! 2! 若甲乙必须在一起 2 若甲乙必须不在一起 ( 插空法 ) 4! A5 6! 若甲乙必须从左到右排 ( 去序法 ) 2! (去序) 5.组合: 从n个不同元素取 r 个组成一组 ( 从n个不同元素一次取 r 个) r A n! r n 不同取法有 C n 种 r! r !( n r )! (相当于将n个元素分成两组 )
解 设Ak {抽到k件一等品 } k 0,1,2 2 2 k k 59 n C100 C 40 m C 60 1 1 0 2 2 165 C C C 60 C 40 C 26 60 40 16 60 P ( A ) P ( A ) P ( A0 ) 1 2 2 2 2 165 33 C100 C100 C100 例3 若上例改为依次抽取2件,求抽到2件等级相同的产品的概率 排列 解 设A {2件等级相同} (1)不放回( 不重复抽样) 5 2 2 2 2 n P100 100 99 m A60 A30 A10 P ( A) 11 ( 2)有放回(重复抽样) n 1002 m 602 302 102

第10章概率专题2 古典概型-新教材高中数学必修(第二册)常考题型专题练习(教育机构专用)

第10章概率专题2 古典概型-新教材高中数学必修(第二册)常考题型专题练习(教育机构专用)
则从五人中选出两人共有以下10 种情况:
a,b,a, x, a, y , a, z , b, x , b, y , b, z , x, y , x, z , y, z 两名组长分别选自 20, 40和 40,60的共有以下 6种情况: a, x,a, y , a, z , b, x , b, y , b, z
B.3
10
5
C.2
D.1
5
5
解析:选 C 若函数 f(x)=(a2-2)ex+b 为减函数,则 a2-2<0,又 a∈{-2,0,1,2,3}, 故只有 a=0,a=1 满足题意,又 b∈{3,5},所以函数 f(x)=(a2-2)ex+b 为减函数的概率是 2×2=2. 5×2 5
2.从分别标有 1,2,…,9 的 9 张卡片中不放回地随机抽取 2 次,每次抽取 1 张,则抽到的 2 张卡片上的数奇偶性不同的概率是( )
5
【答案】(1)3,2,2(2)(i)见解析(ii)
21
【解析】(Ⅰ)由已知,甲、乙、丙三个年级的学生志愿者人数之比为 3∶2∶2,由于采用 分层抽样的方法从中抽取 7 名同学,因此应从甲、乙、丙三个年级的学生志愿者中分别抽取 3 人,2 人,2 人. (Ⅱ)(i)从抽出的 7 名同学中随机抽取 2 名同学的所有可能结果为 {A,B},{A,C},{A,D},{A,E},{A,F},{A,G},{B,C},{B,D},{B,E},{B, F},{B,G},{C,D},{C,E},{C,F},{C,G},{D,E},{D,F},{D,G},{E,F}, {E,G},{F,G},共 21 种. (ii)由(Ⅰ),不妨设抽出的 7 名同学中,来自甲年级的是 A,B,C,来自乙年级的是 D,
A.
B.

高中古典概型的概率公式

高中古典概型的概率公式

高中古典概型的概率公式高中数学中,概率是一个重要的概念,我们常用古典概型来计算事件的概率。

古典概型是指在同等条件下,事件发生的可能性相等。

这里介绍高中古典概型的概率公式。

1. 古典概型的定义首先我们来回顾一下古典概型的定义。

古典概型是指在同等条件下,事件发生的可能性相等。

比如掷一枚骰子,每个点数的概率都相等。

这就是古典概型。

2. 古典概型的概率公式对于古典概型,我们可以用公式来计算事件的概率。

公式如下:P(A) = n(A) / n(S)其中,P(A) 表示事件 A 发生的概率,n(A) 表示事件 A 中元素的个数,n(S) 表示样本空间中元素的个数。

例如,掷一枚骰子,求点数为 3 的概率。

这个事件的样本空间为 {1, 2, 3, 4, 5, 6},其中点数为 3 的元素个数为 1,样本空间的元素个数为 6。

因此,点数为 3 的概率为:P(点数为 3) = 1 / 6又例如,从一副扑克牌中抽出一张牌,求抽到黑桃的概率。

这个事件的样本空间为 52 张牌,其中黑桃牌的个数为 13 张,因此,抽到黑桃的概率为:P(抽到黑桃) = 13 / 52 = 1 / 43. 古典概型的应用古典概型的应用非常广泛,我们可以用它来计算各种事件的概率。

比如掷硬币、抽扑克牌、摇色子等等。

下面举一个例子。

假设有一个装有 5 个红球和 3 个蓝球的盒子。

现在从盒子中任取 2 个球,求取出的球都是红球的概率。

这个问题可以用古典概型来解决。

首先,样本空间中元素的个数为:n(S) = C(8, 2) = 28其中,C(n, m) 表示从 n 个元素中取出 m 个元素的组合数。

在这个问题中,从 8 个球中取出 2 个球的组合数为 28。

接着,事件中元素的个数为:n(A) = C(5, 2) = 10其中,从 5 个红球中取出 2 个红球的组合数为 10。

因此,取出的球都是红球的概率为:P(取出的球都是红球) = n(A) / n(S) = 10 / 28 = 5 / 144. 总结古典概型是解决概率问题的一种常用方法。

高中高三数学古典概型教案

高中高三数学古典概型教案

高中高三数学古典概型教案教学目标:
1. 理解古典概型的基本概念和应用。

2. 解决实际问题中的概率计算。

3. 提高学生的数学思维和应用能力。

教学重点:
1. 古典概型的定义和特点。

2. 古典概型在实际问题中的应用。

3. 概率计算和概率分布。

教学难点:
1. 复杂问题的古典概型解题方法。

2. 概率计算过程中的逻辑性。

教学准备:
1. 教师准备课件和教学素材。

2. 学生准备相关教材和笔记。

教学过程:
一、导入(5分钟)
教师简要介绍古典概型的概念和应用,并提出学习目标。

二、知识讲解(20分钟)
1. 古典概型的定义和特点。

2. 古典概型的应用举例。

3. 概率计算公式和概率分布。

三、示范演练(15分钟)
教师通过几个案例演示古典概型的解题方法和计算过程。

四、分组讨论(15分钟)
学生分组讨论并解决几个古典概型的实际问题。

五、小结(5分钟)
教师复习本节课的重点内容,并总结学习收获。

六、作业布置(5分钟)
布置相关练习和作业,巩固学生对古典概型的理解和运用能力。

教学反思:
本节课通过理论讲解、示范演练和实际问题解决的方式,帮助学生深入理解古典概型的概念和应用,提高了他们的数学思维和实际问题解决能力。

在教学中要注重培养学生的逻辑推理能力和分析问题的能力,引导他们灵活运用数学知识解决实际问题。

人教版高中数学【必修三】[知识点整理及重点题型梳理]_古典概型_提高

人教版高中数学【必修三】[知识点整理及重点题型梳理]_古典概型_提高

人教版高中数学必修三知识点梳理重点题型(常考知识点)巩固练习古典概型【学习目标】1.正确理解古典概型的特点;2.掌握古典概型的概率计算公式;3.了解整数型随机数的产生与随机模拟实验.【要点梳理】要点一、古典概型1.基本事件:试验结果中不能再分的最简单的随机事件称为基本事件.基本事件的特点:(1)每个基本事件的发生都是等可能的.(2)因为试验结果是有限个,所以基本事件也只有有限个.(3)任意两个基本事件都是互斥的,一次试验只能出现一个结果,即产生一个基本事件.(4)基本事件是试验中不能再分的最简单的随机事件,其他事件都可以用基本事件的和的形式来表示.2.古典概型的定义:(1)有限性:试验中所有可能出现的基本事件只有有限个;(2)等可能性:每个基本事件出现的可能性相等.我们把具有上述两个特点的概率模型称为古典概率模型,简称古典概型.3.计算古典概型的概率的基本步骤为:(1)计算所求事件A所包含的基本事件个数m;(2)计算基本事件的总数n;(3)应用公式()mP An=计算概率.4.古典概型的概率公式:()AP A=包含的基本事件的个数基本事件的总数.应用公式的关键在于准确计算事件A所包含的基本事件的个数和基本事件的总数.要点诠释:古典概型的判断:如果一个概率模型是古典概型,则其必须满足以上两个条件,有一条不满足则必不是古典概型.如“掷均匀的骰子和硬币”问题满足以上两个条件,所以是古典概型问题;若骰子或硬币不均匀,则每个基本事件出现的可能性不同,从而不是古典概型问题;“在线段AB上任取一点C,求AC>BC 的概率”问题,因为基本事件为无限个,所以也不是古典概型问题.要点二、随机数的产生1.随机数的产生方法:一般用试验的方法,如把数字标在小球上,搅拌均匀,用统计中的抽签法等抽样方法,可以产生某个范围内的随机数.在计算器或计算机中可以应用随机函数产生某个范围的伪随机数,当作随机数来应用.2.随机模拟法(蒙特卡罗法):用计算机或计算器模拟试验的方法,具体步骤如下:(1)用计算器或计算机产生某个范围内的随机数,并赋予每个随机数一定的意义;(2)统计代表某意义的随机数的个数M和总的随机数个数N;(3)计算频率()n Mf AN作为所求概率的近似值.要点诠释:1.对于抽签法等抽样方法试验,如果亲手做大量重复试验的话,花费的时间太多,因此利用计算机或计算器做随机模拟试验可以大大节省时间.2.随机函数RANDBETWEEN(a,b)产生从整数a到整数b的取整数值的随机数.3.随机数具有广泛的应用,可以帮助我们安排和模拟一些试验,这样可以代替我们自己做大量重复试验,比如现在很多城市的重要考试采用产生随机数的方法把考生分配到各个考场中.【典型例题】类型一:等可能事件概念的理解例1.判断下列说法是否正确,并说明理由。

