卡方检验名词解释
卡方检验的名词解释
卡方检验的名词解释
卡方检验是一种非参数检验方法,用于检验样本是否符合某种分布,或者两个样本是否来自于同一分布。
其基本思想是根据样本数据计算出某个统计量,然后通过这个统计量的值与期望值的比较来判断样本数据是否偏离预期分布。
卡方检验适用于样本数据不服从正态分布或样本大小较小的情况。
卡方检验的应用非常广泛,例如在医学研究中用于比较治疗方法的效果、在社会学研究中用于比较不同群体的特征等。
卡方检验的结果可以用卡方值、自由度和显著性水平来表示。
其中,卡方值表示样本数据与预期分布之间的差异,自由度表示卡方检验中减去的理论频数,显著性水平表示样本数据是否显著偏离预期分布。
在实际应用中,要根据具体情况选择合适的卡方检验方法,并根据卡方检验结果做出相应的决策。
卡方检验及其应用
卡方检验及其应用一、卡方检验概述:卡方检验主要应用于计数数据的分析,对于总体的分布不作任何假设,因此它属于非参数检验法中的一种。
它由统计学家皮尔逊推导。
理论证明,实际观察次数(f o )与理论次数(f e ),又称期望次数)之差的平方再除以理论次数所得的统计量,近似服从卡方分布,可表示为:)(n f f f ee 2202~)(χχ∑-= 这是卡方检验的原始公式,其中当f e 越大,近似效果越好。
显然f o 与f e 相差越大,卡方值就越大;f o 与f e 相差越小,卡方值就越小;因此它能够用来表示f o 与f e 相差的程度。
根据这个公式,可认为卡方检验的一般问题是要检验名义型变量的实际观测次数和理论次数分布之间是否存在显著差异。
一般用卡方检验方法进行统计检验时,要求样本容量不宜太小,理论次数≥5,否则需要进行校正。
如果个别单元格的理论次数小于5,处理方法有以下四种:1、单元格合并法;2、增加样本数;3、去除样本法;4、使用校正公式。
当某一期望次数小于5时,应该利用校正公式计算卡方值。
公式为:∑--=ee f f f 202)5.0(χ二、卡方检验的统计原理:• 卡方检验所检测的是样本观察次数﹙或百分比﹚与理论或总体次数﹙或百分比﹚的差异性。
• 理论或总体的分布状况,可用统计的期望值(理论值)来体现。
• 卡方的统计原理,是取观察值与期望值相比较。
卡方值越大,代表统计量与理论值的差异越大,一旦卡方值大于某一个临界值,即可获得显著的统计结论。
三、卡方检验的主要应用: 1、独立性检验独立性检验主要用于两个或两个以上因素多项分类的计数资料分析,也就是研究两类变量之间的关联性和依存性问题。
如果两变量无关联即相互独立,说明对于其中一个变量而言,另一变量多项分类次数上的变化是在无差范围之内;如果两变量有关联即不独立,说明二者之间有交互作用存在。
独立性检验一般采用列联表的形式记录观察数据, 列联表是由两个以上的变量进行交叉分类的频数分布表,是用于提供基本调查结果的最常用形式,可以清楚地表示定类变量之间是否相互关联。
统计学卡方检验
根据分析结果,为患者提供个体化的干预措施,提高生存质量。
06
卡方检验注意事项及局限 性讨论
样本量要求及抽样方法选择
样本量要求
卡方检验对样本量有一定的要求,通常建议每个单元格的期望频数不小于5,以确保检验结果的稳定性和可靠性 。当样本量不足时,可能会导致检验效能降低,增加第二类错误的概率。
抽样方法选择
在进行卡方检验时,应选择合适的抽样方法。简单随机抽样是最常用的方法,但在某些情况下,如分层抽样或整 群抽样可能更适合。选择合适的抽样方法有助于提高检验的准确性和可靠性。
期望频数过低时处理策略
合并类别
当某个单元格的期望频数过低时,可以考虑 合并相邻的类别,以增加期望频数。合并类 别时应注意保持类别的逻辑性和实际意义。
适用范围及条件
适用范围
卡方检验适用于多个分类变量之间的独立性或相关性检验,如医学、社会科学等领域的调查研究。
条件
使用卡方检验需要满足一些前提条件,如样本量足够大、每个单元格的期望频数不宜过小等。此外, 对于有序分类变量或存在空单元格的情况,需要采用相应的处理方法或选择其他适合的统计方法。
02
卡方检验方法
统计学卡方检验
目录
