物理化学电子教案第一章.

合集下载

01章_热力学第一定律及其应用-例题和习题课解析

01章_热力学第一定律及其应用-例题和习题课解析

W V pdV p(V2 V1 ) 330.56 103 (40.00 15.00) 10 3 2864 J
1
V2
上一内容
下一内容
回主目录
返回
2018/12/28
例题
例: 10mol理想气体,压力为1000kPa,温度为300 K , 求下列 各种情况下的W: 1.在空气中( p )体积胀大1dm 3 ; 2.在空气中胀大到气体的压力也为p ; 3.等温可逆膨胀至气体的压力也为p。
3
1000 p1 10 8.314 300 ln 3.W nRT ln 100 p2 57.43kJ
上一内容
下一内容
回主目录
返回
2018/12/28
七、例题
例:气体He从0C, 5 105 Pa, 10dm3,经一绝热可逆 过程膨胀至10 Pa,试计算T2、Q、W、U和H。
物理化学电子教案—第一章
U Q W
上一内容
下一内容
回主目录
返回
2018/12/28
例题
例1:在25C时, 2molH 2的体积为15dm3,此气体 ( 1 )在定温下,反抗外压为105 Pa时,膨胀到体 积为50dm3 ; (2)在定温下可逆膨胀到体积为50dm3 , 试计算两种膨胀过程的功。
3
4865J
上一内容
下一内容
回主目录
返回
2018/12/28
例题
W
(2)
(3)
p(V2 V1 ) 105 (40.00 15.00) 103
2500 J
根据理想气体状态方程
pV nRT nRT 2 8.314 298.2 330.56kPa p 3 V 15.00 10

01章-热力学第一定律及其应用1

01章-热力学第一定律及其应用1

T2 T1
Hale Waihona Puke CVdT= CV (T2 T1)
(设CV 与T 无关)
因为计算过程中未引入其它限制条件,所以该公式适 用于定组成封闭体系的一般绝热过程,不一定是可逆过 程。
上一内容 下一内容 回主目录第18页,共29页。
返回
2022/2//1188
节流过程的U和H
节流过程是在绝热筒中进行的,Q=0 ,所以:
绝热过程的功
在绝热过程中,体系与环境间无热的交换,但可以 有功的交换。根据热力学第一定律:
dU Q W
= W
(因为Q 0)
这时,若体系对外作功,热力学能下降,体系温度必然 降低,反之,则体系温度升高。因此绝热压缩,使体系温度 升高,而绝热膨胀,可获得低温。
上一内容 下一内容 回主目录第15页,共29页。
可逆过程的特点:
(1)状态变化时推动力与阻力相差无限小,体系与环 境始终无限接近于平衡态;
(2)过程中的任何一个中间态都可以从正、逆两个
方向到达;
(3)体系变化一个循环后,体系和环境均恢复原态,变 化过程中无任何耗散效应;
(4)等温可逆过程中,体系对环境作最大功,环境对体系作最 小功。
上一内容 下一内容 回主目录第9页,共29页。
返回
2022/22//1188
燃烧焓
指定产物通常规定为:
C CO2 (g) S SO2 (g) Cl HCl(aq)
H H2O(l)
N N2 (g)
金属 游离态
显然,规定的指定产物不同,焓变值也不同,查表时应注
意。298.15 K时的燃烧焓值有表可查。
上一内容 下一内容 回主目录第25页,共29页。
2022/22//1188

《物理化学》电子教案上册

《物理化学》电子教案上册

《物理化学》电子教案上册第一章:引言1.1 课程介绍1.2 物理化学的基本概念1.3 物理化学的研究方法1.4 学习目标与要求第二章:气体2.1 气体的性质2.2 气体的压力与体积2.3 气体的温度与热量2.4 气体的化学反应第三章:溶液3.1 溶液的定义与组成3.2 溶液的浓度与稀释3.3 溶液的蒸馏与沸腾3.4 溶液的离子平衡第四章:固体4.1 固体的结构与性质4.2 固体的相变与相图4.3 固体的溶解与熔点4.4 固体的电导与磁性第五章:液体5.1 液体的性质与表面现象5.2 液体的蒸发与凝结5.3 液体的扩散与对流5.4 液体的相变与相图第六章:热力学第一定律6.1 能量守恒定律6.2 内能与热量6.3 功与热传递6.4 热力学第一定律的应用第七章:热力学第二定律7.1 熵与无序度7.2 可逆与不可逆过程7.3 热力学第二定律的表述7.4 热力学第二定律的应用第八章:化学平衡8.1 平衡常数与反应方向8.2 酸碱平衡与pH值8.3 沉淀平衡与溶解度积8.4 化学平衡的计算与应用第九章:动力学9.1 反应速率与速率常数9.2 零级、一级和二级反应9.3 反应机理与速率定律9.4 化学动力学的应用第十章:电化学10.1 电解质与离子传导10.2 电极与电极反应10.3 电池与电势10.4 电化学的应用重点和难点解析一、气体的化学反应补充和说明:气体之间的化学反应是物理化学中的重要内容,例如气体的合成、分解、置换等反应。

