求轨迹方程的六种方法
高中数学轨迹方程求轨迹方程的的基本方法关点法参数法交轨法向量法新人教版选修
轨 迹 方 程求轨迹方程的的基本方法:直接法、定义法、相关点法、参数法、交轨法、向量法等。
1.直接法:如果动点运动的条件就是一些几何量的等量关系,这些条件简单明确,不需要特殊的技巧,易于表述成含x,y 的等式,就得到轨迹方程,这种方法称之为直接法;例1、某检验员通常用一个直径为2 cm 和一个直径为1 cm 的标准圆柱,检测一个直径为3 cm 的圆柱,为保证质量,有人建议再插入两个合适的同号标准圆柱,问这两个标准圆柱的直径为多少?【解析】设直径为3,2,1的三圆圆心分别为O 、A 、B ,问题转化为求两等圆P 、Q ,使它们与⊙O 相内切,与⊙A 、⊙B 相外切.建立如图所示的坐标系,并设⊙P 的半径为r ,则 |P A |+|PO |=1+r +1.5-r =2.5 ∴点P 在以A 、O 为焦点,长轴长2.5的椭圆上,其方程为3225)41(1622y x ++=1 ① 同理P 也在以O 、B 为焦点,长轴长为2的椭圆上,其方程为 (x -21)2+34y 2=1 ②由①、②可解得)1412,149(),1412,149(-Q P ,∴r =73)1412()149(2322=+-故所求圆柱的直径为76cm. ◎◎双曲线的两焦点分别是1F 、2F ,其中1F 是抛物线1)1(412++-=x y 的焦点,两点A (-3,2)、B (1,2)都在该双曲线上.(1)求点1F 的坐标; (2)求点2F 的轨迹方程,并指出其轨迹表示的曲线.【解析】(1)由1)1(412++-=x y 得)1(4)1(2--=+y x ,焦点1F (-1,0). (2)因为A 、B 在双曲线上,所以||||||||||||2121BF BF AF AF -=-,|||22||||22|22BF AF -=-.①若||22||2222BF AF -=-,则||||22BF AF =,点2F 的轨迹是线段AB 的垂直平分线,且当y =0时,1F 与2F 重合;当y =4时,A 、B 均在双曲线的虚轴上. 故此时2F 的轨迹方程为x =-1(y ≠0,y ≠4).②若22||||2222-=-BF AF ,则24||||22=+BF AF ,此时,2F 的轨迹是以A 、B 为焦点,22=a ,2=c ,中心为(-1,2)的椭圆,其方程为14)2(8)1(22=-++y x ,(y ≠0,y ≠4) 故2F 的轨迹是直线x =-1或椭圆4)2(8)1(22-++y x 1=,除去两点(-1,0)、(-1,4) 评析:1、用直接法求动点轨迹一般有建系,设点,列式,化简,证明五个步骤,最后的证明可以省略,但要注意“挖”与“补”。
求点的轨迹方程的六种常见方法
求点的轨迹方程的六种常见方法点的轨迹方程是描述点在运动过程中所经过的路径的数学方程。
在数学和物理等领域,有许多方法可以推导和描述点的轨迹方程。
下面介绍六种常见的方法。
一、直角坐标系方法直角坐标系方法是最常见的一种方法,通常用于平面分析。
在直角坐标系下,点的位置可以用横坐标x和纵坐标y来表示。
如果已知点的坐标与时间的关系,可以通过方程联立或者曲线拟合的方法得到点的轨迹方程。
二、参数方程方法参数方程方法是一种将点的位置用参数表示的方法。
通过引入参数t,点的坐标可以用关于t的函数表示,如x=f(t)和y=g(t),这样就可以得到点的轨迹方程。
参数方程方法适用于描述直线、圆和其他曲线的方程。
三、极坐标系方法极坐标系方法是一种将点的位置用极径r和极角θ来表示的方法。
通过引入极径和极角的关系表达式,可以得到点的轨迹方程。
例如,对于圆的方程可以表示为r=f(θ),其中f(θ)是关于极角θ的函数。
四、矢量方程方法矢量方程方法是一种用矢量表示点的位置的方法。
通过引入位置矢量r(t),可以得到点的轨迹方程。
位置矢量r(t)通常用分量表示,如r=(x,y,z)。
矢量方程方法适用于描述曲线在三维空间中的轨迹。
五、微分方程方法微分方程方法是一种通过点的运动规律和动力学方程来推导轨迹方程的方法。
通过对点的位置向量或者其分量进行微分,并代入运动规律方程,可以得到点的轨迹方程。
微分方程方法适用于描述受力作用下点的运动。
六、变分原理方法变分原理方法是一种通过极小化或者极大化一些物理量来推导轨迹方程的方法。
通过对点的位置或路径的泛函进行变分,可以得到使泛函取得极值的轨迹方程。
变分原理方法适用于描述光的传播、质点在介质中的传播等问题。
综上所述,点的轨迹方程可以通过直角坐标系方法、参数方程方法、极坐标系方法、矢量方程方法、微分方程方法和变分原理方法等六种常见方法推导和描述。