• 卡方检验基本概念 • 卡方检验方法 • 数据准备与预处理 • 卡方检验实施步骤 • 卡方检验在医学领域应用举例 • 卡方检验注意事项及局限性讨论
01
卡方检验基本概念
定义与原理
01
02
定义
原理
卡方检验是一种基于卡方分布的假设检验方法,用于推断两个或多个 分类变量之间是否独立或相关。
确定分组界限
在确定分组界限时,可以采用等距分组、等频分组或 基于数据分布的分组方法。选择合适的分组界限有助 于保持各组之间的均衡性,减少信息损失。
19.2.119.2卡方检验
配合度检验的虚无假设为实际次数与理论次数之间无差异,备择假
设为实际次数与理论次数之间差异显著。H0:fo=fe或者fo-fe=0;
H1:fo≠fe或者fo-fe≠0。
配合度检验
卡方检验的计算公式在一般情况下为:
次数较小(小于5)时的修正公式为:
21
fe
6
6
6
6
6
2
自由度df=5-1=4,对于α=0.05的显著性水平,查卡方分布表得临
界值χ2=9.488,因为21>9.488,所以在0.05的显著性水平下拒绝虚
无假设,接受备择假设,即儿童对不同种类玩具的喜欢程度是不一
样的。
配合度检验
如果搜集到的计数资料用百分数表示,也可以用配合度检验方法。二
上存在差异。
独立性检验
对于四格表的独立性检验,相当于独立样本比率差异的显著性检验。当每个
单元格的期望次数大于等于5时,也可以使用下面的简便公式计算χ2值:
四格表内的数据如下表形式进行组织:
变量A
变量B
分类1
分类2
分类1
A
B
A+B
分类2
C
D
C+D
A+C
B+D
N=A+B+C+D
卡方检验的事后检验
正如在方差分析中,研究者们提出使用Tukey HSD 等事后检验
下表所示:
玩具种类
实际次数(fo)
理论次数(fe)
1
6
6
2
15
6
chi-square test名词解释
概念解释:卡方检验(chi-square test)是一种用于比较观察值与期望值之间差异的统计方法。
它适用于分类数据的分析,可以帮助确定观察到的数据分布是否符合预期的理论分布。
卡方检验通常用于分析两个或多个分类变量之间的关系,例如性别和职业的关联性、不同教育水平对政治立场的影响等。
让我们来深入理解卡方检验的概念和原理。
卡方检验的基本原理是通过比较观察值和期望值之间的差异来判断两个或多个分类变量之间是否存在关联性。
在进行卡方检验之前,我们首先需要建立一个原假设,即假设观察到的数据分布与理论分布相符。
通过一系列计算和统计方法,我们可以得出卡方值,并以此来判断观察值与期望值之间的差异程度。
如果卡方值远大于预期值,我们就可以拒绝原假设,从而得出两个或多个分类变量之间存在显著关联的结论。
接下来,让我们从简单的示例开始,来看一下卡方检验的具体应用。
假设我们想要研究不同职业对投票倾向的影响,我们可以通过卡方检验来判断职业与政治立场之间是否存在关联。
我们收集了一份包括职业和政治立场的调查数据,然后我们可以利用卡方检验来分析这些数据,以确定职业与政治立场之间的关联性。
在分析完具体示例之后,让我们进一步探讨卡方检验的应用范围和局限性。
卡方检验适用于分类数据的分析,可以帮助我们判断不同变量之间是否存在关联性。
然而,卡方检验也有一定的局限性,例如对样本量和数据分布的要求比较严格,同时需要注意变量之间的独立性等。
在应用卡方检验时,我们需要综合考虑数据的特点和实际情况,以确保分析结果的准确性和可靠性。
总结回顾:通过本文的讨论,我们对卡方检验的概念和原理有了深入的理解。
我们了解到卡方检验是一种用于比较观察值和期望值之间差异的统计方法,适用于分类数据的分析。
在具体应用中,我们可以通过卡方检验来判断不同变量之间是否存在关联性,从而深入了解数据的特点和规律。
我们也意识到卡方检验在应用时需要注意一些局限性,需要综合考虑实际情况和数据特点。
卡放检验的定义
卡放检验的定义你可能想说的是“卡方检验”,以下是一篇关于卡方检验的科普文章:嘿,朋友们!今天咱们来聊聊一个听起来有点专业,但实际上非常有趣且实用的东西——卡方检验。
想象一下,你正在参加一场盛大的派对。