这些反应在工业生产、环境保护等领域具有重要的应用价值。

教案中应详细介绍气体化学反应的基本原理、反应类型及其应用实例,并通过实际案例分析,使学生能够深入理解和掌握这一部分内容。

二、溶液的离子平衡补充和说明:溶液中的离子平衡是物理化学中的关键概念,对于理解电解质溶液的性质和行为具有重要意义。

教案中应详细讲解离子平衡的基本原理、离子平衡常数的计算及其在实际应用中的作用,如酸碱平衡、溶解度积等。

《物理化学》教学大纲电子教案

《物理化学》教学大纲电子教案

《物理化学》教学大纲《物理化学》教学大纲开课单位:化学与生物工程学院化学教研室学分:3 总学时:48H(理论教学48学时)课程类别:必修考核方式:考试基本面向:生物工程专业一、本课程的性质、目的和任务物理化学是从物质的物理现象和化学现象的联系人手,来探求化学变化的基本规律的一门科学。

物理化学研究化学变化、相变化及其它有关的物理变化的基本原理,是材料学院和生物工程学院一门必修的基础课。

通过本课程的学习,学生应比较牢固地掌握物理化学基础知识和计算方法,同时还应得到一般科学方法的进一步训练,增长提出问题、分析问题和解决问题的能力。

科学方法的训练应贯彻在课程教学的整个过程中,特别是要通过热力学和动力学的学习,使学生能学会结合具体条件应用理论解决实际问题的一般科学方法。

二、本课程的基本要求1、启发学生对本课程的认识和学习热情,介绍本课程的主要内容和学习方法。

2、理解热力学状态函数的性质和应用,理解热力学三大定律的叙述及数学表达式。

3、理解溶液和相平衡原理及应用。

4、应用热力学定律,理解化学平衡的原理及应用。

5、理解电化学的基本原理及应用。

6、理解表面现象的性质及特点。

三、本课程与其它课程的关系本课程属理论课、基础课性质,它的目的是为后继课程打好基础,化工原理》、《现代分析检测技术》、《生物化学》、《生化工程》、《生化分离工程》等将应用本课程的基础理论及知识。

四、本课程的理论教学内容绪论介绍物理化学的研究对象及主要内容,研究方法。

结合实例说明物理化学理论学习的重要性,并激发学生学习物理化学的积极性。

第一章气体熟练掌握理想气体的状态方程,了解理想气体的微观模型。

掌握道尔顿分压定律和阿马格分体积定律条件及其应用。

了解真实气体pVT行为对理想气体行为的偏差。

第二章热力学第一定律理解下列热力学基本概念:环境和系统,状态函数,途径和过程,热和功,平衡状态。

理解并掌握热力学第一的叙述及数学表达式。

明确热力学能、焓、标准生成焓、标准燃烧焓、标准反应焓、热容的定义并会应用。

傅献彩最新版物理化学-电子教案完美版课件01章_热力学第一定律及其应用

傅献彩最新版物理化学-电子教案完美版课件01章_热力学第一定律及其应用

2019/2/27
热力学能
热力学能(thermodynamic energy)以前 称为内能(internal energy),它是指体系内部 能量的总和,包括分子运动的平动能、分子 内的转动能、振动能、电子能、核能以及各 种粒子之间的相互作用位能等。
即: 1 cal = 4.1840 J
这就是著名的热功当量,为能量守恒原理 提供了科学的实验证明。
2019/2/27
能量守恒定律
到1850年,科学界公认能量守恒定律是自 然界的普遍规律之一。能量守恒与转化定律可 表述为: 自然界的一切物质都具有能量,能量有各 种不同形式,能够从一种形式转化为另一种形 式,但在转化过程中,能量的总值不变。
体系分类
根据体系与环境之间的关系,把体系分为三类: (3)孤立体系(isolated system) 体系与环境之间既无物质交换,又无能量交换,故 又称为隔离体系。有时把封闭体系和体系影响所及的环 境一起作为孤立体系来考虑。
2019/2/27
体系分类
2019/2/27
体系的性质
用宏观可测性质来描述体系的热力学状态, 故这些性质又称为热力学变量。可分为两类:
广度性质(extensive properties) 又称为容量性质,它的数值与体系的物质的 量成正比,如体积、质量、熵等。这种性质有加 和性,在数学上是一次齐函数。 强度性质(intensive properties) 它的数值取决于体系自身的特点,与体系的 数量无关,不具有加和性,如温度、压力等。它 在数学上是零次齐函数。指定了物质的量的容量 性质即成为强度性质,如摩尔热容。
2019/2/27
热和功
热(heat) 体系与环境之间因温差而传递的能量称为 热,用符号Q 表示。 Q的取号: 体系吸热,Q>0; 体系放热,Q<0 。 功(work) 体系与环境之间传递的除热以外的其它能量 都称为功,用符号W表示。

物理化学教案第1章 气体

物理化学教案第1章 气体

第一章 气 体( 6 学时)教学目的:了解理想气体的概念和特点、气体的液化过程及饱和蒸气压的概念、对应状态参数的概念及对应态原理;理解临界参数、压缩因子的概念;掌握分压、分体积概念及分压定律、分体积定律、压缩因子法真实气体的计算。