不同的方法适用于不同的情况和问题,选择合适的方法可以更方便地求解轨迹方程。
高中数学-学生-轨迹方程的求法
例1.已知中心在原点,焦点在 轴上的椭圆的焦距等于 ,它的一条弦所在的直线方程是 ,若此弦的中点坐标为 ,求椭圆的方程。
例2已知点 动点 满足条件 ,记动点 的轨迹为 。(1)求 的方程。(2)若 是 上的不同两点, 是坐标原点,求 的最小值。
例3如图,矩形ABCD中, ,以AB边所在的直线为x轴,AB的中点为原点建立直角坐标系,P是x轴上方一点,使PC、PD与线段AB分别交于 、 两点,且 成等比数列,求动点P的轨迹方程
(1)求 两点的横坐标之积和坐标之积;(2)求证:直线 过定点;
(3)求弦 中点 的轨迹方程;(4)求 面积的最小值。
4.设过点 的直线分别与 轴和 轴的正半轴交于 两点,点 与点 关于 轴对称。若 ,且 ,求点 的轨迹方程。
巩固练习
1.已知抛物线 的内接三角形 的垂心在此抛物线的焦点 上, 的面积等于 ,求此抛物线的方程。
(3)直接法:直接通过建立x、y之间的关系,构成F(x,y)=0,是求轨迹的最基本的方法;
(4)待定系数法:所求曲线是所学过的曲线:如直线,圆锥曲线等,可先根据条件列出所求曲线的方程,再由条件确定其待定系数,代回所列的方程即可
(5)参数法:当动点P(x,y)坐标之间的关系不易直接找到,也没有相关动点可用时,可考虑将x、y均用一中间变量(参数)表示,得参数方程,再消去参数得普通方程。
2.已知双曲线C的两条渐近线经过原点,并且与圆 相切,双曲线 的一个顶点 的坐标是
(1)求双曲线 的方程;
(2)已知直线 ,在双曲线 的上支求点 ,使点 与直线 的距离等于 。
3.已知抛物线 的顶点在原点,它的准线 经过双曲线 的焦点,且准线 与双曲线 交于 和 两点,求抛物线 和双曲线 的方程。
高中数学求轨迹方程的六种常用技法
求轨迹方程六种常用技法轨迹方程探求是解析几何中根本问题之一,也是近几年来高考中常见题型之一。
学生解这类问题时,不善于提醒问题内部规律及知识之间相互联系,动辄就是罗列一大堆坐标关系,进展无目大运动量运算,致使不少学生丧失信心,半途而废,因此,在平时教学中,总结与归纳探求轨迹方程常用技法,对提高学生解题能力、优化学生解题思路很有帮助。
本文通过典型例子阐述探求轨迹方程常用技法。
1.直接法根据条件及一些根本公式如两点间距离公式,点到直线距离公式,直线斜率公式等,直接列出动点满足等量关系式,从而求得轨迹方程。
例1.线段,直线相交于,且它们斜率之积是,求点轨迹方程。
解:以所在直线为轴,垂直平分线为轴建立坐标系,那么,设点坐标为,那么直线斜率,直线斜率由有化简,整理得点轨迹方程为练习:1.平面内动点到点距离与到直线距离之比为2,那么点轨迹方程是。
2.设动直线垂直于轴,且与椭圆交于、两点,是上满足点,求点轨迹方程。
3. 到两互相垂直异面直线距离相等点,在过其中一条直线且平行于另一条直线平面内轨迹是〔〕A.直线B.椭圆C.抛物线D.双曲线2.定义法通过图形几何性质判断动点轨迹是何种图形,再求其轨迹方程,这种方法叫做定义法,运用定义法,求其轨迹,一要熟练掌握常用轨迹定义,如线段垂直平分线,圆、椭圆、双曲线、抛物线等,二是熟练掌握平面几何一些性质定理。
例2.假设为两顶点,与两边上中线长之与是,那么重心轨迹方程是_______________。
解:设重心为,那么由与两边上中线长之与是可得,而点为定点,所以点轨迹为以为焦点椭圆。
所以由可得故重心轨迹方程是练习:4.方程表示曲线是〔〕A.椭圆 B.双曲线 C.线段 D.抛物线3.点差法圆锥曲线中与弦中点有关问题可用点差法,其根本方法是把弦两端点坐标代入圆锥曲线方程,然而相减,利用平方差公式可得,,,等关系式,由于弦中点坐标满足,且直线斜率为,由此可求得弦中点轨迹方程。
例3.椭圆中,过弦恰被点平分,那么该弦所在直线方程为_________________。
轨迹方程的求法
解:以BC所在的直线为x轴,BC中点为坐标
原点,建立如图所示的直角坐标系,则B
(一a/2,0),C(a/2,0),设A(x,y)
则
由sinC- sinB=
∴c-b=
1 2
a
1 2
sinA
A
B
C
即|AB|-|AC|=
1 2
a(定值)
些密如发丝的暗青色珠粒被烟一晃,立刻变成皎洁辉映的珠光,不一会儿这些珠光就闪烁着飞向罕见异绳的上空,很快在四金砂地之上 变成了隐隐约约的凸凹飘动的摇钱树……这时,宝石状的物体,也快速变成了树皮模样的湖青色胶状物开始缓缓下降……只见女政客
4、参数法 例题4、已知线段AB的长为a,P分AB为