派对上有各种不同类型的人,比如喜欢摇滚音乐的、喜欢古典音乐的,有高个子的、矮个子的,有喜欢吃甜食的、喜欢吃辣食的等等。
现在我们想知道,这些不同的特征之间有没有某种关联或者说规律。
这就有点像卡方检验要做的事情啦!卡方检验呢,简单来说,就是一种用来看看两个或多个分类变量之间是否存在关联的统计方法。
它就像是一个超级侦探,能够在一堆看似杂乱无章的数据中找出隐藏的线索。
比如说,我们想研究性别和对某种运动的喜好是否有关。
我们收集了很多人的数据,然后通过卡方检验来分析。
如果检验结果显示卡方值很大,那就说明性别和运动喜好很可能是有关系的;如果卡方值很小,那就表示可能没什么关系。
在生活中,卡方检验的应用那可多了去了。
比如在医学领域,医生们可能会用它来研究某种疾病的发病与患者的年龄、性别、生活习惯等因素之间是否存在关联。
假如发现某种疾病在某个年龄段或者某种生活习惯的人群中特别高发,那就可以针对这些人群采取更有针对性的预防和治疗措施啦。
再比如在市场调研中,企业想知道不同年龄段的消费者对他们产品的喜好是否不同。
通过卡方检验分析数据后,就能更好地了解自己的目标客户群体,从而制定更合适的营销策略。
教育领域也少不了卡方检验的身影呢!学校可以用它来分析学生的学习成绩与学习方法、家庭环境等因素之间的关系,以便找到更好地提高学生成绩的方法。
咱们再深入一点讲讲卡方检验的原理。
它实际上是通过比较实际观察到的数据与在假设条件下预期的数据之间的差异来判断变量之间的关联。
就好像你预期派对上喜欢摇滚音乐和喜欢古典音乐的人应该差不多,但实际观察却发现喜欢摇滚的人远远多于喜欢古典的,那这里面可能就有什么特别的原因啦。
当然,卡方检验也不是万能的,它也有一些局限性呢。
数据分析知识:数据分析中的卡方检验流程
数据分析知识:数据分析中的卡方检验流程卡方检验是统计学中一种常用的假设检验方法,它适用于分析两个变量之间的关系以及检验两个分布之间的差异。
本文将详细介绍卡方检验的流程以及应用场景。
一、卡方检验的基本概念卡方检验是基于卡方分布的检验方法,首先需要了解卡方分布。
卡方分布是统计学中常用的概率分布,是由自由度为n的n个独立标准正态分布随机变量平方和所组成的随机变量的分布。
卡方检验是通过计算观察值与期望值之间的差异来检验数据之间是否存在相关性或差异。
这里的观察值指的是实际观测到的数据,期望值则是通过假设检验得到的预测值。
当观察值与期望值之间的差异越大,就说明两个变量之间的相关性或差异越显著。
卡方检验分为拟合优度检验和独立性检验两种类型。
拟合优度检验用于检验样本分布是否符合某个已知的理论分布,而独立性检验则用于检验两个变量之间是否存在关联。
二、卡方检验的流程卡方检验的流程通常分为以下五个步骤:1.建立假设在进行卡方检验之前,需要明确所要检验的假设。
一般情况下,研究人员提出两个假设:原假设和备择假设。
原假设通常是指不存在差异或关联,备择假设则是指存在差异或关联。
例如,在研究男女生育率是否存在差异时,原假设可以设为男女生育率相同,备择假设可以设为男女生育率存在差异。
2.计算卡方值计算卡方值是卡方检验的核心内容。
卡方值通常通过以下公式计算:![image.png](attachment:image.png)其中,O为观察值,E为期望值,n为数据总量,k为自由度。
自由度的计算公式为(r-1)*(c-1),其中r表示行数,c表示列数,代表每个分类变量在计算期望值时可以独立取值的数量。
具体而言,在研究男女生育率是否存在差异的例子中,可以将数据按照男女分类,列出如下的交叉表:![image-2.png](attachment:image-2.png)假设男性生育率的期望比例为50%,女性生育率的期望比例也为50%,那么期望频数可以通过以下公式计算:期望频数=总频数*期望比例男性生育率的期望频数为1000 * 0.5 = 500,女性生育率的期望频数也为500。
SPSS学习系列24. 卡方检验
