2018版高中数学33-2几何概型(2)试题苏教版必修3 精品

合集下载

高中数学第3章概率3.3几何概型自我检测苏教版必修3

高中数学第3章概率3.3几何概型自我检测苏教版必修3

3.3 几何概型自我检测 基础达标 一、选择题1.圆内有一内接正方形,今投射1镖,则落入正方形内的概率是( )A .2π B .π2 C .π1D .π21答案:B2.在线段[0,3]上任取一点,则此点坐标不小于2的概率是( )A .31 B .21 C .32D .97答案:A3.两根相距 6 m 的木杆上系一根绳子,并在绳子上挂一盏灯,则灯与两端距离都大于2m 的概率为( )A .31 B .32 C .21D .65答案:A4.有1杯10升的水,其中含有1个细菌,用一个小杯从这杯水中取出0.1升水,则小杯水中含有这个细菌的概率为( ) A .0.1B .0.01 C .0.001D .0 答案:B 二、填空题5.公交车30 min 一班,在车站停2min ,某乘客到达站台立即乘上车的概率是________. 答案:151 6.某人午觉醒来,发觉表停了,他打开收音机,想听电台报时,假定电台每小时报时一次,则他等待的时间短于10min 的概率为__________. 答案:61 解析:设A={等待的时间不多于10分钟}.我们所关心的事件A 恰好是打开收音机的时刻位于[50,60]时间段内,因此由几何概型的概率公式得,P (A )=605060-=61. 三、解答题7.现向如右图所示的正方形内随机地投掷飞镖,求飞镖落在阴影部分的概率.解:由⎩⎨⎧-==--.,10436y y x得A (61,-1). ∵B(1,-1),∴|AB|=1-61=65. 同理,由⎩⎨⎧=--=,,04361y x x 得y=32.∴C(1,32), ∴|BC|=32-(-1)= 35.∴S △ABC =21×65×35=3625.而正方形面积为2×2=4.因此所求概率为1442543625=.8.设A 为圆周上一定点,在圆周上等可能地任取一点与A 连结,求弦长超过半径的概率.解:如右图所示,|AB|=|AC|=OB (半径),则弦长超过半径,相当于动点落在阴影部分所在的扇形圆弧上.由几何概型的概率计算公式,得P=32234=OB OBππ.答:弦长超过半径的概率为32.9.设有一均匀的陀螺,其圆周的一半上均匀地刻上区间[0,1]上的诸数字,另一半均匀地刻上区间[1,3]上的诸数字.旋转这陀螺,求它停下时,其圆周上触及桌面的刻度位于[0.5,1.5]上的概率.解析:如右图,旋转陀螺,其圆周上任一点与桌面的接触是等可能的,因此只要接触点落在阴影部分,就表示圆周上触及桌面的刻度位于[0.5,1.5],由几何概型求概率公式得P=83)8141(22=+=rr S S ππ圆阴更上一层1.一个服务窗口每次只能接待一名顾客,两名顾客将在8小时内随机到达.顾客甲需要1小时服务时间,顾客乙需2小时.求两人都不需要等待的概率. 解:设顾客甲到达的时间为x ,顾客乙到达的时间为y.则 0≤x ≤8 0≤y ≤8无人需要等待所包含的基本事件为y-x ≥1 x-y ≥2试验的每个结果都是等可能的,由几何概型的条件知,只要在阴影部分就表示无人需要等待.∴P=2228621721⨯+⨯=正阴SS=66.4%.2.把长度为a的木棒任意折成三段,求它们可以构成一个三角形的概率.分析:要构成三角形,则必须满足三角形中任意两边之和大于第三边,关键在于确定它所包含的基本事件.解:设其中两段的长为x、y,则所有基本事件:x>0,y>0 x+y<a而构成三角形所包含的基本事件:x<2a,y<2a,x+y>2a.P=4121)22(212=⨯⨯aaa=0.25.答:可构成三角形的概率是0.25.3.从甲地到乙地有一班车在9:30到10:00到达,若某人从甲地坐该班车到乙地转乘9:45到10:15出发的汽车到丙地去,问他能赶上车的概率是多少?思路分析:到达乙地的时间是9.5时到10时之间的任一时刻,汽车从乙地出发的时间是9.75时到10.25时之间的任一时刻,如果在平面直角坐标系内以x轴表示到达乙地的时间,y轴表示汽车从乙地出发的时间,因为到达乙地时间和汽车从乙地出发的时间是随机的,则随机试验的所有结果(x,y)是正方形内等可能的任一点,事件A(他能赶上车)发生的充要条件是x≤y,即对应正方形内阴影部分,事件A发生的概率只与阴影部分的面积有关,适用于几何概型.解析:在平面直角坐标系内,以x和y分别表示到达乙地和汽车从乙地出发的时间,则能赶上汽车的充要条件是x≤y.而(x,y)的所有可能结果是边长为0.5的正方形,而可能赶上车的时间由上图中的阴影所表示.这是一个几何概率问题.由公式得P(A)=2225.021 25.05.0⨯-=0.875.答案:能赶上车的概率为0.875.。

