锅炉水位三冲量控制及调节

合集下载

三冲量给水调节

三冲量给水调节

在三冲量给水调节系统中,调节器接受三个输入信号:主信号汽包水位H,前馈信号蒸汽流量D,和反馈信号给水流量W。

其中,蒸汽流量和给水流量是引起汽包水位变化的主要原因,当引起汽包水位变化的扰动一经发生,调节系统立即动作,能即使有效的控制水位的变化。

对锅炉的给水、燃烧等热工过程变量的自动调节。

实现锅炉的自动控制,对安全运行、节能具有重要的经济意义。

依锅炉的结构、运行方式和所用的燃料不同,控制系统也有差异。

一般小型锅炉只有水位调节系统,中型锅炉要有燃烧和炉膛压力调节系统,大型锅炉还要有氧量校正系统,而供应过热蒸汽的锅炉还需要增加过热蒸汽温度调节系统。

发电厂的高温高压汽包锅炉自动控制系统是典型的工业锅炉控制系统,它由给水自动调节系统、燃烧过程自动调节系统和过热蒸汽温度自动调节系统等组成。

锅炉给水自动调节系统为了确保锅炉安全运行,必须对锅炉的水位进行控制,使汽包的水位保持在一定范围。

图1是应用较多的三冲量给水调节系统。

三冲量是指汽包水位、给水流量和过热蒸汽流量。

其中水位是主信号,给水量是反馈信号,过热蒸汽量是前馈信号。

当过热蒸汽流量改变时调节器立即调节给水量,当给水流量受到扰动时则能使给水流量恢复到原来值。

因此,三冲量给水调节是一个前馈、反馈调节系统。

燃烧过程自动调节系统由燃烧、送风和炉膛负压三个调节回路组成(图2)。

图中PI1为过热蒸汽压力调节器(PI表示比例积分调节器),其主信号是汽机前的过热蒸汽压力,当汽机负荷变化时,汽机前的蒸汽压力也随之变化。

调节器通过改变送入锅炉的燃料量,使其与变化后的负荷相适应,并将过热蒸汽压力恢复到额定数值。

PI2是送风调节器,它的作用是保持进入锅炉的空气量与燃烧量成比例关系,以保证锅炉的经济燃烧,提高锅炉热效率。

对于燃烧煤粉的锅炉,直接测量进入锅炉的煤粉量是困难的,因此引入热量信号,即用过热蒸汽流量加汽包压力的微分信号来间接地测量当时进入锅炉的燃料量。

根据反映燃料量的热量信号调节送风量。

三冲量汽包水位控制原理及应用教程

三冲量汽包水位控制原理及应用教程

锅炉汽包水位是锅炉生产过程的主要工艺指标,同时也是保证锅炉安全运行的主要条件之一。

汽包水位过高,使蒸汽产生带液现象,不仅降低蒸汽的产量和质量,而且还会使过热器结垢,或使汽轮机叶片损坏;当汽包水位过低时,轻则影响水汽平衡,重则烧干锅炉,严重时会导致锅炉爆炸事故的发生。

所以锅炉水位是一个极为重要的被控变量。

在具体工艺生产过程中,常常由于蒸汽负荷的波动和给水流量的变化打破汽包内的平衡状态,对汽包水位造成干扰,最终导致假液位。

所谓“冲量”实际就是变量,多冲量控制中的冲量,是指引入系统的测量信号。

在锅炉控制中,主要冲量是水位。

辅助冲量是蒸汽负荷和给水流量,它们是为了提高控制品质而引入的。

1、三冲量控制的引入目前锅炉汽包水位调节常采用单冲量、双冲量及三冲量等三种调节方案,现分别对它们的基本原理和特性加以讨论。

①单冲量水位调节系统单冲量水位调节系统的原理如图1所示。

由图1可知,这种类型的水位调节系统,是一个典型的单回路调节系统,被调参数是汽包水位,调节参数是锅炉的给水量。

它适用于停留时间较长(亦即蒸发量与汽包的单位面积相比很小),负荷变化小的小型锅炉(一般为10t/h以下)。

但对于停留时间较短,负荷变化大的系统就不适应了。

图1 单冲量水位调节原理图2 单冲量水位调节系统控制策略从图2可以看出:单冲量水位调节系统控制策略由汽包水位测量差压变送器、PID调节器和调节阀(或变频器)构成。

当蒸汽负荷突然大幅度增加时,由于汽包内蒸汽压力瞬间下降,水的沸腾加剧,汽泡量迅速增加,汽泡不仅出现于水的表面,而且出现于水面以下,由于汽泡的体积比水的体积大许多倍,结果形成汽包内液位升高的现象。

因为这种升高的液位不代表汽包内储液量的真实情况,所以称为“假液位”。

此时PID调节器会错误地认为测量值升高,从而关小给水调节阀,减小给水量。

等到这种暂时汽化现象一旦平稳下来,由于蒸汽量的增加,给水量反而减少,会使水位严重下降,甚至降到液位危险区,造成事故。

220t_h循环流化床锅炉汽包水位三冲量调节的分析与整定

220t_h循环流化床锅炉汽包水位三冲量调节的分析与整定
因此当给水母管压力经常有波动水调节阀前后压差不易保持正常时不宜采用双冲量控制w1给水流量扰动w2调节阀对给水量的调节作用蒸汽流量扰动下的水位变化的传递函数水位给水流量蒸汽流量测量变送器的斜率kz执行器的比例系数三冲量控制系统原理分析及实现411原理分析锅炉汽包三冲量液位控制系统是在双冲量液位控制基础上引入了给水流量信号由水位蒸汽流量和给水流量组成了三冲量液位控制系统汽包水位是被控变量是主冲量信号蒸汽流量给水流量是两个辅助冲量信号实质上三冲量控制系统是前馈加反馈控制系统可分为单级和串级两种控制系统当蒸汽流量增加时调节器立即动作相应地增加给水流量能有效地减小虚假液位所引起的调节器误动作
αDγD = γwαw
(6)
一般蒸汽流量变送设备的斜率 γD 等于给水流
量变送设备的斜率γw ,则
αD = αW
(7)
即蒸汽流量前馈装置的传递系数 (蒸汽流量信号
的灵敏度)αD 等于给水流量反馈装置的传递系数αw 。 413 串级三冲量给水控制系统的分析和整定
(1) 控制原理 : 串级三冲量给水控制系统的控
4 三冲量控制系统原理分析及实现
411 原理分析 锅炉汽包三冲量液位控制系统是在双冲量液位
控制基础上引入了给水流量信号 ,由水位 、蒸汽流量 和给水流量组成了三冲量液位控制系统 ,汽包水位 是被控变量 ,是主冲量信号 ;蒸汽流量 、给水流量是 两个辅助冲量信号 ,实质上三冲量控制系统是前馈 加反馈控制系统 ,可分为单级和串级两种控制系统 。
图 2 单级三冲量给水系统的内回路方框图
内回路方框图如图 2 所示 , 可以把内回路作为 一般的单回路系统进行分析 。应将副回路处理为具 有近似比例特性的快速随动系统 , 以使副回路具有 快速消除内扰及快速跟踪蒸汽流量的能力 。如果把 调节器以外的环节等效地看作被控对象 , 那么被控 对象动态特性近似为比例环节 以 保证内回路不振荡为原则 , 一般 Ti ≤100 s 。给水流 量反 馈 装 置 的 传 递 系 数 ( 给 水 流 量 信 号 的 灵 敏 度)αw 可任意设置一个数值 ,得到满意的 δ值 , 如果 以后αw 有必要改变 ,则相应地改变δ值 ,使αw/ δ保 持试探时的值 ,以保证内回路的开环放大倍数不变 ,