AP∶PB= 2∶l两部分,当A点在y轴上运动时, B点在x轴上运动,求动点P的轨迹方程。
解 : 设 动 点 P ( x , y ) , AB 和 x 轴 的 夹 角 为 θ ,
|θ|≤
2
,作PM⊥x于M,
PN⊥y轴于N
∵|AB|= a, | AP | 2
皮肤时浓时淡渗出水睡朦胧般的晃动!接着玩了一个,飞蟒吊灯翻一千零八十度外加狐嚎排骨旋七周半的招数,接着又来了一出,怪体 牛蹦海飞翻七百二十度外加笨转四百周的尊贵招式……紧接着异常的如同原木一样的脚立刻蠕动变形起来……鲜红色酒罐耳朵闪出水绿 色的团团明烟……深灰色麦穗样的嘴唇闪出中灰色的点点神响。最后摆起多变的深黄色土堆模样的卷发一嚎,飘然从里面涌出一道佛光, 她抓住佛光冷峻地一颤,一件银晃晃、黄澄澄的咒符『蓝鸟骨怪火腿宝典』便显露出来,只见这个这件东西儿,一边转化,一边发出“咝 咝”的神响。骤然间女政客T.克坦琳叶女士急速地弄了一个侧卧扭曲炸蛤蟆的怪异把戏,,只见她修长的淡灰色怪石一样的脑袋中,威
轨迹方程求轨迹方程的的基本方法
轨 迹 方 程求轨迹方程的的基本方法:直接法、定义法、相关点法、参数法、交轨法、向量法等。
1.直接法:如果动点运动的条件就是一些几何量的等量关系,这些条件简单明确,不需要特殊的技巧,易于表述成含x,y 的等式,就得到轨迹方程,这种方法称之为直接法;例1、某检验员通常用一个直径为2 cm 和一个直径为1 cm 的标准圆柱,检测一个直径为3 cm 的圆柱,为保证质量,有人建议再插入两个合适的同号标准圆柱,问这两个标准圆柱的直径为多少?【解析】设直径为3,2,1的三圆圆心分别为O 、A 、B ,问题转化为求两等圆P 、Q ,使它们与⊙O 相内切,与⊙A 、⊙B 相外切.建立如图所示的坐标系,并设⊙P 的半径为r ,则 |P A |+|PO |=1+r +1.5-r =2.5 ∴点P 在以A 、O 为焦点,长轴长2.5的椭圆上,其方程为3225)41(1622y x ++=1 ① 同理P 也在以O 、B 为焦点,长轴长为2的椭圆上,其方程为 (x -21)2+34y 2=1 ②由①、②可解得)1412,149(),1412,149(-Q P ,∴r =73)1412()149(2322=+-故所求圆柱的直径为76cm. ◎◎双曲线的两焦点分别是1F 、2F ,其中1F 是抛物线1)1(412++-=x y 的焦点,两点A (-3,2)、B (1,2)都在该双曲线上.(1)求点1F 的坐标; (2)求点2F 的轨迹方程,并指出其轨迹表示的曲线.【解析】(1)由1)1(412++-=x y 得)1(4)1(2--=+y x ,焦点1F (-1,0). (2)因为A 、B 在双曲线上,所以||||||||||||2121BF BF AF AF -=-,|||22||||22|22BF AF -=-.①若||22||2222BF AF -=-,则||||22BF AF =,点2F 的轨迹是线段AB 的垂直平分线,且当y =0时,1F 与2F 重合;当y =4时,A 、B 均在双曲线的虚轴上. 故此时2F 的轨迹方程为x =-1(y ≠0,y ≠4).②若22||||2222-=-BF AF ,则24||||22=+BF AF ,此时,2F 的轨迹是以A 、B 为焦点,22=a ,2=c ,中心为(-1,2)的椭圆,其方程为14)2(8)1(22=-++y x ,(y ≠0,y ≠4) 故2F 的轨迹是直线x =-1或椭圆4)2(8)1(22-++y x 1=,除去两点(-1,0)、(-1,4) 评析:1、用直接法求动点轨迹一般有建系,设点,列式,化简,证明五个步骤,最后的证明可以省略,但要注意“挖”与“补”。
高中数学求轨迹方程的六种常用技法
练习:1.平面内动点到点的距离与到直线的距离之比为2,则点的轨迹方程是。
2.设动直线垂直于轴,且与椭圆交于、两点,是上满足的点,求点的轨迹方程。
3. 到两互相垂直的异面直线的距离相等的点,在过其中一条直线且平行于另一条直线的平面内的轨迹是
A.直线B.椭圆C.抛物线D.双曲线
, 又因为所以
化简得点的轨迹方程
6.先用点差法求出,但此时直线与双曲线并无交点,所以这样的直线不存在。中点弦问题,注意双曲线与椭圆的不同之处,椭圆不须对判别式进行检验,而双曲线必须进行检验。
7.解:设,则
由
即 所以点的轨迹是以为圆心,以3为半径的圆。
∵点是点关于直线的对称点。
∴动点的轨迹是一个以为圆心,半径为3的圆,其中是点关于直线的对称点,即直线过的中点,且与垂直,于是有
得, 即交点的轨迹方程为
解2: (利用角作参数)设,则
所以 ,两式相乘消去