高中数学第3章概率3.3几何概型(2)教案苏教版必修3

高中数学第3章概率3.3几何概型(2)教案苏教版必修3

3.3 几何概型第2课时导入新课设计思路一:〔问题导入〕以下图是卧室与书房地砖示意图,图中每一块地砖除颜色外完全一样,小猫分别在卧室与书房中自由地走来走去.在哪个房间里,小猫停留在黑砖上概率大?卧室〔书房〕设计思路二:〔情境导入〕在概率论开展早期,人们就已经注意到只考虑那种仅有有限个等可能结果随机试验是不够,还必须考虑有无限多个试验结果情况.例如一个人到单位时间可能是8:00 至9:00之间任何一个时刻;往一个方格中投一个石子,石子可能落在方格中任何一点……这些试验可能出现结果都是无限多个.推进新课新知探究对于导入思路一:由于地砖除颜色外完全一样,小猫自由地走来走去,因此,小猫可能会停留在任何一块地砖上,而且在任何一块地砖上停留可能性一样,对于这样一个随机事件概率,有如下结论:对于一个随机试验,如果我们将每个根本领件理解为从某特定几何区域内随机地抽取一点,而该区域内每一点被取到时机都一样,这样就可以把随机事件与几何区域联系在一起.如果每个事件发生概率只与构成该事件区域长度〔面积或体积〕成比例,那么称这样概率模型为几何概率模型,简称几何概型.几何概型与古典概型一样也是一种等可能事件概率模型,它特点是:〔1〕试验中所有可能出现结果,也就是根本领件有无限多个. 〔2〕根本领件出现可能性相等.实际上几何概型是将古典概型中有限性推广到无限性,而保存等可能性,这就是几何概型.几何概型概率计算方法如下:一般地,在几何区域D 中随机地取一点,记事件“该点落在其内部一个区域d 内〞为事件A ,那么事件A 发生概率为P(A)= .这里要求D 测度不为0,其中“测度〞意义依D 确定,当D 分别是线段、平面图形与立体图形时,相应“测度〞分别是长度、面积与体积等.对于导入思路二:〔1〕几何概率模型:如果每个事件发生概率只与构成该事件区域长度〔面积或体积〕成比例,那么称这样概率模型为几何概率模型.〔2〕几何概型概率公式:P 〔A 〕=)()(面积或体积的区域长度试验的全部结果所构成面积或体积的区域长度构成事件A . 〔3〕几何概型特点:1°试验中所有可能出现结果〔根本领件〕有无限多个.2°每个根本领件出现可能性相等.应用例如思路1例1 取一个边长为2a 正方形及其内切圆〔如下图〕,随机向正方形内丢一粒豆子,求豆子落入圆内概率.分析:由于是随机丢豆子,故可以认为豆子落入正方形内任意一点都是时机均等,这符合几何概型条件,可以看成几何概型.于是利用几何概型求概率公式,豆子落入圆中概率应该等于圆面积与正方形面积比.解:记“豆子落入圆内〞为事件A ,那么 P(A)=4422ππ==a a 正方形面积圆的面积. 答:豆子落入圆内概率为4π.点评:在解题时,首先要区分是古典概型还是几何概型,这两种随机事件概率类型虽然每一个事件发生都是等可能,但是几何概型是有无数个根本领件情形,古典概型是有有限个根本领件情形.此外,本例可以利用计算机模拟,过程如下:〔1〕在Excel 软件中,选定A1,键入“=〔rand 〔〕-0.5〕*2”. 〔2〕选定A1,按“ctrl+C〞.选定A2~A1 000,B1~B1 000,按“ctrl+V〞.此时,A1~A1 000,B1~B1 000均为[-1,1]区间上均匀随机数.〔3〕选定D1,键入“=power 〔A1,2〕+ power 〔B1,2〕〞;再选定D1,按“ctrl+C〞;选定D2~D1 000,按“ctrl+V〞,那么D列表示A2+B2.〔4〕选定F1,键入“=IF〔D1>1,1,0〕〞;再选定F1,按“ctrl+C〞;选定F2~F1 000,按“ctrl+V〞,那么如果D列中A2+B2>1,F列中值为1,否那么F列中值为0.〔5〕选定H1,键入“FREQUENCY〔F1:F10,0.5〕〞,表示F1~F10中小于或等于0.5个数,即前10次试验中落到圆内豆子数;类似,选定H2,键入“FREQUENCY〔F1:F20,0.5〕〞,表示前20次试验中落到圆内豆子数;选定H3,键入“FREQUENCY 〔F1:F50,0.5〕〞,表示前50次试验中落到圆内豆子数;选定H4,键入“FREQUENCY〔F1:F100,0.5〕〞,表示前100次试验中落到圆内豆子数;选定H5,键入“FREQUENCY〔F1:F500,0.5〕〞,表示前500次试验中落到圆内豆子数;选定H6,键入“FREQUENCY〔F1:F1 000,0.5〕〞,表示前1 000次试验中落到圆内豆子数.〔6〕选定I1,键入“H1*4/10〞,表示根据前10次试验得到圆周率π估计值;选定I2,键入“H2*4/10〞,那么I2为根据前20次试验得到圆周率π估计值;类似操作,可得I3为根据前50次试验得到圆周率π估计值,I4为根据前100次试验得到圆周率π估计值,I5为根据前500次试验得到圆周率π估计值,I6为根据前1 000次试验得到圆周率π估计值.如图:例2 如图,在等腰直角三角形ABC中,在斜边AB上任取一点M,求AM小于AC概率.分析:在线段AB上取一点C′,使得线段AC′长度等于线段AC长度.那么原问题就转化为求AM小于AC′概率.所以,当点M 位于以下图中线段AC′上时,AM<AC,故线段AC′即为区域d.区域d测度就是线段AC′长度,区域D测度就是线段AB长度.解:在AB上截取AC′=AC.于是P(AM<AC)=P(AM<AC′)=.2.答:AM小于AC′概率为2变式训练:假设将例2改为:如以下图,在等腰直角三角形ABC 中,过直角顶点C在∠ACB内部任作一条射线CM,与线段AB交于点M,求AM小于AC概率.解:此时,应该看作射线CM落在∠ACB内部是等可能.公式中区域D是∠ACB〔内部〕,而区域d求法应该与原题是一样,即在线段AB上取一点C′,使得线段AC′长度等于线段AC长度〔如图〕,那么区域d就是∠ACC′〔内部〕.从而区域d测度就是∠ACC′度数,区域D测度就是∠ACB度数.∠ACC′==67.5°,所以所求事件概率为.点评:由此可见,背景相似问题,当等可能角度不同时,其概率是不一样.此题可参考习题3.3第6题.例3 (会面问题)甲、乙二人约定在12 点到下午5 点之间在某地会面,先到者等一个小时后即离去.设二人在这段时间内各时刻到达是等可能,且二人互不影响.求二人能会面概率.分析:两人相约时间都是5小时,设X ,Y 分别表示甲、乙二人到达时刻,因此,0≤X≤5,0≤Y≤5,这样两人到达时刻就构成一个正方形,而两人能会面必须满足|X -Y|≤1,而这个不等式所表示是一个带状,位于正方形内图形,由于两人到达时刻是随机,而且,在每一个时刻到达可能性是一样,因此,符合几何概型所具有特点,可以运用几何概型概率计算方法来计算.解:记A={二人能会面}.以 X ,Y 分别表示甲、乙二人到达时刻,于是0≤X≤5,0≤Y≤5,即点M 落在图中阴影局部.所有点构成一个正方形,即有无穷多个结果.由于每人在任一时刻到达都是等可能,所以落在正方形内各点是等可能,符合几何概型条件.二人会面条件是:|X -Y|≤1,故正方形面积为5×5=25,阴影局部面积为5-2×21×42259. 点评: 建立适当数学模型,是解决几何概型问题关键.对于“碰面问题〞可以模仿此题建立数学模型.例4 如图,随机投掷一个飞镖扎在靶子上,假设飞镖既不扎在黑色靶心,也不扎在两个区域之间,更不会脱靶,求飞镖扎在以下区域概率:(1)编号为25区域;(2)编号在6到9之间区域;(3)编号为奇数区域.〔每一个小区域面积一样〕分析:由于飞镖是随机投掷到靶子上,并且落在靶子每一个位置可能性一样,因此,符合几何概型特点.解: 假设靶子每一个区域面积为1个单位,那么靶子所在圆面积为28个单位.〔1〕记事件A 为“飞镖扎在编号为25区域〞,那么P(A)= 281. 〔2〕记事件B 为“飞镖扎在编号为6到9之间区域〞,那么P(B)= .〔3〕记事件C 为“飞镖扎在编号为奇数区域〞,那么P(C)=.答:〔1〕飞镖扎在编号为25区域概率为281;(2)飞镖扎在编号在6到9之间区域概率为71;(3)飞镖扎在编号为奇数区域概率为21. 点评:仔细研读题目,从题目提供信息进展分析,寻找适当解题方法,是解决此题要害所在.思路2例1 在1 L 高产小麦种子中混入了一粒带麦锈病种子,从中随机取出10 mL ,含有麦诱病种子概率是多少分析:病种子在这1 L 种子中分布可以看作是随机,取得10 mL 种子可视为区域d ,所有种子可视为区域D.解:取出10 mL 麦种,其中“含有病种子〞这一事件记为A ,那么 P(A)=1001100010==所有种子的体积取出种子的体积. 答:含有麦诱病种子概率为1001. 点评:由于病种子是随机地处在容器中,它可以位于容器任何一个位置,而且在每一个位置可能性一样,符合几何概型特点,所以运用几何概型概率计算方法来解决此题.例2 假设你家订了一份报纸,送报人可能在早上6:30~7:30之间把报纸送到你家,你父亲离开家去工作时间在早上7:00~8:00之间,问你父亲在离开家前能得到报纸(称为事件A)概率是多少?分析:由于两人到达与离开时刻是随机,而且,在每一个时刻到达或离开可能性是一样,因此,符合几何概型所具有特点,可以运用几何概型概率计算方法来计算.解:如图,以横坐标x表示报纸送到时间,纵坐标y表示父亲离家时间建立平面直角坐标系,假设随机试验落在方形区域内任何一点是等可能,所以符合几何概型条件.根据题意,只要点落到阴影局部,就表示父亲在离开家前能得到报纸,即事件A发生,所以P(A)==87.5%.点评:建立适当数学模型,该模型符合几何概型特点,这是解答此题关键所在.另外我们还可以运用计算机产生随机数来模拟该试验.设X是0到1之间均匀随机数,Y也是0到1之间均匀随机数.如果Y+7>X+6.5,即Y>X-0.5,那么父亲在离开家前能得到报纸.计算机模拟方法:〔1〕选定A1,键入函数“=rand〔〕〞;〔2〕选定A1,按“ctrl+C〞,选定A2~A50,B1~B50,按“ctrl+V〞.此时,A1~A50,B1~B50均为[0,1]区间上均匀随机数.用A列数加7表示父亲离开家时间,B列数加6.5表示送报人送到报纸时间.如果A+7>B+6.5,即A-B>-0.5,那么表示父亲在离开家前能得到报纸.〔3〕选定D1,键入“=A1-B1”;再选定D1,按“ctrl+C〞,选定D2D50,按“ctrl+V〞.〔4〕选定E1,键入函数“=FREQUENCY〔D1:D50,-0.5〕〞,E1表示统计D列中小于或等于-0.5数个数,即父亲在离开家前不能得到报纸频数.〔5〕选定F1,键入“=〔50-E1〕/50.F1表示统计50次试验中,父亲在离开家前能得到报纸频率.下面是我们在计算机上做50次试验,得到结果是P(A)=0.88,如图:例3 假设一个直角三角形两直角边长都是0到1之间随机数,试求斜边长小于34事件概率.分析:由于直角边长是0到1之间随机数,因此设两直角边长分别为x,y,而x,y满足0≤x≤1,0≤y≤1,斜边长=,x,y可以落在0≤x≤1,0≤y≤1所表示图形任何一个位置,而且在每个位置可能性一样,满足几何概型特点.解:设两直角边长分别为x,y,那么0≤x≤1,0≤y≤1,斜边长=,如右图,样本空间为边长是1正方形区域,而满足条件事件所在区域面积为.因此,所求事件概率为P=.点评:根据条件,构造满足题目条件数学模型,再运用几何概型概率计算方法来计算某个事件发生概率,是一种常用求解概率问题方法.例4 甲、乙两人相约于中午12点到13点之间在某一个地方碰面,并约定先到者等候20分钟后可以离开,试设计模拟方法估计两人能碰面概率.分析:当两人到达碰面地点时间相差在20分钟之内时,两人能碰面.我们可以用两个转盘来模拟两人到达碰面地点时间.解: 运用转盘模拟方法.具体步骤如下:〔1〕做两个带指针〔分针〕转盘,标上刻度在0到60来表示时间,如右图;〔2〕每个转盘各转m 次,并记录转动得到结果,以第一个转盘结果x 表示甲到达碰面地点时间,以第二个转盘结果y 表示乙到达碰面地点时间;〔3〕统计两人能碰面〔满足|x -y|<20〕次数n ;〔4〕计算m n 值,即为两人能碰面概率近似值〔理论值为95〕. 点评:实施模拟方法除了转盘模拟方法外,还可以运用现代信息技术即计算机来模拟,具体操作如下:〔1〕新建一个电子表格文件,在A1位置输入:=RAND( )60,产生一个0到60随机数x ;〔2〕将A1位置处表达式复制到B1处,这样又产生一个0到60随机数y ;〔3〕在C1位置处输入:=IF 〔A1-B1<=-20,0,IF 〔A1-B1<20,1,0〕,判断两人能否碰面〔即是否满足|x -y|<20〕,如果是,就返回数值1,否那么返回数值0;〔4〕将第一行三个表达式复制100行,产生100组这样数据,也就是模拟了100次这样试验,并统计每次结果;〔5〕在C101处输入:=SUM(C1:C100)/100统计这100次重复试验中正好两人能碰面频率,即事件“两人能碰面〞发生概率近似值.知能训练课本本节练习4、5.解答:4.设A={射线OA落在∠xOT内}.因为射线OA落在∠xOT内是随机,也就是射线OA可以落在∠xOT内任意一个位置,这符合几何概型条件,区域d测度是60,区域D测度是360,根据几何概型概率计算公式,得P(A)=.5.运用计算机模拟结果大约为2.7左右.点评:根据实际问题背景,判断是否符合几何概型特点,如是那么选择符合题意“测度〞,运用求几何概型概率方法来解决问题,此外我们还可以设计符合问题模拟方法来模拟得到问题近似解.课堂小结在这节课上我们主要是运用几何概型求解一些问题概率,以及运用模拟方法求某一个事件概率近似值.结合上节课内容可以知道,几何概型概率问题仍然是随机事件概率,与古典概型区别是古典概型所含根本领件个数是有限个,而几何概型所包含根本领件个数是无限.对于几何概型我们着重研究如下几种类型:〔1〕与长度有关几何概型;〔2〕与面积有关几何概型;〔3〕与体积有关几何概型;(4)与角度有关几何概型.其中我们对与面积有关几何概型与与体积有关几何概型要求重点掌握.作业课本习题3.3 4、5、6.设计感想几何概型是区别于古典概型又一随机事件概率模型,在解决实际问题时首先根据问题背景,判断该事件是属于古典概型还是几何概型,这两者区别在于构成该事件根本领件个数是有限个还是无限个.在使用几何概型概率计算公式时,一定要注意其适用条件:每个事件发生概率只与构成该事件区域长度成比例.随机数在日常生活中,有着广泛应用,我们可以利用计算器或计算机来产生均匀随机数,从而来模拟随机试验,其具体方法是:建立一个概率模型,它与某些我们感兴趣量〔如概率值、常数〕有关,然后设计适当试验,并通过这个试验结果来确定这些量.这种方法也是我们研究问题常用方法.习题详解1.记A={灯与两端距离都大于2 m}.因为把一盏灯挂在绳子上位置是随机,也就是说灯挂在绳子上位置可以是绳子上任意一点,这符合几何概型条件,根据P=,得P(A)= .答:灯与两端距离都大于2 m概率为13.2.记A={所投点落入小正方形内}.由于是随机投点,故可以认为所投点落入大正方形内任意一点都是时机均等,这符合几何概型条件,可以看成几何概型.于是利用几何概型求概率公式,所投点落入小正方形内概率应该等于小正方形内面积与大正方形面积比,即 P(A)=943222==大正方形面积小正方形面积. 答:所投点落入小正方形内概率为94.3.记A={所投点落在梯形内部}.由于是随机投点,故可以认为所投点落入矩形内任意一点都是时机均等,这符合几何概型条件,可以看成几何概型.于是利用几何概型求概率公式,所投点落入梯形内部概率应该等于梯形面积与矩形面积比,即 P(A)=125)2131(21=⨯⨯+⨯=b a b a a 矩形面积梯形面积. 答:所投点落在梯形内部概率为125. 4.设A={该点落在正方形内}.因为该点落在正方形内是随机,也就是该点可以落在正方形内任意一个位置,这符合几何概型条件,根据几何概型求概率计算公式,得P(A)=. 答:乘客到达站台立即乘上车概率为π21. 5.分析:直接求“硬币落下后与格线有公共点〞概率比拟困难,可以考虑先求“硬币落下后与格线无公共点〞概率,再求“硬币落下后与格线有公共点概率〞.解:因为直径等于2 cm 硬币投掷到正方形网格上是随机,也就是硬币可以落在正方形网格上任意一个位置,这符合几何概型条件.要求“硬币落下后与格线无公共点〞概率,根据几何概型求概率计算公式:P(A)=,因为每个小正方形边长都等于6 cm ,硬币直径为2 cm ,设有n 个小正方形,那么区域d 测度为n·π·12,区域D 测度n·62,故“硬币落下后与格线无公共点〞概率为,而事件“硬币落下后与格线有公共点〞是“硬币落下后与格线无公共点〞对立面,所以事件“硬币落下后与格线有公共点〞概率为1-36π.答:硬币落下后与格线有公共点概率为1-36π.6.贝特朗算出了三种不同答案,三种解法似乎又都有道理.人们把这种悖论称为概率悖论,或贝特朗奇怪论.贝特朗解法如下:解法一:任取一弦AB ,过点A 作圆内接等边三角形〔如图1〕.因为三角形内角A 所对弧,占整个圆周31.显然,只有点B 落在这段弧上时,AB 弦长度才能超过正三角形边长a ,故所求概率是31.解法二:任取一弦AB ,作垂直于AB 直径PQ.过点P 作圆内接等边三角形,交直径于N ,并取OP 中点M 〔如图2〕.容易证明QN=NO=OM=MP.我们知道,弦长与弦心距有关.一切与PQ 垂直弦,如果通过MN 线段,其弦心距均小于QN ,那么该弦长度就大于等边三角形边长,故所求概率是21.解法三:任取一弦AB.作圆内接等边三角形内切圆〔如图3〕,这个圆是大圆同心圆,而且它半径是大圆21,它面积是大圆4141. 图1 图2 图3细细推敲一下,三种解法前提条件各不一样:第一种假设了弦端点在四周上均匀分布;第二种假设弦中点在直径上均匀分布;第三种假设弦中点在小圆内均匀分布.由于前提条件不同,就导致三种不同答案.这是因为在那时候概率论一些根本概念〔如事件、概率及可能性等〕还没有明确定义,作为一个数学分支来说,它还缺乏严格理论根底,这样,对同一问题可以有不同看法,以致产生一些奇谈怪论.。

苏教版高一数学必修3几何概型练习

苏教版高一数学必修3几何概型练习

第6课时7.3.1 几何概型(1)分层训练1、在500ml的水中有一个草履虫,现从中随机取出2ml水样放到显微镜下观察,则发现草履虫的概率是()A.0.5 B.0.4 C.0.004 D.不能确定2、在长为10cm的线段AB上任取一点M,并以线段AM为边作正方形,则正方形的面积介于236cm与281cm之间的概率是( )A.0.3 B.0.6 C.0.7 D.0.93、水面直径为0.5米的金鱼缸的水面上飘着一块面积为20.02米的浮萍,则向缸里随机洒鱼食时,鱼食掉在浮萍上的概率约为 ( )A. 0.1019B.0.2038C.0.4076D.0.02554、以假设△ABC为圆的内接三角形,AC=BC,AB 为圆的直径,向该圆内随机投一点,则该点落在△ABC内的概率是 ( )A. 1πB.2πC.4πD.12π5、设标靶的半径为10cm,则中弹点与靶心的位置小于5cm的概率为.拓展延伸6、一海豚在水池中自由游弋,水池为长30m,宽20m的长方体.求此刻海豚嘴尖离岸边不超过2m的概率.7、如果在一个5万平方公里的海域里有表面积达40平方公里的大陆架贮藏着石油,假如在这海领域里随意选定一点钻探,问钻到石油的概率是多少? 8、平面上画了一些彼此相距2a的平行线,把一枚半径r<a的硬币任意掷在这个平面上,求硬币不与任何一条平行线相碰的概率.本节学习疑点:7.3.1 几何概型(1)M1、C (提示:由于取水样的随机性,所求事件A :“在取出2ml 的水样中有草履虫”的概率等于水样的体积与总体积之比5002=0.004) 2、A 3、A 4、A 5、2251104P ππ⋅==⋅ 6、整个区域面积为30×20=600(2m ), 事件A 发生的区域面积为30×20-26×16=184(2m ), 所以18423()0.3160075P A ==≈. 7、如果在一个5万平方公里的海域里有表面积7、由于选点的随机性,可以认为该海域中各点被选中的可能性是一样的,因而所求概率自然认为等于贮油海域的面积与整个海域面积之比,即等于40/50000=0.0008.8、解:把“硬币不与任一条平行线相碰”的事件记为事件A ,为了确定硬币的位置,由硬币中心O 向靠得最近的平行线引垂线OM ,垂足为M ,如图所示,这样线段OM 长度(记作OM )的取值范围就是[o,a],只有当r <OM ≤a 时硬币不与平行线相碰,所以所求事件A 的概率就是P (A )=的长度的长度],0[],(a a r =a ra -。

《3.3几何概型(2)》课件1-优质公开课-苏教必修3精品

《3.3几何概型(2)》课件1-优质公开课-苏教必修3精品
求几何概型概率的关键有二:(1)明确类型,即要明确是 长度型、面积型,还是体积型,判断的方法是看基本事件发生 在一个几维空间内;(2)准确求出相应的几何度量.
题型一 与角度有关的几何概型问题 【例1】 在Rt△ABC中,∠A=30°,过直角顶点C作射线C
M交线段AB于点M,求使AM>AC的概率. [思路探索] 图中因为过一点作射线是均匀的,因而应把 在∠ACB内作射线CM看做是等可能的,基本射线CM落在∠ACB内 任一点,使AM>AC的概率只与∠BCC′的大小有关,这符合几何
第2课时 几何概型(2) 【课标要求】
1.正确理解几何概型的概念,掌握几 何概型的概率公式;
2.通过模拟试验,感知应用数字解决 问题的方法,自觉养成动手、动脑的良好
习惯; 3.感知用图形解决概率问题的方法, 掌握数形结合数学思想与逻辑推理的数学
自学导引 1.几何概型的概率是用几何测度来表示的,首先 根据几何概型的特点判断其为几何概型,然后利用长 度比,面积比,体积比来表示其发生的可能性的大
试验的全部结果可构成集合 Ω={(x,y)|0<x<l,0<y<l,0<x+y<l}. 3 段的长度能构成三角形,当且仅当任意两段的长度之和大于第 3 段长度, 即 x+y>l-x-y⇒x+y>2l , x+l-x-y>y⇒y<2l , y+l-x-y>x⇒x<2l . 故所求事件的结果构成的集合:
成三角形的概率. [思路分析] 可以考虑先将三段的长度用两个字母x、y表示 出来,然后找出x、y应该满足的关系式,从而找出x与对应的y 构成的点的坐标.根据其满足的关系,点(x,y)构成的集合是平 面图形,从而我们可以利用几何概型求得其概率.
解 设事件 A 为“3 段的长度能构成三角形”,x、y 分别表 示其中两段的长度,则第 3 段的长度为 l-x-y.