24. 卡方检验卡方检验,是针对无序分类变量的一种非参数检验,其理论依据是:实际观察频数f 0与理论频数f e (又称期望频数)之差的平方再除以理论频数所得的统计量,近似服从2χ分布,即)(n f f f ee 2202~)(χχ∑-= 卡方检验的一般是用来检验无序分类变量的实际观察频数和理论频数分布之间是否存在显著差异,二者差异越小,2χ值越小。
卡方检验要求:(1)分类相互排斥,互不包容; (2)观察值相互独立;(3) 样本容量不宜太小,理论频数≥5,否则需要进行校正(合并单元格、增加样本数、去除样本法、使用校正公式校正卡方值)。
卡方校正公式为:∑--=ee f f f 202)5.0(χ卡方检验的原假设H 0: 2χ= 0; 备择假设H 1: 2χ≠0; 卡方检验的用途:(1)检验某连续变量的数据是否服从某种分布(拟合优度检验); (2)检验某分类变量各类的出现概率是否等于指定概率; (3)检验两个分类变量是否相互独立(关联性检验); (4)检验控制某几个分类因素之后,其余两个分类变量是否相互独立;(5)检验两种方法的结果是否一致,例如两种方法对同一批人进行诊断,其结果是否一致。
(一)检验单样本某水平概率是否等于某指定概率一、单样本案例例如,检验彩票中奖号码的分布是否服从均匀分布(概率=某常值);检验某产品市场份额是否比以前更大;检验某疾病的发病率是否比以前降低。
有数据文件:检验“性别”的男女比例是否相同(各占1/2)。
1. 【分析】——【非参数检验】——【单样本】,打开“单样本非参数检验”窗口,【目标】界面勾选“自动比较观察数据和假设数据”2.【字段】界面,勾选“使用定制字段分配”,将变量“性别”选入【检验字段】框;注意:变量“性别”的度量标准必须改为“名义”类型。
3. 【设置】界面,选择“自定义检验”,勾选“比较观察可能性和假设可能性(卡方检验)”;4. 点【选项】,打开“卡方检验选项”子窗口,本例要检验男女概率都=0.5,勾选“所有类别概率相等”;注:若有类别概率不等,需要勾选“自定义期望概率”,在其表中设置各类别水平及相应概率。
卡方检验详述
卡方检验什么是卡方检验卡方检验是一种用途很广的计数资料的假设检验方法。
它属于非参数检验的范畴,主要是比较两个及两个以上样本率( 构成比)以及两个分类变量的关联性分析。
其根本思想就是在于比较理论频数和实际频数的吻合程度或拟合优度问题。
它在分类资料统计推断中的应用,包括:两个率或两个构成比比较的卡方检验;多个率或多个构成比比较的卡方检验以及分类资料的相关分析等。
卡方检验的基本原理卡方检验是以χ2分布为基础的一种常用假设检验方法,它的无效假设H0是:观察频数与期望频数没有差别。
该检验的基本思想是:首先假设H0成立,基于此前提计算出χ2值,它表示观察值与理论值之间的偏离程度。
根据χ2分布及自由度可以确定在H0假设成立的情况下获得当前统计量及更极端情况的概率P。
如果P值很小,说明观察值与理论值偏离程度太大,应当拒绝无效假设,表示比较资料之间有显著差异;否则就不能拒绝无效假设,尚不能认为样本所代表的实际情况和理论假设有差别。
卡方值的计算与意义χ2值表示观察值与理论值之问的偏离程度。
计算这种偏离程度的基本思路如下。
(1)设A代表某个类别的观察频数,E代表基于H0计算出的期望频数,A与E之差称为残差。
(2)显然,残差可以表示某一个类别观察值和理论值的偏离程度,但如果将残差简单相加以表示各类别观察频数与期望频数的差别,则有一定的不足之处。
因为残差有正有负,相加后会彼此抵消,总和仍然为0,为此可以将残差平方后求和。
(3)另一方面,残差大小是一个相对的概念,相对于期望频数为10时,期望频数为20的残差非常大,但相对于期望频数为1 000时20的残差就很小了。
考虑到这一点,人们又将残差平方除以期望频数再求和,以估计观察频数与期望频数的差别。
进行上述操作之后,就得到了常用的χ2统计量,由于它最初是由英国统计学家Karl Pearson在1900年首次提出的,因此也称之为Pearson χ2,其计算公式为:其中,Ai为i水平的观察频数,Ei为i水平的期望频数,n为总频数,pi为i水平的期望频率。
spss学习系列24.卡方检验