教学重点:理想气体状态方程进行相关计算;分压定律和分体积定律计算混合气体问题;利用压缩因子法计算真实气体的PVT 性质。

教学难点:临界参数的理解;对应态原理;范德华方程、维里方程计算真实气体的PVT 性质;第一节 理想气体PVT 关系一. 理想气体状态方程1. 理想气体实际气体在压力很低时,体积很大,彼此间的引力可忽略不计,即在较低压力或较高温度时实际气体接近理想气体。

理想气体在微观上具有以下两个特征:①分子本身的大小比分子间的平均距离小的多,可以忽略,所以认为分子本身没有体积,视为质点。

②分子间无相互作用力。

2. 理想气体状态方程通过大量实验,基于波义耳定律、查理定律、盖-吕萨克定律等经验定律,人们归纳出低压气体的p 、V 、T 关系都服从的理想气体状态方程:nRT pV = (1-1)或 RT PV Mm = (1-2) 其中的R 称为摩尔气体常数,其值等于8.314J K -1 mol -1,且与气体种类无关。

理想气体状态方程只适用理想气体。

理想气体可以定义为:在任何温度、压强下都严格遵守理想气体状态方程的气体。

实际气体处在温度较高、压力较低即气体十分稀薄时,能较好地符合这个关系式。

【例1-1】【例1-2】 二.理想气体混合物1.分压定律如图1-1所示。

混合气体的总压等于组成混合气体的各组分分压之和,这个经验定律称为道尔顿分压定律。

通式为 i p p ∑= (1-3)根据理想气体状态方程有 RT V n p B B = RT V n p 总总= 两式相比有 B B B y n n p p ==总总 即 总p y p B B = (1-4) 上式表明混合气体中气体的压力分数等于摩尔分数,某组分的分压等于该组分的摩尔分数与混合气体总压的乘积。

物化课件

物化课件
返回
13:24:58
上一内容
下一内容
回主目录
实际气体的液化
270K时CO2相变过程
p=3.204MPa
峭, , 由 如 上在 体 于 果 升等 积 液 继 的温 仅 体 续 线线 有 压 增 段上 微 缩 加 。出 小 性 压 现改很力 陡变小,
上一内容 下一内容
气 体 全 部 凝 结 为 液 体
以上三式结合 理想气体状态方程
pV = nRT
单位:p Pa V m3
TK
n mol R J mol-1 K-1
摩尔气体常数:R = 8.314510 J mol-1 K-1
上一内容 下一内容 回主目录
返回
13:24:58
理想气体状态方程
理想气体状态方程也可表示为: pVm=RT pV = (m/M)RT 以此可相互计算 p, V, T, n, m, M, (= m/ V)
l’1 l’2 T1<T2<Tc<T3<T4
p / [Pa]
1) T < Tc 气相线 g1g’1: p , Vm 气-液平衡线 g1l1 : 加压,p*不变, gl, Vm g1: 饱和蒸气摩尔体积Vm(g) l1: 饱和液体摩尔体积Vm(l)
g’2 g’1ຫໍສະໝຸດ C l2 l1T4
T3 g2 g1 Tc
2) 质量分数wi
wi
def
mi / mi
(单位为1)
wi = 1
上一内容 下一内容 回主目录
返回
13:24:58
理想混合气体状态方程
2. 理想气体方程对理想气体混合物的应用 因理想气体分子间没有相互作用,分子本身 又不占体积,所以理想气体的 pVT 性质与气体的 种类无关,因而一种理想气体的部分分子被另一 种理想气体分子置换,形成的混合理想气体,其 pVT 性质并不改变,只是理想气体状态方程中的 n 此时为总的物质的量。