液位的三冲量控制

液位的三冲量控制

摘要锅炉是多数工业过程中常用的热能动力设备,工业锅炉控制系统是复杂的控制系统。

由于设备分散、管理不善或技术原因,使多数锅炉难以处于良好的工况,增加了锅炉的燃料消耗,降低了效率。

为确保安全,稳定生产,对锅炉的自动控制十分重要,其中汽包水位是一个非常重要的被控变量。

汽包水位是锅炉安全运行的重要参数,同时也是衡量锅炉汽水系统物质是否平衡的标志。

锅炉给水控制的任务是维持汽包水位在一定范围内变化。

水位偏低,会造成锅筒各部位的温度偏差,形成热应力,极限情况下会出现裂纹,甚至有爆炸等危险,水位偏低也会造成水系统自然循环不畅,严重时个别上下水管会产生自由水面,流动停滞,从而导致管爆事故。

锅炉汽包水位偏高时,会影响汽水分离的速度和蒸汽的质量,同时也是安全生产不允许的。

而在负荷变化时,又极易影响到水位的快速变化,因此,必须设计功能完善的三冲量水位调节器来维持水位不变或在规定的范围内变化。

SHCAN6102智能测控组件是一种具有CAN现场总线通讯功能的现场智能控制器。

它不仅可用于现场总线控制系统(FCS),而且可以单独构成一个现场控制单元,三冲量水位调节器就是依托SHCAN6102智能测控组件实现的。

关键词: 汽包水位三冲量控制 SHCAN6102ABSTRACTBoiler is thermal power plant usually used in most industrial processes and industrial boiler's control system is a complex control system. Because of scattered equipment, poor management or technical reason, it is difficult to work in good condition for the majority of boilers and increased their fuel consumption and reduced the work efficiency. It is very important to control boiler automatically in safety and stabilization, and boiler's drum water-level is an important variable to be controlled.Drum boiler water level is an important parameter of normal operation and an mark to measure the material balance.The task of boiler feed water control is to keep the drum water level in a certain range. The low water level, causing the temperature deviation of each part of Drum, can produce a thermal stress. The limit of this situation will make the boiler crack and even explosive. Meanwhile, the low water level will cause the natural cycle of poor water system, and individual serious water pipes from top to bottom may have free water, the flow of stagnation, leading to the explosion accident. It will affect the separation speed of steam from the steam quality when boiler water level is high, which is not allowed in normal operation. It is vulnerable to impose the rapid changes on water level during changes in the load. Therefore, three-volume water regulator must be designed to maintain the water level or keep it within the range of provisions.SHCAN6102 intelligent monitoring and control components is a kind of intelligent controller with the communication function of CAN fieldbus. It can not only be used for fieldbus control system (FCS), but also constitute a separate control unit. The three-volume water regulator is realized, relying on SHCAN6102 intelligent monitoring and control components.Key words:the steam drum water level three impulses control SHCAN6102目录第一章绪论 (1)1.1问题的提出 (1)第二章汽包水位动态特性分析 (2)2.1 汽包水位系统介绍 (2)2.2汽包水位被控对象的动态特性 (2)2.2.1汽包水位在给水流量作用下的动态特性 (2)2.2.2汽包水位在蒸汽流量扰动下的动态特性 (4)2.2.3燃料量M的扰动 (6)第三章锅炉给水自动调节系统的分析及PID简介 (8)3.1调节任务 (8)3.2 PID控制 (8)3.2.1比例(P)调节 (8)3.2.2 积分(I)调节 (9)3.2.3 微分(D)调节 (9)3.3串级控制系统 (9)3.4汽包水位控制方案的确定 (11)3.4.1单冲量给水调节系统 (11)3.4.2 双冲量给水调节系统 (12)3.4.3三冲量给水调节系统 (14)3.5锅炉水位全程调节探讨 (15)第四章系统实现 (17)4.1 SHCAN6102与安全栅介绍 (17)4.1.1概述 (17)4.1.2性能指标 (17)4.1.3 主要特点 (19)4.2 安全栅 (20)4.3系统回路图 (20)4.4组态实现 (21)4.5组态功能测试 (25)结语 (27)谢辞................................................. 错误!未定义书签。

水位三冲量调节控制策略及串级调节参数整定方法

水位三冲量调节控制策略及串级调节参数整定方法

水位三冲量调节控制策略及串级调节参数整定方法水位的三冲量调节控制策略及串级调节参数整定方法主要用于水位控制系统中,该方法可以在一定程度上提高系统的控制性能和稳定性。

以下是关于水位的三冲量调节控制策略及串级调节参数整定方法的详细介绍。

一、水位的三冲量调节控制策略在水位控制系统中,三冲量调节控制策略是一种常用的调节方法。

该策略通过对水位控制系统中的三个冲量(比例、积分、微分)进行调整,来实现对水位的稳定控制。

1.比例冲量控制:比例冲量控制是根据水位与设定值之间的偏差,按照一定的比例关系加大或减小输入信号。

比例系数的选择需要根据实际系统的特性进行调整,一般情况下可以通过试探法或经验法进行初步调整,然后再通过试验的方式进行优化。

2.积分冲量控制:积分冲量控制是根据水位偏差的积分值来调节系统的输出。

积分冲量可以减小稳态误差,提高系统的稳定性和鲁棒性。

积分冲量的选择需要结合系统的动态响应特性进行调整,一般情况下需要进行试验和优化。

3.微分冲量控制:微分冲量控制是根据水位变化的速率来调节系统的输出。

微分冲量可以提高系统的响应速度和抗干扰能力,但如果参数选择不当会导致系统的震荡。

微分冲量的选择需要结合系统的动态响应特性进行调整,一般情况下需要进行试验和优化。

串级控制是一种高级的控制方法,通过在系统内部增加一个或多个级联控制环,来进一步提高系统的控制品质。

下面介绍一种常用的串级调节参数整定方法,即Ziegler-Nichols法。

1.首先选择一个合适的比例系数Kp:-将系统设为比例控制模式,调节Kp的值,直到系统发生持续振荡。

-记录下持续振荡的周期Tp。

2.根据振荡周期Tp,计算出比例增益Ku:-Ku=4/(π*Tp)。

3.根据Ku的值,选择合适的控制器类型和相应的参数:-P控制器:Kp=0.5*Ku。

-PI控制器:Kp=0.45*Ku,Ti=Tp/1.2-PID控制器:Kp=0.6*Ku,Ti=Tp/2,Td=Tp/84.将调节器参数输入控制器,并进行参数整定:-根据系统的实际情况,通过试验和仿真的方式进行参数的优化。

三冲量汽包水位控制原理及应用教程

三冲量汽包水位控制原理及应用教程

锅炉汽包水位是锅炉生产过程的主要工艺指标,同时也是保证锅炉安全运行的主要条件之一。

汽包水位过高,使蒸汽产生带液现象,不仅降低蒸汽的产量和质量,而且还会使过热器结垢,或使汽轮机叶片损坏;当汽包水位过低时,轻则影响水汽平衡,重则烧干锅炉,严重时会导致锅炉爆炸事故的发生。

所以锅炉水位是一个极为重要的被控变量。

在具体工艺生产过程中,常常由于蒸汽负荷的波动和给水流量的变化打破汽包内的平衡状态,对汽包水位造成干扰,最终导致假液位。

所谓“冲量”实际就是变量,多冲量控制中的冲量,是指引入系统的测量信号。

在锅炉控制中,主要冲量是水位。

辅助冲量是蒸汽负荷和给水流量,它们是为了提高控制品质而引入的。

1、三冲量控制的引入目前锅炉汽包水位调节常采用单冲量、双冲量及三冲量等三种调节方案,现分别对它们的基本原理和特性加以讨论。

①单冲量水位调节系统单冲量水位调节系统的原理如图1所示。

由图1可知,这种类型的水位调节系统,是一个典型的单回路调节系统,被调参数是汽包水位,调节参数是锅炉的给水量。

它适用于停留时间较长(亦即蒸发量与汽包的单位面积相比很小),负荷变化小的小型锅炉(一般为10t/h以下)。

但对于停留时间较短,负荷变化大的系统就不适应了。

图1 单冲量水位调节原理图2 单冲量水位调节系统控制策略从图2可以看出:单冲量水位调节系统控制策略由汽包水位测量差压变送器、PID调节器和调节阀(或变频器)构成。