高中数学-古典概型(一)

高中数学-古典概型(一)

古典概型(一)高中数学 1.理解古典概型的概念及特点.2.掌握利用古典概型概率公式解决简单的概率计算问题.导语 研究随机现象,最重要的是知道随机事件发生的可能性大小.对随机事件发生可能性大小的度量(数值)称为事件的概率(probability),事件A的概率用P(A)表示.我们知道,通过试验和观察的方法可以得到一些事件的概率估计,但这种方法耗时多,而且得到的仅是概率的近似值.能否通过建立适当的数学模型,直接计算随机事件的概率呢?一、古典概型的定义问题1 我们讨论过彩票摇号试验、抛掷一枚均匀硬币的试验及掷一枚质地均匀骰子的试验,它们的共同特征有哪些?提示 样本空间的样本点是有限个,每个样本点发生的可能性相等.知识梳理 一般地,若试验E具有以下特征:(1)有限性:样本空间的样本点只有有限个;(2)等可能性:每个样本点发生的可能性相等.称试验E为古典概型试验,其数学模型称为古典概率模型,简称古典概型.例1 下列概率模型是古典概型吗?为什么?(1)从区间[1,10]内任意取出一个实数,求取到实数2的概率;(2)向上抛掷一枚不均匀的旧硬币,求正面朝上的概率;(3)从1,2,3,…,100这100个整数中任意取出一个整数,求取到偶数的概率.解 (1)不是古典概型,因为区间[1,10]中有无限多个实数,取出的实数有无限多种结果,与古典概型定义中“所有可能结果只有有限个”矛盾.(2)不是古典概型,因为硬币不均匀导致“正面朝上”与“反面朝上”发生的可能性不相等,与古典概型定义中“每一个试验结果出现的可能性相同”矛盾.(3)是古典概型,因为在试验中所有可能出现的结果是有限的,而且每个整数被抽到的可能性相等.反思感悟 古典概型需满足两个条件(1)样本点总数有限.(2)各个样本点出现的可能性相等.跟踪训练1 下列问题中是古典概型的是( )A .种下一粒杨树种子,求其能长成大树的概率B .掷一枚质地不均匀的骰子,求掷出1点的概率C .在区间[1,4]上任取一数,求这个数大于1.5的概率D .同时掷两枚质地均匀的骰子,求向上的点数之和是5的概率答案 D解析 A ,B 两项中的样本点的出现不是等可能的;C 项中样本点的个数是无限多个;D 项中样本点的出现是等可能的,且是有限个.故选D.二、古典概型概率的计算问题2 在掷骰子的试验中,记A 事件为“点数为偶数”,A 事件包含哪些样本点?A 事件发生的概率是多少?提示 A ={2,4,6}.对于抛掷骰子试验,出现各个点的可能性相同,记出现1点,2点,…,6点的事件分别为A 1,A 2,…,A 6,记事件“出现偶数点”为B ,则P (A 1)=P (A 2)=…=P (A 6),又P (A 1)+P (A 2)+…+P (A 6)=P (必然事件)=1,所以P (A 1)=P (A 2)=…=P (A 6)=,P (B )==.163612知识梳理 一般地,设试验E 是古典概型,样本空间Ω包含n 个样本点,事件A 包含其中的k 个样本点,则定义事件A 的概率P (A )==.kn n (A )n (Ω)例2 一个口袋内装有大小相等的1个白球和已编有不同号码的3个黑球,从中摸出2个球.求:(1)样本空间的样本点的总数n ;(2)事件“摸出2个黑球”包含的样本点的个数;(3)摸出2个黑球的概率.解 由于4个球的大小相等,摸出每个球的可能性是均等的,所以是古典概型.(1)将黑球编号为黑1,黑2,黑3,从装有4个球的口袋内摸出2个球,样本空间Ω={(黑1,黑2),(黑1,黑3),(黑1,白),(黑2,黑3),(黑2,白),(黑3,白)},共有6个样本点,所以n =6.(2)事件“摸出2个黑球”={(黑1,黑2),(黑2,黑3),(黑1,黑3)},共有3个样本点.(3)样本点总数n =6,事件“摸出两个黑球”包含的样本点个数m =3,故P ==,即摸出36122个黑球的概率为.12反思感悟 利用古典概型概率计算公式计算概率的步骤(1)确定样本空间的样本点的总数n .(2)确定所求事件A 包含的样本点的个数m .(3)P (A )=.mn 跟踪训练2 为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是________.答案 23解析 从4种颜色的花中任选2种颜色的花种在一个花坛中,余下2种颜色的花种在另一花坛的种数有:红黄—白紫、红白—黄紫、红紫—白黄、黄白—红紫、黄紫—红白、白紫—红黄,共6种,其中红色和紫色的花不在同一花坛的种数有红黄—白紫、红白—黄紫、黄紫—红白、白紫—红黄,共4种,故所求概率为P ==.4623三、较复杂的古典概型的概率计算例3 先后抛掷两枚质地均匀的骰子.(1)求点数之和为7的概率;(2)求掷出两个4点的概率;(3)求点数之和能被3整除的概率.解 如图所示,从图中容易看出样本点与所描点一一对应,共36个,且每个样本点出现的可能性相等.(1)记“点数之和为7”为事件A ,从图中可以看出,事件A 包含的样本点共有6个:(6,1),(5,2),(4,3),(3,4),(2,5),(1,6).故P (A )==.63616(2)记“掷出两个4点”为事件B ,从图中可以看出,事件B 包含的样本点只有1个,即(4,4).故P (B )=.136(3)记“点数之和能被3整除”为事件C ,则事件C 包含的样本点共12个:(1,2),(2,1),(1,5),(5,1),(2,4),(4,2),(3,3),(3,6),(6,3),(4,5),(5,4),(6,6).故P (C )==.123613反思感悟 在求概率时,若事件可以表示成有序数对的形式,则可以把全体样本点用平面直角坐标系中的点表示,即采用图表的形式可以准确地找出样本点的个数.故采用数形结合法求概率可以使解决问题的过程变得形象、直观,更方便.跟踪训练3 某旅游爱好者计划从3个亚洲国家A 1,A 2,A 3和3个欧洲国家B 1,B 2,B 3中选择2个国家去旅游.(1)若从这6个国家中任选2个,求这2个国家都是亚洲国家的概率;(2)若从亚洲国家和欧洲国家中各任选1个,求这2个国家包括A 1但不包括B 1的概率.解 (1)由题意知,从6个国家中任选2个国家,其一切可能的结果有(A 1,A 2),(A 1,A 3),(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 2,A 3),(A 2,B 1),(A 2,B 2),(A 2,B 3),(A 3,B 1),(A 3,B 2),(A 3,B 3),(B 1,B 2),(B 1,B 3),(B 2,B 3),共15个.所选2个国家都是亚洲国家的事件所包含的样本点有(A 1,A 2),(A 1,A 3),(A 2,A 3),共3个,则所求事件的概率为P ==.31515(2)从亚洲国家和欧洲国家中各任选1个,其一切可能的结果有(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 2,B 1),(A 2,B 2),(A 2,B 3),(A 3,B 1),(A 3,B 2),(A 3,B 3),共9个.包括A 1但不包括B 1的事件所包含的样本点有(A 1,B 2),(A 1,B 3),共2个,则所求事件的概率为P =.291.知识清单:(1)古典概型.(2)古典概型的概率公式.2.方法归纳:常用列举法(列表法、树状图)求样本点的总数.3.常见误区:在列举样本点的个数时,要按照一定顺序,做到不重、不漏.1.(多选)下列试验是古典概型的是( )A .在适宜的条件下种一粒种子,发芽的概率B .口袋里有2个白球和2个黑球,这4个球除颜色外完全相同,从中任取一球为白球的概率C .向一个圆面内部随机地投一个点,该点落在圆心的概率D .10个人站成一排,其中甲、乙相邻的概率答案 BD解析 A 不是等可能事件,C 不满足有限性.2.在50瓶牛奶中,有5瓶已经过了保质期,从中任取一瓶,取到已经过保质期的牛奶的概率是( )A .0.02 B .0.05C .0.1 D .0.9答案 C解析 由题意知,该题是一个古典概型,因为在50瓶牛奶中任取1瓶有50种不同的取法,取到已过保质期的牛奶有5种不同的取法,根据古典概型公式求得概率是=0.1.故选C.5503.将一枚骰子先后投掷两次,两次向上点数之和为5的倍数的概率为________.答案 736解析 将一枚骰子投掷两次,样本点个数为36,且每个样本点出现的可能性相等,其中“将一枚骰子投掷两次,两次向上点数之和为5的倍数”所包含的样本点有(1,4),(4,1),(2,3),(3,2),(5,5),(6,4),(4,6),共7个,故“将一枚骰子先后投掷两次,两次向上点数之和为5的倍数”的概率为.7364.从1,2,3,4,5中任意取出两个不同的数,则其和为5的概率是________.答案 0.2解析 两数之和等于5有两种情况(1,4)和(2,3),总的样本点有:(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),共10个,且每个样本点出现的可能性相等,所以P ==0.2.210课时对点练1.下列是古典概型的是( )A .任意抛掷两枚骰子,所得点数之和作为样本点B .求任意的一个正整数平方的个位数字是1的概率,将取出的正整数作为样本点C .在甲、乙、丙、丁4名志愿者中,任选一名志愿者去参加跳高项目,求甲被选中的概率D .抛掷一枚均匀硬币至首次出现正面为止,抛掷的次数作为样本点答案 C解析 A 项中由于点数的和出现的可能性不相等,故A 不是;B 项中的样本点的个数是无限的,故B 不是;C 项中满足古典概型的有限性和等可能性,故C 是古典概型;D 项中样本点既不是有限个也不具有等可能性,故D 不是.2.