《物理化学教案》word版

《物理化学教案》word版

《物理化学教案》word版教案:物理化学一、教学内容本节课我们学习的是物理化学中的第一章节,主要内容有:温度、压力、体积、物质的量、质量守恒定律等。

通过本节课的学习,让学生了解和掌握物理化学的基本概念和基本原理。

二、教学目标1. 了解温度的概念和计量单位,理解温度与热量之间的关系。

2. 掌握压力的概念和计量单位,了解压力的作用效果。

3. 理解体积的概念,掌握体积的计量单位。

4. 掌握物质的量的概念和计量单位,了解物质的量的计算方法。

5. 理解质量守恒定律的含义和应用。

三、教学难点与重点1. 教学难点:温度、压力、体积、物质的量等概念的理解和应用。

2. 教学重点:温度与热量之间的关系,压力的作用效果,物质的量的计算方法,质量守恒定律的应用。

四、教具与学具准备1. 教具:黑板、粉笔、温度计、压力计、体积计、物质。

2. 学具:笔记本、笔、计算器。

五、教学过程1. 实践情景引入:让学生观察和描述周围环境中温度的变化,如季节变化、气候变化等。

2. 概念讲解:讲解温度的概念和计量单位,通过示例让学生理解温度与热量之间的关系。

3. 实例演示:通过压力计、体积计等教具的演示,让学生了解压力的概念和作用效果。

4. 计算练习:让学生根据给定的物质的质量、体积等信息,计算物质的量。

5. 定律讲解:讲解质量守恒定律的含义和应用,通过示例让学生理解质量守恒定律的重要性。

6. 随堂练习:布置一些有关温度、压力、体积、物质的量、质量守恒定律的练习题,让学生进行练习。

六、板书设计1. 温度:定义、计量单位、与热量之间的关系。

2. 压力:定义、计量单位、作用效果。

3. 体积:定义、计量单位。

4. 物质的量:定义、计量单位、计算方法。

5. 质量守恒定律:含义、应用。

七、作业设计1. 题目:计算物质的量已知某种物质的质量为50克,密度为1.0克/立方厘米,求该物质的体积。

答案:该物质的体积为50立方厘米。

2. 题目:应用质量守恒定律某化学反应的反应物质量为20克,物质量为30克,求反应中参与反应的物质的量。

(2)-01章-热力学第一定律(可逆过程,体积功,焓,热容)

(2)-01章-热力学第一定律(可逆过程,体积功,焓,热容)
物理化学电子教案—第一章
热力学第一定律及其应用
环境 surroundings
无物质交换 封闭系统
Closed system
U Q W
有能量交换
上一内容 下一内容 回主目录
返回
2020/3/7
热力学第一定律
Joule(焦耳)和 Mayer(迈耶尔)自1840年 起,历经20多年,用各种实验求证热和功的转 换关系,得到的结果是一致的。
也可以表述为:第一类永动机是不可能制成的
第一类永动机(first kind of perpetual motion machine):一种既不靠 外界提供能量,本身也不减少能量,却可以不断对外作功的机器 称为第一类永动机,它显然与能量守恒定律矛盾。
热力学第一定律是人类经验的总结,事实证明违背该定 律的实验都将以失败告终,这足以证明该定律的正确性。
U U2 U1 QW 对于微小变化 dU Q W
热力学能的单位: J
热力学能是状态函数,用符号U表示,它的 绝对值尚无法测定,只能求出它的变化值。
上一内容 下一内容 回主目录
返回
2020/3/7
热力学第一定律的文字表述
热力学第一定律是能量守恒与转化定律在热现 象领域内所具有的特殊形式,说明热力学能、热和 功之间可以相互转化,但总的能量不变。
自然界的一切物质都具有能量,能量有各 种不同形式,能够从一种形式转化为另一种形 式,但在转化过程中,能量的总值不变。
上一内容 下一内容 回主目录
返回
2020/3/7
热力学能
系统总能量通常有三部分组成:
(1)系统整体运动的动能 (2)系统在外力场中的位能 (3)热力学能,也称为内能 热力学中一般只考虑静止的系统,无整体运动, 不考虑外力场的作用,所以只注意热力学能

第一章热力学第一定律及热化学

第一章热力学第一定律及热化学
3.体系的边界可以是多种多样: 可以是实际的, 也可以 是假象的(如刚性壁, 活动壁, 绝热壁, 半透壁等) ;
4. 不同体系有不同的环境, 常用热源这一概念描述;
5.体系可以是多种多样的: 单组分, 多组分, 固体, 液体, 气体, 化学反应体系, 单相, 多相。
第一章 热力学第一定律及热化学
物理化学电子教案
第一章 热力学第一定律及热化学
物理化学电子教案
状态函数
热力学性质是描述系统状态的, 是系统状态的单 值函数, 即当系统处于一定的状态时, 系统的这些 热力学性质有唯一的确定值.
这种函数有两个重要的特征:
★ 这些函数值只取决于系统当前所处的状态,与 历史无关;
★ 热力学函数的改变值只决定于系统状态变 化的始、终态,与过程变化所经历的具体途径无关.
δw = p·dV + (X·dx + Y·dy + Z·dz…… )
=δwe +δwf 或 功 = 强度因素 ×广度因素
式中δwe 为体积功, δwf 为非体积功.
第一章 热力学第一定律及热化学
物理化学电子教案
热、功符号规定:
系统吸热为“+”、系统放热为“-”
系统对环境作功为“+”、环境对系统作功为 “-” 热、功的单位: 焦耳(J)
2
2
2
W e ,31p 外 d V 1(p d p )d V 1p d V
对理想气体:
W V2
e
V1
nRdT VnRlT nV2
V
V1
第一章 热力学第一定律及热化学
物理化学电子教案
④ 恒压膨胀过程 (p1 = p2 = p外 = 常数)
2
W e,41p 外 d V p (V 2 V 1)p V

第1章 热力学基本原理-第二定律(6)

第1章 热力学基本原理-第二定律(6)