当蒸汽负荷突然大幅度增加时,由于汽包内蒸汽压力瞬间下降,水的沸腾加剧,汽泡量迅速增加,汽泡不仅出现于水的表面,而且出现于水面以下,由于汽泡的体积比水的体积大许多倍,结果形成汽包内液位升高的现象。

因为这种升高的液位不代表汽包内储液量的真实情况,所以称为“假液位”。

此时PID调节器会错误地认为测量值升高,从而关小给水调节阀,减小给水量。

等到这种暂时汽化现象一旦平稳下来,由于蒸汽量的增加,给水量反而减少,会使水位严重下降,甚至降到液位危险区,造成事故。

(完整word版)锅炉汽包液位的三冲量调节

(完整word版)锅炉汽包液位的三冲量调节

《过程控制》课程设计报告题目: 锅炉汽包液位的三冲量调节姓名: 学号:姓名: 学号:姓名: 学号:2010年12月10日《过程控制》课程设计任务书指导教师签字:系(教研室)主任签字:2010年12 月4 日1 问题重述锅炉汽包液位是锅炉运行中一个重要的监控参数,反映了锅炉负荷与给水的平衡关系,要求汽包液位控制在一定范围内。

锅炉汽水系统结构如图1 所示。

图1锅炉汽水系统1—给水泵;2—给水母管;3—调节阀;4—省煤器5—锅炉汽包;6—下降管;7—上升管;8—蒸汽母管汽包液位过高会造成蒸汽带水,影响汽水分离效果;水位过低容易使水全部被汽化烧坏锅炉。

影响汽包液位的因素,除了加热汽化外,还有蒸汽负荷和给水流量的波动,当负荷突然增大、汽包压力突然降低时,水就会被急剧汽化,出现大量气泡,形成“虚假液位”。

单冲量控制系统的负荷一旦急剧变化就会出现虚假液位,因液位升高,调节器就会关小供水阀门而造成事故。

双冲量控制系统,是在单冲量控制系统的基础上加上一个蒸汽冲量,以克服虚假液位。

三冲量调节系统,它是在双冲量控制系统上再加上一个给水流量的冲量。

由蒸汽流量、给水流量前馈与汽包液位反馈所组成的三冲量控制系统,如下图所示。

三冲量控制系统框图D W H a a a 、、分别为蒸汽流量变送器、给水流量变送器、差压变送器的转换系数。

已知某供汽量为120t/h 的锅炉,给水流量与水位的传递函数1()G S ,蒸汽流量与水位的传递函数2()G S 分别为:1()0.0529()()(8.51)H S G S ==W S S S + (1)22() 2.6130.0747()()(6.71)H S G S D S S S ==-+ (2)D W H a a a 、、分别为:0.0667,0.0667及0.0333。

