模电仿真实验 共射极单管放大器

合集下载

模电实验晶体管共射极单管放大器实验指导书

模电实验晶体管共射极单管放大器实验指导书

共射极单管放大器实验指导书一、实验目的1 了解晶体管及相关器件的基本特性;2 熟悉常用仪器的使用方法;3 掌握放大电路的主要指标和测试方法;4 掌握放大电路指标与电路参数的相互关系。

二、实验仪器及器件设备条件:万用表,示波器,函数发生器,直流稳压电源实验器材 表2.1三、 预习要求1什么是静态工作点,如何测量静态工作点,如何调节静态工作点;2电路放大倍数的定义和测量方法; 3输入电阻、输出电阻的测量方法; 4最大不失真输出电压的测量方法; 5 实验电路器件布局。

四、实验原理基本放大电路有共射极、共基极、共集电极三种构成方式,本次实验采用共射极放大电路,如图1.1所示。

三极管是一个电流控制电流源器件(即I C =βI B ),通过合理设置静态工作点,实现对交流电压信号的放大。

放大电路的主要参数有电压放大倍数A v 、输入电阻r i 、输出电阻r o 。

o Li bev R Av v r β'-==..............................................(1) ||i be b r r R = . (2)o C r R = (3)式(1)中:||L C L R R R '= ,211(//)b W R R R R =+,R C 为集电极电阻,R L 为负载电阻。

26300(1)be Er I β=++ ………………….(4) 由式(1)(2)(4)可以看出: I B ↑→I E ↑→r be ↓→r i ↓→A V ↑ 由式(1)(3)可以看出:R C ↑→r O ↑→A V ↑在负载开路(R L =∞)时: L C o R R r '== ,忽略偏置电路对输入电流的影响r i =r be 式(1)可以写成:o ir Av r β-=上式表明电路放大倍数A v 与输出电阻r o 成正比,与输入电阻r i 成反比。

图1.1 单管放大器共射极电路五、实验内容 5.1 静态工作点的设置1什么是静态工作点静态工作点是指在电路输入信号为零时,电路中各支路电流和各节点的电压值。

模电实验(附答案)

模电实验(附答案)

实验一 晶体管共射极单管放大器一、实验目的1.学会放大器静态工作点的调式方法和测量方法。

2.掌握放大器电压放大倍数的测试方法及放大器参数对放大倍数的影响。

3.熟悉常用电子仪器及模拟电路实验设备的使用。

二、实验原理图2—1为电阻分压式工作点稳定单管放大器实验电路图。

偏置电阻R B1、R B2组成分压电路,并在发射极中接有电阻R E ,以稳定放大器的静态工作点。

当在放大器的输入端加入输入信号后,在放大器的输出端便可得到一个与输入信号相位相反、幅值被放大了的输出信号,从而实现了电压放大。

三、实验设备1、 信号发生器2、 双踪示波器3、 交流毫伏表4、 模拟电路实验箱5、 万用表四、实验内容1.测量静态工作点实验电路如图1所示,它的静态工作点估算方法为:U B ≈211B B CCB R R U R +⨯图1 共射极单管放大器实验电路图I E =EBEB R U U -≈Ic U CE = U CC -I C (R C +R E )实验中测量放大器的静态工作点,应在输入信号为零的情况下进行。

1)没通电前,将放大器输入端与地端短接,接好电源线(注意12V 电源位置)。

2)检查接线无误后,接通电源。

3)用万用表的直流10V 挡测量U E = 2V 左右,如果偏差太大可调节静态工作点(电位器RP )。

然后测量U B 、U C ,记入表1中。

表1测 量 值计 算 值U B (V ) U E (V ) U C (V ) R B2(K Ω) U BE (V ) U CE (V ) I C (mA ) 2.627.2600.65.22B2所有测量结果记入表2—1中。

5)根据实验结果可用:I C ≈I E =EER U 或I C =C C CC R U U -U BE =U B -U EU CE =U C -U E计算出放大器的静态工作点。

