毕节市特殊教育学校2017秋公开课
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
毕节市特殊教育学校2017秋“同课异构”教案
任课教师:李绍军
课题:
2.分式方程(二)
课堂设计:
本节是分式的第4节,这是第二课时,本课时主要研究分式方程的解法,只要求会解可化为一元一次方程的分式方程(方程中的分式不超过两个).解分式方程的关键是把分式方程转化为整式方程,在引导学生探索分式方程的解法时,要注意体现这种转化的思想.
教学目标:
1.掌握解分式方程的基本思想和步骤;
2.经历和体会解分式方程的必要步骤;使学生进一步了解数学思想中的“转化”思想,认识到能将分式方程转化为整式方程,从而找到解分式方程的途径.
3.培养学生自觉反思求解过程和自觉检验的良好习惯,培养严谨的治学态度;运用“转化”的思想,将分式方程转化为整式方程,从而获得一种成就感和学习数学的自信.
一、学生起点分析
学生的知识技能基础:学生基本了解分式方程的概念,如何寻找最简公分母,熟悉等式的性质并能利用等式的性质解一元一次方程中,了解一般一元一次方程的解法,去分母,去括号,移项,合并同类项,化系数为1,并理解每一步的根据是什么,从而能通过观察类比的方法,探索分式方程的解法并能理解解题步骤的根据.
学生活动经验基础:本节课主要采用观察、类比的方法、讨论的形式,学生比较熟悉,能在二元一次方程转化为一元一次方程的基础上,再次体会数学转化思想..
二、教学任务分析
在上一节课中,学生通过对实际问题的分析,已经感受到分式方程是刻画现实世界的有效模型,本节课安排《分式方程》第二课时,旨在学会解分式方程,能从中体会数学转化思想的深刻含义。
三、教学过程
复习引入
活动内容:
1.请写出
214x -与42x x
-的最简公分母. 2.解一元一次方程 21134x x +-= 活动目的:回顾最简公分母,解一元一次方程的解法,着重复习去分母的步骤,为学生过渡到分式方程去分母.
注意:着重复习去分母的步骤,为学生过渡到分式方程的去分母
探究新知
活动内容:
例1.解下列分式方程:
x
x 321=-
活动目的:通过观察,使学生发现可以将分式方程通过去分母转化成一元一次方程来求解。通过教师对例题讲解,让学生明确解分式方程的一般步骤。
注意:通过观察类比,学生容易发现只要方程两边同时乘以相同的因式,可以去分母,使方程变为学过的一元一次方程,从而解决了问题.
课堂练习
活动内容:
例2.解方程 480600452x x -= 活动目的:使学生进一步体会并熟悉分式方程的解法,并强调检验方程的解.
注意事项:让学生注意规范书写过程.在解题过程中,要提醒学生注意可先化简原方程,从而达到简便运算的目的.
巩固练习活动内容:
解方程:(1)
34
1
x x
=
-
(2)
5
4
2332
x
x x
+=
--
活动目的:通过学生的反馈练习,使教师能全面了解学生对解分式方程是否清楚,以便教师能及时地进行查缺补漏.
注意:让学生注意规范书写过程,不要忘记验根。
课堂小结
活动内容:
1、解分式方程的基本思路是什么?
2、解分式方程有哪几个步骤?
3、什么是分式方程的增根?
4、验根有哪几种方法?
课后作业:p49,第二,三题。