V
1.7 热力学第二定律的文字表述
寻找文字说法: 自发过程


假定有条件1 自发过程
不自发过程 则:条件1 是不可能的。
热力学第二定律从经验上总结出多种“‥ ‥ ‥是不可能的”说法。
1.7 热力学第二定律的文字表述
1.7.2. 热力学第二定律的文字表述
克劳修斯(Clausius)的说法:“不可能把热从低温物体传 到高温物体,而不引起其它变化。”
1.9 熵函数
1.9.1.熵的定义
任意可逆循环可以用无限多个微小卡诺可逆循环代替
1.9 熵函数
任意可逆循环的热温商 用相同的方法把任意可逆 循环分成许多首尾连接的小卡 诺循环,前一个循环的等温可 逆膨胀线就是下一个循环的绝 热可逆压缩线,如图所示的虚 线部分,这样两个过程的功恰 好抵消。 从而使众多小卡诺循环的总效应与任意可逆循环 的封闭曲线相当,所以任意可逆循环的热温商的加和 等于零,或它的环程积分等于零。

S
1 2
2
1
Qr S T
>不可逆 =可逆 > 不可逆 = 可逆
Q
T
1.克劳修斯不等式 2.热力学第二定律 数学表达式
dS
Q
T
1.9 熵函数
Clausius 不等式的意义: Clsusius 不等式引进的不等号,在热力学上可以作 为变化方向与限度的判据。
Q dS T
> 不可逆过程,不违反第二定律 = 可逆过程 < 不存在过程,违反第二定律
1.8 卡诺循环和卡诺定理
不可逆循环的热温商:
Q1 Q2 Q2 ir 1 Q1 Q1
Q2 T2 所以 1 1 Q1 T1
r