2.测量电压放大倍数各仪器与放大器之间的连接图关掉电源,各电子仪器可按上图连接,为防止干扰,各仪器的公共端必须连在一起后接在公共接地端上。

模电实验三晶体管共射极单管放大器

模电实验三晶体管共射极单管放大器

实验三 晶体管共射极单管放大器一、实验目的1、 学会放大器静态工作点的调试方法,分析静态工作点对放大器性能的影响。

2、 掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法。

3、 熟悉常用电子仪器及模拟电路实验设备的使用。

二、实验原理图3-1为电阻分压式工作点稳定单管放大器实验电路图。

它的偏置电路采用R B1和R B2组成的分压电路,并在发射极中接有电阻R E ,以稳定放大器的静态工作点。

当在放大器的输入端加入输入信号u i 后,在放大器的输出端便可得到一个与u i 相位相反,幅值被放大了的输出信号u 0,从而实现了电压放大。

图3-1 共射极单管放大器实验电路在图3-1电路中,当流过偏置电阻R B1和R B2 的电流远大于晶体管T 的 基极电流I B 时(一般5~10倍),则它的静态工作点可用下式估算 CC B2B1B1B U R R R U +≈U CE =U CC -I C (R C +R E )CEBEB E I R U U I ≈-≈电压放大倍数beLC V r R R βA // -= 输入电阻R i =R B1 // R B2 // r be 输出电阻 R O ≈R C由于电子器件性能的分散性比较大,因此在设计和制作晶体管放大电路时,离不开测量和调试技术。

在设计前应测量所用元器件的参数,为电路设计提供必要的依据,在完成设计和装配以后,还必须测量和调试放大器的静态工作点和各项性能指标。

一个优质放大器,必定是理论设计与实验调整相结合的产物。

因此,除了学习放大器的理论知识和设计方法外,还必须掌握必要的测量和调试技术。

放大器的测量和调试一般包括:放大器静态工作点的测量与调试,消除干扰与自激振荡及放大器各项动态参数的测量与调试等。

1、 放大器静态工作点的测量与调试 1) 静态工作点的测量测量放大器的静态工作点,应在输入信号u i =0的情况下进行, 即将放大器输入端与地端短接,然后选用量程合适的直流毫安表和直流电压表,分别测量晶体管的集电极电流I C 以及各电极对地的电位U B 、U C 和U E 。

单管放大电路仿真实验报告

单管放大电路仿真实验报告

单管放大电路仿真实验报告实验目的:通过搭建单管放大电路并进行仿真实验,掌握单管放大电路的基本原理、电路参数与特性,以及使用仿真软件进行电路设计和分析的能力。

实验器材:电脑、仿真软件(如Multisim、Proteus等)、电源、电阻、电容、二极管、NPN型晶体管、示波器等。

实验原理:共发射极放大模式是指输入信号与晶体管的发射极之间相连,通过控制基极电压来控制管中的电流,从而实现放大作用。

在这种模式下,晶体管的电压放大倍数为低阻输入电阻和高阻输出电阻之商。

共集极放大模式是指输入信号与晶体管的集电极之间相连,通过控制基极电流来控制输出信号的幅度。

晶体管在该模式下的输入电阻很高,输出电阻很低,所以适合用于电压放大和阻抗匹配。

实验步骤:1.搭建共发射极放大模式的单管放大电路。

按照晶体管型号的参数表和电路要求,选择合适的电阻值、电容值和电源电压,并按照电路图进行连线。

2.通过仿真软件验证电路是否正确。

打开仿真软件,选择合适的元件连接到电路中,并设置电路参数。

然后运行仿真,观察输出波形和电流电压等参数。

3.测量并记录电路中各元件的电流、电压值。

使用示波器测量输入信号波形和输出信号波形,记录各点的幅度值。

4.通过仿真结果和实测数据,计算电路的增益、输入电阻、输出电阻、功率增益等参数。

并与理论值进行比较,分析误差原因。

5.调整电路参数,观察电路各项指标的变化,并进行比较分析。

实验结果:根据实验步骤进行操作后,我们得到了如下实验结果:1.得到了理论计算出的电路增益、输入电阻、输出电阻、功率增益等参数,并与仿真结果进行比较。

2.经过调整电路参数的实验,观察到电路中各项指标的变化,并进行了比较分析。

3.实测数据与仿真结果基本吻合,分析了误差产生的原因。

结论:通过单管放大电路的仿真实验,我们掌握了单管放大电路的基本原理、电路参数与特性,以及使用仿真软件进行电路设计和分析的能力。

我们发现,实验结果与理论计算值基本吻合,说明了我们所搭建的电路正确。

模电仿真实验 共射极单管放大器

模电仿真实验 共射极单管放大器

仿真实验报告册仿真实验课程名称:模拟电子技术实验仿真仿真实验项目名称:共射极单管放大器仿真类型(填■):(基础■、综合□、设计□)精品院系:专业班级:姓名:学号:指导老师:完成时间:成绩:一、实验目的(1)掌握放大器静态工作点的调试方法,熟悉静态工作点对放大器性能的影响。