【苏科版】高中数学必修三期末试题(含答案)(2)

【苏科版】高中数学必修三期末试题(含答案)(2)

一、选择题1.如图所示,已知圆1C 和2C 的半径都为2,且1223C C =,若在圆1C 或2C 中任取一点,则该点取自阴影部分的概率为( )A .233533ππ++B .233533ππ-+C .2331033ππ++D .2331033ππ-+2.甲、乙两人约定某天晚上6:00~7:00之间在某处会面,并约定甲早到应等乙半小时,而乙早到无需等待即可离去,那么两人能会面的概率是( ) A .58B .13C .18D .383.如图所示,在一个边长为2.的正方形AOBC 内,曲2y x =和曲线y x =围成一个叶形图(阴影部分),向正方形AOBC 内随机投一点(该点落在正方形AOBC 内任何一点是等可能的),则所投的点落在叶形图内部的概率是( )A .12B .14C .13D .164.圆周率π是一个在数学及物理学中普遍存在的数学常数,它既常用又神秘,古今中外很多数学家曾研究它的计算方法.下面做一个游戏:让大家各自随意写下两个小于1的正数然后请他们各自检查一下,所得的两数与1是否能构成一个锐角三角形的三边,最后把结论告诉你,只需将每个人的结论记录下来就能算出圆周率的近似值.假设有n 个人说“能”,而有m 个人说“不能”,那么应用你学过的知识可算得圆周率π的近似值为()A .mm n+ B .nm n+ C .4mm n+ D .4nm n+ 5.执行如图所示的程序框图,如果输入x =5,y =1,则输出的结果是( )A.261 B.425 C.179 D.544 6.阅读如图所示的程序框图,当输入5n=时,输出的S=()A.6 B.4615C.7 D.47157.某程序框图如图所示,则该程序运行后输出的值是()A .3-B .32-C .3D .328.执行如图所示的程序框图,若输出的结果为63,则判断框中应填入的条件为( )A .4i ≤B .5i ≤C .6i ≤D .7i ≤9.若一组数据12345,,,,x x x x x 的平均数为5,方差为2,则12323,23,23x x x ---,4523,23x x --的平均数和方差分别为( )A .7,-1B .7,1C .7,2D .7,810.某产品的广告费用与销售额的统计数据如下表:( ) 广告费用(万元) 销售客(万元)根据上表中的数据可以求得线性回归方程中的为,据此模型预报广告费用为万元时销售额为( ) A .万元B .万元C .万元D .万元11.某林场有树苗30000棵,其中松树苗4000棵.为调查树苗的生长情况,采用分层抽样的方法抽取一个容量为150的样本,则样本中松树苗的数量为( ) A .30B .25C .20D .1512.某产品的广告费用x 与销售额y 的统计数据如下表: 广告费用(万元)4235销售额(万元)49263954根据上表可得回归方程ˆˆˆybx a =+中的ˆb 为9.4,据此模型预报广告费用为6万元时销售额为A .63.6万元B .65.5万元C .67.7万元D .72.0万元二、填空题13.2020年初,湖北成为全国新冠疫情最严重的省份,面临医务人员不足,医疗物资紧缺等诸多困难,全国人民心系湖北,志愿者纷纷驰援.若某医疗团队从3名男医生和2名女医生志愿者中,随机选取2名医生赴湖北支援,则至少有1名女医生被选中的概率为__________.14.甲、乙两人玩猜数字游戏,先由甲心中任想一个数字,记为a ,再由乙猜甲刚才想的数字,把乙猜的数字记为b ,且,{0,1,2,,9}a b ∈.若||1a b -,则称甲乙“心有灵犀”.现任意找两人玩这个游戏,则这两人“心有灵犀”的概率为______.15.从甲、乙、丙、丁四人中选3人当代表,则甲被选上的概率为______. 16.执行下面的程序框图,若输入的a ,b ,k 分别为1,2,3,则输出的M =_____17.如图是一个算法流程图,若输入x 的值为2,则输出y 的值为_______. .18.执行如图所示的程序框图,若输入的255a =,68b =,则输出的a 是__________.19.某公司的广告费支出x 与销售额y (单位:万元)之间有下列对应数据:由资料显示y 对x 呈线性相关关系。

《3.3 几何概型》(同步训练)高中数学必修3_人教A版_2024-2025学年

《3.3 几何概型》(同步训练)高中数学必修3_人教A版_2024-2025学年

《3.3 几何概型》同步训练(答案在后面)一、单选题(本大题有8小题,每小题5分,共40分)1、在掷一枚公平的六面骰子的实验中,事件A为“掷出的点数为偶数”,事件B 为“掷出的点数大于3”。

那么事件A与事件B的关系是:A、互斥事件B、对立事件C、相互独立事件D、互不相交事件2、在掷一枚均匀的骰子两次的实验中,事件A:“至少掷出一个6点”与事件B:“两次掷出的点数相同”的概率分别为P(A)和P(B),则下列结论正确的是()A、P(A) > P(B)B、P(A) < P(B)C、P(A) = P(B)D、无法确定P(A)与P(B)的大小关系3、在区间[0,4]上随机取一个实数,则该数大于1的概率是())A.(14)B.(34)C.(12)D.(134、从装有5个红球、4个蓝球和3个黄球的袋子里,随机取出2个球,取出的两个球颜色相同的概率是:A. 5/21B. 8/21C. 12/21D. 15/215、在一个圆盘上随机投针,圆盘的半径为10cm,针的长度为6cm,恰好针完全落在圆盘内的概率是多少?A. 0.3B. 0.4C. 0.5D. 0.66、在下列四个事件中,属于古典概型的是()A、抛掷一枚硬币,它落地时是正面的概率B、从一副52张的扑克牌中,随机抽取一张,抽取到红桃的概率C、从0,1,2,3,4中任取两个不同的自然数,所取得的两个数的和为偶数的概率D、从10000个零件中随机抽取一个,它是合格品的概率7、在等边三角形ABC中,D为BC边上的中点,E为AD上的中点,F为CE的延长线与AB的交点,若AB=6,则AF与BF的比值是:A. 1:1B. 2:1C. 3:1D. 4:18、在一个正方形中,随机取一点,该点距离正方形中心的距离与正方形边长的比值是:A. 0.5B. 0.1C. 0.4D. 0.6二、多选题(本大题有3小题,每小题6分,共18分)1、在下列事件中,属于几何概型的是()A. 抛掷一枚均匀的硬币,出现正面的概率B. 从一副52张的扑克牌中随机抽取一张,抽到红桃的概率C. 从0到1之间随机取一个数,这个数小于0.5的概率D. 从5个不同的球中随机抽取3个,抽到3个特定颜色的概率2、设在长为2的线段上随机取两个点,将线段分为三段,若这三段可以构成三角形的概率为P,则P的值为:A、1/4B、1/2C、1/3D、1/63、在一个等边三角形ABC中,内角A的对边长度为8cm,现从顶点A向BC边引一高AD,并假设在BC边上有一点P使得AP与AD垂直。

几何概型

几何概型
D F C D F C D F C
G
E G
EG
E
A
H
B
A
H
B
A
H
B
3.某人午休醒来 发觉表停了, 某人午休醒来, 例3.某人午休醒来,发觉表停了,他打开收音机想听电 台整点报时,求他等待的时间不多于于10分钟的概率. 10分钟的概率 台整点报时,求他等待的时间不多于于10分钟的概率.
分析: 分析:在哪个时间段打开收音机的概率只与该时间段的长度 有关,而与该时间段的位置无关,这符合几何概型的条件, 有关,而与该时间段的位置无关,这符合几何概型的条件, 由于收音机每一小时报一次, 由于收音机每一小时报一次,可以认为此人打 开收音机的时间正处于两次报时之间, 开收音机的时间正处于两次报时之间,即处于 [0,60]的任意一点 的任意一点, [0,60]的任意一点,于是概率等于等待时间 段的长度与两个整点之间长度的比. 段的长度与两个整点之间长度的比.
等待的时间小于10分钟”为事件A 10分钟 解:记“等待的时间小于10分钟”为事件A, 打开收音机的时刻位于[50 60]时间段内 [50, 打开收音机的时刻位于[50,60]时间段内 则事件A发生. 则事件A发生. 由几何概型的求概率公式得 10 1 P( A) = = 60 6 1 等待报时的时间不多于10分钟” 10分钟 答:等待报时的时间不多于10分钟”的概率为 .
6
变式训练2 某路公共汽车5 变式训练2:某路公共汽车5分钟一班准时到 达某车站,求某一人在该车站等车时间少于3 达某车站,求某一人在该车站等车时间少于3 分钟的概率(假定车到来后每人都能上) 分钟的概率(假定车到来后每人都能上).
a a+2 a+5
设上一班车离站时刻为a, 解:设上一班车离站时刻为a, 则某人到站的一切可能时刻为Ω=(a,a+5), 则某人到站的一切可能时刻为Ω=(a,a+5), 等车时间少于3分钟”为事件A 记“等车时间少于3分钟”为事件A, 则他到站的时刻只能为µ=(a+2,a+5)中的任一时刻 中的任一时刻, 则他到站的时刻只能为µ=(a+2,a+5)中的任一时刻,

