液相活度系数方程总结
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
液相活度系数方程总结
1、Wohl 模型
Wohl 模型是一个普通模型,可以概括Margules 方程(1895年)、Van Laar 方程(1910年)以及Scatchard-Hamer 方程(1953年)。
Whol 在1946年提出将超额自由焓E
G 表示为有效容积分率的函数,并展开成为Mc Laurin 级数:
+++=∑∑∑∑∑∑∑∑∑∑i
j
k
l
ijkl l k j i i
j
k
ijk k j i i
j
ij j i i
i
i E a Z Z Z Z a Z Z Z a Z Z x q RT G
(1-1)
式中:i Z ——混合物中i 组分的有效容积分率:1=⇒
=
∑∑i
i
i
i
i i
i i Z
x q x q Z ;
i x ——i 组分的摩尔分数; i q ——i 组分的有效摩尔体积; ij a ——i-j 两组分之间的交互作用参数,称为二尾标交互作用参数; ijk
a ——i-j-k 三组分之间的交互作用参数,称为三尾标交互作用参数;
ijkl a ——i-j-k-l 四组分之间的交互作用参数,称为四尾标交互作用参数;
略去四分子以上集团相互作用项,将式(1-1)用于二元系统时变为:
()
1222
2111222112212211332a Z Z a Z Z a Z Z x q x q RT G E ++=+ (1-2)
令: ()12212132a a q A +=
()11212232a a q B +=
代入上式,根据()
j
n p T i E i n RT nG ,,ln ⎥
⎦⎤
⎢⎣⎡∂∂=γ将式(1-2)对i n 进行偏微分,经整理得: ⎥⎦⎤
⎢⎣
⎡⎪⎪⎭⎫ ⎝⎛-+=A q q B Z A Z 2112
2
12ln γ (1-3a ) ⎥⎦⎤
⎢⎣
⎡⎪⎪⎭⎫ ⎝⎛-+=B q q A Z B Z 1222122ln γ (1-3b ) 式(1-3)中包括三个参数A 、B 与12q q ,其值必须用实验值来确定。
2、Scatchard-Hamer eq .
用纯组分的摩尔体积l
V 1及l
V 2代替有效摩尔体积1q 及2q ,则式(1-3a )和式(1-3b )就变为:
⎥⎦⎤
⎢⎣
⎡⎪⎪⎭⎫ ⎝⎛-+=A V V B Z A Z l l 2112
2
12ln γ (2-1a )
⎥⎦⎤
⎢⎣
⎡⎪⎪⎭⎫ ⎝⎛-+=B V V A Z B Z l l 1222
1
22ln γ (2-1b )
式中: l l V V x x x Z 122111+= l
l
l
l V V x x V V x Z 1
2211
222+= 由于l
V 1、l
V 2为已知,所以式(2-1a )和式(2-1b )为二参数方程,关联方便。
3、Margules eq .
当21q q =时,则i i x Z =,式(1-3a )和式(1-3b )就变为:
()[]A B x A x -+=12
2
12ln γ (3-1a ) ()[]B A x B x -+=22122ln γ (3-1b )
式(3-1a )和式(3-1b )为三阶Margules 方程,即为常用的Margules 方程。参数A 、B
需由实验值确定,当01=x 时,A =∞
1ln γ;当02=x 时,B =∞
2ln γ。此处∞1γ和∞
2γ表示
无限稀释时的活度系数。
4、Van Laar eq .
当A B q q =12时,则式(1-3a )和式(1-3b )就变为:
2
2111ln ⎪
⎪⎭⎫ ⎝
⎛+=
Bx Ax A γ (4-1a )
2
1221ln ⎪
⎪⎭⎫ ⎝
⎛+=
Ax Bx B γ (4-1b )
式(4-1a )和式(4-1b )为V an Laar 方程。当01=x 时,A =∞1ln γ;当02=x 时,
B =∞
2ln γ。参数A 、B 需由实验值确定,通常可以从汽液平衡实验数据求得:
2
11221ln ln 1ln ⎪⎪⎭⎫
⎝⎛+=γγγx x A (4-2a )
2
22112ln ln 1ln ⎪⎪⎭⎫
⎝
⎛+=γγγx x B (4-2b )
5、Wilson eq .
Wilson 于1964年提出将局部组成概念和Flory-Huggin 模型结合,得出E
G 模型为:
∑∑==⎪⎪⎭
⎫ ⎝⎛Λ-=N i N j j ij i E
x x RT G 11ln (5-1) 其中: ()[]
RT g g V V ii ij l
i
l j ij --=
Λexp (5-2)
ij Λ称为Wilson 参数,由式(5-2)可知ij Λ通常不等于ji Λ,1=Λ=Λjj ii ,0>Λij ;
()ii ij
g g
-为二元交互作用能量参数,可为正值或负值。
将式(5-1)对i x 微分可导出Wilson 计算活度系数i γ的通式:
∑∑∑===ΛΛ-⎪⎪⎭⎫ ⎝⎛Λ-=N k N
j j
kj k
ki N j j ij i x x x 11
1ln 1ln γ (5-3) 式中 每个加和号表示包括所有的组分。
对二元溶液,上式简化为:
()⎥⎦⎤
⎢⎣⎡Λ+Λ-Λ+Λ+Λ+-=121221************ln ln x x x x x x x γ (5-4a )
()⎥⎦⎤
⎢⎣⎡Λ+Λ-Λ+Λ-Λ+-=1212212121
12112122ln ln x x x x x x x γ (5-4b )
式中 Wilson 参数12Λ和21Λ按式(5-2)可分别表示为:
()[]RT g g V V l l
11121212exp --=Λ (5-5a )
()[]RT g g V V l l
22212
121exp --=Λ (5-5b )
式中二元交互作用能量参数()1112g g -和()2221g g -需由二元汽液平衡的实验数据确定。通常采用多点组成下的实验数据,用非线性最小二乘法回归求取参数最佳值。
6、NRTL eq .
① 二元系统
NRTL 模型对二元体系的E
G 表达式为:
⎥⎦
⎤⎢⎣⎡+++=121212122121212121G x x G G x x G x x RT G E ττ