一个家庭有两个小孩,则所有可能的样本点有( )A .(男,女),(男,男),(女,女)B .(男,女),(女,男)C .(男,男),(男,女),(女,男),(女,女)D .(男,男),(女,女)答案 C解析 两个孩子出生有先后之分.3.若书架上放的工具书、故事书、图画书分别是5本、3本、2本,则随机抽出一本是故事书的概率为( )A. B. C. D.153103512答案 B解析 样本点总数为10,“抽出一本是故事书”包含3个样本点,所以其概率为.3104.甲、乙、丙三名同学站成一排,甲站在中间的概率是( )A. B. C. D.16121323答案 C解析 样本点有:(甲,乙,丙)、(甲,丙,乙)、(乙,甲,丙)、(乙,丙,甲)、(丙,甲,乙)、(丙,乙,甲),共6个.甲站在中间的样本点包括:(乙,甲,丙)、(丙,甲,乙),共2个,所以甲站在中间的概率P ==.26135.4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为( )A. B. C. D.13122334答案 C解析 试验的样本空间Ω={(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)},共6个样本点,且每个样本点出现的可能性相同,数字之和为奇数的有4个样本点,所以所求概率为.236.(多选)投掷一枚质地均匀的正方体骰子,四位同学各自发表了以下见解,其中正确的有( )A .“出现点数为奇数”的概率等于“出现点数为偶数”的概率B .只要连掷6次,一定会“出现1点”C .投掷前默念几次“出现6点”,投掷结果“出现6点”的可能性就会加大D .连续投掷3次,出现的点数之和不可能等于19答案 AD解析 掷一枚骰子,出现奇数点和出现偶数点的概率都是,故A 正确;“出现1点”是随12机事件,故B 错误;概率是客观存在的,不因为人的意念而改变,故C 错误;连续掷3次,若每次都出现最大点数6,则三次之和为18,故D 正确.7.在1,2,3,4四个数中,可重复地选取两个数,其中一个数是另一个数的2倍的概率是________.答案 14解析 用列举法知,可重复地选取两个数共有16个样本点,且每个样本点出现的可能性相等,其中一个数是另一个数的2倍的有(1,2),(2,1),(2,4),(4,2)共4个样本点,故所求的概率为=.416148.从1,2,3,4,5这5个数字中不放回地任取两数,则两数都是奇数的概率是________.若有放回地任取两数,则两数都是偶数的概率是________.答案 310425解析 从5个数字中不放回地任取两数,样本点有(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),共10个,且每个样本点出现的可能性相等.因为都为奇数的样本点有(1,3),(1,5),(3,5),共3个,所以所求概率P =.从5个数字中有放回的任取两数,310样本点共有25个,且每个样本点出现的可能性相等,都为偶数的样本点有(2,4),(4,2),(2,2),(4,4)共4个,故概率P =.4259.袋中有大小相同的5个白球,3个黑球和3个红球,每球有一个区别于其它球的编号,从中摸出一个球.(1)有多少种不同的摸法?如果把每个球的编号看作是一个样本点概率模型,该模型是不是古典概型?(2)若按球的颜色为样本点,有多少个样本点?以这些样本点建立概率模型,该模型是不是古典概型?解 (1)由于共有11个球,且每个球有不同的编号,故共有11种不同的摸法.又因为所有球大小相同,因此每个球被摸中的可能性相等,故以球的编号为样本点的概率模型为古典概型.(2)由于11个球共有3种颜色,因此共有3个样本点,分别记为A :“摸到白球”,B :“摸到黑球”,C :“摸到红球”.因为所有球大小相同,所以一次摸球每个球被摸中的可能性均为.111因为白球有5个,所以一次摸球摸中白球的可能性为.511同理可知,摸中黑球、红球的可能性均为.311显然这三个样本点出现的可能性不相等,所以以颜色为样本点的概率模型不是古典概型.10.一只口袋内装有大小相同的5只球,其中3只白球,2只黑球,从中一次摸出2只球.(1)共有多少个样本点?(2)摸出的2只球都是白球的概率是多少?解 (1)分别记白球为1,2,3号,黑球为4,5号,从中摸出2只球,有如下样本点(摸到1,2号球用(1,2)表示):(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5).因此,共有10个样本点.(2)上述10个样本点发生的可能性相同,且只有3个样本点是摸到两只白球(记为事件A ),即(1,2),(1,3),(2,3),故P (A )=.故摸出2只球都是白球的概率为.31031011.一个袋中装有2个红球和2个白球,现从袋中取出1个球,然后放回袋中再取出1个球,则取出的2个球同色的概率为( )A. B. C. D.12131425答案 A解析 把2个红球分别标记为红1、红2,2个白球分别标记为白1、白2,本试验样本空间所包含的样本点共有16个,其中取出的2个球同色包含的样本点有8个:(红1,红1),(红1,红2),(红2,红1),(红2,红2),(白1,白1),(白1,白2),(白2,白1),(白2,白2).故所求概率P ==.8161212.从集合A ={-1,1,2}中随机选取一个数记为k ,从集合B ={-2,1,2}中随机选取一个数为b ,则直线y =kx +b 不经过第三象限的概率为( )A. B. C. D.29134959答案 A解析 直线y =kx +b 不经过第三象限,即Error!选取出的两个数记为(k ,b ),则该试验的样本空间Ω={(-1,-2),(-1,1),(-1,2),(1,-2),(1,1),(1,2),(2,-2),(2,1),(2,2)},共9个样本点,符合题意的有(-1,1),(-1,2),共2个样本点,所以所求概率为.2913.每年3月为学雷锋活动月,某班有青年志愿者5名,其中男生3人,女生2人,现需选出2名青年志愿者到社区做公益宣传活动,则选出的2名青年志愿者性别相同的概率为( )A. B. 3525C. D.15310答案 B解析 设3名男生分别用A ,B ,C 表示,2名女生分别用a ,b 表示,则从5人中选出2名青年志愿者的样本空间Ω={(A ,B ),(A ,C ),(A ,a ),(A ,b ),(B ,C ),(B ,a ),(B ,b ),(C ,a ),(C ,b ),(a ,b )},共有10个样本点,其中选出的2名志愿者性别相同包含的样本点有(A ,B ),(A ,C ),(B ,C ),(a ,b ),共有4个,则选出的2名青年志愿者性别相同的概率P ==.4102514.一次掷两枚均匀的骰子,得到的点数为m 和n ,则关于x 的方程x 2+(m +n )x +4=0无实数根的概率是________.答案 112解析 总的样本点个数为36,且每个样本点出现的可能性相等.因为方程无实根,所以Δ=(m +n )2-16<0.即m +n <4,其中有(1,1),(1,2),(2,1),共3个样本点.所以所求概率为=.33611215.甲、乙两人玩猜数字游戏,先由甲心中想一个数字,记为a ,再由乙猜甲刚才所想的数字,把乙猜的数字记为b ,其中a ,b ∈{1,2,3,4,5,6},若|a -b |≤1,就称甲、乙“心有灵犀”.现任意找两人玩这个游戏,则他们“心有灵犀”的概率为( )A. B. C. D.192971849答案 D解析 记“|a -b |≤1”为事件A ,由于a ,b ∈{1,2,3,4,5,6},则事件A 包含的样本点有:(1,1),(1,2),(2,1),(2,2),(2,3),(3,2),(3,3),(3,4),(4,3),(4,4),(4,5),(5,4),(5,5),(5,6),(6,5),(6,6),共16个,而依题意得,样本点总数为36,且每个样本点出现的可能性相等.因此他们“心有灵犀”的概率P ==.16364916.某区的区大代表中有教师6人,分别来自甲、乙、丙、丁四个学校,其中甲校教师记为A 1,A 2,乙校教师记为B 1,B 2,丙校教师记为C ,丁校教师记为D .现从这6名教师代表中选出3名教师组成十九大报告宣讲团,要求甲、乙、丙、丁四个学校中,每校至多选出1名.(1)请列出十九大报告宣讲团组成人员的全部样本点;(2)求教师A 1被选中的概率;(3)求宣讲团中没有乙校教师代表的概率.解 (1)从6名教师代表中选出3名教师组成十九大报告宣讲团,组成人员的全部样本点有12个,分别为:(A 1,B 1,C ),(A 1,B 1,D ),(A 1,B 2,C ),(A 1,B 2,D ),(A 1,C ,D ),(A 2,B 1,C ),(A 2,B 1,D ),(A 2,B 2,C ),(A 2,B 2,D ),(A 2,C ,D ),(B 1,C ,D ),(B 2,C ,D ).(2)组成人员的全部样本点中,A 1被选中的样本点有(A 1,B 1,C ),(A 1,B 1,D ),(A 1,B 2,C ),(A 1,B 2,D ),(A 1,C ,D ),共5个,所以教师A 1被选中的概率为P =.512(3)宣讲团中没有乙校教师代表的样本点有(A 1,C ,D ),(A 2,C ,D ),共2个,所以宣讲团中没有乙校教师代表的概率为P ==.21216。