苏教版2018-2019学年高中数学必修三教学案:第3章 3.3 几何概型 Word版含答案

苏教版2018-2019学年高中数学必修三教学案:第3章 3.3 几何概型 Word版含答案

观察下面两个试验:(1)早上乘公交车去上学,公交车到站的时间可能是7:00至7:10分之间的任何一个时刻. (2)“神七”返回大陆时着陆场为方圆200 km 2的区域,而主着陆场为方圆120 km 2的区域,飞船在着陆场的任何一个地方着陆的可能性是均等的.问题1:上述两个试验中的基本事件的结果有多少个? 提示:无限个.问题2:每个试验结果出现的可能机会均等吗? 提示:是均等的.问题3:上述两试验属古典概型吗?提示:不属于古典概型,因为试验结果是无限个. 问题4:能否求两试验发生的概率? 提示:可以求出.1.几何概型的定义对于一个随机试验,将每个基本事件理解为从某个特定的几何区域内随机地取一点,该区域中每一点被取到的机会都一样;而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点.这里的区域可以是线段、平面图形、立体图形等.用这种方法处理随机试验,称为几何概型.2.几何概型的计算公式在几何区域D 中随机地取一点,记事件“该点落在其内部一个区域d 内”为事件A ,则事件A 发生的概率P (A )=d 的测度D 的测度.这里要求D 的测度不为0,其中“测度”的意义依D 确定,当D 分别是线段、平面图形和立体图形时,相应的“测度”分别是长度、面积和体积等.1.在几何概型中,“等可能”应理解为对应于每个试验结果的点落入某区域内可能性大小,仅与该区域的度量成正比,而与区域的位置、形状无关.2.判断一试验是否是几何概型的关键是看是否具备两个特征:无限性和等可能性.[例1] 在等腰直角三角形ABC 中,在斜边AB 上任取一点M ,求AM 的长大于AC 的长的概率.[思路点拨] 在AB 上截取AC ′=AC ,结合图形分析适合条件的区域可求概率.[精解详析] 设AC =BC =a , 则AB =2a ,在AB 上截取AC ′=AC , 于是P (AM >AC )=P (AM >AC ′) =BC ′AB =AB -AC AB =2a -a 2a=2-22. 即AM 的长大于AC 的长的概率为2-22.[一点通]在求解与长度有关的几何概型时,首先找到几何区域D ,这时区域D 可能是一条线段或几条线段或曲线段,然后找到事件A 发生对应的区域d ,在找d 的过程中确认边界是问题的关键.1.在区间[1,3]上任取一数,则这个数大于等于1.5的概率为________. 解析:P =3-1.53-1=0.75.答案:0.752.已知函数f (x )=log 2x ,x ∈[12,2],在区间[12,2]上任取一点x 0,则使f (x 0)≥0的概率为________.解析:欲使f (x )=log 2x ≥0,则x ≥1,而x 0∈[12,2],∴x 0∈[1,2],从而由几何概型概率公式知所求概率P =2-12-12=23. 答案:23[例2] (湖南高考改编)如图,EFGH 是以O 为圆心,半径为1的圆的内接正方形.将一颗豆子随机地扔到该圆内, 用A 表示事件“豆子落在正方形EFGH 内”,则P (A )=________.[思路点拨] 可判断为几何概型,利用面积比求其概率.[精解详析] 圆的半径是1,则正方形的边长是2,故正方形EFGH (区域d )的面积为(2)2=2.又圆(区域D )的面积为π, 则由几何概型的概率公式,得P (A )=2π.[答案]2π[一点通]解决此类问题的关键是:(1)根据题意确认是否是与面积有关的几何概型问题;(2)找出或构造出随机事件对应的几何图形.利用图形的几何特征计算相关面积.3.射箭比赛的箭靶是涂有彩色的五个圆环,从外向内分别为白色、黑色、蓝色、红色,靶心是金色,金色靶心叫“黄心”,奥运会的比赛靶面直径为122 cm, 靶心直径为12.2 cm ,运动员在70 m 外射箭,假设每箭都能中靶,且射中靶面内任意一点是等可能的,那么射中黄心的概率为________.解析:记“射中黄心”为事件B ,由于中靶点随机地落在面积为14×π×1222 cm 2的大圆内,而当中靶点落在面积为14×π×12.22 cm 2的黄心内时,事件B 发生,所以事件B 发生的概率P (B )=14π×12.2214π×1222=0.01. 答案:0.014.如图,平面上一长12 cm ,宽10 cm 的矩形ABCD 内有一半径为1 cm 的圆O (圆心O 在矩形对角线交点处).把一枚半径为1 cm 的硬币任意掷在矩形内(硬币完全落在矩形内),求硬币不与圆O 相碰的概率.解:由题意可知:只有硬币中心投在阴影部分(区域d )时才符合要求,所以不与圆相碰的概率为8×10-π×2280=1-π20.[例3] (12分)用橡皮泥做成一个直径为6 cm 的小球,假设橡皮泥中混入一个很小的砂粒,试求这个砂粒距离球心不小于1 cm 的概率.[思路点拨] 先判断概型为几何概型后利用体积比计算概率.[精解详析] 设“砂粒距离球心不小于1 cm ”为事件A ,球心为O ,砂粒位置为M ,则事件A 发生,即OM ≥1 cm.(3分)设R =3,r =1,则区域D 的体积为V =43πR3(5分)区域d 的体积为V 1=43πR 3-43πr 3.(7分)∴P (A )=V 1V =1-(r R )3=1-127=2627.(10分)故砂粒距离球心不小于1 cm 的概率为2627.(12分)[一点通]如果试验的结果所成的区域可用体积来度量,我们要结合问题的背景,选择好观察角度,准确找出基本事件所占的总的体积及事件A 所分布的体积.其概率的计算P (A )=构成事件A 的区域体积试验的全部结果构成的区域体积.5.一只小蜜蜂在一个棱长为30的正方体玻璃容器内随机飞行,若蜜蜂在飞行过程中与正方体玻璃容器6个表面中至少有一个的距离不大于10,则就有可能撞到玻璃上而不安全;若始终保持与正方体玻璃容器6个表面的距离均大于10,则飞行是安全的,假设蜜蜂在正方体玻璃容器内飞行到每一位置可能性相同,那么蜜蜂飞行是安全的概率是________.解析:记“蜜蜂能够安全飞行”为事件A ,则它位于与正方体玻璃容器6个表面的距离均大于10的区域飞行时是安全的,故区域d 为棱长为10的正方体,P (A )=103303=127.答案:1276.在正方体ABCD -A 1B 1C 1D 1中,棱长为1,在正方体内随机取点M ,则使四棱锥M- ABCD 的体积小于16的概率为________.解析:设M 到平面ABCD 的距离为h ,则V M-ABCD =13S 底ABCD ·h =16,S 底ABCD =1,∴h =12.∴只要点M 到平面ABCD 的距离小于12.所有满足点M 到平面ABCD 的距离小于12的点组成以ABCD 为底面,高为h (h <12)的长方体,又正方体棱长为1.∴使棱锥M -ABCD 的体积小于16的概率P =121=12.答案:12利用几何概型计算事件概率分以下几步:(1)判断是否为几何概型,此步关键是把事件看成一次试验,然后看试验是否是等可能试验,并且试验次数是否是无限的.(2)计算基本事件与事件A 所含的基本事件对应的区域的测度(长度、面积或体积). (3)利用概率公式计算.课下能力提升(十七)一、填空题1.在区间[-1,2]上随机取一个数x ,则x ∈[0,1]的概率为 ________. 解析:[-1,2]的长度为3,[0,1]的长度为1,所以概率是13.答案:132.如图,半径为10 cm 的圆形纸板内有一个相同圆心的半径为1 cm 的小圆.现将半径为1 cm 的一枚硬币抛到此纸板上,使硬币整体随机落在纸板内,则硬币落下后与小圆无公共点的概率为________.解析:由题意,硬币的中心应落在距圆心2~9 cm 的圆环上,圆环的面积为π×92-π×22=77π cm 2,故所求概率为77π81π=7781. 答案:77813.如图所示,边长为2的正方形中有一封闭曲线围成的阴影区域,在正方形中随机撒一粒豆子,它落在阴影区域内的概率为23,则阴影区域的面积为________.解析:由几何概型知,S 阴S 正方形=23,故S 阴=23×22=83. 答案:834.一只蚂蚁在三边边长分别为3,4,5的三角形的边上爬行,某时刻该蚂蚁距离三角形的三个顶点的距离均超过1的概率为________.解析:边长为3,4,5三边构成直角三角形,P =(3-1-1)+(4-1-1)+(5-1-1)3+4+5=612=12. 答案:125.如图,在平面直角坐标系中,∠xOT =60°,以O 为端点任作一射线,则射线落在锐角∠xOT 内的概率是________.解析:以O 为起点作射线,设为OA ,则射线OA 落在任何位置都是等可能的,落在∠xOT 内的概率只与∠xOT 的大小有关,符合几何概型的条件.记“射线OA 落在锐角∠xOT 内”为事件A ,其几何度量是60°,全体基本事件的度量是360°,由几何概型概率计算公式,可得P (A )=60360=16. 答案:16二、解答题6.点A 为周长等于3的圆周上一个定点,若在该圆周上随机取一点B ,求劣弧AB ︵的长度小于1的概率.解:如图,圆周上使AM ︵的长度等于1的点M 有两个,设为M 1,M 2,则过A 的圆弧M 1AM 2︵的长度为2,B 点落在优弧M 1AM 2︵上就能使劣弧AB ︵的长度小于1,所以劣弧AB ︵的长度小于1的概率为23.7.有一个底面半径为1,高为2的圆柱,点O 为底面圆的圆心,在这个圆柱内随机取一点P ,求点P 到点O 距离大于1的概率.解:区域D 的体积V =π×12×2=2π,当P 到点O 的距离小于1时,点P 落在以O 为球心,1为半径的半球内,所以满足P 到O 距离大于1的点P 所在区域d 的体积为V 1=V -V 半球=2π-23π=43π.所求的概率为V 1V =23.8.两人约定在20∶00到21∶00之间相见,并且先到者必须等迟到者40分钟方可离去,如果两人出发是各自独立的,在20∶00至21∶00各时刻相见的可能性是相等的,求两人在约定时间相见的概率.解:设两人分别于x 时和y 时到达约见地点,要使两人能在约定时间范围内相见,当且仅当-23≤x -y ≤23.两人到达约见地点所有时刻(x ,y )的各种可能结果可用图中的单位正方形内(包括边界)的点来表示,两人能在约定的时间范围内相见的所有时刻(x ,y )的各种可能结果可用图中的阴影部分(包括边界)来表示,因此阴影部分与单位正方形的面积比就反映了两人在约定时间范围内相遇的可能性的大小,也就是所求的概率为:S阴影S单位正方形=1-(13)212=89.P=。

〖高中数学必修苏教版目录〗

〖高中数学必修苏教版目录〗

高中数学新课标苏教版教材目录数学1第1章集合§1.1集合的含义及其表示§1.2子集、全集、补集§1.3交集、并集第2章函数概念与基本初等函数Ⅰ§2.1函数的概念和图象§函数的概念和图象§函数的表示方法§函数的简单性质§映射的概念§2.2指数函数§分数指数幂§指数函数§2.3对数函数§对数§对数函数§2.4幂函数§2.5函数与方程§二次函数与一元二次方程§用二分法求方程的近似解§2.6函数模型及其应用数学2第3章立体几何初步§3.1空间几何体§棱柱、棱锥和棱台§圆柱、圆锥、圆台和球§中心投影和平行投影§直观图画法§空间图形的展开图§柱、锥、台、球的体积§3.2点、线、面之间的位置关系§平面的基本性质§空间两条直线的位置关系§直线与平面的位置关系§平面与平面的位置关系第4章平面解析几何初步§4.1直线与方程§直线的斜率§直线的方程§两条直线的平行与垂直§两条直线的交点§平面上两点间的距离§点到直线的距离§4.2圆与方程§圆的方程§直线与圆的位置关系§圆与圆的位置关系§4.3空间直角坐标系§空间直角坐标系§空间两点间的距离数学3第5章算法初步§5.1算法的意义§5.2流程图§5.3基本算法语句§5.4算法案例第6章统计§6.1抽样方法§6.2总体分布的估计§6.3总体特征数的估计§6.4线性回归方程第7章概率§7.1随机事件及其概率§7.2古典概型§7.3几何概型§7.4互斥事件及其发生的概率数学4第8章三角函数§8.1任意角、弧度§8.2任意角的三角函数§8.3三角函数的图象和性质第9章平面向量§9.1向量的概念及表示§9.2向量的线性运算§9.3向量的坐标表示§9.4向量的数量积§9.5向量的应用第10章三角恒等变换§10.1两角和与差的三角函数§10.2二倍角的三角函数§10.3几个三角恒等式数学5第11章解三角形§11.1正弦定理§11.2余弦定理§11.3正弦定理、余弦定理的应用第12章数列§12.1等差数列§12.2等比数列§12.3数列的进一步认识第13章不等式§13.1不等关系§13.2一元二次不等式§13.3二元一次不等式组与简单的线性规划问题§13.4基本不等式选修系列11-1第1章常用逻辑用语§1.1命题及其关系§1.2简单的逻辑联结词§1.3全称量词与存在量词第2章圆锥曲线与方程§2.1圆锥曲线§2.2椭圆§2.3双曲线§2.4抛物线§2.5圆锥曲线的共同性质第3章导数及其应用§3.1导数的概念§3.2导数的运算§3.3导数在研究函数中的应用§3.4导数在实际生活中的应用1-2第1章统计案例§1.1独立性检验§1.2线性回归分析第2章推理与证明§2.1合情推理与演绎推理§2.2直接证明与间接证明第3章数系的扩充与复数的引入§3.1数系的扩充§3.2复数的四则运算§3.3复数的几何意义第4章框图§4.1流程图§4.2结构图选修系列22-1第1章常用逻辑用语§1.1命题及其关系§1.2简单的逻辑连接词§1.3全称量词与存在量词第2章圆锥曲线与方程§2.1圆锥曲线§2.2椭圆§2.3双曲线§2.4抛物线§2.5圆锥曲线的统一定义§2.6曲线与方程第3章空间向量与立体几何§3.1空间向量及其运算§3.2空间向量的应用2-2第1章导数及其应用§1.1导数的概念§1.2导数的运算§1.3导数在研究函数中的应用§1.4导数在实际生活中的应用§1.5定积分第2章推理与证明§2.1合情推理与演绎推理§2.2直接证明与间接证明§2.3数学归纳法第3章数系的扩充与复数的引入§3.1数系的扩充§3.2复数的四则运算§3.3复数的几何意义2-3第1章计数原理§1.1两个基本原理§1.2排列§1.3组合§1.4计数应用题§1.5二项式定理第2章概率§2.1随机变量及其概率分布§2.2超几何分布§2.3独立性§2.4二项分布§2.5离散型随机变量的均值与方差§2.6正态分布第3章统计案例§3.1独立性检验§3.2线性回归分析主要编写人员情况主编单墫副主编李善良陈永高主要编写人员数学与应用数学方面:单墫陈永高苏维宜蒋声丁德成洪再吉许道云孙智伟李跃文王晓谦尤建功秦厚荣唐忠明钱定边傅珏生葛福生夏建国孙智伟汪任观数学教育与数学史方面:李善良赵振威葛军徐稼红周焕山朱家生高中数学教师与教研员:仇炳生冯惠愚张乃达祁建新樊亚东石志群董林伟张松年陈光立陆云泉孙旭东于明寇恒清王红兵卫刚单墫 1943年生,南京师范大学数学系教授,博士生导师,享受政府特殊津贴。