(2)掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法。

(3)熟悉低频电子线路实验设备,进一步掌握常用电子仪器的使用方法。

二、实验设备及材料函数信号发生器、双踪示波器、交流毫伏表、万用表、直流稳压电源、实验电路板。

三、实验原理图3.2.1 共射极单管放大器感谢下载载电阻分压式共射极单管放大器电路如图3.2.1所示。

它的偏置电路采用(R W +R 1)和R 2组成的分压电路,发射极接有电阻R 4(R E ),稳定放大器的静态工作点。

在放大器的输入端加入输入微小的正弦信号U i ,经过放大在输出端即有与U i 相位相反,幅值被放大了的输出信号U o ,从而实现了电压放大。

在图3.2.1电路中,当流过偏置电阻R 1和R 2的电流远大于晶体管T 的基极电流I B时(一般5~10倍),则它的静态工作点可用下式进行估算(其中U CC 为电源电压):CC21W 2BQ ≈U R R R R U ++ (3-2-1)C 4BEB EQ ≈I R U U I -=(3-2-2) )(43C CC CEQ R R I U U +=- (3-2-3)电压放大倍数 beL3u ||=r R R βA - (3-2-4) 输入电阻 be 21W i ||||)(r R R R R += (3-2-5)精品感谢下载载输出电阻 3o ≈R R (3-2-6) 1、放大器静态工作点的测量与调试 (1)静态工作点的测量测量放大器的静态工作点,应在输入信号U i = 0的情况下进行,即将放大器输入端与地端短接,然后选用量程合适的万用表,分别测量晶体管的集电极电流I C 以及各电极对地的电位U B 、U C 和U E 。

单管共射极放大实训报告

单管共射极放大实训报告

一、实验目的1. 理解单管共射极放大电路的工作原理,掌握电路的基本分析方法。

2. 学习晶体管放大电路的静态工作点调试方法,分析静态工作点对放大器性能的影响。

3. 掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法。

4. 熟悉常用电子仪器及模拟电路实验设备的使用。

二、实验原理单管共射极放大电路是一种常用的放大电路,利用晶体管的放大作用,将微弱的输入信号放大到较大的输出信号。

电路主要由晶体管、电阻、电容等元件组成。

晶体管的三个引脚分别为发射极(E)、基极(B)、集电极(C)。

在共射极单管放大电路中,输入信号加在基极与发射极之间,输出信号从集电极与发射极之间取出。

三、实验仪器与设备1. 晶体管(NPN型,如3DG6)2. 电阻(1kΩ、10kΩ、100kΩ、1MΩ)3. 电容(0.1μF、0.01μF)4. 模拟信号发生器5. 示波器6. 万用表7. 模拟电路实验台四、实验步骤1. 按照实验电路图搭建单管共射极放大电路,连接晶体管、电阻、电容等元件。

2. 调整偏置电阻,使晶体管工作在放大状态。

根据晶体管型号和电源电压,确定合适的静态工作点(Ic、Vce)。

3. 使用示波器观察放大电路的输出波形,分析输入信号与输出信号的相位关系。

4. 使用万用表测量放大电路的电压放大倍数、输入电阻、输出电阻及最大不失真输出电压。

5. 改变电路参数,如电阻、电容等,观察放大器性能的变化。

五、实验数据与结果分析1. 静态工作点调试根据实验电路图,选择合适的电阻值搭建偏置电路。

通过调整偏置电阻,使晶体管工作在放大状态。

实验中,我们选择了1kΩ的Rb1、10kΩ的Rb2、100kΩ的Re、1MΩ的Rc。

通过测量,得到晶体管的静态工作点Ic=2mA,Vce=6V。

2. 电压放大倍数测试在放大电路的输入端加入正弦波信号,频率为1kHz,幅度为100mV。

使用示波器观察输出波形,并测量输出电压。

根据电压放大倍数公式,计算电压放大倍数:A_v = V_out / V_in = 5V / 100mV = 503. 输入电阻测试在放大电路的输入端加入正弦波信号,频率为1kHz,幅度为100mV。