物理化学实验电子教案

物理化学实验电子教案

物理化学实验电子教案第一章:实验基本原理与安全1.1 实验基本原理1.1.1 介绍物理化学实验的基本原理,如热力学、动力学、电化学等。

1.1.2 解释实验原理在实际应用中的重要性。

1.2 实验安全1.2.1 强调实验安全的重要性,包括防火、防爆、防毒等。

1.2.2 介绍实验中可能存在的危险物质和危险操作,以及相应的预防措施。

第二章:实验器材与操作2.1 实验器材2.1.1 介绍实验中所需的器材,如烧杯、试管、移液器等。

2.1.2 说明器材的选择和使用方法。

2.2 实验操作2.2.1 讲解实验的基本操作,如称量、溶解、搅拌等。

2.2.2 演示实验操作的步骤和技巧。

第三章:实验数据处理与分析3.1 数据处理3.1.1 介绍实验数据的处理方法,如平均值、标准差等。

3.1.2 讲解数据的可靠性和有效性的评估方法。

3.2 数据分析3.2.1 解释实验数据与理论之间的关系。

3.2.2 分析实验结果,探讨可能的原因和影响因素。

4.1 实验报告结构4.1.1 介绍实验报告的基本结构,包括封面、摘要、引言等。

4.1.2 讲解实验报告的格式和规范。

4.2.2 分析优秀实验报告的特点和优点。

第五章:实验案例分析5.1 实验案例选择5.1.1 选择具有代表性的实验案例,如经典的物理化学实验。

5.1.2 介绍实验案例的背景和实验目的。

5.2 实验案例分析5.2.1 分析实验案例的实验原理和操作步骤。

5.2.2 讨论实验结果的意义和应用。

第六章:热力学实验6.1 实验目的与原理6.1.1 解释热力学实验的目的,如测定物质的比热容、反应热等。

6.1.2 介绍热力学实验的基本原理,如能量守恒、热力学第一定律等。

6.2 实验设备与操作6.2.1 介绍热力学实验所需的设备,如量热器、温度计等。

6.2.2 讲解实验设备的操作步骤和注意事项。

6.3 实验数据分析6.3.1 解释热力学实验数据的处理方法,如温度校正、热量计算等。

6.3.2 分析实验数据与热力学理论之间的关系。

《物理化学教案》

《物理化学教案》

《物理化学教案》word版第一章:引言1.1 教案目标让学生了解物理化学的定义和研究范围。

使学生了解物理化学在实际生活和科学研究中的应用。

1.2 教学内容物理化学的定义和研究范围。

物理化学的实际应用举例。

1.3 教学方法采用讲授法,讲解物理化学的定义和研究范围。

采用案例分析法,分析物理化学在实际生活中的应用。

1.4 教学步骤引入新课,讲解物理化学的定义和研究范围。

分析物理化学在实际生活中的应用,如气象、材料、能源等领域的应用。

1.5 作业与评估让学生写一篇关于物理化学在实际生活中的应用的小论文。

对学生的论文进行评估,了解学生对物理化学应用的理解程度。

第二章:热力学第一定律2.1 教案目标让学生理解热力学第一定律的定义和表达式。

使学生能够运用热力学第一定律解决实际问题。

2.2 教学内容热力学第一定律的定义和表达式。

热力学第一定律的实际应用。

2.3 教学方法采用讲授法,讲解热力学第一定律的定义和表达式。

采用例题解析法,分析热力学第一定律的实际应用。

2.4 教学步骤引入新课,讲解热力学第一定律的定义和表达式。

通过例题解析,让学生掌握热力学第一定律的应用方法。

2.5 作业与评估让学生解决一些实际问题,运用热力学第一定律进行计算。

对学生的作业进行评估,了解学生对热力学第一定律的理解程度。

第三章:理想气体状态方程3.1 教案目标让学生理解理想气体状态方程的定义和表达式。

使学生能够运用理想气体状态方程解决实际问题。

3.2 教学内容理想气体状态方程的定义和表达式。

理想气体状态方程的实际应用。

3.3 教学方法采用讲授法,讲解理想气体状态方程的定义和表达式。

采用例题解析法,分析理想气体状态方程的实际应用。

3.4 教学步骤引入新课,讲解理想气体状态方程的定义和表达式。

通过例题解析,让学生掌握理想气体状态方程的应用方法。

3.5 作业与评估让学生解决一些实际问题,运用理想气体状态方程进行计算。

对学生的作业进行评估,了解学生对理想气体状态方程的理解程度。

气体的pVT方程

气体的pVT方程

线上的摩尔体积是气液两相共存时的摩尔
体积。
Vm
=
n(g)Vm (g) n
+
n(l)Vm (l) n
e上一内容 f下一内容 回主目录
2返回
2005-7-17
3、气体的液化和临界状态
温度升高,结线缩短。
3、T =T c:
气态和液态不能区分这种状态称为临界状态 。 T =T c等温线在临界点处,数学上有:
理想气体混合物的状态方程:
∑ pV
= nRT
=
⎛ ⎜⎝
B
⎞ nB ⎟⎠ RT

pV = m RT M mix 混合物的
∑ M mix = yBM B
摩尔质量
B
对于混合物中任一组分来说:
mB = nBM B , nB = yBn
∑ ∑ ∑ ∑ m = mB = nBM B = nyBM B = n yBM B = nM mix
模型的意义 (1)反映了所有低压气体的共性。即在压力趋向于0的条件 下,任何气体的行为都服从PV=nRT方程。 (2)为真实气体的研究提供了一个参考模型。
e上一内容 f下一内容 回主目录
2返回
2005-7-17
2、理想气体模型
(1)分子间力
兰纳德-琼斯提出了兰纳德-琼斯理论,认 E
为:
E
=
E吸引
+
(4)2/(5):a = 27R2Tc2 64 pc
(6) 代入(3) pcVc,m = 3
(6)代入(5): b = RTc (7)
RTc 8
8 pc