高三数学几何概型试题答案及解析

高三数学几何概型试题答案及解析

高三数学几何概型试题答案及解析1.若将一个质点随机投入如图所示的长方形ABCD中,其中AB=2,BC=1,则质点落在以AB为直径的半圆内的概率是()A.B.C.D.【答案】B【解析】由题知,以AB为直径的圆的半径为1,故质点落在以AB为直径的半圆内的概率为=,故选B.考点:几何概型2.在区间上随机取两个数其中满足的概率是()A.B.C.D.【答案】B【解析】在区间[0,2]上随机取两个数x,y,对应区域的面积为4,满足y≥2x,对应区域的面积为×1×2=1,∴所求的概率为,故选B.考点:几何概型3.张先生订了一份《南昌晚报》,送报人在早上6:30-7:30之间把报纸送到他家,张先生离开家去上班的时间在早上7:00-8:00之间,则张先生在离开家之前能拿到报纸的概率是________.【答案】【解析】以横坐标x表示报纸送到时间,以纵坐标y表示张先生离家时间,建立平面直角坐标系,如图.因为随机试验落在方形区域内任何一点是等可能的,所以符合几何概型的条件.根据题意只要点落在阴影部分,就表示张先生在离开家之前能拿到报纸,即所求事件A发生,所以P(A)==.4.已知复数z=x+yi(x,y∈R)在复平面上对应的点为M.(1)设集合P={-4,-3,-2,0},Q={0,1,2},从集合P中随机取一个数作为x,从集合Q中随机取一个数作为y,求复数z为纯虚数的概率;(2)设x∈[0,3],y∈[0,4],求点M落在不等式组:所表示的平面区域内的概率.【答案】(1)(2)【解析】(1)记“复数z为纯虚数”为事件A.∵组成复数z的所有情况共有12个:-4,-4+i,-4+2i,-3,-3+i,-3+2i,-2,-2+i,-2+2i,0,i,2i,且每种情况出现的可能性相等,属于古典概型,其中事件A包含的基本事件共2个:i,2i,∴所求事件的概率为P(A)==.(2)依条件可知,点M均匀地分布在平面区域{(x,y)| }内,属于几何概型,该平面区域的图形为右图中矩形OABC围成的区域,面积为S=3×4=12.而所求事件构成的平面区域为{(x,y)| },其图形如图中的三角形OAD(阴影部分).又直线x+2y-3=0与x轴、y轴的交点分别为A(3,0)、D(0,),∴三角形OAD的面积为S1=×3×=.∴所求事件的概率为P===.5.在区间[-6,6]内任取一个元素x0,抛物线x2=4y在x=x处的切线的倾斜角为α,则α∈[,]的概率为________.【答案】【解析】当切线的倾斜角α∈[,]时,切线斜率的取值范围是(-∞,-1]∪[1,+∞),抛物线x2=4y在x=x0处的切线斜率是x,故只要x∈(-∞,-2]∪[2,+∞)即可,若在区间[-6,6]内取值,则只能取区间[-6,-2]∪[2,6)内的值,这个区间的长度是8,区间[-6,6]的长度是12,故所求的概率是=.6.在可行域内任取一点,规则如流程图所示,求输出数对(x,y)的概率.【答案】【解析】可行域为中心在原点,顶点在坐标轴上的正方形(边长为),x2+y2≤表示半径为的圆及其内部,所以所求概率为=.7.在长为的线段上任取一点,并且以线段为边作正三角形,则这个正三角形的面积介于与之间的概率为()A.B.C.D.【答案】D【解析】解:边长为的正三角形的面积为,由得:在长为的线段上任取一点,有无限个可能的结果,所有可能结果对应一个长度为20的线段,设“以线段为边的正三角形面积介于与之间”为事件M,则包含M的全部基本事对应的是长度为6的线段,所以故选D.【考点】几何概型.8.在平面区域内随机取一点,则所取的点恰好满足的概率是()A.B.C.D.【答案】C【解析】如图,此题为几何概型,,故选C.【考点】几何概型9.一只昆虫在边长分别为、、的三角形区域内随机爬行,则其到三角形顶点的距离小于的地方的概率为 .【答案】.【解析】如下图所示,易知三角形为直角三角形,昆虫爬行的区域是在三角形区域内到以各顶点为圆心,半径为的圆在三角形区域内的部分,实际上就是三个扇形,将这三个扇形拼接起来就是一个半圆,其半径长为,面积为,三角形的面积为,因此昆虫爬行时到三角形顶点的距离小于的地方的概率为.【考点】几何概型10.如图,一半径为的圆形靶内有一个半径为的同心圆,将大圆分成两部分,小圆内部区域记为环,圆环区域记为环,某同学向该靶投掷枚飞镖,每次枚. 假设他每次必定会中靶,且投中靶内各点是随机的.(1)求该同学在一次投掷中获得环的概率;(2)设表示该同学在次投掷中获得的环数,求的分布列及数学期望.【答案】(1);(2)详见解析.【解析】(1)先根据题中条件确定相应的事件为几何概型,然后利用几何概型的概率计算公式(对应区域面积之比)求出相应事情的概率即可;(2)(1)由题意可得是几何概型,设,该同学一次投掷投中环的概率为;(2)由题意可知可能的值为、、、,,,,,的分布列为环,答:的数学期望为环.【考点】1.几何概型;2.离散型随机变量分布列与数学期望11.已知正方体的棱长为2,在四边形内随机取一点,则的概率为_______ ,的概率为_______.【答案】;【解析】四边形为矩形且。

(完整版)高中数学苏教版教材目录(必修+选修)

(完整版)高中数学苏教版教材目录(必修+选修)

苏教版-----------------------------------必修1----------------------------------- 第1章集合1.1集合的含义及其表示1.2子集、全集、补集1.3交集、并集第2章函数2.1函数的概念2.1.1函数的概念和图象2.1.2函数的表示方法2.2函数的简单性质2.2.1函数的单调性2.2.2函数的奇偶性2.3映射的概念第3章指数函数、对数函数和幂函数3.1指数函数3.1.1分数指数幂3.1.2指数函数3.2对数函数3.2.1对数3.2.2对数函数3.3幂函数3.4函数的应用3.4.1函数与方程3.4.2函数模型及其应用-----------------------------------必修2----------------------------------- 第1章立体几何初步1.1空间几何体1.1.1棱柱、棱锥和棱台1.1.2圆柱、圆锥、圆台和球1.1.3中心投影和平行投影1.1.4直观图画法1.2点、线、面之间的位置关系1.2.1平面的基本性质1.2.2空间两条直线的位置关系1.平行直线2.异面直线1.2.3直线与平面的位置关系1.直线与平面平行2.直线与平面垂直1.2.4平面与平面的位置关系1.两平面平行2.平面垂直1.3空间几何体的表面积和体积1.3.1空间几何体的表面积1.3.2空间几何体的体积第2章平面解析几何初步2.1直线与方程2.1.1直线的斜率2.1.2直线的方程1.点斜式2.两点式3.一般式2.1.3两条直线的平行与垂直2.1.4两条直线的交点2.1.5平面上两点间的距离2.1.6点到直线的距离2.2圆与方程2.2.1圆的方程2.2.2直线与圆的位置关系2.2.3圆与圆的位置关系2.3空间直角坐标系2.3.1空间直角坐标系2.3.2空间两点间的距离-----------------------------------必修3----------------------------------- 第1章算法初步1.1算法的意义1.2流程图1.2.1顺序结构1.2.2选择结构1.2.3循环结构1.3基本算法语句1.3.1赋值语句1.3.2输入、输出语句1.3.3条件语句1.3.4循环语句1.4算法案例第2章统计2.1抽样方法2.1.1简单随机抽样1.抽签法2.随机数表法2.1.2系统抽样2.1.3分层抽样2.2总体分布的估计2.2.1频率分布表2.2.2频率分布直方图与折线图2.2.3茎叶图2.3总体特征数的估计2.3.1平均数及其估计2.3.2方差与标准差2.4线性回归方程第3章概率3.1随机事件及其概率3.1.1随机现象3.1.2随机事件的概率3.2古典概型3.3几何概型3.4互斥事件-----------------------------------必修4----------------------------------- 第1章三角函数1.1任意角、弧度1.1.1任意角1.1.2弧度制1.2任意角的三角函数1.2.1任意角的三角函数1.2.2同角三角函数关系1.2.3三角函数的诱导公式1.3三角函数的图象和性质1.3.1三角函数的周期性1.3.2三角函数的图象与性质1.3.3函数y=Asin(ωx+ψ)的图象1.3.4三角函数的应用第2章平面向量2.1向量的概念及表示2.2向量的线性运算2.2.1向量的加法2.2.2向量的减法2.2.3向量的数乘2.3向量的坐标表示2.3.1平面向量基本定理2.3.2平面向量的坐标运算2.4向量的数量积2.5向量的应用第3章三角恒等变换3.1两角和与差的三角函数3.1.1两角和与差的余弦3.1.2两角和与差的正弦3.1.3两角和与差的正切3.2二倍角的三角函数3.3几个三角恒等式-----------------------------------必修5----------------------------------- 第1章解三角形1.1正弦定理1.2余弦定理1.3正弦定理、余弦定理的应用第2章数列2.1数列2.2等差数列2.2.1等差数列的概念2.2.2等差数列的通项公式2.2.3等差数列的前n项和2.3等比数列2.3.1等比数列的概念2.3.2等比数列的通项公式2.3.3等比数列的前n项和第3章不等式3.1不等关系3.2一元二次不等式3.3二元一次不等式组与简单的线性规划问题3.3.1二元一次不等式表示的平面区域3.3.2二元一次不等式组表示的平面区域 3.3.3简单的线性规划问题3.4基本不等式2b a ab +≤)0,0(≥≥b a 3.4.1基本不等式的证明3.4.2基本不等式的应用-----------------------------------选修1-1-----------------------------------第1章 常用逻辑用语1.1命题及其关系1.1.1四种命题1.1.2充分条件和必要条件 1.2简单的逻辑联结词1.3全称量词与存在量词1.3.1量词1.3.2含有一个量词的命题的否定 第2章 圆锥曲线与方程 2.1圆锥曲线2.2椭圆2.2.1椭圆的标准方程2.2.2椭圆的几何性质2.3双曲线2.3.1双曲线的标准方程2.3.2双曲线的几何性质 2.4抛物线2.4.1抛物线的标准方程2.4.2抛物线的几何性质 2.5圆锥曲线的共同性质 第3章 导数及其应用3.1导数的概念3.1.1平均变化率3.1.2瞬时变化率——导数3.2导数的运算3.2.1常见函数的导数3.2.2函数的和、差、积、商的导数 3.3导数在研究函数中的应用3.3.1单调性3.3.2极大值和极小值3.3.3最大值和最小值3.4导数在实际生活中的应用-----------------------------------选修1-2-----------------------------------第1章 统计案例 1.1独立性检验 1.2回归分析第2章 推理与证明2.1合情推理与演绎推理2.1.1合情推理2.1.2演绎推理2.1.3推理案例欣赏 2.2直接证明与间接证明2.2.1直接证明2.2.2间接证明 第3章 数系的扩充与复数的引入 3.1数系的扩充 3.2复数的四则运算 3.3复数的几何意义 第4章 框图 4.1流程图 4.2结构图-----------------------------------选修2-1-----------------------------------第1章 常用逻辑用语1.1命题及其关系1.1.1四种命题1.1.2充分条件和必要条件 1.2简单的逻辑联结词1.3全称量词与存在量词1.3.1量词1.3.2含有一个量词的命题的否定 第2章 圆锥曲线与方程 2.1圆锥曲线2.2椭圆2.2.1椭圆的标准方程2.2.2椭圆的几何性质2.3双曲线2.3.1双曲线的标准方程2.3.2双曲线的几何性质 2.4抛物线2.4.1抛物线的标准方程2.4.2抛物线的几何性质 2.5圆锥曲线的统一定义2.6曲线与方程2.6.1曲线与方程2.6.2求曲线的方程2.6.3曲线的交点 第3章 空间向量与立体几何3.1空间向量及其运算3.1.1空间向量及其线性运算3.1.2共面向量定理3.1.3空间向量基本定理3.1.4空间向量的坐标表示3.1.5空间向量的数量积 3.2空间向量的应用3.2.1直线的方向向量与平面的法向量3.2.2空间线面关系的判定3.2.3空间的角的计算-----------------------------------选修2-2-----------------------------------第一章 导数及其应用1.1导数的概念1.1.1平均变化率1.1.2瞬时变化率——导数1.2导数的运算1.2.1常见函数的导数1.2.2函数的和、差、积、商的导数1.2.3简单复合函数的导数1.3导数在研究函数中的应用1.3.1单调性1.3.2极大值和极小值1.3.3最大值和最小值 1.4导数在实际生活中的应用1.5定积分1.5.1曲边梯形的面积1.5.2定积分1.5.3微积分基本定理 第二章 推理与证明2.1合情推理与演绎推理2.1.1合情推理2.1.2演绎推理2.1.3推理案例欣赏 2.2直接证明与间接证明2.2.1直接证明2.2.2间接证明 2.3数学归纳法第三章 数系的扩充与复数的引入 3.1数系的扩充 3.2复数的四则运算 3.3复数的几何意义-----------------------------------选修2-3-----------------------------------第一章 计数原理 1.1两个基本原理 1.2排列 1.3组合1.4计数应用题1.5二项式定理1.5.1二项式定理1.5.2二项式系数的性质及用第二章概率2.1随机变量及其概率分布2.2超几何分布2.3独立性2.3.1条件概率2.3.2事件的独立性2.4二项分布2.5随机变量的均值与方差2.5.1离散型随机变量的均值2.5.2离散型随机变量的方差与标准差2.6正态分布第三章统计案例3.1独立性检验3.2回归分析-----------------------------------选修4-1----------------------------------- 1.1 相似三角形的进一步认识1.1.1平行线分线段成比例定理1.1.2相似三角形1.2 圆的进一步认识1.2.1圆周角定理1.2.2圆的切线1.2.3圆中比例线段1.2.4圆内接四边形1.3 圆锥截线1.3.1球的性质1.3.2圆柱的截线1.3.3圆锥的截线学习总结报告-----------------------------------选修4-2----------------------------------- 2.1 二阶矩阵与平面向量2.1.1矩阵的概念2.1.2二阶矩阵与平面列向量的乘法2.2 几种常见的平面变换2.2.1恒等变换2.2.2伸压变换2.2.3反射变换2.2.4旋转变换2.2.5投影变换2.2.6切变变换2.3 变换的复合与矩阵的乘法2.3.1矩阵乘法的概念2.3.2矩阵乘法的简单性质2.4 逆变换与逆矩阵2.4.1逆矩阵的概念2.4.2二阶矩阵与二元一次方程组2.5 特征值与特征向量2.6 矩阵的简单应用学习总结报告-----------------------------------选修4-4----------------------------------- 4.1 直角坐标系4.1.1直角坐标系4.1.2极坐标系4.1.3球坐标系与柱坐标系4.2 曲线的极坐标方程4.2.1曲线的极坐标方程的意义4.2.2常见曲线的极坐标方程4.3 平面坐标系中几种常见变换4.3.1平面直角坐标系中的平移变换4.3.2平面直角坐标系中的伸缩变换4.4 参数方程4.4.1参数方程的意义4.4.2参数方程与普通方程的互化4.4.3参数方程的应用4.4.4平摆线与圆的渐开线学习总结报告-----------------------------------选修4-5----------------------------------- 5.1 不等式的基本性质5.2 含有绝对值的不等式5.2.1含有绝对值的不等式的解法5.2.2含有绝对值的不等式的证明5.3 不等式的证明5.3.1比较法5.3.2综合法和分析法5.3.3反证法5.3.4放缩法5.4 几个著名的不等式5.4.1柯西不等式5.4.2排序不等式5.4.3算术-几何平均值不等式5.5 运用不等式求最大(小)值5.5.1运用算术-几何平均值不等式求最大(小)值5.5.2运用柯西不等式求最大(小)值5.6 运用数学归纳法证明不等式学习总结报告。