即可得所求的点的轨迹方程为 。
练习:10.两条直线和的交点的轨迹方程是_________。
总结归纳
1.要注意有的轨迹问题包含一定隐含条件,也就是曲线上点的坐标的取值范围.由曲线和方程的概念可知,在求曲线方程时一定要注意它的“完备性”和“纯粹性”,即轨迹若是曲线的一部分,应对方程注明的取值范围,或同时注明的取值范围。
2.定义法
通过图形的几何性质判断动点的轨迹是何种图形,再求其轨迹方程,这种方法叫做定义法,运用定义法,求其轨迹,一要熟练掌握常用轨迹的定义,如线段的垂直平分线,圆、椭圆、双曲线、抛物线等,二是熟练掌握平面几何的一些性质定理。
例2.xx的两顶点,和两边上的中线长之和是,则的重心轨迹方程是_______________。
求轨迹方程的常用方法(经典)
求轨迹方程的常用方法(一)求轨迹方程的一般方法:1. 待定系数法:如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程,也有人将此方法称为定义法。
2. 直译法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标(x ,y )表示该等量关系式,即可得到轨迹方程。
3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P 运动的某个几何量t ,以此量作为参变数,分别建立P 点坐标x ,y 与该参数t 的函数关系x =f (t ),y =g (t ),进而通过消参化为轨迹的普通方程F (x ,y )=0。
4. 代入法(相关点法):如果动点P 的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P (x ,y ),用(x ,y )表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。
5.几何法:若所求的轨迹满足某些几何性质(如线段的垂直平分线,角平分线的性质等),可以用几何法,列出几何式,再代入点的坐标较简单。
6:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这灯问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。
(二)求轨迹方程的注意事项:1. 求轨迹方程的关键是在纷繁复杂的运动变化中,发现动点P 的运动规律,即P 点满足的等量关系,因此要学会动中求静,变中求不变。
)()()(0)(.2为参数又可用参数方程表示程轨迹方程既可用普通方t t g y t f x ,y x ,F ⎩⎨⎧=== 来表示,若要判断轨迹方程表示何种曲线,则往往需将参数方程化为普通方程。
求轨迹方程的常用方法
轨迹(曲线)方程的求法求轨迹方程问题是高中数学的一个难点,求轨迹方程的常用方法有:1)直接法;2)待定系数法;3)定义法;4)代入法;5)参数法;6)交轨法. 下面分别介绍以上六种方法:(1)直接法 —— 直接利用条件通过建立x 、y 之间的关系式f (x ,y )=0,是求轨迹的最基本的方法. 课标教材(人教版)²高中数学 选修2﹣1(以下所称教材都是指该教材)的《§2.1.2 求曲线的方程》中介绍了此法.直接法求轨迹(曲线)方程一般有五个步骤:① 建立适当的坐标系,设曲线上任意一点M 的坐标为(x ,y ); ② 写出点M 运动适合的条件P 的集合:P={M |P(M)}; ③ 用坐标表示条件P(M),列出方程 f (x ,y )=0; ④ 化方程 f (x ,y )=0 为最简形式;⑤ 证明以化简后的方程的解为坐标的点都是曲线上的点. 一般地,步骤(5)可省略,如有特殊情形,可以适当说明.教材推导圆锥曲线(椭圆、双曲线、抛物线)的标准方程,都是使用直接法. 教材中还配有大量练习题(如:教材P.37练习/3,习题2.1/A 组/2、3,B 组/1、2;P.41例3,P.42练习/4,P.47例6,P.49习题2.2 / B 组/3;P.59例5,P.62习题2.3 / B 组/3;P.74习题2.4 / B 组/3;P.80复习参考题/ A 组/10,B 组/5).例1. 如图所示,线段AB 与CD 互相垂直平分于点O ,|AB|=2a (a >0),|CD|=2b (b>0),动点P 满足|PA|²|PB|=|PC|²|PD|. 求动点P 的轨迹方程.