高中数学必修3课件:3.2.1 古典概型

高中数学必修3课件:3.2.1 古典概型
栏目 导引
第三章 概率
想一想 “在区间[0,10]上任取一个数,这个数恰为2的概率是多少”?这 个概率模型属于古典概型吗? 提示:不是.因为在区间[0,10]上任取一个数,其试验结果有 无限个,故其基本事件有无限个,所以不是古典概型.
栏目 导引
第三章 概率
做一做 2.投掷一枚骰子,恰好数字6正面向上的概率是________. 解析:由于骰子每一个面向上的可能性相等,故数字 6 正面向 上的概率是16. 答案:16
栏目 导引
第三章 概率
【解】 从 7 人中选出数学、物理、化学成绩优秀者各 1 名, 其一切可能的结果组成的 12 个基本事件为: (A1,B1,C1),(A1,B1,C2),(A1,B2,C1),(A1,B2,C2), (A2,B1,C1),(A2,B1,C2),(A2,B2,C1),(A2,B2,C2), (A3,B1,C1),(A3,B1,C2),(A3,B2,C1),(A3,B2,C2). C1 恰被选中有 6 个基本事件: (A1,B1,C1),(A1,B2,C1),(A2,B1,C1),(A2,B2,C1), (A3,B1,C1),(A3,B2,C1), 因而 P(M)=162=12.
第三章 概率
1.基本事件 (1)定义:在一次试验中,所有可能出现的基本结果中不能 再分的最简单的___随__机____事件称为该次试验的基本事件. (2)特点:一是任何两个基本事件是_互__斥___的;二是任何事 件(除不可能事件)都可以表示成基本事件的__和___.
栏目 导引
第三章 概率
做一做 1.袋中有红、白色球各一个,每次任取一个,有放回地抽三 次,所有的基本事件数是________. 解析:所有的基本事件有(红红红)(红红白)(红白红)(白红红)( 红白白)(白红白)(白白红)(白白白),共8个. 答案:8

高中数学古典概型

高中数学古典概型

上一页
返回导航
下一页
第十章 概率
3
1.事件的概率 对随机事件发生_可__能__性___大小的度量(数值)称为事件的概率,事件A的概 率用__P_事件特征 ①有限性:样本空间的样本点只有_有__限__个___; ②等可能性:每个样本点发生的可能性__相__等__.
B.每个事件出现的可能性相等
√C.每个样本点出现的可能性相等 √D.已知样本空间中的样本点个数为n,若随机事件A包含k个样本点,则
事件A发生的概率P(A)=
上一页
返回导航
下一页
第十章 概率
38
解析:B中所说的事件不一定是基本事件,所以B不正确;根据古典概型 的特点及计算公式可知A,C,D正确.故选ACD.
上一页
返回导航
下一页
第十章 概率
33
解决有序和无序问题应注意两点
(1)关于不放回抽样,计算样本点个数时,既可以看作是有顺序的,也可 以看作是无顺序的,其最后结果是一致的.但不论选择哪一种方式,观 察的角度必须一致,否则会产生错误.
(2)关于有放回抽样,应注意在连续取出两次的过程中,因为先后顺序不 同,所以(a,b),(b,a)不是同一个样本点.解题的关键是要清楚无论是 “不放回抽取”还是“有放回抽取”,每一件产品被取出的机会都是相 等的.
下一页
第十章 概率
13
【解】 (1)这个试验的结果只有两个:“发芽”与“不发芽”,具备了 有限性.而“发芽”与“不发芽”这两个结果出现的可能性不一定相等, 即不一定具备等可能性,因此该试验不一定是古典概型. (2)属于有放回抽样,依次摸出的球可以重复,所有可能的结果有无限个, 因此该试验不是古典概型. (3)从5名同学中任意抽取1名,有5种等可能发生的结果,因此该试验是 古典概型.

高中数学必修二课件:古典概型

高中数学必修二课件:古典概型

②从1,2,3,…,10中任取一个数,求取到1的概率;
③在正方形ABCD内画一点P,求点P恰好为正方形中心的概率;
④向上抛掷一枚不均匀的硬币,求出现反面朝上的概率.
A.1
B.2
C.3
D.4
【解析】 古典概型的特征是样本空间中样本点的个数是有限的,并且每 个样本点发生的可能性相等,故②是古典概型;①和③中的样本空间中的样本 点个数不是有限的,故不是古典概型;④由于硬币质地不均匀,样本点发生的 可能性不相等,故④不是古典概型.故选A.
平局的含义是两人出法相同,例如都出了锤.甲赢的含义是甲出锤且乙出 剪,甲出剪且乙出布,甲出布且乙出锤这3种情况.乙赢的含义是乙出锤且甲出 剪,乙出剪且甲出布,乙出布且甲出锤这3种情况.
设平局为事件A,甲赢为事件B,乙赢为事件C.
由图容易得到: (1)平局含3个基本事件(图中的△); (2)甲赢含3个基本事件(图中的⊙); (3)乙赢含3个基本事件(图中的※). 由古典概型的概率计算公式,可得: P(A)=39=13,P(B)=39=13,P(C)=39=13.
答:该试验的基本事件是“出现正面向上”和“出现反面向上 ”.由于该 硬币质地不均匀,故P(出现正面向上)≠P(出现反面向上),从而两个基本事件出 现的可能性不同.
课时学案
题型一 古典概型的判断
例1 (1)下列试验中是古典概型的是( B ) A.在适宜的条件下,种下一粒种子,观察它是否发芽 B.口袋里有2个白球和2个黑球,这4个球除颜色外其他完全相同,从中任 取一球 C.向一个圆面内随机地投一个点,该点落在圆内任意一点都是等可能的 D.射击运动员向一靶心进行射击,试验结果为命中10环,命中9环,…, 命中0环
【解析】 共有(a1,a2),(a1,b),(a2,b)三个基本事件. 设A={恰有一件次品},则A含(a1,b),(a2,b)两个基本事件. 故P(A)=23.