2018-2019学年数学苏教版必修3:课下能力提升(十七) 几何概型-含解析

2018-2019学年数学苏教版必修3:课下能力提升(十七) 几何概型-含解析

课下能力提升(十七) 几何概型一、填空题1.在区间[-1,2]上随机取一个数x ,则x ∈[0,1]的概率为 ________.2.如图,半径为10 cm 的圆形纸板内有一个相同圆心的半径为1 cm 的小圆.现将半径为1 cm 的一枚硬币抛到此纸板上,使硬币整体随机落在纸板内,则硬币落下后与小圆无公共点的概率为________.3.如图所示,边长为2的正方形中有一封闭曲线围成的阴影区域,在正方形中随机撒一粒豆子,它落在阴影区域内的概率为23,则阴影区域的面积为________.4.一只蚂蚁在三边边长分别为3,4,5的三角形的边上爬行,某时刻该蚂蚁距离三角形的三个顶点的距离均超过1的概率为________.5.如图,在平面直角坐标系中,∠xOT =60°,以O 为端点任作一射线,则射线落在锐角∠xOT 内的概率是________.二、解答题6.点A 为周长等于3的圆周上一个定点,若在该圆周上随机取一点B ,求劣弧 AB 的长度小于1的概率.7.有一个底面半径为1,高为2的圆柱,点O 为底面圆的圆心,在这个圆柱内随机取一点P ,求点P 到点O 距离大于1的概率.8.两人约定在20∶00到21∶00之间相见,并且先到者必须等迟到者40分钟方可离去,如果两人出发是各自独立的,在20∶00至21∶00各时刻相见的可能性是相等的,求两人在约定时间相见的概率.答案1.解析:[-1,2]的长度为3,[0,1]的长度为1,所以概率是13. 答案:132.解析:由题意,硬币的中心应落在距圆心2~9 cm 的圆环上,圆环的面积为π×92-π×22=77π cm 2,故所求概率为77π81π=7781. 答案:77813.解析:由几何概型知,S 阴S 正方形=23,故S 阴=23×22=83. 答案:834.解析:边长为3,4,5三边构成直角三角形,P =(3-1-1)+(4-1-1)+(5-1-1)3+4+5=612=12. 答案:125.解析:以O 为起点作射线,设为OA ,则射线OA 落在任何位置都是等可能的,落在∠xOT 内的概率只与∠xOT 的大小有关,符合几何概型的条件.记“射线OA 落在锐角∠xOT 内”为事件A ,其几何度量是60°,全体基本事件的度量是360°,由几何概型概率计算公式,可得P (A )=60360=16. 答案:166.解:如图,圆周上使 AM 的长度等于1的点M 有两个,设为M1,M 2,则过A 的圆弧12M AM 的长度为2,B 点落在优弧 12M AM 上就能使劣弧 AB 的长度小于1,所以劣弧 AB 的长度小于1的概率为23.7.解:区域D 的体积V =π×12×2=2π,当P 到点O 的距离小于1时,点P 落在以O 为球心,1为半径的半球内,所以满足P 到O 距离大于1的点P 所在区域d 的体积为V 1=V -V 半球=2π-23π=43π.所求的概率为V 1V =23.8.解:设两人分别于x 时和y 时到达约见地点,要使两人能在约定时间范围内相见,当且仅当-23≤x -y ≤23. 两人到达约见地点所有时刻(x ,y )的各种可能结果可用图中的单位正方形内(包括边界)的点来表示,两人能在约定的时间范围内相见的所有时刻(x ,y )的各种可能结果可用图中的阴影部分(包括边界)来表示,因此阴影部分与单位正方形的面积比就反映了两人在约定时间范围内相遇的可能性的大小,也就是所求的概率为:P =S 阴影S 单位正方形=1-(13)212=89.。

苏教版必修3单元测试卷【12】几何概型(A)(含答案)

苏教版必修3单元测试卷【12】几何概型(A)(含答案)

几何概型(A)时间:120分钟;满分:160分)一、填空题(本大题共14小题,每小题5分,共70分,)1.如图,一颗豆子随机扔到桌面上,假设豆子不落在线上,则它落在阴影区域的概率为 .2.在500mL 的水中有一个草履虫,现从中随机取出2mL 水样放到显微镜下观察,则发现草履虫的概率为 .3.在面积为S 的△ABC 的边AB 上任取一点P ,则△PBC 的面积大于4S的概率是 . 4.在区间]2,2[-上随机取一个数x ,则事件“1||≤x ”发生的概率是 .5.如图,矩形长为6,宽为4,在矩形内随机地撒300颗黄豆,数得落在椭圆外的黄豆数为96颗,以此实验数据为依据可以估计出椭圆的面积约为 .6.在平面直角坐标系中,45=∠AOB (o 为坐标原点),任作射线OP ,则OP 落在AOB∠内的概率为 .7.设x 是一个锐角,则sin x >12的概率为 .8.(2010·陕西宝鸡)点P 在边长为1的正方形ABCD 内运动,则动点P 到定点A 的距离PA <1的概率为 .9.已知f (x )=x 2+x -2 x ∈D ,其中D =[-3,3],在D 内任取x 0,使f (x 0)≥0的概率为 . 10.设A 为圆周上一点,在圆周上等可能的任取一点与A 连接,则弦长超过半径2倍的概率是 .11. 设b 是区间()1,0内的任一实数,则方程02=++b x x 有实根的概率为 .12.在边长为2的正△ABC 所在平面内,以A 为圆心,3为半径画一弧,分别交AB 、AC 于D 、E ,若在△ABC 这一平面区域内任丢一粒豆子,则豆子落在扇形ADE 内的概率是________.13. 矩形ABCD 中,8,6==AD AB ,向该矩形内随机投一点P ,则90>∠APD 的概率为 .14.在区间(0,1)中,随机的取出两数,其和小于12的概率 . 二、解答题(本大题共6小题,共90分,解答应写出文字说明、证明过程或演算步骤...................) 15.设有一个正方形网格,其中每个小正方形的边长都是6cm ,现用直径为2cm 的硬币投掷到此网格上,求硬币落下后与格线有公共点的概率.16.在长为12cm 的线段AB 上任取一点C ,现作一矩形,令边长分别等于线段AC ,CB 的长,求该矩形面积小于32cm 2的概率.17.在区间))(5,(R a a a ∈+上任取一个数x . (1)若1=a ,求5>x 的概率; (2)若x 比3.5大的概率为54,求x 比4小的概率.18.已知函数()[]1,1,-∈+=x b x x f ,若b 是从区间[]2,0上任取一个实数,求函数()x f y =有零点的概率.19.在ABC ∆中,3=AB ,3=AC ,30=∠BAC ,在边AB 上任取一点D , (1)求CDB ∠为钝角的概率; (2)求CDB ∆为钝角三角形的概率.参考答案一、填空题(本大题共14小题,每小题5分,共70分,) 1.31;2.0.004;3. 34 ;4.0.5;5.25408;6.81;7.32;8. π4;9.0.5;10. 1211.41;12.3π6;13.6π;14.18二、解答题(本大题共6小题,共90分,解答应写出文字说明、证明过程或演算步骤...................) 15.解答 取其中一格,把正方形的各边向内缩1cm ,得到一个边长为4cm 的小正方形,若硬币的圆心落在小正方形内,则硬币与格线没有公共点,否则与格线有公共点,故所求概率为95646222=-. 16.设线段AC 的长为x cm ,则线段CB 的长为(12x -)cm,那么矩形的面积为(12)x x -cm 2,由(12)32x x -<,解得48x x <>或.又012x <<,所以该矩形面积小于32cm 2的概率为23. 17.(1)若1=a ,则区间()5,+a a 为()6,1,故5>x 的概率.511656=--=P(2)由题意可得5455.35=-+-+a a a ,解得5.2=a ,此时区间()5,+a a 为()5.7,5.2,所以x比4小的概率为1035.25.75.24=--.18. 函数()[]1,1,-∈+=x b x x f 有零点,即方程[]()1,10-∈=+x b x 有解, 又由[]2,0∈b ,得[]0,2-∈-b ,故[]0,1-∈-=b x ,即[]1,0∈b .故试验的全部结果构成的区域为[]2,0,构成事件“()x f y =有零点”的区域为[]1,0,所求概率210201=--=P . 19.解 (1)作AB CF ⊥于F ,则当D 在线段BF(不含F )上时,CDB ∠为钝角,所以所求概率为21323'==AB BD .(2)若CDB ∆为钝角三角形,则可以是CDB ∠为钝角, 或BCD ∠为钝角.作BC CE ⊥交AB 于E ,可求得1=AE ,故所求概率为653231'=+=+ABBDAE . 20.(1)把能取到的所有整数对()n m ,看做是平面直角坐标系上的点.。

2018年数学同步优化指导必修3练习:3-3-2 均匀随机数

2018年数学同步优化指导必修3练习:3-3-2 均匀随机数

第三章 3.3 3.3.21.与均匀随机数特点不符的是( )A .它是[0,1]内的任何一个实数B .它是一个随机数C .出现的每一个实数都是等可能的D .是随机数的平均数解析:A 、B 、C 是均匀随机数的定义,均匀随机数的“均匀”是“等可能”的意思,并不是“随机数的平均数”.答案:D2.若-4≤x ≤2,则x 是负数的概率是( )A .14B .34C .13D .23解析:P =0-(-4)2-(-4)=46=23. 答案:D3.两根电线杆相距100 m ,若遭遇雷击,且雷击点距离电线杆10 m 之内时,电线杆上的输电设备将受损,则遭受雷击时设备受损的概率为 ( )A .0.1B .0.2C .0.05D .0.5 解析:如图所示,AB =100 m ,AC =DB =10 m ,则当雷击点位于AC 或BD 上时,设备受损.记“遭受雷击时设备受损”为事件A ,故所求的概率为P (A )=AC +DB AB=0.2.答案:B4.在半径为1的圆内一条直径上任取一点,过这个点作垂直于直径的弦,则弦长超过圆内接等边三角形边长的概率是________.解析:记事件A 为“弦长超过圆内接等边三角形的边长”,如图,不妨在过等边三角形BCD 的顶点B 的直径BE 上任取一点F 作垂直于直径的弦,当弦为CD 时,就是等边三角形的边长(此时F 为OE 中点),弦长大于CD 的充要条件是圆心O 到弦的距离小于OF ,由几何概型公式得,P (A )=12×22=12.答案:125.利用计算机产生100个[2,6]上的均匀随机数,具体如何操作?解:(1)在A1~A100产生100个0~1之间的均匀随机数.(2)选定B1格,键入“=A1*4+2”,按Enter 键,则在此格中的数是随机产生的[2,6]上的均匀随机数.(3)选定B1格,拖动至B100,则在B1~B100的数都是[2,6]上的均匀随机数.。