调节阀采用线性阀,增益为15。

试用PID 、模糊PID 控制等方法实现对锅炉液位的控制。

要求:1、超调小、调节时间短,对扰动的抑制效果好;2、给出控制策略和选定参数,并详细说明参数整定过程;3、给出MATLAB 下的仿真曲线。

三冲量水位调节原理

三冲量水位调节原理

三冲量水位调节原理
三冲量水位调节原理是一种常用于水位控制的方法,它通过三个不同的冲量来控制水位的高低。

具体的原理如下:
1. 上冲量:当水位低于设定水位时,系统会给水箱注入一定的上冲量水来提升水位。

上冲量的大小和时长根据实际需求来设置。

2. 下冲量:当水位超过设定水位时,系统会排出一定的下冲量水来降低水位。

下冲量的大小和时长也根据实际需求来设置。

3. 中冲量:当水位接近设定水位时,系统会给水箱注入一定的中冲量水来保持水位的稳定。

中冲量一般较小,可以保持水位在一定范围内波动。

通过不断地调节上冲量、下冲量和中冲量的大小和时长,系统可以根据实际的需要,使水位保持在设定的范围内。

三冲量水位调节原理的优点是控制精度高,可以实现自动化控制,同时也能够适应不同的需求和变化的水位。

缺点是由于需要进行多次冲量,所以系统会消耗较多的能源和水资源,同时也增加了管路的复杂性。

锅炉水位三冲量控制及调节

锅炉水位三冲量控制及调节

汽包水位三冲量调节系统是指汽包水位、蒸汽流量和给水流量三个信号作用于调节器上,即三个被控变量对应一个调节器;工作原理:汽包水位作为主信号,水位变化,调节器输出发生变化,继而改变给水流量, 使水位恢复到给定值;蒸汽流量作为前馈信号,防止“虚假水位”使调节器产生错误的动作;给水流量作为反馈信号,使调节器在水位还未变化时就可根据前馈信号消除内扰,使调节过程稳定,起到稳定给水流量的作用;锅炉汽包水位三冲量调节系统是火电厂锅炉核心控制之一;汽包水位三冲量调节系统的给水调节阀动作频繁,锅炉水位对给水调节阀执行机构的动作比较敏感,稍有不慎就可能出现严重的危险情况,汽包水位三冲量调节系统关系到整个机组的安全运行:若汽包水位过高,会造成蒸汽带水;若汽包水位过低,会造成锅炉“干锅”,可能严重烧坏锅炉设备;汽包水位三冲量调节系统的重要性由此可见一斑,所以汽包水位的相关保护要完善可靠、汽包水位自动调节系统运行要平稳;目前,汽包水位三冲量自动调节控制策略已经相当成熟,但在实际锅炉运行中会各种原因导致水位自动调节系统投入困难,甚至自动不能投入;这种现象让人对串级三冲量调节系统的调节能力和控制策略产生疑问;为此云润与大家交流运用心得,对级三冲量调节系统进行定性分析,并对一些异常情况的处理办法进行探讨;1、水位三冲量调节控制策略汽包水位三冲量调节系统使用的三个冲量分别是汽包水位、给水流量和蒸汽流量;汽包水位作为主调PID调节器的输入信号,去抑制水位本身的偏差;副调外给定调节器使用了一个反馈信号给水流量和一个前馈信号蒸汽流量,以消除扰动和虚假水位;各种介绍汽包水位三冲量调节系统的书籍中,都有对传递函数的计算,这些计算对系统设计很重要;如果用经验调节法对于系统维护,则完全可以抛开理论计算;在此只对其物理意义进行定性思考和作一番揣测;反馈信号反馈信号指给水流量信号,也叫内扰;水位三冲量调节系统中被调量发生变化的时候,PID经过运算,去控制执行机构进行合理的动作,执行机构改变给水调节阀的开度,阀门控制介质变化,达到控制给水流量的目的;可是给水调节阀执行机构特性、水位三冲量调节系统的运行状况存在很多差异,这些差异主要有:1执行机构线性:执行机构改变开度后,流量随之改变的大小;2执行机构死区:PID输出每变化多少,执行机构才能动作一次;3执行机构空行程:执行机构在改变动作方向的时候,改变多少开度,给水流量才发生变化减去死区的值;4执行机构回差:执行机构进行开、关两个方向的动作的时候,流量变化不相等,这个流量变化绝对值的差叫回差;5执行机构及阀门的特性曲线改变:阀门线性改变,阀门每变化1%,流量变化量与以往不同;6水位三冲量调节系统软故障:偶尔发生的系统故障使得给水流量变化不均匀,或者时有停顿;7系统介质参数发生变化:指因给水压力、蒸汽压力变化导致给水流量变化;上述差异会对系统的调节造成干扰,甚至上述的情况在运行过程中也在变化;介质参数随时发生变化,其它参数可能缓慢发生变化,大家必须关注这些变化因素;在一个中等容量的机组中,一般汽包水位对给水流量的变化非常敏感,流量变化10t/h左右,就会造成水位逐渐上升;通常执行机构动作1%的开度,就足以造成10t/h的流量变化;水位三冲量调节系统主调的输出给副调一个给水量的指令;如果给水流量信号与这个指令不一致,副调的作用使执行机构改变给水调节阀开度,去让流量信号与主调的输出去一致;如果主调输出没有波动,而流量信号有波动,说明执行机构、阀门甚至给水压力等因素发生变化,这些变化的因素叫做内扰;此时若不管这些变化,将最终会影响到汽包水位,等汽包水位变化后主调再进行调节,就会因延误而过调;副调的作用就是快速消除扰动,如果调节合理则有可能让汽包水位不受干扰或者少受干扰;给水流量信号的设立,一个很重要的作用就是消除内扰;前馈信号前馈信号是指蒸汽流量信号;也叫外扰;当机组负荷需求波动会引起燃烧和蒸汽流量的波动;在蒸汽流量波动的时候就应该及时对系统进行调节,若等到汽包水位开始波动的时候再调节给水流量,汽包水位可能因波动速度较快而纠正较慢出现较大波动;为了克服外扰,所以加入蒸汽流量这个信号;假设机组负荷需要增大,蒸汽流量随之增大,此时不等汽包水位降低,在副调里预先增大给水流量,最终使得汽包水位保持平稳;引入蒸汽流量信号是为了为了克服外扰和“虚假水位”;所谓“虚假水位”是指当机组负荷突然增加,锅炉输出蒸汽量突然增大,此时锅炉因蒸发量增加,给水量未来得及变化,此时汽包水位应该降低;但锅炉出汽量突然增大导致蒸汽压力突然降低,使汽包里汽水混合物中的汽泡急剧增加,汽泡鼓动着汽包水位虚增,造成了汽包水位增高的现象;锅炉出现虚假水位时汽包水位增高,主调使得执行机构关小,加剧了水位降低的情况;但是因为前馈信号的存在,蒸汽流量一旦增大,副调的PID命令执行机构开大,抵消了虚假水位造成的影响;因此副调的反馈信号和前馈信号作用非常大,也非常有必要;控制策略图前馈信号和反馈信号的作用相反;请注意PID的正反作用;2、水位三冲量调节常规参数整定规律有人对串级调节系统的参数整定比较生疏;因为串级系统参数较多,比较不容易分析;下面我们分步骤对参数整定方法作个探讨;设置副调流量系数包括给水流量系数和蒸汽流量系数;这两个系数没有固定值;如果副调的比例作用很弱,这两个系数甚至可以取消不用;之所以要设置流量系数,是要提醒读者注意:在调试过程中,切不可先令副调比例作用过强否则有可能造成系统震荡,最终导致安全事故;一般我们预设这个系数为左右,蒸汽流量系数和给水流量系数应该大致相等;设置副调的比例带非常大,积分时间为无穷大比例作用的大小因系统而异;原则上应该先把副调作用放很小,以防止系统或者副调震荡;设置主调的积分时间为零,比例作用比较弱之所以没有给出比例作用的具体数值,是因为根据不同的系统、不同的DCS系统、不同的程序或PID调节器,这个值差异很大;一般来说,副调的比例带可以先设为150-600,主调比例带设为100-200;逐渐降低主调比例带根据观察结果,逐渐增强比例作用,直到系统接近平稳;或者继续增强比例作用,直到系统接近于等幅震荡,然后把此时的比例带除以,基本上接近于可用了;但是对于汽包水位系统,最好不要调到等幅震荡,这样会使系统处于危险的境地;逐渐增强主调积分作用积分作用逐渐增强,能在较短时间10分钟左右内消静差即可;积分作用不能放得很强,切记主调积分作用太强不仅没有好处,还会带来危害;因为在被调量开始强势回调的时候,需要调节器的输出也要快速回调,这样才能使得被调量不会大幅度超调,而这时候如果积分作用很强,积分作用会使得调节器的输出不仅不回调,而且还可能按照原来的趋势继续调节,一直等到被调量和设定值接近相等的时候,才开始回调,此时为时已晚,必然造成大幅度的超调;要记住:主调积分的目的是为了消除静差的;只要系统没有静差,积分作用就不必要增强;不使用微分作用微分作用可以超前调节,但水位三冲量调节系统不使用微分;因为水位、流量信号大多存在着微小的波动,微分作用会将这些波动放大,造成干扰;主调比例带与副调比例带相乘;减弱主调作用,逐渐增强副调作用主调比例带与副调比例带相乘的积,固定一个数,大约增强副调多大幅度,就减弱主调多大幅度,乘积基本保持不变;在修改主、副调参数的时候应该先减弱一个,再增强另一个,以免系统引起震荡;副调比例作用增强到足够抑制给水流量的扰动为止在负荷大幅度改变时,观察副调的曲线,防止震荡的发生这个阶段容易被忽视,但是非常重要负荷大幅度波动时候,流量最容易引起震荡,此时减弱副调的比例作用,直到不发生震荡为止,然后为了安全,再次稍微减弱副调作用;在调节副调的同时,还需要注意改变主调的比例作用;注意修改主调的积分作用在反复整定主调、副调比例参数之后,要记得积分作用也需要修改;如果副调的比例作用减弱,那么积分作用也要相应减弱,因为调节器的输出是比例和积分相权衡的结果;至此水位三冲量调节系统基本调试结束;为了防止副调震荡,还可以对副调的反馈系数和前馈系数进行修改,基本同减弱副调比例带的作用相当;切记在修改系数时一定要把该系统切换为手动运行方式,否则可能对调节器造成较大干扰,甚至危害锅炉安全运行;。

工业锅炉汽包水位三冲量控制系统

工业锅炉汽包水位三冲量控制系统

一、设计要求1、系统内各环节给定参数(1)、锅炉工作压力:2 Mpa;蒸发量:20 T / h;正常负荷:10 T / h;最大负荷波动:240 ㎏/ min;最大水位波动±30mm;水位允许稳态偏差±10mm。

动态特性考虑为一阶,时间常数5 s ,静态放大倍数8 。

(2)、给水泵形式:多级离心泵给水压力3 Mpa;排量25 T / h;恒速运转、由调节阀调节流量。

(3)、仪表各环节为电动Ⅲ型仪表,输入、输出量程4~20mA,变送器输入量程自选(要求全部仪表输入工作点在50﹪左右,以保证其线性),若调节器选数字式则必须配相应的转换环节。

水位检测变送器可采用差压式;流量变送器可采用孔板或涡介式;调节阀为电动式(流量特性自选)。

各变送器、执行器均为放大环节,放大倍数由所选量程而定。

2、根据工业锅炉生产过程对水位的要求,设计相应的控制系统方案,选择合适量程的仪表,最终提供系统工艺流程图、结构方框图、系统方块图,根据给定参数及要求选定合适的调节规律,给出调节器参数(比例带δ,积分时间Ti ,微分时间Td )的整定范围,最终得到一个10﹕1~4﹕1的衰减过程。

控制器可由微处理器组成,硬件自己搭建,若有可能在计算机上进行模拟仿真!绘出相应的过程曲线。

二、控制系统设计1.给水调节对象的动态特性锅炉的给水系统,汽包液位的动态特性似乎与单容水槽一样,但是实际情况却要复杂的多。

其中最突出的一点就是水循环系统中充满了夹带着大量的蒸汽气泡的水,而蒸汽气泡的总体积是随着气泡压力和炉膛热负荷的变化而改变的。

如果有某种原因使蒸汽泡的总体积改变了,即使水循环系统中的总水量没有变化,汽包水位也会随之发生改变。

汽包液位过高会造成蒸汽带水,影响汽水分离效果;水位过低容易使水全部被汽化烧坏锅炉。

影响汽包液位的因素,除了加热汽化外,还有蒸汽负荷和给水流量的波动,当负荷突然增大、汽包压力突然降低时,水就会被急剧汽化,出现大量气泡,形成“虚假液位”。

水位控制中的单冲量和三冲量

水位控制中的单冲量和三冲量

一、什么是单冲量水位控制?单冲量水位控制、ingle-element level control -}}.}}lX位控制将水位测量信号经变送器送到水位控制器,水位控制器根据水位测量值与给定值的偏差控制给水阀门,改变给水量来保持汽包水位在允许的操作范围内。