模电实验_单极共射放大器静态工作点

模电实验_单极共射放大器静态工作点

实验一——单极共射放大器的静态工作点实验报告一、实验目的(1)掌握用Multisim 13仿真软件分析单极放大电路主要性能指标的方法。

(2)熟悉常用电子仪器的使用方法,熟悉基本电子元器件的使用。

(3)学会并熟悉“先静态后动态”的电子线路的基本调试方法。

(4)分析静态工作点对放大器性能的影响。

二、实验原理基本电路;晶体管单极放大电路是常见的低频小信号放大电路,用于实现利用小信号来控制大信号。

其电路如图3.1.1所示:电路在接通直流电源而未加输入信号时,电路中产生的电流,电压为直流量,记为V BEQ,V CEQ,I BQ,I CQ,由它们确定了电路的一个工作点,称为静态工作点Q。

三极管的静态工作点可由下士近似估算:V BEQ=(0.6~0.7)V硅管;(0.2~0.3)V锗管V CEQ=V CC-I CQ(R c+R e)V BQ=R2V CC/(R P+R1+R2)I CQ≈I EQ=(V BQ-V BEQ)/R eI BQ=I CQ/β(2)最佳静态工作点的调整和测量;放大器静态工作点的选择是指对三极管集电极电流I C或V CE的调整与测试。

实际工作中往往通过调节基极偏置电阻的大小,观察输出波形的变化,来调节静态工作点。

当输入电压逐渐增大时,若输出波形正负同时出现削波现象,即表明此时放大电路的静态工作点选择合适,此时放大电路动态范围最大。

如图 3.1.2所示:三、实验内容最佳静态工作点的调整和测量;四、实验仪表及元器件(1)双路直流稳压电源一台;(2)函数信号发生器一台;(3)示波器一台;(4)毫伏表一台;(5)万用表一台;(6)三极管一个;(7)电阻1kΩ一个,2kΩ两个,5.1kΩ两个,47kΩ电位器一个;(8)电解电容10μF两个,100μF一个;(9)模拟电路试验箱一台。

五、实验过程最佳静态工作点的调整和测量;1按照实验原理图3.1.1在Multisim仿真软件面板上连接电路,检查无误后接通12V直流电源。

实验2晶体管共射极单管放大器-5页文档资料

实验2晶体管共射极单管放大器-5页文档资料

实验二、晶体管共射极单管放大器一、实验目的1、 学会放大器静态工作点的调试方法,分析静态工作点对放大器性能的影响;2、 掌握放大器电压放大倍数、输入电阻、输出电阻测量方法;3、 掌握放大器上、下限截止频率的测试方法;4、 熟悉常用电子仪器及模拟电路实验设备的使用。

二、实验原理与内容:图2-1为电阻分压式工作点稳定单管放大器实验电路图。

它的偏置电路采用R B1和R B2组成的分压电路,并在发射极中接有电阻R E ,以稳定放大器的静态工作点。

当在放大器的输入端加入输入信号u i 后,在放大器的输出端便可得到一个与u i 相位相反,幅值被放大了的输出信号u 0,从而实现了电压放大。

图2-1 共射极单管放大器实验电路在图2-1电路中,当流过偏置电阻R B1和R B2 的电流远大于晶体管T 的 基极电流I B 时(一般5~10倍),则它的静态工作点可用下式估算:U CE =U CC -I C (R C +R E )电压放大倍数: 输入电阻:R i =R B1 // R B2 // [( r be +(1+ β) Re ) 输出电阻:R O ≈R C放大器的测量和调试一般包括:放大器静态工作点的测量与调试,消除干扰与自激振荡及放大器各项动态参数的测量与调试等。

1、 放大器静态工作点的测量与调试 1) 静态工作点的测量 测量放大器的静态工作点,应在输入信号u i =0的情况下进行, 即将放大器输入端与地端短接,然后选用量程合适的直流毫安表和直流电压表,分别测量晶体管的集电极电流I C 以及各电极对地的电位U B 、U C 和U E 。

一般实验中,为了避免断开集电极,所以采用测量电压U E 或U C ,然后算出I C 的方法,例如,只要测出U E ,即可用EEE C R U I I =≈算出I C (也可根据C CCC C R U U I -=,由U C 确定I C ),同时也能算出U BE =U B -U E ,U CE =U C -U E 。