解:以O 为坐标原点,直线AB 、CD 分别为x 轴、y 轴建立直角坐标系,则A (-a ,0),B (a ,0),C (0,-b ),D (0,b ), 设P (x ,y ),由题意知 |PA|²|PB|=|PC|²|PD|,∴22)(y a x ++²22)(y a x +-=22)(b y x ++²22)(b y x -+,化简得 x 2-y 2=222b a -.故动点P 的轨迹方程为 x 2-y 2=222b a -.【练习1】 1、已知两点M (-2,0)、N (2,0),点P 为坐标平面内的动点,满足|MN |²|MP |+MN ²NP =0,求动点P (x ,y )的轨迹方程.2、如图所示,过点P (2,4)作互相垂直的直线l 1、l 2.若l 1交x 轴于A ,l 2交y 轴于B ,求线段AB 中点M 的轨迹方程.(2)待定系数法 —— 当已知所求曲线的类型(如:直线,圆锥曲线等)求曲线方程,可先根据条件设出所求曲线的方程,再由条件确定方程中的系数(待定系数),代回所设方程即可.要注意设出所求曲线的方程的技巧.(如:教材P.40例1,P.42练习/2,P.46例5,P.48练习/3、4,P.49习题2.2/A 组/2、5、9;P.54例1,P.55练习/1,P.58例4,P.61练习/2、3,P.61习题2.3 / A 组/2、4、6,B 组/1;P.67练习/1,P.68例3,P.72练习/1,P.73习题2.4 / A 组/4、7;P.80复习参考题/ A 组/1).例2 根据下列条件,求双曲线的标准方程.(1)与双曲线41622y x -=1有公共焦点,且过点(32,2). (2)与双曲线16922y x -=1有共同的渐近线,且过点(-3,23); 解: (1)设双曲线方程为2222by a x -=1. 由题意易求c=25.∵双曲线过点(32,2), ∴()2223a -24b=1. 又 ∵a 2+b 2=(25)2, ∴解得 a 2=12,b 2=8.故 所求双曲线的方程为 81222y x -=1. (2)设所求双曲线方程为16922y x -=λ(λ≠0), 将点(-3,23)代入得λ=41,∴ 所求双曲线方程为16922y x -=41, 即49422y x -=1. 【练习2】 已知抛物线C 的顶点在原点,焦点F 在x 轴正半轴上,设A 、B 是抛物线C 上的两个动点(AB 不垂直于x 轴),但|AF|+|BF|=8,线段AB 的垂直平分线恒经过定点Q (6,0),求此抛物线的方程.(3)定义法 —— 如果根据已知能够确定动点运动的条件符合某已知曲线的定义,则可由该曲线的定义直接写出动点轨迹方程.(如:教材P.49习题2.2/A 组/1、7,B 组/2;P.54例2,P.62习题2.3/A 组/5,B 组/2)例3. 已知动圆过()1,0,且与直线1x =-相切. (1) 求动圆圆心的轨迹C 的方程;(2) 是否存在直线l ,使l 过点(0,1),并与轨迹C 交于,P Q 两点,且满足0OP OQ ⋅=?若存在,求出直线l 的方程;若不存在,说明理由.解:(1)如图,设动圆圆心为M ,定点()1,0为F ,过点M 作直线1x =-的垂线,垂足为N ,由题意知: MF MN =即动点M 到定点F 与到定直线1x =-的距离相等, 由抛物线的定义知,点M 的轨迹为抛物线, 其中()1,0F 为焦点,1x =-为准线,∴动圆圆心的轨迹方程为 x y 42=(2)由题可设直线l 的方程为(1)(0)x k y k =-≠由2(1)4x k y y x=-⎧⎨=⎩得2440y ky k -+= △216160k k =->,01k k ∴<>或设),(11y x P ,),(22y x Q ,则124y y k +=,124y y k =由0OP OQ ⋅=,即 ()11,OP x y =,()22,OQ x y =,于是12120x x y y +=, 即()()21212110ky y y y --+=,整理得 2221212(1)()0k y y k y y k +-++=,∴ 2224(1)40k k k k k +-⋅+=, 解得4k =-或0k =(舍去), 又 40k =-<,∴ 直线l 存在,其方程为440x y +-=【练习3】 1、已知圆C 1:(x +3)2+y 2=1和圆C 2:(x -3)2+y 2=9,动圆M 同时与圆C 1及圆C 2相外切,求动圆圆心M 的轨迹方程.2、在△ABC 中,A 为动点,B 、C 为定点,B (-2a ,0),C (2a,0)且满足条件x =sinC -sinB=21sinA ,则动点A 的轨迹方程是 ( ) A. 2216a x -221516a y =1(y ≠0)B. 2216a y -22316a x =1(x ≠0)C. 2216a x -221516a y =1(y ≠0)的左支 D. 2216a x -22316ay =1(y ≠0)的右支(4)代入法(也叫相关点法或转移法) ——若动点P(x ,y )随另一动点Q(x 1,y 1)的运动而运动,并且Q(x 1,y 1)又在某已知曲线上运动,则求点P 的轨迹方程问题常用此法.