高中数学《古典概型》(47张) 新人教A版必修3PPT课件

高中数学《古典概型》(47张) 新人教A版必修3PPT课件
n
我们把可以作古典概型计算的概率称为古典概率.
注: A即是一次随机试验的样本空间的一个子集, 而m是这个子集里面的元素个数;n即是一次随机 试验的样本空间的元素个数.
古典概率
3、概率的性质 (1) 随机事件A的概率满足
0<P(A)<1
(2)必然事件的概率是1,不可能的事件的概率是0,

P(Ω) =1 , P(Φ) =0.
• (1)试问:一共有多少种不同的结果?请
•思维点拨:用空间坐标(a,b,c)的形式列出 所有可能结果,再把事件“3次摸球所得总分 为5分”的个数列出,根据古典概型概率公式 可求. •解答:(1)一共有8种不同的结果,列举如下: •(红、红、红)、(红、红、黑)、(红、黑、红)、
• 思维点拨:用空间坐标(a,b,c)的形式列 出所有可能结果,再把事件“3次摸球所得 总分为5分”的个数列出,根据古典概型概 率公式可求.
【答题模板】
•解析:基本事件有20个,只要通过枚举的方法 找到随机事件“卡片上两个数的各位 •数字之和不小于14”所包含的基本事件的个数, 再按照等可能性事件的概率公式计 •算.大于14的点数的情况通过列举可得,有5
【分析点评】
• 1. 本题中,当两个数字k,k+1是一位数时, 只有k≥7时,才会使两个数的各位数字之和 不小于14;当k,k+1是两位数时,只有当 第一个两位数的数字之和不小于7才有可 能.这类题目也曾出现在高考中,如2008年 江西卷中:电子钟一天显示的时间是从
(1)两枚硬币都出现正面的概率是 0.25 (2)一枚出现正面,一枚出现反面的概率是 0.5
4、在一次问题抢答的游戏,要求答题者在问题所列出的 4个答案中找出唯一正确答案。某抢答者不知道正确答案 便随意说出其中的一个答案,则这个答案恰好是正确答

高中数学必修二 10 1 3 古典概型(含答案)

高中数学必修二  10 1 3 古典概型(含答案)

第十章概率10.1.3 古典概型一、基础巩固1.下列试验是古典概型的是()A.种下一粒大豆观察它是否发芽B.从规格直径为(250 0.6)mm的一批产品中任意抽一根,测量其直径C.抛一枚硬币,观察其正面或反面出现的情况D.某人射击中靶或不中靶【答案】C【解析】【分析】根据古典概型的定义判断.【详解】只有C具有古典概型两特点.【点睛】本题考查古典概型的定义,在这个型下,随机实验所有可能的结果是有限的,并且每个基本结果发生的概率是相同的.2.袋中有2个红球,2个白球,2个黑球,从里面任意摸2个小球,不是基本事件的为()A.{正好2个红球} B.{正好2个黑球}C.{正好2个白球} D.{至少1个红球}【答案】D【解析】袋中有2个红球,2个白球,2个黑球,从中任意摸2个,其基本事件可能是2个红球,2个白球,2个黑球,1红1白,1红1黑,1白1黑而至少1个红球中包含1红1白,1红1黑,2个红球三个基本事件,故不是基本事件,故选D3.《周易》是我国古代典籍,用“卦”描述了天地世间万象变化.如图是一个八卦图,包含乾、坤、震、巽、坎、离、艮、兑八卦(每一卦由三个爻组成,其中“”表示一个阳爻,“”表示一个阴爻).若从含有两个及以上阳爻的卦中任取两卦,这两卦的六个爻中都恰有两个阳爻的概率为()A.13B.12C.23D.34【答案】B【分析】基本事件总数为6个,都恰有两个阳爻包含的基本事件个数为3个,由此求出概率.【详解】解:由图可知,含有两个及以上阳爻的卦有巽、离、兑、乾四卦,取出两卦的基本事件有(巽,离),(巽,兑),(巽,乾),(离,兑),(离,乾),(兑,乾)共6个,其中符合条件的基本事件有(巽,离),(巽,兑),(离,兑)共3个,所以,所求的概率3162 P==.故选:B.【点睛】本题渗透传统文化,考查概率、计数原理等基本知识,考查抽象概括能力和应用意识,属于基础题.4.在5件产品中,有3件一等品和2件二等品,从中任取2件,以为概率的事件是()A.恰有1件一等品B.至少有一件一等品C.至多有一件一等品D.都不是一等品【答案】C【分析】将3件一等品编号为1,2,3,2件二等品的编号为4,5,列举出从中任取2件的所有基本事件的总数,分别计算选项的概率,即可得到答案.【详解】将3件一等品编号为1,2,3,2件二等品编号为4,5,从中任取2件有10种取法:(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5).其中恰含有1件一等品的取法有:(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),恰有1件一等品的概率为P1=,恰有2件一等品的取法有:(1,2),(1,3),(2,3).故恰有2件一等品的概率为P2=,其对立事件是“至多有一件一等品”,概率为P3=1-P2=1-=.【点睛】本题主要考查了古典概型及其概率的计算问题,其中明确古典概型的基本概念,以及古典的概型及概率的计算公式,合理作出计算是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.5.袋中有2个红球5个白球,取出一个白球放回,再取出红球的概率是()A.12B.27C.16D.17【答案】B【分析】取出一个白球再放回,相当于情况不变.用红球个数除以球的总数即为摸到红球的概率.【详解】解:所有机会均等的可能有7种,摸到红球的可能有2种,因此取出红球的概率为27,故选B.【点睛】本题考察古典概型,概率等于所求情况数与总情况数之比.6.在一个不透明的袋子中,装有若干个大小相同颜色不同的小球,若袋中有2个红球,且从袋中任取一球,取到红球的概率为15,则袋中球的总个数为()A.5B.8C.10D.12【答案】C【分析】设袋中球的总个数为n,根据已知条件可得出关于n的等式,由此可求得n的值. 【详解】设袋中球的总个数为n,由题意可得215n=,解得10n=.故选:C.7.如图所示,有一个正十二面体,12个面上分别写有1~12这12个整数,投掷这个正十二面体一次,则向上一面的数字是2的倍数或3的倍数的概率为()A.23B.13C.12D.16【答案】A【分析】求得向上一面的数字是2的倍数或3的倍数的数字,即可根据古典概型概率求解.【详解】正十二面体,12个面上分别写有1~12这12个整数,投掷这个正十二面体一次,则向上一面的数字是2的倍数或3的倍数的数字为2,3,4,6,8,9,10,12.所以由古典概型概率可知向上一面的数字是2的倍数或3的倍数的概率为82 123=故选:A.【点睛】本题考查了古典概型概率的求法,利用列举法求古典概型概率,属于基础题. 8.下列关于古典概型的说法中正确的是( )①试验中所有可能出现的基本事件只有有限个;②每个事件出现的可能性相等;③每个基本事件出现的可能性相等;④基本事件的总数为n,随机事件A若包含k个基本事件,则()kP An=.A.②④B.③④C.①④D.①③④【答案】D【分析】利用随机试验的概念及古典概型及其概率计算公式直接求解.【详解】在①中,由随机试验的定义知:试验中所有可能出现的基本事件只有有限个,故①正确;在②中,由随机试验的定义知:每个基本事件出现的可能性相等,故②错误;在③中,由随机试验的定义知:每个基本事件出现的可能性相等,故③正确;在④中,基本事件总数为n ,随机事件A 若包含k 个基本事件,则由古典概型及其概率计算公式知P (A )kn=,故④正确. 故选D . 【点睛】本题考查命题真假的判断,是基础题,解题时要认真审题,注意随机试验的概念及古典概型及其概率计算公式的合理运用.9.对数的发明是数学史上的重大事件,它可以改进数字的计算方法、提高计算速度和准确度.已知{1,3}M =,{1,3,5,7,9}N =,若从集合M ,N 中各任取一个数x ,y ,则3log ()xy 为整数的概率为( )A .15B .25C .35D .45【答案】C 【分析】 基本事件总数2510n,利用列举法求出3log ()xy 为整数包含的基本事件有6个,再利用古典概型的概率计算公式即可求解.【详解】{1,3}M =,{1,3,5,7,9}N =,若从集合M ,N 中各任取一个数x ,y , 基本事件总数2510n,3log ()xy 为整数包含的基本事件有()1,1,()1,3,()1,9,()3,1,()3,3,()3,9,共有6个,∴3log ()xy 为整数的概率为63105p ==. 故选:C 【点睛】本题考查了古典概型的概率计算公式、分步计数原理、列举法求基本事件个数、对数的运算,属于基础题. 10.从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为 A .0.6 B .0.5C .0.4D .0.3【答案】D【解析】分析:分别求出事件“2名男同学和3名女同学中任选2人参加社区服务”的总可能及事件“选中的2人都是女同学”的总可能,代入概率公式可求得概率.详解:设2名男同学为12,A A ,3名女同学为123,,B B B ,从以上5名同学中任选2人总共有12111213212223121323,,,,,,,,,A A A B A B A B A B A B A B B B B B B B 共10种可能,选中的2人都是女同学的情况共有121323,,B B B B B B 共三种可能 则选中的2人都是女同学的概率为30.310P ==, 故选D.点睛:应用古典概型求某事件的步骤:第一步,判断本试验的结果是否为等可能事件,设出事件A ;第二步,分别求出基本事件的总数n 与所求事件A 中所包含的基本事件个数m ;第三步,利用公式()mP A n=求出事件A 的概率. 11.袋中有5个球(3个白球,2个黑球)现每次取一球,无放回抽取2次,则在第一次抽到白球的条件下,第二次抽到白球的概率为( ) A .3/5 B .3/4C .1/2D .3/10【答案】C 【分析】先记事件A 为“第一次取到白球”,事件B 为“第二次取到白球”,则事件AB 为“两次都取到白球”,根据题意得到()P A 与()P AB ,再由条件概率,即可求出结果. 【详解】记事件A 为“第一次取到白球”,事件B 为“第二次取到白球”, 则事件AB 为“两次都取到白球”, 依题意知3()5P A =,3263()542010P AB =⨯==, 所以,在第一次取到白球的条件下,第二次取到白球的概率是3110()325P B A ==. 故选:C. 【点睛】本题主要考查条件概率与独立事件,熟记条件概率的计算公式即可,属于常考题型. 12.下列说法错误的是( ) A .方差可以衡量一组数据的波动大小B .抽样调查抽取的样本是否具有代表性,直接关系对总体估计的准确程度C .一组数据的众数有且只有一个D .抛掷一枚图钉针尖朝上的概率,不能用列举法求得 【答案】C 【分析】根据各个选项中的说法,可以判断是否正确,从而可以解答本题. 【详解】对于A ,方差可以衡量一组数据的波动大小,故选项A 正确;对于B ,抽样调查抽取的样本是否具有代表性,直接关系对总体估计的准确程度,故选项B 正确; 对于C ,一组数据的众数有一个或者几个,故选项C 错误;对于D ,抛掷一枚图钉,针尖朝上和针尖朝下的可能性不相等,所以针尖朝上不是一个基本事件,所以不能用列举法求得,故选项D 正确; 故选:C . 【点睛】本题考查了一组数据的方差、众数,考查了抽样方式,属于基础题.二、拓展提升13.设有关于x 的一元二次方程2220x ax b ++=.(Ⅰ)若a 是从0,1,2,3四个数中任取的一个数,b 是从0,1,2三个数中任取的一个数,求上述方程有实根的概率.(Ⅱ)若a 是从区间[]0,3任取的一个数,b 是从区间[]0,2任取的一个数,求上述方程有实根的概率. 【答案】(Ⅰ)34(Ⅱ)23【分析】(1)本题是一个古典概型,可知基本事件共12个,方程2220x ax b ++=当0,0a b ≥≥时有实根的充要条件为a b ≥,满足条件的事件中包含9个基本事件,由古典概型公式得到事件A 发生的概率.(2)本题是一个几何概型,试验的全部约束所构成的区域为{(,)|03a b a ,02}b .构成事件A 的区域为{(,)|03a b a ,02b ,}a b .根据几何概型公式得到结果. 【详解】解:设事件A 为“方程2220x ax b ++=有实数根”.当0,0a b ≥≥时,方程有实数根的充要条件为a b ≥. (Ⅰ)基本事件共12个:(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2).其中第一个数表示a 的取值,第二个数表示b 的取值.事件A 中包含9个基本事件,事件A 发生的概率为93()124P A ==. (Ⅱ)实验的全部结果所构成的区域为{(,)|03,02}a b a b ≤≤≤≤.构成事件A 的区域为{(,)|03,02,}a b a b a b ≤≤≤≤≥,所求的概率为132422()323P A ⨯-⨯==⨯ 【点睛】本题考查几何概型和古典概型,放在一起的目的是把两种概型加以比较,属于基础题.14.交通指数是指交通拥堵指数的简称,是综合反映道路网畅通或拥堵的概念性指数值,记交通指数为T ,其范围为[]0,10,分别有五个级别:2)[0,T ∈,畅通;[)2,4T ∈,基本畅通;[)4,6T ∈,轻度拥堵;[)6,8T ∈,中度拥堵;[]8,10T ∈,严重拥堵.在晚高峰时段(2T ≥),从某市交通指挥中心选取了市区20个交通路段,依据其交通指数数据绘制的频率分布直方图如图所示.(1)求出轻度拥堵、中度拥堵、严重拥堵的路段的个数;(2)用分层抽样的方法从轻度拥堵、中度拥堵、严重拥堵的路段中共抽取6个路段,求依次抽取的三个级别路段的个数;(3)从(2)中抽取的6个路段中任取2个,求至少有1个路段为轻度拥堵的概率.【答案】(1)轻度拥堵、中度拥堵、严重拥堵的路段的个数分别为6,9,3;(2)从交通指数在[4,6),[6,8),[8,10]的路段中分别抽取的个数为2,3,1;(3)35【分析】(1)根据在频率分布直方图中,小长方形的面积表示各组的频率,可以求出频率,再根据频数等于频率乘以样本容量,求出频数;(2)根据(1)求出拥堵路段的个数,求出每层之间的占有比例,然后求出每层的个数;(3)先求出从(2)中抽取的6个路段中任取2个,有多少种可能情况,然后求出至少有1个路段为轻度拥堵有多少种可能情况,根据古典概型概率公式求出. 【详解】(1)由频率分布直方图得,这20个交通路段中, 轻度拥堵的路段有(0.1+0.2)×1×20=6(个), 中度拥堵的路段有(0.25+0.2)×1×20=9(个), 严重拥堵的路段有(0.1+0.05)×1×20=3(个). (2)由(1)知,拥堵路段共有6+9+3=18(个),按分层抽样,从18个路段抽取6个,则抽取的三个级别路段的个数分别为66218⨯=,69318⨯=,63118⨯=,即从交通指数在[4,6),[6,8),[8,10]的路段中分别抽取的个数为2,3,1.(3)记抽取的2个轻度拥堵路段为1A ,2A ,抽取的3个中度拥堵路段为1B ,2B ,3B ,抽取的1个严重拥堵路段为1C ,则从这6个路段中抽取2个路段的所有可能情况为:()()()()12111213,,,,,,,,A A A B A B A B()()()()()()()()()()()1121222321121311232131,,,,,,,,,,,,,,,,,,,,,A C A B A B A B A C B B B B B C B B B C B C ,共15种,其中至少有1个路段为轻度拥堵的情况为:()()()()()()121112131121,,,,,,,,,,,,A A A B A B A B A C A B()()()222321,,,,,A B A B A C ,共9种.所以所抽取的2个路段中至少有1个路段为轻度拥堵的概率为93155=. 【点睛】本题考查了频率直方图的应用、分层抽样、古典概型概率的求法.解决本题的关键是对频率直方图所表示的意义要了解,分层抽样的原则要知道,要能识别古典概型.15.编号为1,2的两个纸箱中各有6个相同的小球(分别标有数字1,2,3,4,5,6),从1,2两个纸箱中各摸出一个小球,分别为,x y ,求满足条件2y x = 的概率.【答案】112. 【分析】利用古典概型公式求解. 【详解】从1,2两个纸箱中各摸出一个小球的事件总数有36种. 又2y x =,其中{},1,2,3,4,5,6x y , 满足条件的有()()()1,2,2,4,3,6, 故所求概率313612P.。