临界压缩因子:临界状态的压缩因子
Zc
=
pcVc,m RTc

物理化学实验电子教案

物理化学实验电子教案

物理化学实验电子教案第一章:实验基本原理与操作1.1 实验安全与防护介绍实验安全常识,如穿戴实验服、佩戴防护眼镜等。

讲解实验室中的危险品识别与处理方法。

1.2 实验数据处理与误差分析教授实验数据的采集、记录和处理方法。

介绍误差来源及减小误差的方法。

1.3 实验基本操作演示实验室常用的玻璃仪器的使用方法。

讲解实验中常用的测量和计算方法。

第二章:溶液的配制与浓度测定2.1 溶液的配制教授溶液配制的基本原则和方法。

演示如何准确称量和溶解固体物质。

2.2 浓度测定介绍常见的浓度测定方法,如滴定法、光谱法等。

演示浓度测定的实验操作和数据处理。

第三章:热力学实验3.1 热量的测定讲解热量测定原理,如热量守恒定律。

演示热量测定的实验操作和数据处理。

3.2 相图的绘制介绍相图的基本概念和绘制方法。

演示如何通过实验数据绘制相图。

第四章:动力学实验4.1 反应速率测定讲解反应速率的概念和测定方法。

演示反应速率测定的实验操作和数据处理。

4.2 活化能的测定介绍活化能的概念和测定方法。

演示活化能测定的实验操作和数据处理。

第五章:电化学实验5.1 电化学基本概念讲解电化学基本原理,如电极反应、电势等。

介绍电化学实验中常用的电化学电池和仪器。

5.2 电位测定与腐蚀防护演示电位测定实验操作和数据处理。

介绍腐蚀防护方法,如阴极保护、涂层等。

第六章:光学与光谱学实验6.1 光学基本原理介绍光学实验中涉及的基本原理,如光的传播、反射、折射等。

讲解光学仪器的基本构造和使用方法。

6.2 光谱学实验介绍光谱学的基本概念,如光谱、吸收光谱、发射光谱等。

演示光谱学实验的操作步骤和数据处理。

第七章:磁化学实验7.1 磁性材料的基本概念讲解磁性材料的基本性质,如磁性、磁化强度、磁化曲线等。

介绍磁化学实验中常用的仪器和设备。

7.2 磁化曲线与磁化率测定演示如何测定磁化曲线和磁化率。

讲解磁化曲线和磁化率在实际应用中的意义。

第八章:原子吸收与发射光谱实验8.1 原子吸收光谱原理介绍原子吸收光谱的基本原理和应用。

物理化学 01章_热力学第一定律及其应用

物理化学 01章_热力学第一定律及其应用

功可分为膨胀功和非膨胀功两大类。W的取号:
环境对体系作功,W>0;体系对环境作功,W<0 。
Q和W都不是状态函数,其数值与变化途径有关。
上一内容 下一内容 回主目录
返回
2021/1/3
1.2 热力学第一定律
•热功当量 •能量守恒定律 •热力学能 •第一定律的文字表述 •第一定律的数学表达式
上一内容 下一内容 回主目录
返回
2021/1/3
热功当量
焦耳(Joule)和迈耶(Mayer)自1840年起,历经 20多年,用各种实验求证热和功的转换关系, 得到的结果是一致的。
即: 1 cal = 4.1840 J
这就是著名的热功当量,为能量守恒原理 提供了科学的实验证明。
上一内容 下一内容 回主目录
返回
2021/1/3
热力学的方法和局限性
热力学方法 •研究对象是大数量分子的集合体,研究 宏观性质,所得结论具有统计意义。
•只考虑变化前后的净结果,不考虑物质 的微观结构和反应机理。
•能判断变化能否发生以及进行到什么程 度,但不考虑变化所需要的时间。
局限性 不知道反应的机理、速率和微观性
状态函数的特性可描述为:异途同归,值变 相等;周而复始,数值还原。
状态函数在数学上具有全微分的性质。
上一内容 下一内容 回主目录
返回
2021/1/3
状态方程
体系状态函数之间的定量关系式称为状态方 程(state equation )。
对于一定量的单组分均匀体系,状态函数 T,p,V 之间有一定量的联系。经验证明,只有两个 是独立的,它们的函数关系可表示为:
•体系与环境 •体系的分类 •体系的性质 •热力学平衡态 •状态函数 •状态方程 •热和功

物理化学》电子教案上册

物理化学》电子教案上册

《物理化学》电子教案上册第一章:引言1.1 课程介绍了解物理化学的课程背景、意义和目的。

理解物理化学的基本概念和研究方法。

1.2 物理化学的发展历程回顾物理化学的发展历程,了解其重要里程碑和成就。

介绍著名物理化学家和他们对物理化学的贡献。

1.3 学习目标和要求明确学习目标,包括知识、技能和态度。

提出学习要求,包括课堂参与、作业和考核。

第二章:物质的量与状态2.1 物质的量引入物质的量的概念,解释摩尔和阿伏伽德罗常数。

学习物质的量的计算和转换,包括摩尔质量、物质的量浓度等。

2.2 状态介绍理想气体状态方程,理解压力、体积和温度之间的关系。

学习物质的相变,包括固态、液态和气态的性质和变化。

2.3 物质的量与状态的计算练习计算物质的量与状态之间的关系,包括理想气体状态方程的运用。

分析实际问题,应用物质的量与状态的计算方法。

第三章:热力学第一定律3.1 能量守恒定律复习能量守恒定律的基本原理,理解能量的转化和守恒。

学习能量的单位和国际制,了解能量的量纲和换算关系。

3.2 内能和热量引入内能的概念,理解内能的定义和计算方法。

学习热量的传递方式,包括传导、对流和辐射。

3.3 热力学第一定律阐述热力学第一定律的内容,理解能量守恒与热力学第一定律的关系。

应用热力学第一定律解决实际问题,进行能量的计算和分析。

第四章:热力学第二定律4.1 熵的概念引入熵的概念,解释熵的定义和物理意义。

学习熵的计算方法和熵变的表达式。

4.2 热力学第二定律的表述阐述热力学第二定律的不同表述,包括熵增原理和克劳修斯定律。

理解热力学第二定律的本质和意义。

4.3 热力学第二定律的应用学习热力学第二定律在实际问题中的应用,包括热机和制冷机的效率计算。

分析热力学第二定律对自然界和工程实践的影响。

第五章:溶液的性质5.1 溶液的定义和组成引入溶液的概念,理解溶液的组成和特点。

学习溶质和溶剂的分类及它们之间的相互作用。

5.2 溶液的浓度和渗透压介绍溶液的浓度表示方法,包括摩尔浓度和质量浓度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