卡方检验,是针对无序分类变量的一种非参数检验,其理论依据是:实际观察频数f 0与理论频数f e (又称期望频数)之差的平方再除以理论频数所得的统计量,近似服从2χ分布,即)(n f f f ee 2202~)(χχ∑-= 卡方检验的一般是用来检验无序分类变量的实际观察频数和理论频数分布之间是否存在显著差异,二者差异越小,2χ值越小。
卡方检验要求:(1)分类相互排斥,互不包容; (2)观察值相互独立;(3) 样本容量不宜太小,理论频数≥5,否则需要进行校正(合并单元格、增加样本数、去除样本法、使用校正公式校正卡方值)。
卡方校正公式为:∑--=ee f f f 202)5.0(χ卡方检验的原假设H 0: 2χ= 0; 备择假设H 1: 2χ≠0; 卡方检验的用途:(1)检验某连续变量的数据是否服从某种分布(拟合优度检验); (2)检验某分类变量各类的出现概率是否等于指定概率; (3)检验两个分类变量是否相互独立(关联性检验); (4)检验控制某几个分类因素之后,其余两个分类变量是否相互独立;(5)检验两种方法的结果是否一致,例如两种方法对同一批人进行诊断,其结果是否一致。
(一)检验单样本某水平概率是否等于某指定概率一、单样本案例例如,检验彩票中奖号码的分布是否服从均匀分布(概率=某常值);检验某产品市场份额是否比以前更大;检验某疾病的发病率是否比以前降低。
有数据文件:检验“性别”的男女比例是否相同(各占1/2)。
1. 【分析】——【非参数检验】——【单样本】,打开“单样本非参数检验”窗口,【目标】界面勾选“自动比较观察数据和假设数据”2.【字段】界面,勾选“使用定制字段分配”,将变量“性别”选入【检验字段】框;注意:变量“性别”的度量标准必须改为“名义”类型。
3. 【设置】界面,选择“自定义检验”,勾选“比较观察可能性和假设可能性(卡方检验)”;4. 点【选项】,打开“卡方检验选项”子窗口,本例要检验男女概率都=,勾选“所有类别概率相等”;注:若有类别概率不等,需要勾选“自定义期望概率”,在其表中设置各类别水平及相应概率。
第十 章 卡方检验
1.2967
0.4338 0.0960
步骤四
2
fo fe 2 2.3293
fe
自由度 = (R-1)×(C-1)=(2-1)×(4-1)= 3 α = 0.05,查表得:χ²α (3) = 7.815 由于 χ² < χ²α (3),所以我们不能拒绝虚无假设,即认为四个专业的 学生对宿舍管理改革的赞成是一致的,调查数据中的差异是由于抽样 的随机性造成的。
Ho:阅读习惯与学历没有关系
Ha:阅读习惯与学历有关系
我们需要利用 χ² 检验来进行独立性检验,这时候需要计算 χ² 统 计量,而 χ² 统计量是根据观察值和期望值计算得出来的。 因而,首先,我们需要计算期望值。根据列联表中任一单元格频数的 RT CT RT CT 期望值公式来求期望值:f e n n n n 其中,RT 是给定单元格所在行的合计;CT 是给定单元格所在列的 合计;n 为观察值的总个数,即样本容量。
只有列数,行数均相同时,我们才可以进行比较,而且要采用同种系 数才具有可比性。
克拉默 V 系数
φ 系数没有上限,克拉默 (Gramer) 以 φ 系数为基础提出了 V 相 关系数。其计算公式为:
V
n minR 1, C 1
2
其中,min [ (R-1), (C-1) ] 表示取 (R-1) 和 (C-1) 中较小的一个; V 的取值范围 0 ~ 1;
fe
28.8 34.04 10.75 16.46 19.7 23.29 10.75 11.26
( fo - fe)
9.2 5.96 0.25 - 10.46 1.3 - 1.29 - 1.75 1.74
卡方检验的构造原理_解释说明以及概述
卡方检验的构造原理解释说明以及概述1. 引言1.1 概述卡方检验,也称为卡方拟合度检验,是一种常用的统计方法,用于判断观察数据与期望数据之间是否存在显著差异。
它是由1880年代英国统计学家皮尔逊(Karl Pearson)提出的,并成为统计学中一项重要的假设检验工具。
1.2 文章结构本文将首先介绍卡方检验的构造原理,包括该方法的背景与发展历程、假设检验基本概念以及构造原理及假设条件。