高中高三数学《古典概型》教案、教学设计

高中高三数学《古典概型》教案、教学设计
-例如:将学生分成小组,针对某一实际问题进行讨论,共同找出解决问题的方法。
5.教学过程中,注重启发式教学,引导学生自主探究、发现规律,提高学生的自主学习能力。
-例如:在讲解古典概型计算方法时,教师给出部分提示,让学生自主完成计算过程。
6.设计丰富的课堂练习,巩固所学知识,并及时给予反馈,帮助学生查漏补缺。
-请学生尝试解决以下问题:一个袋子里有5个白球、4个黑球和1个红球,随机取出两个球,求取出的两个球颜色相同的概率。
作业要求:
1.学生在完成作业时,要注重理解古典概型的概念和计算方法,避免死记硬背。
2.在设计生活实例时,要尽量选择有趣、富有挑战性的问题,提高自己的实际应用能力。
3.完成作业后,要进行自我检查,确保解答过程正确无误,并对自己的作业进行适当的批改和反思。
四、教学内容与过程
(一)导入新课
1.教学活动:教师以一个生动的实际例子引入新课,如“一个袋子里有5个红球和3个蓝球,随机取出一个球,求取出红球的概率。”
2.提出问题:通过上述例子,教师引导学生思考以下问题:
-概率是什么?如何计算概率?
-在这个问题中,为什么红球和蓝球的个数会影响概率的计算?
3.过渡:通过讨论,引出古典概型的概念,指出古典概型是解决此类问题的有效方法。
(三)学生小组讨论
1.教学活动:学生分成小组,针对以下问题进行讨论:
-生活中还有哪些问题可以用古典概型来解决?
-在解决古典概型问题时,如何运用排列组合知识?
2.讨论过程:小组成员相互交流,共同解决问题,教师巡回指导。
3.分享与评价:各小组汇报讨论成果,其他小组进行评价,教师给予点评。
(四)课堂练习
1.教学活动:学生完成以下练习题,巩固所学知识。