单冲量水位控制是锅炉汽包水位自动控制中最简单、最基本的形式,缺点是水位波动幅度大、调节时问长。

缺乏克服“假水位”影响的能力。

二、什么是三冲量水位调节三冲量水位控制是在水位自动控制过程中,根据汽包水位,给水流量,蒸汽流量三个冲量经过PID计算来调节给水阀门开度,从而达到自动控制给水流量的目的。

一般来说,三冲量调节是针对汽包调节的,其三个冲量分别是汽包液位,给水流量和蒸汽流量。

从结构上来说,三冲量调节实际上是一个带前馈信号的串级控制系统。

液位控制器LC与流量控制器FC构成串级控制系统。

汽包液位是主变量,给水流量是副变量。

副变量的引入使系统对给水压力(流量)的波动有较强的克服能力。

蒸汽流量的信号作为前馈信号引入。

因为蒸汽流动的波动是引起汽包液位变化的一个因素,是干扰作用,蒸汽流动波动时,通过测量引入FC,使给水流量作相应的变化,所以这是按干扰量进行控制的,是前馈作用。

三、什么是除氧器水位的单冲量调节和三冲量调节。

在除氧器水位控制过程中,以除氧器水箱水位做为反馈信号的调节方式,称为除氧器水位的单冲量调节。

以除氧器水位,给水流量和凝结水流量三个信号共同参与的调节方式,称为三冲量调节方式。

四、单冲量水位调节和三冲量水位调节的优缺点是什么?单冲量水位自动调节系统是最简单的调节方式,它是按汽包水位偏差来调节给水调节阀开度的。

其优点是调节简单,只有一个水位信号做为调节量。

单冲量水位调节方式的主要缺点是当蒸发量或蒸汽压力突然变化时,会引起炉水中蒸汽含量迅速变化,使得锅炉汽包产生虚假水位,导致给水调节阀误调。

因此,单冲量调节一般用于负荷比较稳定的小容量锅炉。

三冲量水位自动调节系统是较为完善的调节方式,该系统中除汽包水位信号H外,还有蒸汽流量D和给水流量G。

锅炉汽包水位三冲量控制

锅炉汽包水位三冲量控制

三冲量控制在高压汽包中的应用汽包水位是汽包运行的主要指标,水位过高会影响汽包的汽水分离,增加蒸汽携带的水份,汽水品质恶化,导致透平进水,损坏叶片。

水位过低,则由于汽包内的水量较少而负荷却很大,水的汽化速度又快,因而汽包内的水量变化速度很快,破坏汽包与水冷壁间的水循环,如不及时控制就会使汽包内的水全部汽化。

导致汽包破坏或爆炸。

因此,汽包水位的控制是保证汽包安全运行的最重要条件之一。

2汽包水位的动态特性分析2.1蒸汽负荷(蒸汽流量)对水位的影响在传热过程不变的情况下,当出口蒸汽用量突然增加,瞬间必然导致汽包压力下降,汽包内水的沸腾加剧,水中气泡迅速增加,使得汽化量突然增多,将整个水位抬高,形成假上升液位现象。

当蒸汽流量突然增加时,由于假水位现象,在开始阶段水位不仅不会下降,反而先上升,然后下降(反之,当出口蒸汽流量突然减少时,则水位先下降,然后上升)。

蒸汽流量突然增加时,实际水位的变化H,是不考虑水面下气泡容积变化时的水位变化H1,与只考虑水面下气泡容积变化所引起水位变化H2的叠加,即H=H1+H22.2给水流量对水位的影响当给水流量突然增大时,由于在这个时间内烟道气传给汽包的热量不变,给水温度又有比汽包内的饱和水温度低,致使汽包中气泡含量减少,导致水位虚假下降,因此实际水位响应曲线如图1(b)中H线所示,并非H1线。

即当突然加大给水量后,汽包水位一开始不立即增加,而要呈现出一段起始惯性段。

用传递函数来描述时,它相当于一个积分环节和一个纯滞后环节的串联,可表示为3传统控制方案及其缺陷汽包水位的控制手段就是控制给水,传统的单冲量(汽包水位)控制系统和双冲量(汽包水位和蒸汽流量)控制系统其本身都有不可克服的缺陷。

就单冲量控制系统而言,当蒸汽负荷突然增大,由于假水位现象,控制器不但不能开大给水阀增加给水量,而是关小控制阀,减少给水量,等到假水位消失后,由于蒸汽量增加,送水量反而减少,将使水位严重下降,波动很厉害,甚至会使汽包水位将到危险程度,以至发生事故。

锅炉给水三冲量控制原理

锅炉给水三冲量控制原理

锅炉给水三冲量控制原理一、给水量控制给水量是指向锅炉补充的水量,通过控制给水量可以控制锅炉内水位的升降。

在锅炉运行过程中,当锅炉内水位过高时,需要减少给水量,避免溢出;当水位过低时,需要增加给水量,保证锅炉正常运行。

给水量的控制可以通过调节给水泵的转速或开关泵的数量来实现。

二、排污量控制排污量是指从锅炉中排出的水量,通过控制排污量可以控制锅炉内水位的降低。

排污的目的是将含有杂质和浓缩物的锅炉水排出,保持锅炉水的清洁和水质的稳定。

排污的控制可以通过调节排污阀的开启程度或排污泵的转速来实现。

三、补水量控制补水量是指从给水系统中补充到锅炉中的水量,通过控制补水量可以补充锅炉内水位的上升。

在锅炉运行过程中,由于蒸汽的消耗和水的排出,锅炉内的水位会逐渐降低,此时需要增加补水量,以维持锅炉内水位的稳定。

补水的控制可以通过调节补水泵的转速或开关泵的数量来实现。

锅炉给水三冲量控制的原理是通过对给水量、排污量和补水量的控制,来调整锅炉内水位的升降,以保证锅炉的正常运行。

在实际应用中,可以根据锅炉的运行情况和要求,设置相应的控制参数,通过自动控制系统实现对给水量、排污量和补水量的精确控制。

锅炉给水三冲量控制的作用主要体现在以下几个方面:1. 保证锅炉的安全运行:通过控制锅炉内水位的升降,可以避免水位过高导致溢出或水位过低导致锅炉干燥,从而确保锅炉的安全运行。