接着,文章会详细解释说明卡方检验的相关内容,包括检验统计量及其分布、P值的计算方法与判断标准,以及常见误差类型与校正方法。
然后,我们将对卡方检验在不同领域中的应用进行概述:生物医学研究、社会科学和工程技术。
最后,在结论部分总结了卡方检验的重要性和优缺点,并展望了未来在该研究领域可能出现的发展趋势。
1.3 目的本文旨在深入探讨卡方检验这一统计学方法,全面阐述其构造原理、解释说明以及应用领域概述。
希望通过本文的阐述,读者能够更好地理解和运用卡方检验,为相关领域的研究提供参考,并促进该方法在未来的发展与应用。
2. 卡方检验的构造原理2.1 背景与发展历程在统计学中,卡方检验是一种常用的假设检验方法,用于判断观察值与期望值之间的差异是否显著。
卡方检验最早由卡尔·皮尔逊(Karl Pearson)在19世纪末提出,并受到了罗纳德·费舍尔(Ronald Fisher)等人的进一步发展和推广。
2.2 假设检验基本概念在进行卡方检验时,我们需要建立一个原假设(Null Hypothesis,H0)和一个备择假设(Alternative Hypothesis,H1)。
原假设通常表示无关性、随机性或相等性的假设,而备择假设则表明存在相关性、差异或不相等性。
2.3 构造原理及假设条件卡方检验基于观察频数与期望频数之间的差异来判断数据是否遵循某种分布或相互独立。
其构造原理可以简单描述如下:步骤1:收集数据并得到数据表格。
卡方检验
例3 大量的研究表明,人群中超常儿童的比率为3%。最 近有人对某班54名学生做了一项智力测查,结果发现有 两名学生的智力属于超常,问该班超常儿童的比率与普 通人群中超常儿童的比率是否相同?
解:根据题目中给出的数据列表:
超常
非超常
N
f
1.62
52.38
54
e
f
2.00
52.00
0
根据自由度df=1查附表6,得
二、卡方检验的统计量
卡方检验是对由样本得来的实际频数与理论频数 的分布是否有显著性差异所进行的检验。其计算 公式为:
2 f0 fe 2
fe
f 表示实际频数 0
f 表示理论次数 e
• 例:抛投一枚硬币80次,结果正面朝上46次,反面朝 上34次,问该枚硬币质地是否均匀? 从理论上讲,抛一枚质地均匀的硬币,正反面朝上的 概率相等,那么如果抛投硬币80次,正面或反面朝上 的理论频数均为80/2=40次。这样,实际频数(正 面朝上46次,反面朝上34次)与理论频数(正面与反
反对 21 30 -9
81
2.7
总 和 60 60
5.4
自由度为: df = k -1=1
3.统计决断
查χ2值表,当 df =1 时
2 (1)0.05
3.84
2 (1)0.01
6.63
计算结果为: χ2=5.4*
3.84 <χ2= 5.4 < 6.63,则 0.05 > P > 0.01
结论:学生对高中文理分科的态度有显著差异。
2. 计 算
表9-5 学生干部性别比例的χ2检验计算表
fo
2
fe fo fe f0 fe 0.5
卫生统计学---卡方检验
例 某市重污染区、一般污染区和农村的出生婴儿的致畸情况如下 表,问三个地区的出生婴儿的致畸率有无差别?
表 某市三个地区出生婴儿的致畸率比较
① 建立假设 H0:π1=π2=π3 H1:π1,π2,π3之间不等或不全等。
② 确定检验水准
α=0.05
③ 计算统计量
值
2
2 n(
A2 1) nR nC
⑤ 下结论
因为P<0.05,按α=0.05的水准,拒绝H0,接受H1, 差异有统计学意义。即可认为两药治疗消化 道溃
疡的愈合率有差别,其中奥美拉唑的愈合率比雷
尼替丁愈合率高。
ห้องสมุดไป่ตู้二) 四格表的专用公式
2
(ad - bc)2 n
(a b)(c d)(a c)(b d)
a、b、c、d 分别为四格表中的四个实际频数,n为总
例3 某研究者欲比较A、B、C 三种方案治疗轻、中度高血压的疗 效,将年龄在50~70岁的240例轻、中度高血压患者随机等分为3组, 分别采用三种方案治疗。一个疗程后观察疗效,结果见表11.4。问 三种方案治疗轻、中度高血压的有效率有无差别?