代入法求轨迹(曲线)方程一般有以下几个步骤:① 设所求点P 的坐标为 (x ,y ) (称之为从动点),动点Q 的坐标为(x 1,y 1) (称之为主动点) ② 找出点P 与点Q 的坐标关系;③ 用从动点的坐标x 、y 的代数式表示主动点的坐标x 1、y 1; ④ 再将x 1、y 1代入已知曲线方程,即得要求的动点轨迹方程.(如:教材P.41例2,P.50习题2.2 / B 组/1;P.74习题2.4 / B 组/1)例4. 设F (1,0),M 点在x 轴上,P 点在y 轴上,且MN =2MP ,PM ⊥PF ,当点P 在y 轴上运动时,求点N 的轨迹方程. 解设N (x ,y ),M (x 1,0),P (0,y 0),由MN =2MP 得(x -x 1,y )=2(-x 1,y 0),∴11022x x x y y -=-⎧⎨=⎩,即1012x x y y =-⎧⎪⎨=⎪⎩.∵PM ⊥PF ,PM =(x 1,-y 0),PF =(1,-y 0), ∴(x 1,-y 0)·(1,-y 0)=0,∴x 1+y 2=0. ∴-x +42y =0,即y 2 = 4x .故所求的点N 的轨迹方程是 y 2 = 4x .【练习4】 如图所示,已知P (4,0)是圆 x 2+y 2=36 内的一点,A 、B 是圆上两动点,且满足∠APB=90°,求矩形APBQ 的顶点Q 的轨迹方程.(5)参数法 ——当动点P (x ,y )的横坐标x 、纵坐标y 之间的关系不易直接找到时,可以考虑将x 、y 都用一个中间变量(参数)来表示,即得参数方程,再消去参数就可得到普通方程.例5. 如图所示,已知点C 的坐标是(2,2),过点C 的直线CA 与x 轴交于点A ,过点C 且与直线CA 垂直的直线CB 与y 轴交于点B. 设点M 是线段AB 的中点,求点M 的轨迹方程.解 方法一(参数法):设M 的坐标为(x ,y ).若直线CA 与x 轴垂直,则可得到M 的坐标为(1,1). 若直线CA 不与x 轴垂直,设直线CA 的斜率为k ,则直线CB 的斜率为-k1, 故直线CA 方程为:y =k(x -2)+2,令y =0得x =2-k2,则A 点坐标为(2-k2,0).CB 的方程为:y =-k1(x -2)+2,令x =0,得y =2+k2, 则B 点坐标为(0,2+k 2),由中点坐标公式得M 点的坐标为⎪⎪⎪⎩⎪⎪⎪⎨⎧+=++=-=+-=k k k k 112022112022y x ①, 消去参数k 得到x +y -2=0 (x ≠1), 又∵ 点M (1,1)在直线x +y -2=0上, 综上所述,所求轨迹方程为x +y -2=0.方法二(直接法)设M (x ,y ),依题意A 点坐标为(2x ,0),B 点坐标为(0,2y ).∵|MA|=|MC|, ∴22)2(y x x +-=22)2()2(-+-y x , 化简得x +y -2=0.方法三(定义法)依题意 |MA|=|MC|=|MO|,即:|MC|=|MO|,所以动点M 是线段OC 的中垂线,故由点斜式方程得到:x +y -2=0.(6)交轨法 —— 当所求轨迹上的动点是两动曲线的交点时,只要把两动曲线(族)的方程分别求出:0),,(=t y x f 与0),,(=t y x g(t 为参数),然后消去参数t ,即得所求轨迹方程.例6. 如图,过圆224x y +=与x 轴的两个交点A 、B 作圆的切线AC 、BD ,再过圆上任意一点H 作圆的切线,交AC 、BD 于C 、D 两点,设AD 、BC 的交点为R ,求动点R 的轨迹E 的方程.