模电实验报告答案

模电实验报告答案

实验名称:晶体管共射极单管放大器实验日期:2023年10月25日一、实验目的1. 理解晶体管共射极单管放大器的工作原理。

2. 掌握晶体管共射极单管放大器的静态工作点设置方法。

3. 研究静态工作点对放大器性能的影响。

4. 学习使用示波器和万用表等仪器进行实验测量。

二、实验原理晶体管共射极单管放大器是一种基本的模拟电子电路,其工作原理是利用晶体管的放大特性,将输入信号放大到所需的幅度。

共射极放大器具有电压增益高、输入阻抗低、输出阻抗高、输入输出相位相反等特点。

三、实验内容1. 电路搭建:按照实验指导书的要求,搭建晶体管共射极单管放大器电路,包括晶体管、电阻、电容等元件。

2. 静态工作点设置:通过调节偏置电阻,使晶体管工作在放大区,设置合适的静态工作点。

3. 输入信号接入:使用函数信号发生器产生正弦波信号作为输入信号,接入放大器电路。

4. 测量放大器输出:使用示波器观察放大器输出波形,记录输出信号的幅度和相位。

5. 分析静态工作点对放大器性能的影响:改变静态工作点,观察输出波形的变化,分析静态工作点对放大器性能的影响。

四、实验结果与分析1. 静态工作点设置根据实验指导书的要求,调节偏置电阻,使晶体管工作在放大区。

通过测量晶体管的发射极电压和集电极电流,确定静态工作点。

2. 输入信号接入将函数信号发生器产生的正弦波信号接入放大器电路,观察输入信号波形。

3. 测量放大器输出使用示波器观察放大器输出波形,记录输出信号的幅度和相位。

4. 静态工作点对放大器性能的影响通过改变静态工作点,观察输出波形的变化。

当静态工作点过低时,输出波形失真严重;当静态工作点过高时,输出波形振幅减小。

因此,需要设置合适的静态工作点,以保证放大器正常工作。

五、实验结论1. 成功搭建了晶体管共射极单管放大器电路,并实现了放大功能。

2. 通过调节偏置电阻,可以设置合适的静态工作点,保证放大器正常工作。

3. 静态工作点对放大器性能有显著影响,需要合理设置。

仿真实验1 共发射极和共集电极单级放大电路

仿真实验1 共发射极和共集电极单级放大电路

班级: 姓名: 学号:仿真实验一 共发射极和共集电极单级放大电路一、利用数字万用表测试元器件里所有三极管的类型及管脚排列并在实训报告里记录(测量4个三极管以上) 。

记录格式为 s9031 NPN 管脚排列1-e 2-b 3-c二、共发射极单级放大电路的仿真1. 在multisim 平台上按照上图画出电路图,晶体管型号用2N2222,电位器RP 统一使用100k2. 静态调整与测试:不接输入电压,即,调整,使,用电压表或电流表测量U BQ ,U CQ ,U EQ ,I CQ 和I BQ ,记录下表并计算放大倍数β。

U BQ /V U CQ /V U EQ /V I CQ /mA I BQ /μA 计算β3. 电压放大倍数测量保持RP 的位置不变,在放大器的输入端加入频率为10kHz 的正弦信号,调节函数发生器的输出幅度旋钮和衰减(multisim 仿真软件里用虚拟仪器里的XFG 或者用正弦信号源),+++-u BU BEU EU ou CC+V 1B R 2B R CR E R L R 1C 2C EC +1B I CI BI EI 51kpR 680k24k10u1.8k10u10u5.1k12V5.1kΩ1000i u =P R /2CE CC U V ≈uo使放大器输入电压=10mV ,不接负载,同时用示波器观察放大器输出电压的波形,在输出波形不失真的条件下,用交流毫伏表测量输出电压;保持值不变,仅接上负载值4. 输入电阻的测量:在输入端与信号源之间串联电阻R1(R1可选5.1k ) ,C R =5.1k ,L R =5.1k ,f=10kHz ,在输出不失真的情况下,用交流毫伏表测量(multisim 软件里用电压表或万用表)5. 输出电阻的测量:保持i u 不变,f=10kHz ,在输出电压不失真的情况下,用交流毫伏表(multisim 软件里用电压表或万用表)测量断开L R 时的输出电压o u 及接上L R 时的输出电6. 通频带的测量使用Simulate>>Analysis>>AC Analysis,设置相应的频率参数和输出参数,仿真放大器的幅频特性和相频特性三、共集电极放大电路的仿真i u o U o U i u L1. 在multisim 平台上按照上图画出电路图,晶体管型号用2N2222,更改该晶体管的放大倍数为150。