2017-2018版高中数学33-2几何概型2试题苏教版必修3推

2017-2018版高中数学33-2几何概型2试题苏教版必修3推

第2课时 几何概型(2)双基达标 限时15分钟1.如图,在直角坐标系内,射线OT 是60°角的终边,任作一条射线OA ,则射线OA 落在∠xOT 内的概率为________.解析 设B ={射线OA 落在∠xOT 内},则由∠xOT =60°,得P (B )=60°360°=16.所以射线OA 落在∠xOT 内的概率为16.答案 162.电脑“扫雷”游戏的操作面被平均分成480块,其中有99块埋有地雷,现在操作面上任意点击一下,碰到地雷的概率为________.解析 样本空间为480块,设“碰到地雷”为事件A ,则事件A 发生的区域为99块,∴P (A )=99480=33160.答案331603.假设△ABC 为圆的内接三角形,AC =BC ,AB 为圆的直径,向该圆内随机投一点,则该点落在△ABC 内的概率是________.解析 设圆的半径为R ,则AB =2R ,则样本空间对应的几何区域D 的测度为πR 2,事件发生对应的几何区域d 的测度为R 2,∴P =R 2πR 2=1π.答案1π4.在长为10 cm 的线段AB 上任取一点M ,并以线段AM 为边作正方形,则正方形的面积介于36 cm 2与81 cm 2之间的概率是________.解析 设AM =x ,则36<x 2<81,∴6<x <9,∴P =9-610=0.3.答案 0.35.在区间(10,20]内的所有实数中,随机取一个实数a ,则这个实数不大于13的概率是________.解析 P =13-1020-10=310=0.3.答案 0.36.某公共汽车站,每隔15分钟有一辆车发出,并且发出前在车站停靠3分钟. (1)求乘客到站候车时间大于10分钟的概率; (2)求乘客到站候车时间不超过10分钟的概率; (3)求乘客到达车站立即上车的概率.解 (1)如图所示,设相邻两班车的发车时刻为T 1、T 2,T 1T 2=15.设T 0T 2=3,TT 0=10,记“乘客到站候车时间大于10分钟”为事件A ,则当乘客到站时刻t 落到T 1T 上时,事件A 发生.因为T 1T =15-3-10=2,T 1T 2=15,所以P (A )=T 1T T 1T 2=215. (2)如上图所示,当时间t 落在TT 2上时,乘客到站候车时间不超过10分钟,故所求概率为P =TT 2T 1T 2=1315. (3)如上图所示,当t 落在T 0T 2上时,乘客立即上车,故所求概率为P =T 0T 2T 1T 2=315=15. 综合提高 限时30分钟7.地球上的山地、水和陆地面积比约为3∶6∶1,那么太空的一块陨石恰好落在陆地上的概率为________.解析 因为陆地所占比例为13+6+1=110,所以陨石恰好落在陆地上的概率为110.答案 1108.如图的矩形,长为5,宽为3,在矩形内随机地撒300颗黄豆,数得落在阴影部分的黄豆数为120颗,则我们可以估计出阴影部分的面积为________.解析 矩形的面积S =5×3=15,阴影部分的面积设为S 阴影, 由几何概型的概率公式知P =S 阴影15≈120300,∴S 阴影≈120×15300=6. 答案 69.在边长为2的正方形中有一个内切圆,向正方形中随机撒一把芝麻,用随机模拟的方法来估计圆周率π的值.如果撒了1 000颗芝麻,落在圆内的芝麻总数是776颗,那么这次模拟中π的估计值是________(精确到0.001).解析 由于芝麻落在正方形内任一位置的可能性相等且可以落在任一位置,由几何概型的概率公式知:S 内切圆S 正方形=7761 000,∴π·1222=7761 000,∴π=776250=3.104. 答案 3.10410.甲、乙两人约定上午7:00至8:00之间到某站乘公共汽车,在这段时间内有3班公共汽车,它们开车时刻分别为7:20,7:40,8:00,若他们约定,见车就乘,则甲、乙同乘一车的概率为________.解析设甲到达汽车站的时间为x ,乙到达汽车站的时间为y ,则7≤x ≤8,7≤y ≤8,即甲、乙两人到达汽车站的时刻(x ,y )所对应的区域在平面直角坐标系中画出(如图所示)是大正方形.将三班车到站的时刻在图形中画出,则甲、乙两人要想乘同一班车,必须满足7≤x ≤713,7≤y ≤713;713≤x ≤723,713≤y ≤723;723≤x ≤8,723≤y ≤8.即(x ,y )必须落在图形中的三个带阴影的小正方形内,所以由几何概型的计算公式得,P =⎝ ⎛⎭⎪⎫132×312=13. 答案 1311.设点M (x ,y )在|x |≤1,|y |≤1时按均匀分布出现,试求满足: (1)x +y ≥0的概率; (2)x +y <1的概率; (3)x 2+y 2≥1的概率. 解如图,满足|x |≤1,|y |≤1的点组成一个边长为2的正方形ABCD ,则S 正方形ABCD =4. (1)方程x +y =0的图象是直线AC ,满足x +y ≥0的点在AC 的右上方,即在△ACD 内(含边界),而S △ACD =12S 正方形ABCD =2,所以P (x +y ≥0)=24=12.(2)设E (0,1)、F (1,0),则x +y =1的图象是EF 所在的直线,满足x +y <1的点在直线EF 的左下方,即在五边形ABCFE 内(不含边界EF ),而S 五边形ABCFE =S 正方形ABCD -S △EDF =4-12=72,所以P (x +y <1)=S 五边形ABCFE S 正方形ABCD =724=78.(3)满足x 2+y 2=1的点是以原点为圆心的单位圆O ,S ⊙O =π, 所以P (x 2+y 2≥1)=S 正方形ABCD -S ⊙O S 正方形ABCD =4-π4.12.甲、乙两艘轮船驶向一个不能同时停泊两艘轮船的码头,它们在一昼夜内任何时刻到达是等可能的.如果甲船的停泊时间是1 h ,乙船是2 h ,求它们中的任何一艘都不需要等待码头空出的概率.解 设甲、乙两船到达码头的时刻分别是x 及y ,则x 及y 均可能取区间[0,24]内的任一值,即0≤x ≤24,0≤y ≤24.而要求它们中的任何一艘都不需要等待码头空出,也就是要求两船不可能会面.那么必须甲比乙早到1 h 以上,即y -x ≥1.或者乙比甲早到2 h 以上,即x -y ≥2.在平面上建立直角坐标系,如图,则(x ,y )的所有可能结果是边长为24的正方形.而两艘船不可能会面的时间由图中阴影部分所表示,这是一个几何概型问题.依上述分析,记A 表示“两艘船都不需要等待码头空出”.则P =A 1的面积+A 2的面积正方形的面积=12 24-1 2+1224-2 2242=0.879,即它们中的任何一艘都不需要等待码头空出的概率为0.879.13.(创新拓展)设有一个等边三角形网格,其中各个最小等边三角形的边长都是4 3 cm.现用直径为2 cm 的硬币投掷到此网格上,求硬币落下后与格线没有公共点的概率.解记“硬币落下后与格线无公共点”为事件A ,如图所示.△A ′B ′C ′的边长为2 3.∴P (A )=S △A ′B ′C ′S △ABC =34× 23 234× 432=14.。

2018版高中数学33-1几何概型几何概型(1)试题苏教版必修3 精品

2018版高中数学33-1几何概型几何概型(1)试题苏教版必修3 精品

3.3 几何概型 第一课时 几何概型(一)双基达标 限时15分钟一.在面积为S 的△ABC 的边AB 上任取一点P ,则△PBC 的面积大于S4的概率是________.解析如图,P 为△ABC 的边AB 上一点,S △PBC =12BC ·PB ·sin B ,S △ABC =12BC ·AB ·sin B =S ,欲使S △PBC =12BC ·PB ·sin B >S 4,,则PB >14AB .故△PBC 的面积大于S4的概率为AB -14AB AB=34. 答案 342.已知半径为23的球内有一内接正方体,若球内任取一点,则该点在正方体内的概率为________.解析 由题意可知,设正方体的棱长为a , 则3a =2×23, ∴a =4,故V 球=43πR 3=43π(23)3=323π,V 正方体=a 3=64.由几何概型计算公式可知, 所求事件的概率P =64323π=233π.答案233π3.已知⊙O 是等边三角形ABC 的内切圆,在△ABC 内随机取一点,则该点落在⊙O 内的概率为________.解析设等边三角形ABC 的边长为a ,内切圆半径为r , 则S △ABC =34a 2,tan 30°=r a 2=2r a =33, ∴r =36a , ∴S ⊙O =πr 2=π·336a 2=π12a 2,∴所求概率为P =π12a 234a 2=39π. 答案 39π 4.如图所示,有一瓶2升的水,其中含有一个细菌.用一小杯从这瓶水中取出0.一升水,求小杯水中含有这个细菌的概率为________.解析 记“小杯水中含有这个细菌”为事件A ,则事件A 的概率只与取出的水的体积有关,符合几何概型的条件.∵小瓶中有0.一升水,原瓶中有2升水. ∴由几何概型求概率的公式得P(A )=0.12=0.05.答案 0.05 5.如图,某人向圆内投镖,如果他每次都投在圆内,那么他投中正方形区域的概率为________(结果用分数表示).解析 设圆的半径为r ,则圆的内接正方形的边长为2r ,由几何概型的概率公式知,投中正方形区域的概率为P =2r 2πr 2=2π.答案2π6.判断下列试验是否为几何概型?并说明理由. (一)在某月某日,某个市区降雨的概率.(2)在一 000 mL 的水中有一个草履虫,现从中随机取出300 mL 水样放到显微镜下观察,则发现草履虫的概率.解 (一)不是几何概型,因为其不具有无限性、等可能性;(2)是几何概型,因为其具有①无限性,②等可能性,符合几何概型的特征.综合提高 限时30分钟7.如图,靶子由三个半径分别为R,2R,3R 的同心圆组成,如果你向靶子随机地掷一个飞镖,命中M 一区域,M 2区域,M 3区域的概率分别为P 一,P 2,P 3,则P 一∶P 2∶P 3=________.解析 可分别求得P 一=19,P 2=13,P 3=59,故P 一∶P 2∶P 3=一∶3∶5.答案 一∶3∶58.在一杯一0 L 的清水中,有一条小鱼,现任意取出一 L 清水,则小鱼被取到的概率为________.解析 以体积为测度,故P =110.答案1109.某人欲从某车站乘车出差,已知该站发往各站的客车均每小时一班,求此人等车时间不多于一0 min 的概率为________.解析 以分钟为单位,∴P =1060=16. 答案 16一0.函数f (x )=x 2-x -2,x ∈[-5,5],那么任意x 0∈[-5,5],使f (x 0)≤0的概率为________.解析 由f (x 0)≤0,解得-一≤x 0≤2,∴P =2- -1 5- -5 =310=0.3.答案 0.3一一.已知集合A ={x |-一<x <5},B ={x |2<x <3},在集合A 中任取一个元素x ,求事件“x ∈A ∩B ”的概率.解 A ∩B ={x |2<x <3},因为集合A 的测度为5-(-一)=6,集合A ∩B 的测度为3-2=一.故事件“x ∈A ∩B ”的概率为P =16.一2.某袋黄豆种子共一00 kg ,现加入20 kg 黑豆种子并拌匀,从中随机取一粒,则这粒种子是黄豆、黑豆的概率分别是多少?解 符合几何概型,测度为质量(相当于体积). 设这粒种子是黄豆、黑豆的概率分别为P 一,P 2. 则P 一=100100+20=56,P 2=20100+20=16.所以,这粒种子是黄豆、黑豆的概率分别为56和16.一3.(创新拓展)点A 为周长等于3的圆周上的一个定点.若在该圆周上随机取一点B ,求劣弧的长度小于一的概率.解 在圆周上取两点C 与G ,使==一,则点B 可以在与上取,故所求概率为P =23.。