解:设点H 的坐标为(0x ,0y ),则20x +20y =4 由题意可知0y ≠0,且以H 为切点的圆的切线的斜率为0x y -, ∴切线CD 方程为 y -0y =0x y -(x -0x ),展开得 0x x +0y y =20x +20y =4, 即 以H 为切点的圆的切线方程为 0x x +0y y =4,∵A (-2,0),B (2,0),将x =±2代人0x x +0y y =4 可得 点C 、D 的坐标分别为C (-2,0042x y +),D (2,042x y -), 则直线AD 、BC 的方程分别为AD l :002424y x x y +=- …… ①, BC l :002424y x x y -=+- …… ②将两式相乘并化简可得动点R 的轨迹E 的方程为 2244x y +=,即2214x y += 解法二:设点R 的坐标为(0x ,0y );直线AR 的方程分别为y =002y x +(x +0x ),与直线BD 的方程x =2联立,解得D (2,0042y x +),同法可得C (-2,0042y x --),则直线CD 斜率为002024x y x -, ∴直线CD 的方程为y -0042y x --=002024x yx -(x +2)∵直线CD 与⊙O 相切, ∴圆心O 到直线CD 的距离等于圆半径2,000244x y y -=2,化简得 (20x -4)2+420x 20y =(420y )2整理得 (20x -4)2+420y (20x -4)=0, ∴20x -4=0 (舍去)或20x -4+420y =0即 动点R 的轨迹E 的方程为2244x y +=,即2214x y +=总结:求轨迹方程的方法:(1)求单个动点的轨迹问题,用直接法 或待定系数法 或定义法; (2)求两个动点的轨迹问题,用代入法;(3)求多个动点的轨迹问题,用参数法 或交轨法。
求轨迹方程问题—6大常用方法
求轨迹方程问题—6大常用方法知识梳理:(一)求轨迹方程的一般方法:1. 待定系数法:如果动点P的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程,也有人将此方法称为定义法。
2. 直译法:如果动点P的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P满足的等量关系易于建立,则可以先表示出点P所满足的几何上的等量关系,再用点P的坐标(x,y)表示该等量关系式,即可得到轨迹方程。
3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P运动的某个几何量t,以此量作为参变数,分别建立P点坐标x,y与该参数t的函数关系x=f(t),y=g(t),进而通过消参化为轨迹的普通方程F(x,y)=0。
4. 代入法(相关点法):如果动点P的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P(x,y),用(x,y)表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P的轨迹方程。
5.几何法:若所求的轨迹满足某些几何性质(如线段的垂直平分线,角平分线的性质等),可以用几何法,列出几何式,再代入点的坐标较简单。
6:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这灯问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。
(二)求轨迹方程的注意事项:1. 求轨迹方程的关键是在纷繁复杂的运动变化中,发现动点P的运动规律,即P点满足的等量关系,因此要学会动中求静,变中求不变。
来表示,若要判断轨迹方程表示何种曲线,则往往需将参数方程化为普通方程。
3. 求出轨迹方程后,应注意检验其是否符合题意,既要检验是否增解,(即以该方程的某些解为坐标的点不在轨迹上),又要检验是否丢解。
求点的轨迹方程的六种常见方法
解:以AB所在直线为x轴,过o垂直AB 直线为y轴,建立如图直角坐标系.
DF
y
C
依题意有A(-2,0),B(2,0),C(2,4a),D(-2,4a)
P
E
设 BE CF DG =k(0≤k≤1),由此有
G
BC CD DA
A
o
Bx
E(2,4ak), F(2-4k,4a), G(-2,4a-4ak) 直线OF的方程为 2ax+(2k-1)y=0……………①
且 BE CF DG .P为GE与OF的交点(如图). BC CD DA
问:是否存在两个定点,使P到这两点的距离的和为定值?若存在, 求出这两点的坐标及此定值;若不存在,请说明理由.
y
DF
C
E P
G设条件,首先求出点P坐标满足的方程,据此再判断是否存在两点,
使得P到两定点距离的和为定值.按题意有A(2, 0),B(2, 0),C(2, 4a),D(, 2, 4a).
整理得
x2 1
(y a)2 a2
1.
2
当a2 1 时,点P的轨迹为圆弧,所以不存在符合题意的两点 2
当a2 1 时,点P的轨迹为椭圆的一部分,点P到该椭圆焦点的距离的和为定长. 2
当a2 1 时,点P到椭圆两个焦点( 1 a2 , a)和( 1 a2 , a)的距离之和为定值 2.