2. 提高锅炉的热效率:锅炉在正常运行时,需要保持一定的水位,以便能够有效地传递热量。

通过控制给水量、排污量和补水量,可以使锅炉内水位保持在合适的范围内,提高锅炉的热效率。

3. 延长锅炉的使用寿命:锅炉在运行过程中,水位的升降会对锅炉内部的构件产生一定的冲击和应力。

通过控制给水量、排污量和补水量,可以使锅炉内水位的变化尽量平缓,减少对锅炉的损伤,从而延长锅炉的使用寿命。

4. 降低能源消耗:通过合理地控制给水量、排污量和补水量,可以减少给水和排污所需的能源消耗,降低锅炉运行成本。

汽包水位三冲量调节原理

汽包水位三冲量调节原理

汽包水位三冲量调节原理一、引言汽包水位三冲量调节是一种常见的控制原理,广泛应用于工业生产中。

本文将从原理、工作过程和优缺点等方面介绍汽包水位三冲量调节的基本知识。

二、原理汽包水位三冲量调节是一种通过控制给水量、蒸汽量和排污量来调节汽包水位的方法。

其基本原理是根据汽包水位的变化,通过调节三个冲量的大小,以达到维持汽包水位稳定的目的。

三、工作过程汽包水位三冲量调节的工作过程可以分为以下几个步骤:1. 水位检测:通过水位计等设备对汽包水位进行实时监测,获取水位信号。

2. 控制策略:根据水位信号,控制系统根据预设的控制策略计算出相应的冲量调节量。

3. 冲量调节:根据控制策略计算出的调节量,分别调节给水量、蒸汽量和排污量,以实现对汽包水位的调节。

4. 反馈控制:根据调节后的水位变化,不断进行反馈控制,使得汽包水位保持在设定范围内。

四、优缺点汽包水位三冲量调节具有以下优点:1. 稳定性好:通过控制三个冲量的大小,可以实现对汽包水位的精确调节,保持水位稳定。

2. 响应速度快:冲量调节可以快速响应水位的变化,实现及时的控制。

3. 精度高:通过精确的冲量调节,可以实现对水位的精细控制,满足生产过程对水位的要求。

4. 调节范围广:汽包水位三冲量调节可以适应不同工况下的水位调节需求,具有较大的调节范围。

然而,汽包水位三冲量调节也存在一些缺点:1. 复杂性高:汽包水位三冲量调节需要涉及多个参数的控制和调节,系统较为复杂。

2. 对设备要求高:汽包水位三冲量调节需要依靠精密的控制设备和传感器,对设备的要求较高。

3. 能耗较大:在冲量调节过程中,需要大量的能源供给,对能耗有一定影响。

五、应用领域汽包水位三冲量调节广泛应用于电力、化工、制药等行业的锅炉系统中。

通过精确的水位调节,可以保证锅炉系统的正常运行和生产过程的安全稳定。

六、总结汽包水位三冲量调节是一种常见的控制原理,通过控制给水量、蒸汽量和排污量的大小来调节汽包水位。

它具有稳定性好、响应速度快、精度高和调节范围广等优点,但也存在复杂性高、对设备要求高和能耗较大等缺点。

锅炉汽包水位的三冲量调节

锅炉汽包水位的三冲量调节

锅炉汽包水位的三冲量调节0 引言锅炉是化工生产中重要的动力设备。

汽包液位是锅炉运行中的一个重要监控参数,它反映了锅炉负荷与给水的平衡关系。

汽包液位过高会造成蒸汽带水影响过热器运行,影响汽水分离效果;水位过低会造成锅炉水循环的破坏,影响省煤器运行,容易使水全部汽化烧坏锅炉甚至爆炸。

这就要求汽包液位在一定范围内,适应各种工况的运行。

影响汽包液位的因素除了加热汽化这一正常因素外,还有蒸汽负荷和给水流量的波动。

当负荷突然增大,汽包压力突然降低,水就会急剧汽化,出现大量气泡,形成了“虚假液位”。

如果使用简单的锅炉汽包液位的单冲量控制系统(如图 1 所示) ,一旦负荷急剧变化,虚假液位的出现,调节器就会误以为液位升高而关小供水阀门。

影响了生产甚至造成危险。

为此,图 2 采取了锅炉汽包液位的双冲量控制,它在单冲量的基础上,再加一个蒸汽冲量,以克服“虚假液位”。

其中调节阀为气关阀,液位调节器采用正作用,调节器输出信号在加法器内与蒸汽流量信号相减。

双冲量实际上是前馈与反馈调节相结合的调节系统。

当负荷突然变化时,蒸汽的流量信号通过加法器,使它的作用与水位信号的作用相反;假液位出现时,液位信号 a 要关小给水阀, 而蒸汽信号b 是开大给水阀,这就能克服“虚假液位”的影响。

但是如果给水压力本身有波动时,双冲量控制也不能克服给水量波动的影响。

这就要用如图3 所示的锅炉汽包液位的三冲量调节系统。

即再加一个给水流量的冲量 c ,使它与液位信号的作用方向一致,这种调节系统由于引进了液位、给水流量及蒸汽流量三个参数,叫做三冲量调节系统。

1 原理根据三个冲量在调节系统中引入位置不同,三冲量调节系统有多种方案,下面讨论一种常见的三冲量调节系统:蒸汽流量和给水流量前馈与汽包液位反馈所组成的三冲量系统。

图 3 中所示的三冲量系统,汽包液位是被控变量,是主冲量信号,蒸汽流量和给水流量是辅助冲量信号。

系统将蒸汽流量和给水流量前馈到汽包液位调节系统中去,一旦蒸汽流量或给水流量发生波动,不是等到影响到液位才进行调节,而是在这两个流量改变之时就能通过加法器立即去改变调节阀开度进行校正,故大大提高了液位这个被调参数的调节精度。

锅炉DCS三冲量详解

锅炉DCS三冲量详解

锅炉DCS系统一、锅炉控制系统工艺概述1 、锅炉控制工艺流程图2 、锅炉控制方案锅炉是一个多输入、多输出、多回路、非线性的相互关联的复杂的控制系统,调节参数与被调节参数之间,存在着许多交环控制:给煤控制,送风控制,汽包液位控制,炉膛负压控制等。

a 给煤控制锅炉燃烧系统自动调节的基本任务,是使燃料燃烧所产生的热量,适应蒸汽负荷的需要,同时还要保持经济燃烧和锅炉的煤控制上。

送风控制系统应与给煤控制相协调,控制在一定的风煤比,维持燃烧处在最佳经济状态。

其控制原理框图如下:b 送风控制风调节是通过负荷规则调节器实现“加负荷时,先加风后加煤;减负荷时,先减煤后减风的控制规则。

其控制原理框图如下:c 炉膛负压控制膛负压反映了送风量与引风量之间的平衡关系,目标就是要保证锅炉在运行过程中,始终保持在微负压的稳定状态,以保证其安全d 汽包液位控制锅炉给水自动调节的任务是使给水量跟踪锅炉的蒸发量,并使汽包液位保持在工艺允许的范围内。

液位控制是有以下三种:制系统;②双冲量控制,即以蒸汽流量作为补充信号的双参数控制系统;③三冲量控制,即以给水流量、主蒸汽流量作为补充信号调节和三冲量串级调节。

三冲量串级控制系统控制原理框图如下:三冲量串级控制系统控制原理框图e 过热蒸汽出口温度控制保证过热蒸汽出口蒸汽温度在允许的范围内,保护过热器,使过热器管壁温度不超过允许的温度范围。

其控制原理框图如过热蒸汽出口温度控制原理框图3、锅炉的自动保护系统?锅炉的保护系统是锅炉控制系统的重要组成部分。

其保护内容取决于锅炉设备本身的结构、容量、技术特性和运行方式。

一般设有汽压保护、汽包水位保护、锅炉灭火保护、连锁保护和紧急停炉保护等。

二、 DCS系统配置锅炉DCS系统是一个专用于锅炉自动化控制的分布式集散控制系统。

?锅炉DCS系统以锅炉监控自动化为目标,节能增效,保护环境,改善工作条件,提高劳动效率。

锅炉DCS系统包括调度室管理层、工业Ethernet层、现场监控上位机、锅炉控制终端设备。

锅炉三冲量控制(介绍)

锅炉三冲量控制(介绍)
f

K
2
T2 s 1
H H1
锅炉汽包水位的控制 (1)单冲量控制系统
汽包水位的单回路控制, “单冲量”—汽包水位 适用于负荷小的锅炉
蒸汽
气泡
省 煤 器 给水 LC
三个问题:
① 不能克服虚假水位带来的后果


对蒸汽负荷的变化控制不灵敏
对给水扰动控制滞后
锅炉汽包水位的控制 (2)双冲量控制系统
为了克服虚假水位现象,引入蒸汽流量,“双冲量”
U
IF
GmF
I
I’F
GPD
I0
GC1
IC
∑ I0
GC2
GP2
GPC
L
GmF
Gm
锅炉汽包水位的控制
① 加法器系数C 根据给水流量变化W=蒸汽流量变化 (前馈补偿)
C
Dmax
Wmax
对于I0,正常负荷时 I0与IC抵消
I F CI F
锅炉汽包水位的控制
② 阀、控制器、运算器符号
阀安全角度确定
控制器按串级系统确定(先副后主) 运算器符号: 由于CIF 作为流量控制器的给定,蒸汽流量增加,给水 流量应该提高,C永远为正(与阀的形式无关,与双 冲量不同) I=IC + CIF - I0
过热蒸汽系统控制
出口温度控制 控制方案 一级过热器、二级过热器、减温器
减温器 减温器
d/dt T2C 减温水 T1C TC
锅炉汽包水位的控制
② 阀、控制器、运算器符号
阀的开闭形式: 安全角度,保护锅炉,气闭,防止烧干 保护蒸汽用户,气开 控制器正反作用: 对象:正,
若气闭阀,LC=正,若气开阀 LC=负 运算器正负号: C2: 取决于控制阀开闭形式 蒸汽量↑ 给水量应该↑: 气闭:I应该↓C2取“-” 气开:I应该↑C2取“+”