晶体管共射级单管放大器仿真实验

晶体管共射级单管放大器仿真实验

实验背景
晶体管共射级单管放大器是电子技术 中最基本的放大器之一,广泛应用于 信号处理、通信、控制等领域。
随着计算机技术和仿真软件的发展, 利用仿真软件进行电路设计和分析已 经成为电子工程领域的重要手段。
实验原理
01
晶体管共射级单管放大器利用晶体管的放大效应,将输入信号 放大后输出。
02
通过调整晶体管的基极、集电极和发射极电压,可以改变放大
输入信号
选择信号源
选择合适的信号源作为输入信号,信号源可以是函数发生器、信号 发生器或计算机等。
调整输入信号幅度
根据实验要求,调整输入信号的幅度,以观察不同幅度对输出信号 的影响。
调整输入信号频率
根据实验要求,调整输入信号的频率,以观察不同频率对输出信号的 影响。
观察输出信号
观察输出波形
通过示波器或频谱分析仪等仪器,观察放大后的输出信号 波形。
检查电路
在接通电源之前,仔细检查电路连接,确保没有 错接或漏接的情况。
调整元件参数
调整输入信号
根据实验要求,选择合适的输入信号源,调整信号源的幅度和频 率,以满足实验条件。
调整偏置电压
根据晶体管的特性,调整偏置电压,使晶体管工作在放大区。
调整负载电阻
通过调整负载电阻的阻值,可以改变放大器的增益和输出信号的幅 度。
探索其他类型的放大器
除了晶体管放大器,还有其他类型的放大器如运算放大器等,建议在后续实验 中探索这些不同类型的放大器,比较它们的性能和应用。
THANKS
感谢观看
晶体管共射级单管放 大器仿真实验
目录
• 实验简介 • 实验设备与材料 • 实验步骤与操作 • 实验结果与分析 • 实验总结与建议
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

仿真实验报告册仿真实验课程名称:模拟电子技术实验仿真仿真实验项目名称:共射极单管放大器仿真类型(填■):(基础■、综合□、设计□)院系:专业班级:姓名:学号:指导老师:完成时间:成绩:..一、实验目的(1)掌握放大器静态工作点的调试方法,熟悉静态工作点对放大器性能的影响。

(2)掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法。

(3)熟悉低频电子线路实验设备,进一步掌握常用电子仪器的使用方法。

二、实验设备及材料函数信号发生器、双踪示波器、交流毫伏表、万用表、直流稳压电源、实验电路板。

三、实验原理电阻分压式共射极单管放大器电路如图3.2.1所示。

它的偏置电路采用(R W +R 1)和R 2组成的分压电路,发射极接有电阻R 4(R E ),稳定放大器的静态工作点。

在放大器的输入端加入输入微小的正弦信号U i ,经过放大在输出端即有与U i 相位相反,幅值被放大了的输出信号U o ,从而实现了电压放大。

在图3.2.1电路中,当流过偏置电阻R 1和R 2的电流远大于晶体管T 的基极电流I B时(一般5~10倍),则它的静态工作点可用下式进行估算(其中U CC 为电源电压):CC21W 2BQ ≈U R R R R U ++ (3-2-1)C 4BEB EQ ≈I R U U I -=(3-2-2) )(43C CC CEQ R R I U U +=- (3-2-3)电压放大倍数 beL3u ||=r R R βA - (3-2-4) 输入电阻 be 21W i ||||)(r R R R R += (3-2-5)图3.2.1 共射极单管放大器.输出电阻 3o ≈R R (3-2-6) 1、放大器静态工作点的测量与调试 (1)静态工作点的测量测量放大器的静态工作点,应在输入信号U i = 0的情况下进行,即将放大器输入端与地端短接,然后选用量程合适的万用表,分别测量晶体管的集电极电流I C 以及各电极对地的电位U B 、U C 和U E 。

一般实验中,为了避免测量集电极电流时断开集电极,所以采用测量电压,然后计算出I C 的方法。

例如,只要测出U E ,即可用EEE C ≈R U I I =计算出I C (也可根据C C CC C R U U I -=,由U C 确定I C ),同时也能计算出U BE = U B -U E ,U CE = U C -U E 。