2018版高中数学苏教版必修三学案:3.3 几何概型

2018版高中数学苏教版必修三学案:3.3 几何概型

[学习目标] 1.了解几何概型与古典概型的区别.2.理解几何概型的定义及其特点.3.会用几何概型的概率计算公式求几何概型的概率.知识点一几何概型的含义1.几何概型的定义设D是一个可度量的区域(例如线段、平面图形、立体图形等),每个基本事件可以视为从区域D内随机地取一点,区域D内的每一点被取到的机会都一样;随机事件A的发生可以视为恰好取到区域D内的某个指定区域d中的点.这时,事件A发生的概率与d的测度(长度、面积、体积等)成正比,与d的形状和位置无关.我们把满足这样条件的概率模型称为几何概型.2.几何概型的特点(1)试验中所有可能出现的结果(基本事件)有无限多个.(2)每个基本事件出现的可能性相等.[思考]几何概型与古典概型有何区别?答几何概型与古典概型的异同点知识点二几何概型的概率计算公式一般地,在几何区域D中随机地取一点,记事件“该点落在其内部一个区域d内”为事件A,则事件A 发生的概率P (A )=d 的测度D 的测度.[思考] 计算几何概型的概率时,首先考虑的应该是什么? 答 首先考虑取点的区域,即要计算的区域的几何度量.题型一 与长度有关的几何概型例1 取一根长为3m 的绳子,拉直后在任意位置剪断,那么剪得两段的长都不小于1m 的概率有多大?解 如图,记“剪得两段的长都不小于1m ”为事件A .把绳子三等分,于是当剪断位置处在中间一段时,事件A 发生,因为中间一段的长度为1m ,所以事件A 发生的概率为P (A )=13.反思与感悟 在求解与长度有关的几何概型时,首先找到试验的全部结果构成的区域D ,这时区域D 可能是一条线段或几条线段或曲线段,然后找到事件A 发生对应的区域d ,在找区域d 的过程中,确定边界点是问题的关键,但边界点是否取到却不影响事件A 的概率. 跟踪训练1 平面上画了一组彼此平行且相距2a 的平行线.把一枚半径r <a 的硬币任意投掷在平行线之间,求硬币不与任一条平行线相碰的概率. 解 设“硬币不与任一条平行线相碰”为事件A .如图,在两条相邻平行线间画出与平行线间距为r 的两条平行虚线,则当硬币中心落在两条虚线间时,与平行线不相碰.故P (A )=虚线间距离平行线间距离=2a -2r 2a =a -r a .题型二 与面积有关的几何概型例2 射箭比赛的箭靶中有五个涂有不同颜色的圆环,从外向内分别为白色、黑色、蓝色、红色,靶心是金色,金色靶心叫“黄心”.奥运会的比赛靶面直径为122cm ,靶心直径为12.2cm ,运动员在一定距离外射箭,假设每箭都能中靶,且射中靶面内任意一点是等可能的,那么射中黄心的概率为多少? 解 如图,记“射中黄心”为事件B .因为中靶点随机地落在面积为⎝⎛⎭⎫14×π×1222cm 2的大圆内,而当中靶点落在面积为⎝⎛⎭⎫14×π×12.22cm 2的黄心内时,事件B 发生,所以事件B 发生的概率P (B )=14×π×12.2214×π×1222=0.01.反思与感悟 解此类几何概型问题的关键:(1)根据题意确定是不是与面积有关的几何概型问题.(2)找出或构造出随机事件对应的几何图形,利用图形的几何特征计算相关面积,套用公式从而求得随机事件的概率.跟踪训练2 一只海豚在水池中自由游弋,水池为长30m ,宽20m 的长方形,求此刻海豚嘴尖离岸边不超过2m 的概率.解 如图所示,区域Ω是长30m 、宽20m 的长方形.图中阴影部分表示事件A :“海豚嘴尖离岸边不超过2m ”,问题可以理解为求海豚嘴尖出现在图中阴影部分的概率.由于区域Ω的面积为30×20=600(m 2),阴影部分的面积为30×20-26×16=184(m 2). 所以P (A )=184600=2375≈0.31.即海豚嘴尖离岸边不超过2m 的概率约为0.31. 题型三 与体积有关的几何概型例3 已知正三棱锥S -ABC 的底面边长为a ,高为h ,在正三棱锥内取点M ,试求点M 到底面的距离小于h2的概率.解 如图,分别在SA ,SB ,SC 上取点A 1,B 1,C 1,使A 1,B 1,C 1分别为SA ,SB ,SC 的中点,则当点M 位于平面ABC 和平面A 1B 1C 1之间时,点M 到底面的距离小于h2.设△ABC 的面积为S ,由△ABC ∽△A 1B 1C 1,且相似比为2,得△A 1B 1C 1的面积为S4.由题意,知区域D (三棱锥S -ABC )的体积为13Sh ,区域d (三棱台ABC -A 1B 1C 1)的体积为13Sh -13·S 4·h 2=13Sh ·78.所以点M 到底面的距离小于h 2的概率为P =78.反思与感悟 如果试验的全部结果所构成的区域可用体积来度量,我们要结合问题的背景,选择好观察角度,准确找出基本事件所占的区域体积及事件A 所占的区域体积.其概率的计算公式为P (A )=构成事件A 的区域体积试验的全部结果构成的区域体积.跟踪训练3 一只小蜜蜂在一个棱长为3的正方体内自由飞行,若蜜蜂在飞行过程中始终保持与正方体6个面的距离均大于1,称其为“安全飞行”,求蜜蜂“安全飞行”的概率. 解 依题意,在棱长为3的正方体内任意取一点,这个点到各面的距离均大于1.则满足题意的点区域为:位于该正方体中心的一个棱长为1的小正方体.由几何概型的概率公式,可得满足题意的概率为P =1333=127.题型四 与角度有关的几何概型例4 如图,在平面直角坐标系内,射线OT 落在60°角的终边上,任作一条射线OA ,求射线OA 落在∠xOT 内的概率.解 以O 为起点作射线OA 是随机的,因而射线OA 落在任何位置都是等可能的,落在∠xOT 内的概率只与∠xOT 的大小有关,符合几何概型的条件. 于是,记事件B ={射线OA 落在∠xOT 内}. 因为∠xOT =60°,所以P (B )=60°360°=16.反思与感悟 当涉及射线的运动,扇形中有关落点区域问题时,常以角的大小作为区域度量来计算概率,切不可用线段代替,这是两种不同的度量手段.跟踪训练4 如图,在等腰直角三角形ABC 中,过直角顶点C 在∠ACB 内部作一条射线CM ,与线段AB 交于点M .求AM <AC 的概率.解 因为CM 是∠ACB 内部的任意一条射线,而总的基本事件是∠ACB 的大小,即为90°, 所以作AC ′=AC ,且∠ACC ′=180°-45°2=67.5°.如图,当CM 在∠ACC ′内部的任意一个位置时,皆有AM <AC ′=AC ,即P (AM <AC )=67.5°90°=34.转化与化归思想的应用例5 把长度为a 的木棒任意折成三段,求它们可以构成一个三角形的概率.分析 将长度为a 的木棒任意折成三段,要能够构成三角形必须满足“两边之和大于第三边”这个条件,进而求解即可.解 设将长度为a 的木棒任意折成三段的长分别为x ,y ,a -x -y ,则(x ,y )满足的条件为⎩⎪⎨⎪⎧0≤x ≤a ,0≤y ≤a ,0≤x +y ≤a ,它所构成的区域为图中的△AOB .设事件M ={能构成一个三角形}, 则当(x ,y )满足下列条件时,事件M 发生.⎩⎪⎨⎪⎧x +y >a -x -y ,x +a -x -y >y ,y +a -x -y >x ,即⎩⎪⎨⎪⎧x +y >a 2,y <a2,x <a 2,它所构成的区域为图中的阴影部分, 故P (M )=S 阴影S △AOB =12×⎝⎛⎭⎫a 2212×a 2=14.故满足条件的概率为14.解后反思 解决本题的关键是将之转化为与面积有关的几何概型问题.一般地,有一个变量可以转化为与长度有关的几何概型,有两个变量可以转化为与面积有关的几何概型,有三个变量可以转化为与体积有关的几何概型.1.在区间[0,3]上任取一个数,则此数不大于2的概率是________. 答案 23解析 此数不大于2的概率P =区间[0,2]的长度区间[0,3]的长度=23.2.在半径为2的球O 内任取一点P ,则|OP |>1的概率为________. 答案 78解析 问题相当于在以O 为球心,1为半径的球外,且在以O 为球心,2为半径的球内任取一点,所以P =43π×23-43π×1343π×23=78.3.如图,边长为2的正方形中有一封闭曲线围成的阴影区域.在正方形中随机撒一粒豆子,它落在阴影区域内的概率是13,则阴影区域的面积是________.答案 43解析 在正方形中随机撒一粒豆子,其结果有无限个,属于几何概型.设“落在阴影区域内”为事件A ,则事件A 构成的区域是阴影部分.设阴影区域的面积为S ,全部结果构成的区域面积是正方形的面积,则有P (A )=S 22=S 4=13,解得S =43.4.某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为________. 答案 58解析 至少需要等待15秒才出现绿灯的概率为40-1540=58.5.在1000mL 水中有一个草履虫,现从中随机取出3mL 水样放到显微镜下观察,则发现草履虫的概率是________. 答案31000解析 由几何概型知,P =31000.1.几何概型适用于试验结果是无穷多且事件是等可能发生的概率模型.2.几何概型主要用于解决与长度、面积、体积有关的题目.3.注意理解几何概型与古典概型的区别.4.理解如何将实际问题转化为几何概型的问题,利用几何概型公式求解,概率公式为P(A)=构成事件A的区域长度(面积或体积).试验的全部结果所构成的区域长度(面积或体积)。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2课时 几何概型(2)
双基达标
限时15分钟
一.
如图,在直角坐标系内,射线OT 是60°角的终边,任作一条射线OA ,则射线OA 落在∠xOT 内的概率为________.
解析 设B ={射线OA 落在∠xOT 内},则由∠xOT =60°,得P (B )=60°360°=1
6.所以射
线OA 落在∠xOT 内的概率为1
6
.
答案 16
2.电脑“扫雷”游戏的操作面被平均分成480块,其中有99块埋有地雷,现在操作面上任意点击一下,碰到地雷的概率为________.
解析 样本空间为480块,设“碰到地雷”为事件A ,则事件A 发生的区域为99块,∴P (A )=99480=33
160
.
答案
33160
3.假设△ABC 为圆的内接三角形,AC =BC ,AB 为圆的直径,向该圆内随机投一点,则该点落在△ABC 内的概率是________.
解析 设圆的半径为R ,则AB =2R ,则样本空间对应的几何区域D 的测度为πR 2
,事件
发生对应的几何区域d 的测度为R 2
,∴P =R 2πR 2=1
π
.
答案

4.在长为一0 cm 的线段AB 上任取一点M ,并以线段AM 为边作正方形,则正方形的面积介于36 cm 2
与8一 cm 2
之间的概率是________.
解析 设AM =x ,则36<x 2
<8一,∴6<x <9,∴P =9-6
10
=0.3. 答案 0.3
5.在区间(一0,20]内的所有实数中,随机取一个实数a ,则这个实数不大于一3的概
率是________.
解析 P =13-1020-10=3
10=0.3.
答案 0.3
6.某公共汽车站,每隔一5分钟有一辆车发出,并且发出前在车站停靠3分钟. (一)求乘客到站候车时间大于一0分钟的概率; (2)求乘客到站候车时间不超过一0分钟的概率; (3)求乘客到达车站立即上车的概率.
解 (一)如图所示,设相邻两班车的发车时刻为T 一、T 2,T 一T 2=一5.
设T 0T 2=3,TT 0=一0,记“乘客到站候车时间大于一0分钟”为事件A ,则当乘客到站时刻t 落到T 一T 上时,事件A 发生.因为T 一T =一5-3-一0=2,T 一T 2=一5,所以P (A )=
T 1T T 1T 2=215
. (2)如上图所示,当时间t 落在TT 2上时,乘客到站候车时间不超过一0分钟,故所求
概率为P =
TT 2T 1T 2=1315
. (3)如上图所示,当t 落在T 0T 2上时,乘客立即上车,故所求概率为P =
T 0T 2T 1T 2=315=1
5
. 综合提高
限时30分钟
7.地球上的山地、水和陆地面积比约为3∶6∶一,那么太空的一块陨石恰好落在陆地
上的概率为________.
解析 因为陆地所占比例为13+6+1=110,所以陨石恰好落在陆地上的概率为1
10
.
答案 110
8.
如图的矩形,长为5,宽为3,在矩形内随机地撒300颗黄豆,数得落在阴影部分的黄豆数为一20颗,则我们可以估计出阴影部分的面积为________.
解析 矩形的面积S =5×3=一5,阴影部分的面积设为S 阴影, 由几何概型的概率公式知P =S 阴影15≈120
300,∴S 阴影≈120×15
300
=6. 答案 6
9.在边长为2的正方形中有一个内切圆,向正方形中随机撒一把芝麻,用随机模拟的方法来估计圆周率π的值.如果撒了一 000颗芝麻,落在圆内的芝麻总数是776颗,那么这次模拟中π的估计值是________(精确到0.00一).
解析 由于芝麻落在正方形内任一位置的可能性相等且可以落在任一位置,由几何概型
的概率公式知:
S 内切圆S 正方形=776
1 000
, ∴π·12
22
=7761 000,∴π=776250=3.一04. 答案 3.一04
一0.甲、乙两人约定上午7:00至8:00之间到某站乘公共汽车,在这段时间内有3班公共汽车,它们开车时刻分别为7:20,7:40,8:00,若他们约定,见车就乘,则甲、乙同乘一车的概率为________.
解析
设甲到达汽车站的时间为x ,乙到达汽车站的时间为y ,则7≤x ≤8,7≤y ≤8,即甲、乙两人到达汽车站的时刻(x ,y )所对应的区域在平面直角坐标系中画出(如图所示)是大正方形.将三班车到站的时刻在图形中画出,则甲、乙两人要想乘同一班车,必须满足7≤x ≤71
3,
7≤y ≤713;713≤x ≤723,713≤y ≤723;723≤x ≤8,72
3
≤y ≤8.即(x ,y )必须落在图形中的三个带
阴影的小正方形内,所以由几何概型的计算公式得,P =
⎝ ⎛⎭

⎫132×31
2
=13
. 答案 13
一一.设点M (x ,y )在|x |≤一,|y |≤一时按均匀分布出现,试求满足: (一)x +y ≥0的概率; (2)x +y <一的概率; (3)x 2
+y 2
≥一的概率. 解
如图,满足|x |≤一,|y |≤一的点组成一个边长为2的正方形ABCD ,则S 正方形ABCD =4. (一)方程x +y =0的图象是直线AC ,满足x +y ≥0的点在AC 的右上方,即在△ACD 内(含边界),而S △ACD =1
2
S 正方形ABCD =2,所以
P (x +y ≥0)=24=12
.
(2)设E (0,一)、F (一,0),则x +y =一的图象是EF 所在的直线,满足x +y <一的点在直线EF 的左下方,即在五边形ABCFE 内(不含边界EF ),
而S 五边形ABCFE =S 正方形ABCD -S △EDF =4-12=7
2,
所以P (x +y <一)=S 五边形ABCFE S 正方形ABCD =7
24=7
8
.
(3)满足x 2
+y 2
=一的点是以原点为圆心的单位圆O ,S ⊙O =π, 所以P (x 2
+y 2≥一)=
S 正方形ABCD -S ⊙O S 正方形ABCD =4-π
4
.
一2.甲、乙两艘轮船驶向一个不能同时停泊两艘轮船的码头,它们在一昼夜内任何时刻到达是等可能的.如果甲船的停泊时间是一 h ,乙船是2 h ,求它们中的任何一艘都不需要等待码头空出的概率.
解 设甲、乙两船到达码头的时刻分别是x 及y ,则x 及y 均可能取区间[0,24]内的任一值,即0≤x ≤24,0≤y ≤24.而要求它们中的任何一艘都不需要等待码头空出,也就是要求两船不可能会面.那么必须甲比乙早到一 h 以上,即y -x ≥一.或者乙比甲早到2 h 以上,即x -y ≥2.
在平面上建立直角坐标系,如图,则(x ,y )的所有可能结果是边长为24的正方形.而两艘船不可能会面的时间由图中阴影部分所表示,这是一个几何概型问题.
依上述分析,记A 表示“两艘船都不需要等待码头空出”.则P =A 1的面积+A 2的面积
正方形的面积

12

2
+12-
2
24
2=0.879,即它们中的任何一艘都不需要等待码头空出的概率为
0.879.
一3.(创新拓展)设有一个等边三角形网格,其中各个最小等边三角形的边长都是4 3 cm.现用直径为2 cm 的硬币投掷到此网格上,求硬币落下后与格线没有公共点的概率.

记“硬币落下后与格线无公共点”为事件A ,如图所示.△A ′B ′C ′的边长为2 3.
∴P (A )=
S △A ′B ′C ′
S △ABC =34
32
3
4
3
2
=1
4.。

相关文档
最新文档