锅炉汽包液位三冲量自动调节控制

锅炉汽包液位三冲量自动调节控制

锅炉汽包液位三冲量自动调节控制一、概述:现代化工业生产中,工业锅炉是一个重要设备,其运行是为了得到一定质量的蒸汽。

自动化锅炉的基本要求是:按质按量的供应合格的蒸汽,满足生产的需要;安全可靠耐用,延长锅炉的使用寿命;降低操作人员的劳动强度。

锅炉的运行参数包括蒸汽压力、流量、温度等。

锅炉汽包液位是锅炉生产中重要的工艺指标。

汽包液位是影响蒸汽质量的一个关键参数,保持锅炉汽包液位稳定在规定范围内,对于保障锅炉安全运行及蒸汽质量的稳定具有关键的作用。

如果锅炉汽包液位过高,由于汽包容积小,造成汽包上部空间过小,影响汽水分离,容易出现蒸汽带液现象,损坏其它设备。

如过锅炉汽包液位过低,水的汽化速度加快,影响汽水平衡,如不及时调节进水会造成干锅,造成事故。

汽包水位的主要扰动是蒸汽流量的变化。

当蒸汽用量突然减小时,蒸汽压力会急剧上升,沸腾暂时停止,形成水位暂时下降的“假水位”现象。

当蒸汽用量突然增大时,汽包内蒸汽压力突然下降,水的沸腾加剧,气泡量迅速增加,也会使汽包内形成水位升高的“假水位”现象。

如单按简单的水位调节,调节器将依据这一“虚假水位”减少补水量造成事故,所以单量调节无法满足需要,因此老山锅炉房采用了三冲量调节系统控制,以保障锅炉的安全运行。

二、三冲量水位控制方案:(一)根据生产工艺的要求锅炉控制系统增加下列检测项目:1、锅炉汽包水位进行三冲量给水自动控制,提高锅炉的安全。

2、设置过热器出口蒸汽温度高报警。

3、设置汽包水位高低报警。

4、设置蒸汽出口压力高报警。

备注:控制系统采用常规仪表实现,调节器选用新型数字智能调节器。

(二)选用仪表检测设备名称、规格、型号清单:三、锅炉汽包液位三冲量调节系统组成及工艺分析:(一)锅炉三冲量调节系统原理图及系统框图三冲量调节系统原理图三冲量调节系统方框图(二)锅炉汽包水位调节过程:锅炉水位控制系统如图所示,调节对象是锅炉的汽包,被调量是汽包水位,而引起汽包水位变化的干扰量是蒸汽负荷的变化,蒸汽负荷的急剧变化,将导致“虚假水位”出现。

汽包水位三冲量调节原理

汽包水位三冲量调节原理

汽包水位三冲量调节原理
汽包水位三冲量调节原理是指通过调节汽包内的水位,控制汽包内水的流入和流出,从而实现对锅炉汽水系统的水平补给和水位控制的一种方法。

在锅炉运行时,汽包内的水位会受到很多因素的影响,如锅炉负荷变化、水质变化、鼓风机调节不当等,这些因素都会导致汽包水位波动过大,从而影响锅炉的稳定运行。

因此,汽包水位三冲量调节就显得尤为重要。

汽包水位三冲量调节是通过调节锅炉供水量,控制汽包内水位的方法,将汽包分为三个水位区间,分别是高水位、正常水位和低水位。

当汽包水位过高时,会通过泄水阀将多余的水排出,从而使水位降至正常水位;当汽包水位过低时,会通过给水泵进行补水,使水位回升至正常水位。

这种三冲量调节方法可以有效控制汽包水位,保证锅炉的稳定运行。

汽包水位三冲量调节的核心是调节供水量,实现水平补给和水位控制。

在实际操作中,需要根据锅炉的负荷变化和水质变化来调节供水量,从而保证汽包水位保持在正常水位范围内。

同时,还需要监测汽包水位的变化,及时调整供水量,避免水位波动过大。

总之,汽包水位三冲量调节是一种有效的锅炉水位控制方法,通过调节供水量,控制汽包内水的流入和流出,实现对锅炉汽水系统的水平补给和水位控制,保证锅炉的稳定运行。

- 1 -。

锅炉汽包水位的三冲量控制设计

锅炉汽包水位的三冲量控制设计

锅炉汽包水位的三冲量控制设计二重计量技术所郭静摘要热力车间的锅炉测控系统中,蒸汽流量计量系统和汽包水位测控系统是两大核心系统。

如何确保蒸汽流量计量准确可靠在于过热蒸汽密度补偿的准确性。

而确保汽包水位测控系统正常运行则是整个锅炉控制系统的重中之重。

关键词三冲量PID控制反馈控制前馈控制1、引言热力公司锅炉的汽包水位调节现场存在两种控制方式。

其一:水位测量、蒸汽流量、给水流量、三冲量控制仪表,从而实现汽包水位的三冲量调节;其二,测量的三个参数进入DCS系统,三冲量算法由软件编程来实现。

随着企业的发展,软件实现三冲量将成为必然趋势,所以准确的实现三冲量的算法很重要。

2、仪表三冲量与软件三冲量实现的分析2.1仪表三冲量分析热力车间锅炉汽包水位控制原理:差压变送器测量左汽包水位的水位计感受到的汽包液位的高度通过压力,输出4~20mA电流信号,通过DCS系统的模拟量输入模块进入到系统,组态软件trace mode 将测量到的水位信号、给水流量信号、蒸汽流量信号经过三冲量算法输出一个0~100%的信号,经模拟量输出信号来控制给水调节阀门的开度,从而精确控制汽包水位。

测量系统由水位测量、蒸汽温度、给水流量、三冲量控制仪表构成,原理是“【主PID(反馈)】–前馈–【副PID(反馈)】”控制,属于标准的三冲量控制。

其中主PID是水位测量数据,前馈调节因素为蒸汽流量测量数据,副PID是给水流量测量数据。

PID环节就是反馈控制,故存在比例、积分、微分控制;前馈环节包含静态前馈控制和动态前馈控制,经过分析,在锅炉控制中,此前馈控制属于静态前馈控制(原理不在叙述),静态前馈控制仅相当于一个比例控制,在锅炉控制中属于干扰因素,符号为负号(原理不在叙述),即负号比例控制。

蒸汽流量的突然增大和减小,所带来的干扰将会由前馈控制消除到最小。

所以三冲量控制的作用为了消除影响水位调节输出的外部干扰所带来的直接影响,即蒸汽流量的突变带来的影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

汽包水位三冲量调节系统是指汽包水位、蒸汽流量和给水流量三个信号作用于调节器上,
即三个被控变量对应一个调节器。

工作原理:汽包水位作为主信号,水位变化,调节器输出发生变化,继而改变给水流量,使水位恢复到给定值;蒸汽流量作为前馈信号,防止“虚假水位”使调节器产生错误的动作;给水流量作为反馈信号,使调节器在水位还未变化时就可根据前馈信号消除内扰,
使调节过程稳定,起到稳定给水流量的作用。

锅炉汽包水位三冲量调节系统是火电厂锅炉核心控制之一。

汽包水位三冲量调节系统的给水调节阀动作频繁,锅炉水位对给水调节阀执行机构的动作比较敏感,稍有不慎就可能出现严重的危险情况,汽包水位三冲量调节系统关系到整个机组的安全运行:若汽包水位过高,会造成蒸汽带水;若汽包水位过低,会造成锅炉“干锅”,可能严重烧坏锅炉设备。