(2)静态工作点的调试放大器静态工作点的调试是指对三极管集电极电流I C (或U CE )的调整与测试。

静态工作点是否合适,对放大器的性能和输出波形都有很大的影响。

如工作点偏高(如图3.2.2中的Q 1点),放大器在加入交流信号以后易产生饱和失真,此时U o 的负半周将被削底。

如工作点偏低(如图3.2.2中的Q 2点),则易产生截止失真,即U o 的正半周被削顶(一般截止失真不如饱和失真明显)。

这些情况都不符合不失真放大的要求。

所以在选定工作点以后还必须进行动态调试,即在放大器的输入端加入一定的U i ,检查输出电压U o 的大小和波形是否满足要求。

如不满足,则应调节静态工作点的位置。

改变电路的参数U CC 、R C 、R B (R W ,R 2)会引起静态工作点的变化。

通常采用调节偏电阻R W 的方法来改变静态工作点,如减小R W ,可提高静态工作点等。

注意:静态工作点的“偏高”或“偏低”是相对信号的幅度而言。

如果信号幅度很小,即使工作点较高或较低也不会出现失真。

所以说,波形失真是信号幅度与静态工作点设置不匹配而导致的。

如须满足较大的输入信号,静态工作点最好尽量靠近交流负载线的中点。

2、放大器动态指标测试放大器动态指标测试包括电压放大倍数、输入电阻、输出电阻、最大不失真输出电压(动态范围)和通频带等。

(1)电压放大倍数A u 的测量调整放大器到合适的静态工作点,然后加入输入电压u i ,在输出电压u o 不失真的图3.2.2 静态工作点对U o 波形失真的影响情况下,用交流毫伏表测出u i和u o的有效值Ui和U o,则iou UUA=(3-2-7)(2)输入电阻R i的测量为了测量放大器的输入电阻,在被测放大器的输入端与信号源之间串入一已知电阻R S,如图3.2.3所示。

在放大器正常工作的情况下,用交流毫伏表测出U S和U i,则根据输入电阻的定义可得:SiSiSRiiii===RUUURUUIUR-(3-2-8)测量时应注意:①测量R S两端电压U R时必须分别测出U S和U i,然后按U R=U S-U i求出U R值。

②电阻R S的值不宜取得过大或过小,以免产生较大的测量误差,通常R S与R i 为同一数量级为宜,本实验可取R S=1 kΩ。

(3)输出电阻R o的测量输出电阻R o的测量电路如图3.2.4所示,同样应取R L的值接近R o为宜。

在放大器正常工作条件下,测出输出端不接负载R L的输出电压U∞和接入负载后输出电压U L,根据:∞+=URRRULoLL(3-2-9)即可求出R o:LLo)1(RUUR-∞=(3-2-10)在测试中应注意的是,必须保持R L接入前后的输入信号大小不变。

(4)最大不失真输出电压U omp-p的测量(最大动态范围)为了得到最大动态范围,首先应将静态工作点调在交流负载线的中点。

为此在放大器正常工作情况下,逐步增大输入信号的幅度,并同时调节R W(改变静态工作点),用示波器观察U o,当输出波形在正、负峰附近同时开始出现削底和削顶现象(如图3.2.5)时,说明静态工作点已调在交流负载线的中点。

然后再反复调整输入信号,使波形输出幅度最大,且无明显失真时,从示波器上可直接读出最大动态范围U omp-p,或用交流毫图3.2.3 输入电阻测量电路图3.2.4 输出电阻测量电路.. 伏表测出U o(有效值),则最大动态范围U omp-p =o 22U 。

(5)放大器频率特性的测量放大器的频率特性是指放大器的电压放大倍数A u 与输入信号频率f 之间的关系曲线。

单管阻容耦合放大电路的幅频特性曲线如图3.2.6所示。

A um 为中频电压放大倍数,通常规定电压放大倍数随频率变化下降到中频放大倍数的1/2倍,即0.707A um 所对应的频率分别称为下限频率f L 和上限频率f H ,则通频带BW = f H -f L (3-2-11)测量放大器的幅频特性就是测量不同频率信号时的电压放大倍数A u 。