表3 三种方案治疗轻、中度高血压的效果
① 建立假设
H0:π1=π2=π3 H1: 三种方案治疗轻、中度高血压的有效率不等或
(二) 两个或多个构成比的比较
例4 为了解新型农村合作医疗对于农村贫困居民住院服务利用的 影响,在经济条件相似的甲、乙两个国家级贫困县(其中甲县2006 年已开展新型农村合作医疗,乙县2006年尚未开展)分别进行抽样 调查,得到2006年应住院者未住院原因,见表11.5。问甲、乙两县 应住院者未住院原因构成比是否不同?
论频数之差相差很大,则 值相应也会很大,相应的P值也就2 越小,
白话“卡方检验”
⽩话“卡⽅检验”什么是卡⽅检验卡⽅检验是假设检验的⼀种,⽤于分析两个类别变量的相关关系,是⼀种⾮参数假设检验,得出的结论⽆⾮就是相关或者不相关,所以有的教材上⼜叫“独⽴性检验”,所以如果不是很清楚假设检验的朋友们,要好好复习⼀下假设检验了。
提起假设检验,会扯出⼀堆东西,这⾥我简单为⼤家梳理⼀下。
什么是“类别变量”?类别变量就是取值为离散值的变量,“性别”就是⼀个类别变量,它的取值只有“男”和“⼥”,类似还有”婚否“、”国籍“等。
什么是“分析两个类别变量的相关关系”卡⽅检验⽤于分析两个类别变量的相关关系,这是什么意思呢?以我们熟知的 Kaggle 平台上的泰坦尼克号幸存者预测提供的数据为例,”性别“对于”是否幸存“的关系研究,就属于这⽅⾯的内容。
研究表明,泰坦尼克号上的乘客秉承”⼥⼠优先,照顾弱势群体“的基本原则,因此⼥性幸存的概率⽐男性要⼤,这就说明,”性别“对于”是否幸存“有相关关系,我们后⾯会使⽤卡⽅检验来验证这⼀事实。
假设检验假设检验,顾名思义,就是提出⼀个假设,然后检验你提出的假设是否正确。
假设检验的流程其实是固定的,关键其实在于理解假设检验的设计原则。
什么是假设?那么我们假设什么呢?这⾥就要引⼊“原假设”和“备择假设”的概念了,“原假设”是“备择假设”的对⽴⾯。
下⾯这个原则很重要:备择假设通常是研究者想收集证据予以⽀持的假设。
原假设是研究者想收集证据予以推翻的假设。
重要的事情,我再写两遍:如果你想通过种种论证,证明⼀件事情,就要把这件事情写成“备择假设”。
备择假设通常⽤于表达研究者⾃⼰倾向于⽀持的看法(这很主观),然后就是想办法收集证据拒绝原假设,以⽀持备择假设。
特别要说明的⼀点是:如果你不遵守这个“原假设”和“备择假设”设计的基本原则,你很可能会得到相反的结论。
假设检验很像司法界对于⼀个事实的认定,本着“疑罪从⽆”的原则,如果你要说明⼀个⼈有罪,你必须提供充⾜的证据,否则被告⼈的罪名就不能成⽴,这个说法叫“没有充分的证据证明被告有罪”。
(医统)卡方检验
2
观测值的自由度(vi>2),Si为第i组观测值的标 准差 2 • 拒绝原假设的条件为: 2 ,
F检验
• 检验两组观测值的方差的齐性 • 原假设: 2 2
1 2
• 检验统计量:
2 2 2 S1 F 2 2 ~ F( 1 , 2 ) 1 S2
• 拒绝条件: F F /2 (1, 2 )或F F1 /2 (1, 2 )
2.拟合优度检验
• B.表征实验分布,即用卡方统计量检验实验分布 是否服从某一理论分布(正态、二项等) • 步骤:1.将总体X的取值范围分成k个互不重迭的 小区间 • 2.计算落入第i个小区间的样本值的观测频数 • 3. 根据所假设的理论分布, 算出总体X的值落入每 个小区间的概率p,于是np就是落入该区间的样本 值的理论频数 • 4.计算卡方统计量 • 5.与临界值进行比较,进行决策
χ2 检验 数据资料 总体 检验对象
离散型资料 总体分布是未知的
连续型资料假设检验
连续型资料 正态分布 对总体参数或几个总体 参数之差
不是对总体参数的检 验,而是对总体分布 的假设检验
三、χ2 检验的用途
适合性检验
是指对样本的理论数先通过一定的理
论分布推算出来,然后用实际观测值与理论