上一内容 下一内容 回主目录
返回
2020/8/14
体系分类
上一内容 下一内容 回主目录
返回
2020/8/14
体系的分类
• 明确所研究的体系属于何种体系是 至关重要的。由于处理问题的对象 不同。描述他们的变量不同,所适 用的热力学公式也有所不同。
上一内容 下一内容 回主目录
返回
2020/8/14
体系的性质:
问题,以及相平衡和 化学平衡
热力学第三定律——— 解决熵函数的数
值计算
上一内容 下一内容 回主目录
返回
2020/8/14
热力学的方法和局限性
热力学方法 •研究对象是大数量分子的集合体,研究 宏观性质,所得结论具有统计意义。
•只考虑变化前后的净结果,不考虑物质 的微观结构和反应机理。
•能判断变化能否发生以及进行到什么程 度,但不考虑变化所需要的时间。
与体系密切相关、有相互 作用或影响所能及的部分称为 环境。
上一内容 下一内容 回主目录
返回
2020/8/14
体系分类
根据体系与环境之间的关系,把体系分为三类: (1)敞开体系(open system)
体系与环境之间既有物质交换,又有能量交换。
上一内容 下一内容 回Байду номын сангаас目录
返回
2020/8/14
体系分类
上一内容 下一内容 回主目录
返回
2020/8/14
1.1热力学概论
2. 热力学定律的基础、特点和限制 • 热力学定律的根据是三件事实
(1)不能制造出第一类永动机 (2)不能使一个自然发生的过程完全复原 (3)不能得到绝对零度 根据大量的实验结果,得出热力学三大定律。 • 热力学定律的特点: (1)不管物质的微观结构 (2)不管过程的机理 优点:结论绝对可靠。
• 体系的性质具有如下特点: 1.体系的性质只决定于它现在所处的状态,而 与其过去的历史无关。 2.体系的状态发生变化时,它的一系列性质也 随之而改变,改变多少,只决定于体系的开始 状态和终了状态,而与变化的途径无关。 热力学把具有这种特征的体系性质称为状态 函数。
上一内容 下一内容 回主目录
返回
2020/8/14
上一内容 下一内容 回主目录
返回
2020/8/14
热力学的研究对象
•研究热、功和其他形式能量之间的相互转换及 其转换过程中所遵循的规律; •研究各种物理变化和化学变化过程中所发生的 能量效应; •研究化学变化的方向和限度。
上一内容 下一内容 回主目录
返回
2020/8/14
3. 热力学主要内容:
热力学第一定律———计算变化中的热效应 热力学第二定律——— 解决变化的方向和限度
根据体系与环境之间的关系,把体系分为三类: (2)封闭体系(closed system)
体系与环境之间无物质交换,但有能量交换。
上一内容 下一内容 回主目录
返回
2020/8/14
体系分类
根据体系与环境之间的关系,把体系分为三类: (3)孤立体系(isolated system)
体系与环境之间既无物质交换,又无能量交换,故 又称为隔离体系。有时把封闭体系和体系影响所及的环 境一起作为孤立体系来考虑。
上一内容 下一内容 回主目录
返回
2020/8/14
1.1 热力学概论
缺点: 1. 因不考虑物质的微观结构,因而无法预测物
质的性质。 2. 热力学只能处理平衡体系,不能解决过程的 速率问题。
化学热力学(Chemical Thermodynamics)定义: 把热力学中最基本原理用来研究化学现象以及 和化学有关的物理现象。
物理化学电子教案—第一章
U Q W
上一内容 下一内容 回主目录
返回
2020/8/14
第一章 热力学第一定律及其应用
1.1 热力学概论 1.2 热力学第一定律 1.3 准静态过程与可逆过程 1.4 焓 1.5 热容 1.6 热力学第一定律对理想气体的应用
1.7 实际气体 1.8 热化学
上一内容 下一内容 回主目录
返回
2020/8/14
第一章 热力学第一定律及其应用
1.9 赫斯定律 1.10 几种热效应 1.11 反应热与温度的关系——基尔霍夫定律 1.12 绝热反应——非等温反应 *1.13 热力学第一定律的微观说明
上一内容 下一内容 回主目录
返回
2020/8/14
1.1 热力学概论
热力学的研究对象 热力学的方法和局限性 几个基本概念:
•体系与环境 •体系的分类 •体系的性质 •热力学平衡态 •状态函数 •状态方程 •热和功
上一内容 下一内容 回主目录
返回
2020/8/14
1.1热力学概论
热力学概论 1. 热力学能解决什么问题?
预见性问题 如:
固氮 N2+2H2ONH4NO2
现实性问题 如: 对于一个反应,要知道在什么条件下产品量多 质好。 如何从混合物中分离得到纯物质。
局限性 不知道反应的机理、速率和微观性
质,只讲可能性,不讲现实性。
上一内容 下一内容 回主目录
返回
2020/8/14
体系与环境
体系(System) 在科学研究时必须先确定
研究对象,把一部分物质与其 余分开,这种分离可以是实际 的,也可以是想象的。这种被 划定的研究对象称为体系,亦 称为物系或系统。 环境(surroundings)
2020/8/14
思考题
由Dalton分压定律:
P P1 P2 P2 ...
知,压力P应为广度性质。错在何处?
上一内容 下一内容 回主目录
返回
2020/8/14
热力学平衡态
• 热力学平衡状态 (equilibrium state of thermodynamics) 如果处在一定环境条件下的系统,其所有 的宏观性质(如温度、压力等)均不随时间而变 化;而且当此系统与环境隔离后,也不会引起 系统任何性质的变化,则称该系统处于热力学 平衡状态。
数量无关,不具有加和性,如温度、压力等。它 在数学上是零次齐函数。指定了物质的量的容量 性质即成为强度性质,如摩尔热容。
上一内容 下一内容 回主目录
返回
2020/8/14
注意:
广度性质在特定的条件下可以转化为强度性 质,如:
密度
m
V
单位体积的质量
摩尔体积
V* V n
上一内容 下一内容 回主目录
返回
体系的性质
用宏观可测性质来描述体系的热力学状态, 故这些性质又称为热力学变量。可分为两类:
广度性质(extensive properties) 又称为容量性质,它的数值与体系的物质的
量成正比,如体积、质量、熵等。这种性质有加 和性,在数学上是一次齐函数。
强度性质(intensive properties) 它的数值取决于体系自身的特点,与体系的
相关文档
最新文档