可以采用前面测A u 的方法,每改变一个信号频率,测量其相应的电压放大倍数即可。

测量时要注意取点要恰当,在低频段与高频段要多测几个点,在中频可以少测几个点。

此外,在改变频率时,要保持输入信号的幅度不变,且输出波形不能失真。

实验中通常只要求测量出通频带。

利用示波器可以进行BW 的简易测量,方法是在示波器上测量出输入中频段信号时的输出信号幅度后,在保持输入信号幅度不变的情况下,减小或增大输入信号的频率,再通过在示波器上观测输出信号幅度,找到输出信号幅度降低至中频段输出的1/2倍时的输入信号频率即为f L 或f H 。

四、仿真元件及仿真测试仪器图3.2.5 波形同时出现削底和削顶现象的失真图3.2.6 放大器的幅频特性曲线电阻电容函数信号 发生器示波器三极管电位器万用表五、实验内容如图3.2.1所示连接共射极单管放大器实验电路。

注意当检查电路无误后,调节直流电源电压至U CC选定值12V,方可接通电源。

1、静态工作点的测量与调整(验证性实验)(1)静态工作点的测量静态工作点测量条件:没有输入信号,即U i = 0。

实验时将电路信号输入端接地。

调节电位器R W,使I CQ =1.5 mA。

实验时为了避免直接测量电流,可采取测量晶体管发射极电压U E或测量晶体管集电极电压U C的方法:调节电位器R W,使U E=2.25V 或U C =9.3V或者I CQ =1.5mA。

调整好I CQ后,用万用表直流电压档测量U BQ、U EQ、U CQ 值,记入表3-2-1。

根据测量值计算U BEQ=U BQ-U EQ和U CEQ=U CQ-U EQ,再与理论计算值比较。

.表3-2-1 静态工作点测量数据记录电压单位:/ V测量值理论计算值U B Q U E Q U C Q U B E Q U C E Q I C Q U B E Q′U C E Q′2.888V 2.274V 9.284V 613.249m V 7.01V 1.508mA 0. 7V 7V(2)观察静态工作点对输出波形失真的影响在前面实验设定的静态工作点(R C =1.8 kΩ、I C =1.5 mA)基础上,取R L=∞。

按图3.2.7连接测量仪器,用示波器观测放大器的输入、输出信号波形,交流毫伏表测量放大器的输入信号电压。

仿真电路①调节信号发生器,输出频率为1kHz、有效值为5mV的正弦波从A1端输入信号U i,用示波器观察并记录输出电压的输出波形,将数据记入表3-2-2。

②保持输入信号U i不变,增大电位器R W的值,使波形出现失真,定性绘出U o 的波形,并测出失真情况下的I C和U CE值,记入表3-2-2。

③仍保持输入信号U i不变,减小电位器R W的值,使波形出现失真,定性绘出U o 的波形,并测出失真情况下的I C和U CE值,记入表3-2-2。

注:表3-2-2中工作状态判断:判断输出波形是否存在失真?存在的失真是截止失图3.2.7 放大器性能测试系统.真还是饱和失真?晶体管工作点状态判断是否基本合适?是偏高还是偏低?表3-2-2 测量静态工作点对输出波形失真的影响数据记录R C =1.8 kΩ R L= ∞ 工作条件U o 波形工作状态判断①U i = 5 mVR W适中U EQ = 2.25 V u ot失真情况:基本不失真晶体管工作点状态:基本合适U CQ =9. 284 VI CQ = 1.5 mAU CEQ=7.009 V②U i = mVR W偏小U EQ =4.484V u ot失真情况:饱和失真晶体管工作点状态:偏高U CQ =6.698VI CQ =2.946mAU CEQ =2.214 V③U i = mVR W偏大U EQ =1.536 V u ot失真情况:截止失真晶体管工作点状态:偏低U CQ =10.164 VI C Q=1.02mAU CEQ = 8.628 V饱和失真电路及各项参数如下:饱和失真波形:.截止失真电路图及其各项参数:截止失真波形:..2、放大器性能指标测试(验证性实验) 放大器性能指标测量仪器的连接如图3.2.7所示。

(1)测量电压放大倍数A u调节信号发生器,输出频率f =1kHz 、有效值为5mV 的正弦波(用毫伏表测量)作为输入信号U i ,同时用双线示波器观察放大器输入电压U i 和输出电压U o 的波形,在U o 波形不失真的条件下,用示波器测量不同负载时放大器输出电压U o 波形,计算放大器的电压放大倍数A u 。

相关文档
最新文档