汽包水位三冲量调节系统的重要性由此可见一斑,所以汽包水位的相关保护要完善可靠、汽包水位自动调节系统运行要平稳。

目前,汽包水位三冲量自动调节控制策略已经相当成熟,但在实际锅炉运行中会各种原因导致水位自动调节系统投入困难,甚至自动不能投入。

这种现象让人对串级三冲量调节系统的调节能力和控制策略产生疑问。

为此云润与大家交流运用心得,对级三冲量调节系统进行定性分析,并对一些异常情况的处理办法进行探讨。

1、水位三冲量调节控制策略
汽包水位三冲量调节系统使用的三个冲量分别是汽包水位、给水流量和蒸汽流量。

汽包水位作为主调(PID调节器)的输入信号,去抑制水位本身的偏差。

副调(外给定调节器)使用了一个反馈信号(给水流量)和一个前馈信号(蒸汽流量),以消除扰动和虚假水位。

各种介绍汽包水位三冲量调节系统的书籍中,都有对传递函数的计算,这些计算对系统设计很重要。

如果用经验调节法对于系统维护,则完全可以抛开理论计算。

在此只对其物理意义进行定性思考和作一番揣测。

1.1?反馈信号
反馈信号指给水流量信号,也叫内扰。

水位三冲量调节系统中被调量发生变化的时候,PID 经过运算,去控制执行机构进行合理的动作,执行机构改变给水调节阀的开度,阀门控制介质变化,达到控制给水流量的目的。

可是给水调节阀执行机构特性、水位三冲量调节系统的运行状况存在很多差异,这些差异主要有:
(1)执行机构线性:执行机构改变开度后,流量随之改变的大小。

(2)执行机构死区:PID 输出每变化多少,执行机构才能动作一次。

(3)执行机构空行程:执行机构在改变动作方向的时候,改变多少开度,给水流量才发生变化(减去死区的值)。

(4)执行机构回差:执行机构进行开、关两个方向的动作的时候,流量变化不相等,这个流量变化绝对值的差叫回差。

(5)执行机构及阀门的特性曲线改变:阀门线性改变,阀门每变化1%,流量变化量与以往不同。

(6)水位三冲量调节系统软故障:偶尔发生的系统故障使得给水流量变化不均匀,或者时有停顿。

(7)系统介质参数发生变化:指因给水压力、蒸汽压力变化导致给水流量变化。

上述差异会对系统的调节造成干扰,甚至上述的情况在运行过程中也在变化。

介质参数随时发生变化,其它参数可能缓慢发生变化,大家必须关注这些变化因素。

在一个中等容量的机组中,一般汽包水位对给水流量的变化非常敏感,流量变化10t/h左右,就会造成水位逐渐上升。

通常执行机构动作1%的开度,就足以造成10t/h的流量变化。

水位三冲量调节系统主调的输出给副调一个给水量的指令。

如果给水流量信号与这个指令不一致,副调的作用使执行机构改变给水调节阀开度,去让流量信号与主调的输出去一致;如果主调输出没有波动,而流量信号有波动,说明执行机构、阀门甚至给水压力等因素发生变化,这些变化的因素叫做内扰。

此时若不管这些变化,将最终会影响到汽包水位,等汽包水位变化后主调再进行调节,就会因延误而过调;副调的作用就是快速消除扰动,如果调节合理则有可能让汽包水位不受干扰或者少受干扰。

给水流量信号的设立,一个很重要的作用就是消除内扰。

1.2 前馈信号
前馈信号是指蒸汽流量信号。

也叫外扰。

当机组负荷需求波动会引起燃烧和蒸汽流量的波动。

在蒸汽流量波动的时候就应该及时对系统进行调节,若等到汽包水位开始波动的时候再调节给水流量,汽包水位可能因波动速度较快而纠正较慢出现较大波动。

为了克服外扰,所以加入蒸汽流量这个信号。

假设机组负荷需要增大,蒸汽流量随之增大,此时不等汽包水位降低,在副调里预先增大给水流量,最终使得汽包水位保持平稳。

引入蒸汽流量信号是为了为了克服外扰和“虚假水位”。

所谓“虚假水位”是指当机组负荷突然增加,锅炉输出蒸汽量突然增大,此时锅炉因蒸发量增加,给水量未来得及变化,此时汽包水位应该降低;但锅炉出汽量突然增大导致蒸汽压力突然降低,使汽包里汽水混合物中的汽泡急剧增加,汽泡鼓动着汽包水位虚增,造成了汽包水位增高的现象。

锅炉出现虚假水位时汽包水位增高,主调使得执行机构关小,加剧了水位降低的情况。

但是因为前馈信号的存在,蒸汽流量一旦增大,副调的PID命令执行机构开大,抵消了虚假水位造成的影响。

因此副调的反馈信号和前馈信号作用非常大,也非常有必要。

1.3 控制策略图
前馈信号和反馈信号的作用相反。

请注意PID的正反作用。

2、水位三冲量调节常规参数整定规律
有人对串级调节系统的参数整定比较生疏。

因为串级系统参数较多,比较不容易分析。

下面我们分步骤对参数整定方法作个探讨。

2.1 设置副调流量系数
包括给水流量系数和蒸汽流量系数。

这两个系数没有固定值。

如果副调的比例作用很弱,这两个系数甚至可以取消不用。

之所以要设置流量系数,是要提醒读者注意:在调试过程中,切不可先令副调比例作用过强!否则有可能造成系统震荡,最终导致安全事故。

一般我们预设这个系数为0.3左右,蒸汽流量系数和给水流量系数应该大致相等。

2.2 设置副调的比例带非常大,积分时间为无穷大
比例作用的大小因系统而异。

原则上应该先把副调作用放很小,以防止系统或者副调震荡。

2.3 设置主调的积分时间为零,比例作用比较弱
之所以没有给出比例作用的具体数值,是因为根据不同的系统、不同的DCS系统、不同的程序或PID调节器,这个值差异很大。

一般来说,副调的比例带可以先设为150-600,主调比例带设为100-200。

2.4 逐渐降低主调比例带
根据观察结果,逐渐增强比例作用,直到系统接近平稳。

或者继续增强比例作用,直到系统接近于等幅震荡,然后把此时的比例带除以0.6,基本上接近于可用了。

但是对于汽包水位系统,最好不要调到等幅震荡,这样会使系统处于危险的境地。

2.5 逐渐增强主调积分作用
积分作用逐渐增强,能在较短时间(10分钟左右)内消静差即可。

积分作用不能放得很强,切记!主调积分作用太强不仅没有好处,还会带来危害。

因为在被调量开始强势回调的时候,需要调节器的输出也要快速回调,这样才能使得被调量不会大幅度超调,而这时候如果积分作用很强,积分作用会使得调节器的输出不仅不回调,而且还可能按照原来的趋势继续调节,一直等到被调量和设定值接近相等的时候,才开始回调,此时为时已晚,必然造成大幅度的超调。

要记住:主调积分的目的是为了消除静差的。

只要系统没有静差,积分作用就不必要增强。

2.6 不使用微分作用
微分作用可以超前调节,但水位三冲量调节系统不使用微分。

因为水位、流量信号大多存在着微小的波动,微分作用会将这些波动放大,造成干扰。

2.7 主调比例带与副调比例带相乘。

减弱主调作用,逐渐增强副调作用
主调比例带与副调比例带相乘的积,固定一个数,大约增强副调多大幅度,就减弱主调多大幅度,乘积基本保持不变。

在修改主、副调参数的时候应该先减弱一个,再增强另一个,以免系统引起震荡。

2.8 副调比例作用增强到足够抑制给水流量的扰动为止
2.9 在负荷大幅度改变时,观察副调的曲线,防止震荡的发生
这个阶段容易被忽视,但是非常重要!负荷大幅度波动时候,流量最容易引起震荡,此时减弱副调的比例作用,直到不发生震荡为止,然后为了安全,再次稍微减弱副调作用。

在调节副调的同时,还需要注意改变主调的比例作用。

2.10 注意修改主调的积分作用
在反复整定主调、副调比例参数之后,要记得积分作用也需要修改。

如果副调的比例作用减弱,那么积分作用也要相应减弱,因为调节器的输出是比例和积分相权衡的结果。

至此水位三冲量调节系统基本调试结束。

为了防止副调震荡,还可以对副调的反馈系数和前馈系数进行修改,基本同减弱副调比例带的作用相当。

切记在修改系数时一定要把该系统切换为手动运行方式,否则可能对调节器造成较大干扰,甚至危害锅炉安全运行。

相关文档
最新文档