数相比较,从而得出实际观测值与理论数之
理论值(E)
696.75 232.25 929
O-E
+8.25 -8.25 0
由于差数之和正负相消,并不能反映实 际观测值与理论值相差的大小。
为了避免正、负相抵消的问题,可将实际 观测值与理论值的差数平方后再相加,也就是 计算:
∑(O-E)2
O--实际观察的频数 E--无效假设下的期望频数
卡方检验
+
-
31(a)
1(c)
12(b)
11(d)
H 0 : B C; H 1 : B C
0.05
x
2Байду номын сангаас
( b c 1)
2
bc 2 ( 12 1 1)
12 1 7.69
1
x 7.69 x
2 2 0.01(1)
6.63
P 0.01, H 1成立 两种检测方法有差异。
甲 乙 合计
n>40,1<T<5时
( | A T | 0.5) (校正) 或 T n 2 (| ad bc | ) n 2 2 (校正) (a b)(c d )(a c)(b d )
2 2
n<40或T<1时,不能用2检验
某医师研究洛赛克治疗消化性溃疡的 疗效,以泰胃美作对照,观察结果: 两种药物治疗溃疡病的疗效
x2检验基本思想
分 组 服 药 组 对 照 组 合计 发 病 人 数 40(50.49) 50(39.51) 90 未 发 病人数 190(179.51) 130(140.49) 320 合计 230 180 410 发病率(%) 17.39 27.78 21.95
如果H0成立 理论数T与实际统计的数A相接近 接近的程度可用统计量x2推断
x2检验的基本公式
x2 =(A-T)2/T A:表示实际频数,即实际观察到的例数。 T:理论频数,即如果假设检验成立,应该观察 到的例数。 :求和符号 自由度:=(R-1)x(C-1) R行数, C列数 注意:是格子数,而不是例数。
x2分布规律
自由度一定时,P值越小, x2值越大。 当P 值一定时,自由度越大, x2越大。 =1时, P=0.05, x2 =3.84 P=0.01, x2 =6.63 P=0.05时, =1, x2 =3.84 =2, x2 =5.99
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
卡方检验名词解释
卡方检验属于非参数检验,由于非参检验不存在具体参数和总体正态分布的假设,所以有时被称为自由分布检验。
参数和非参数检验最明显的区别是它们使用数据的类型。
非参检验通常将被试分类,如民主党和共和党,这些分类涉及名义量表或顺序量表,无法计算平均数和方差。
卡方检验分为拟合度的卡方检验和卡方独立性检验。
我们用几个例子来区分这两种卡方检验:
•对于可口可乐公司的两个领导品牌,大多数美国人喜欢哪一种?•公司采用了新的网页页面B,相较于旧版页面A,网民更喜欢哪一种页面?
以上两个例子属于拟合度的卡方检验,原因在于它们都是有关总体比例的问题。
我们只是将个体分类,并想知道每个类别中的总体比例。
它检验的内容仅涉及一个因素多项分类的计数资料,检验的是单一变量在多项分类中实际观察次数分布与某理论次数是否有显著差异。
拟合度的卡方检验定义:
主要使用样本数据检验总体分布形态或比例的假说。
测验决定所获得的的样本比例与虚无假设中的总体比例的拟合程度如何。
拟合度的卡方检验又叫最佳拟合度的卡方检验,为何取名“最佳拟合”?这是因为最佳拟合度的卡方检验的目的是比较数据(实际频数)与虚无假设。
确定数据如何拟合虚无假设指定的分布,因此取名“最佳拟合”。
关于拟合度的卡方检验有一些翻译上的区别,其实表达的是一个意思:
拟合度的卡方检验=卡方拟合优度检验=最佳拟合度卡方检验
以下统称:卡方拟合优度检验
卡方统计的公式:卡方卡方=χ2=Σ(fo−fe)2fe
公式中O代表observation,即实际频数;E代表Expectation,即期望频数。