高中数学必修3第三章:概率3.2古典概型

高中数学必修3第三章:概率3.2古典概型

验,如果这2个元素没有顺序,那么这次试验共有
nn-1 2

基本事件;如果这2个元素有顺序,那么这次试验有n(n-1)
个基本事件.可以作为结论记住(不要求证明),在选择题或
填空题中可以直接应用.
计算基本事件个数的常用法
1.列举法 列举法也称枚举法.对于一些情境比较简单,基本事件 个数不是很多的概率问题,计算时只需一一列举即可得出随 机事件所含的基本事件数.但列举时必须按一定顺序,做到 不重不漏.
球,d,e为黑球.
列表如下:
a
b
c
d
e
a
(a,b) (a,c) (a,d) (a,e)
b (b,a)
(b,c) (b,d) (b,e)
c (c,a) (c,b)
(c,d) (c,e)
d (d,a) (d,b) (d,c)
(d,e)
e (e,a) (e,b) (e,c) (e,d)
由于每次取两个球,每次所取两个球不相同,而摸(b,a) 与(a,b)是相同的事件,故共有10个基本事件.
新课引入 “三门问题”是美国一个经典的电视游戏节目,内容如 下:现有三扇门,其中一扇后面有一辆汽车,另外两扇门后 各有一只羊,参赛者选中车门就得车,选中羊门就得羊,首 先参赛者选一扇门,然.后主持人故意打开剩下两门中的一 扇羊门(主持人知道车在何处),接着主持人给参赛者选择机 会,是坚持原门还是换另一扇门?
[解析] 第1个概率模型不是古典概型,因为从区间[1,10] 内任意取出一个数,有无数个对象可取,所以不满足“有限 性”.
第2个概率模型是古典概型,因为试验结果只有10个, 而且每个数被抽到的可能性相等,即满足有限性和等可能 性;
第3个概率模型不是古典概型,而是以后将学的几何概 型;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题:古典概型导学目标: 1.理解古典概型及其概率计算公式.2.会计算一些随机事件所含的基本事件数及事件发生的概率.自主梳理1.基本事件有如下特点:(1)任何两个基本事件是________的.(2)任何事件(除不可能事件)都可以表示成______________. 2.一般地,一次试验有下面两个特征(1)有限性.试验中所有可能出现的基本事件只有有限个;(2)等可能性.每个基本事件出现的可能性相同,称这样的概率模型为古典概型.判断一个试验是否是古典概型,在于该试验是否具有古典概型的两个特征:有限性和等可能性.3.如果一次试验中可能出现的结果有n 个,而且所有结果出现的可能性都相等,那么每一个基本事件的概率都是________;如果某个事件A 包括的结果有m 个,那么事件A 的概率P(A)=________.自我检测1.若以连续掷两次骰子分别得到的点数m 、n 作为点P 的横、纵坐标,则点P 在直线x +y =5下方的概率为( )A .16B .14C .112D .192.一块各面均涂有油漆的正方体被锯成1 000个大小相同的小正方体,若将这些小正方体均匀地搅混在一起,则任意取出一个,其两面涂有油漆的概率是( )A .112B .110C .325D .121253.三张卡片上分别写上字母E ,E ,B ,将三张卡片随机地排成一行,恰好排成英文单词BEE 的概率为________.4.有100张卡片(编号从1号到100号),从中任取1张,取到卡号是7的倍数的概率为________. 5.在平面直角坐标系中,从五个点:A(0,0),B(2,0),C(1,1),D(0,2),E(2,2)中任取三个,这三点能构成三角形的概率是________(用分数表示).探究点一 基本事件的概率例1 投掷六个面分别记有1,2,2,3,3,3的两颗骰子. (1)求所出现的点数均为2的概率; (2)求所出现的点数之和为4的概率.变式迁移1 一只口袋内装有大小相同的5只球,其中3只白球,2只黑球,从中一次摸出两只球.问: (1)共有多少个基本事件?(2)摸出的两只球都是白球的概率是多少?探究点二 古典概型的概率计算例2 班级联欢时,主持人拟出了如下一些节目:跳双人舞、独唱、朗诵等,指定3个男生和2个女生来参与,把5个人分别编号为1,2,3,4,5,其中1,2,3号是男生,4,5号是女生,将每个人的号分别写在5张相同的卡片上,并放入一个箱子中充分混合,每次从中随机地取出一张卡片,取出谁的编号谁就参与表演节目.(1)为了选出2人来表演双人舞,连续抽取2张卡片,求取出的2人不全是男生的概率;(2)为了选出2人分别表演独唱和朗诵,抽取并观察第一张卡片后,又放回箱子中,充分混合后再从中抽取第二张卡片,求独唱和朗诵由同一个人表演的概率.变式迁移2同时抛掷两枚骰子,求至少有一个5点或6点的概率.探究点三古典概型的综合问题例3汽车厂生产A,B,C三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆):轿车A 轿车B 轿车C舒适型100 150 z标准型300 450 600按类用分层抽样的方法在这个月生产的轿车中抽取50辆,其中有A类轿车10辆.(1)求z的值;(2)用分层抽样的方法在C类轿车中抽取一个容量为5的样本.将该样本看成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率;(3)用随机抽样的方法从B类舒适型轿车中抽取8辆,经检测它们的得分如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2.把这8辆轿车的得分看成一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.5的概率.变式迁移3为了了解《中华人民共和国道路交通安全法》在学生中的普及情况,调查部门对某校6名学生进行问卷调查,6人得分情况如下:5,6,7,8,9,10.把这6名学生的得分看成一个总体.(1)求该总体的平均数;(2)用简单随机抽样方法从这6名学生中抽取2名,他们的得分组成一个样本.求该样本平均数与总体平均数之差的绝对值不超过0.5的概率.分类讨论思想的应用例(12分)甲、乙二人用4张扑克牌(分别是红桃2、红桃3、红桃4、方片4)玩游戏,他们将扑克牌洗匀后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一张.(1)设(i,j)分别表示甲、乙抽到的牌的牌面数字,写出甲、乙二人抽到的牌的所有情况;(2)若甲抽到红桃3,则乙抽到的牌面数字比3大的概率是多少?(3)甲、乙约定:若甲抽到的牌的牌面数字比乙大,则甲胜,反之,则乙胜.你认为此游戏是否公平,说明你的理由.多角度审题本题属于求较复杂事件的概率,关键是理解题目的实际含义,把实际问题转化为概率模型,联想掷骰子试验,把红桃2、红桃3、红桃4和方片4分别用数字2,3,4,4′表示,抽象出基本事件,把复杂事件用基本事件表示,找出总体I 包含的基本事件总数n 及事件A 包含的基本事件个数m ,用公式P(A)=mn求解. 【答题模板】解 (1)甲、乙二人抽到的牌的所有情况(方片4用4′表示,其他用相应的数字表示)为(2,3),(2,4),(2,4′),(3,2),(3,4),(3,4′),(4,2),(4,3),(4,4′),(4′,2),(4′,3),(4′,4),共12种不同情况.[6分](2)甲抽到红桃3,乙抽到的牌的牌面数字只能是2,4,4′,因此乙抽到的牌的牌面数字比3大的概率为23.[9分](3)甲抽到的牌的牌面数字比乙大的情况有(3,2),(4,2),(4,3),(4′,2),(4′,3),共5种,故甲胜的概率P 1=512,同理乙胜的概率P 2=512.因为P 1=P 2,所以此游戏公平.[12分]【突破思维障碍】(1)对一些较为简单、基本事件个数不是太大的概率问题,计数时只需要用枚举法即可计算一些随机事件所含的基本事件数及事件发生的概率,但应特别注意:计算时要严防遗漏,绝不重复.(2)取球模型是古典概型计算中的一个典型问题,好多实际问题都可以归结到取球模型上去,特别是产品的抽样检验,解题时要分清“有放回”与“无放回”,“有序”与“无序”等条件的影响.【易错点剖析】1.题目中“红桃4”与“方片4”属两个不同的基本事件,应用不同的数字或字母标注. 2.注意“抽出的牌不放回”对基本事件数目的影响.1.基本事件的特点主要有两条:①任何两个基本事件都是互斥的;②任何事件都可以表示成基本事件的和.2.古典概型的基本特征是:①试验中所有可能出现的基本事件只有有限个;②每个基本事件出现的可能性相等.3.计算古典概型的基本步骤有:①判断试验结果是否为等可能事件;②求出试验包括的基本事件的个数n ,以及所求事件A 包含的基本事件的个数m ;③代入公式P(A)=mn,求概率值.(满分:75分)一、选择题(每小题5分,共25分)1.将一枚骰子抛掷两次,若先后出现的点数分别为b ,c ,则方程x 2+bx +c =0有实根的概率为( ) A .1936 B .12 C .59 D .1736 2.已知某运动员每次投篮命中的概率低于40%.现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了如下20组随机数:907 966 191 925 271 932 812 458 569 683 431 257 393 027 556 488 730 113 537 989据此估计,该运动员三次投篮恰有两次命中的概率为( ) A .0.35 B .0.25 C .0.20 D .0.153.连掷两次骰子分别得到点数m 、n ,则向量(m ,n)与向量(-1,1)的夹角θ>90°的概率是( ) A .512 B .712 C .13 D .12 4.设集合A ={1,2},B ={1,2,3},分别从集合A 和B 中随机取一个数a 和b ,确定平面上的一个点P(a ,b),记“点P(a ,b)落在直线x +y =n 上”为事件C n (2≤n ≤5,n ∈N ),若事件C n 的概率最大,则n 的所有可能值为( )A .3B .4C .2,5D .3,45.在一个袋子中装有分别标注数字1,2,3,4,5的五个小球,这些小球除标注的数字外完全相同.现从中随机取出2个小球,则取出的小球标注的数字之和为3或6的概率是( )A.112B.110C.15D.310 二、填空题(每小题4分,共12分)6.在一次教师联欢会上,到会的女教师比男教师多12人,从这些教师中随机挑选一人表演节目.若选到男教师的概率为920,则参加联欢会的教师共有________人.7.在集合{x |x =n π6,n =1,2,3,…,10}中任取一个元素,所取元素恰好满足方程cos x =12的概率是________.8.现有5根竹竿,它们的长度(单位:m)分别为2.5,2.6,2.7,2.8,2.9,若从中一次随机抽取2根竹竿,则它们的长度恰好相差0.3 m 的概率为________.三、解答题(共38分)9.(12分)袋子中装有编号为a ,b 的2个黑球和编号为c ,d ,e 的3个红球,从中任意摸出2个球. (1)写出所有不同的结果;(2)求恰好摸出1个黑球和1个红球的概率; (3)求至少摸出1个黑球的概率.10.(12分)某商场举行抽奖活动,从装有编号0,1,2,3四个小球的抽奖箱中,每次取出后放回,连续取两次,取出的两个小球号码相加之和等于5中一等奖,等于4中二等奖,等于3中三等奖.(1)求中三等奖的概率; (2)求中奖的概率.11.(14分)已知实数a ,b ∈{-2,-1,1,2}. (1)求直线y =ax +b 不经过第四象限的概率;(2)求直线y =ax +b 与圆x 2+y 2=1有公共点的概率.自主梳理 1.几何概型如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.2.在几何概型中,事件A 的概率计算公式P (A )=____________________________________________________________________.求试验中几何概型的概率,关键是求得事件所占区域和整个区域Ω的几何度量,然后代入公式即可求解.3.要切实理解并掌握几何概型试验的两个基本特点: (1)无限性:在一次试验中,可能出现的结果有无限多个;(2)等可能性:每个结果的发生具有等可能性. 4.古典概型与几何概型的区别(1)相同点:基本事件发生的可能性都是________;(2)不同点:古典概型的基本事件是有限个,是可数的;几何概型的基本事件是________,是不可数的. 自我检测1.在长为12 cm 的线段AB 上任取一点M ,并且以线段AM 为边作正方形,则这个正方形的面积介于36 cm 2与81 cm 2之间的概率为( )A.14B.13C.427D.4152.如图,矩形ABCD 中,点E 为边CD 的中点,若在矩形ABCD 内部随机取一个点Q ,则点Q 取自△ABE 内部的概率等于( )A.14B.13C.12D.23 3.如图所示,A 是圆上一定点,在圆上其他位置任取一点A ′,连接AA ′,得到一条弦,则此弦的长度小于或等于半径长度的概率为( )A.12B.32C.13D.14 4.在区间[-1,2]上随机取一个数x ,则|x |≤1的概率为________.5.小波通过做游戏的方式来确定周末活动,他随机地往单位圆内投掷一点,若此点到圆心的距离大于12,则周末去看电影;若此点到圆心的距离小于14,则去打篮球;否则,在家看书.则小波周末不.在家看书的概率为________.探究点一 与长度有关的几何概型例1 国家安全机关监听录音机记录了两个间谍的谈话,发现30 min 长的磁带上,从开始30 s 处起,有10 s 长的一段内容包含两间谍犯罪的信息.后来发现,这段谈话的一部分被某工作人员擦掉了,该工作人员声称他完全是无意中按错了键,使从此处起往后的所有内容都被擦掉了.那么由于按错了键使含有犯罪的内容的谈话被部分或全部擦掉的概率有多大?变式迁移1 在半径为1的圆的一条直径上任取一点,过这个点作垂直于直径的弦,则弦长超过圆内接等边三角形边长的概率是________.探究点二 与角度有关的几何概型例2 如图所示,在等腰Rt △ABC 中,过直角顶点C 在∠ACB 内部作一条射线CM ,与线段AB 交于点M ,求AM <AC 的概率.变式迁移2若将例2题目改为:“在等腰Rt △ACB 中,在斜边AB 上任取一点M ,求AM 的长小于AC 的长的概率”,答案还一样吗?探究点三与面积有关的几何概型例3两人约定在20∶00到21∶00之间相见,并且先到者必须等迟到者40分钟方可离去,如果两人出发是各自独立的,在20∶00至21∶00各时刻相见的可能性是相等的,求两人在约定时间内相见的概率.变式迁移3甲、乙两艘轮船驶向一个不能同时停泊两艘轮船的码头,它们在一昼夜内任何时刻到达是等可能的.如果甲船和乙船的停泊时间都是4小时,求它们中的任何一条船不需要等待码头空出的概率.分类讨论与数形结合思想的应用例(12分)已知函数f(x)=x2-2ax+b2,a,b∈R.(1)若a从集合{0,1,2,3}中任取一个元素,b从集合{0,1,2}中任取一个元素,求方程f(x)=0有两个不相等实根的概率;(2)若a从区间[0,2]中任取一个数,b从区间[0,3]中任取一个数,求方程f(x)=0没有实根的概率.【突破思维障碍】1.古典概型和几何概型的区别在于试验的全部结果是否有限,因此到底选用哪一种模型,关键是对试验的确认和分析.2.用几何概型求解的概率问题和古典概型的思路是相同的,同属于“比例解法”.【易错点剖析】1.计算古典概型的概率时,列举基本事件应不重不漏.2.计算几何概型的概率时,区域的几何度量要准确无误.1.几何概型:若一个试验具有两个特征:①每次试验的结果是无限多个,且全体结果可用一个有度量的几何区域来表示;②每次试验的各种结果是等可能的.那么这样的试验称为几何概型.2.由概率的几何定义可知,在几何概型中,“等可能”一词应理解为对应于每个试验结果的点落入某区域内的可能性大小仅与该区域的几何度量成正比,而与该区域的位置与形状无关.3.几何概型的概率公式:设几何概型的基本事件空间可表示成可度量的区域Ω,事件A所对应的区域用A表示(A⊆Ω),则P(A)=A的度量Ω的度量.(满分:75分)一、选择题(每小题5分,共25分)1.ABCD 为长方形,AB =2,BC =1,O 为AB 的中点,在长方形ABCD 内随机取一点,取到的点到O 的距离大于1的概率为( )A.π4 B .1-π4 C.π8 D .1-π82.在面积为S 的△ABC 的边AB 上任取一点P ,则△PBC 的面积大于S4的概率是( )A.14 B.12 C.34 D.234.已知函数f (x )=x 2+bx +c ,其中0≤b ≤4,0≤c ≤4.记函数f (x )满足⎩⎪⎨⎪⎧f (2)≤12f (-1)≤3的事件为A ,则事件A 的概率为( )A.58B.12C.38D.145.在区域⎩⎨⎧x +y -2≤0,x -y +2≥0,y ≥0内任取一点P ,则点P 落在单位圆x 2+y 2=1内的概率为( )A.π2B.π8C.π6D.π4 二、填空题(每小题4分,共12分)6.从如图所示的长方形区域内任取一个点M (x ,y ),则点M 落在阴影部分的概率为________. 7.如图所示,半径为10 cm 的圆形纸板内有一个相同圆心的半径为1 cm 的小圆.现将半径为1 cm 的一枚硬币抛到此纸板上,使硬币整体随机落在纸板内,则硬币落下后与小圆无公共点的概率为________.8.在可行域内任取一点,规则如程序框图所示,则能输出数对(x ,y )的概率是________.三、解答题(共38分) 9.(12分)已知等腰Rt △ABC 中,∠C =90°.(1)在线段BC 上任取一点M ,求使∠CAM <30°的概率; (2)在∠CAB 内任作射线AM ,求使∠CAM <30°的概率.10.(12分)甲、乙两艘轮船都要停靠在同一个泊位,它们可能在一昼夜的任意时刻到达.设甲乙两艘轮船停靠泊位的时间分别是4小时和6小时,求有一艘轮船停靠泊位时必须等待一段时间的概率.11.(14分)已知函数f(x)=-x2+ax-b.(1)若a,b都是从0,1,2,3,4五个数中任取的一个数,求上述函数有零点的概率;(2)若a,b都是从区间[0,4]任取的一个数,求f(1)>0成立时的概率.。

相关文档
最新文档