2
2
• 以下举一个例子说明:
1.定义法
【例1】在ΔABC中,已知BC=a,当动点A满足条件sinC-sinB= 1 sinA时, 2
求动点A的轨迹方程.
解:以BC边所在直线为x轴,以线段BC的垂直平分线为y轴建立直角坐标系.
因为sinC-sinB= 1 sinA,由正弦定理得:AB - AC = 1 BC ,
轨迹方程的求法
轨迹方程的求法一、直接法求轨迹方程的一般步骤:“建、设、限、代、化” 1、建立恰当的坐标系; 2、设动点坐标(),x y ;3、限制条件列出来(如一些几何等量关系);4、代入:用坐标代换条件,得到方程(),0f x y =;5、化简(最后要剔除不符合条件的点).例1、过点()2,4P 作两条互相垂直的直线1l 、2l ,1l 交x 轴于A 点,2l 交y 轴于B 点,求线段AB 的中点M 的轨迹方程.巩固训练1:平面内动点M 与两定点()1,0A -、()2,0B 构成MAB ∆,且2MBA MAB ∠=∠,求动点M 的轨迹方程.巩固训练2:已知点A 、B 的坐标分别为()5,0-、()5,0,直线AM 、BM 相交于点M ,且它们的斜率之积是49-,求点M 的轨迹方程.巩固训练3:已知直角坐标平面上的点()2,0Q 和圆221C x y +=:,动点M 到圆C 的切线长与MQ 的比等于常数(0)λλ>,求动点M 的轨迹方程.二、定义法:如果动点的轨迹满足某已知曲线的定义,则可以依据定义求出轨迹方程.如圆、椭圆、双曲线、抛物线等. 规律可寻:(1)利用定义法求轨迹方程时,还要看所求轨迹是否是完整的圆、椭圆、双曲线、抛物线,如果不是完整的曲线,则应对其中的变量x 或y 进行限制.例2、(1)求与圆221:(3)1C x y ++=外切,且与222:(3)81C x y -+=内切的动圆圆心P 的轨迹方程.(2)已知圆221:(3)1C x y ++=和圆222:(3)9C x y -+=,动圆M 同时与圆1C 及圆2C 相外切,求动圆圆心M 的轨迹方程.巩固训练1:已知1,02A ⎛⎫- ⎪⎝⎭,B 是圆221:42F x y ⎛⎫-+= ⎪⎝⎭(F 为圆心)上一动点,线段AB 的垂直平方线交BF 于点P ,求点P 的轨迹方程.巩固训练2:已知1,02A ⎛⎫- ⎪⎝⎭,B 是圆2211:24F x y ⎛⎫-+= ⎪⎝⎭(F 为圆心)上一动点,线段AB 的垂直平方线交BF 于点P ,求点P 的轨迹方程.巩固训练3:在平面直角坐标系xOy 中,点M 到点()1,0F 的距离比它到y 轴的距离多1,求点M 的轨迹方程.巩固训练4:已知点1F 、2F 分别是椭圆22:171617C x y +=的两个焦点,直线1l 过点2F 且垂直于椭圆长轴,动直线2l 垂直1l 于点G ,线段1GF 的垂直平分线交2l 于点H ,求点H 的轨迹方程.巩固训练5:在极坐标系Ox 中,直线l 的极坐标方程为sin 2ρθ=,点M 是直线l 上任意一点,点P 在射线OM 上,且满足4OP OM ⋅=,记点P 的轨迹方程为C ,求曲线C 的极坐标方程.三、相关点法:有些问题中,其动点满足的条件不便用等式列出,但动点是随着另一动点(称之为相关点)而运动的,如果相关点所满足的条件是明显的,这时我们可以用动点坐标表示相关点坐标,根据相关点所满足的方程即可求得动点的轨迹方程. “相关点法”的基本步骤:(1)设点:设被动点的坐标为(),x y ,主动点的坐标为()00,x y ;(2)求关系式:求出两个动点坐标之间的关系式()()00,,x f x y y g x y =⎧⎪⎨=⎪⎩; (3)代换:将上述关系式代入已知曲线方程,便可得到所求动点的轨迹方程.例3、已知点P 是圆22:4C x y +=上任意一点,过点P 作x 轴的垂线段PD ,D 为垂足,当点P 在圆上运动时,求线段PD 的中点M 的轨迹方程.巩固训练1:已知在ABC ∆中,()2,0A -,()0,2B -,第三个顶点C 在曲线231y x =-上动点,求ABC ∆的重心的轨迹方程.巩固训练2:已知点P 是圆22:25C x y +=上任意一点,点D 是点P 在x 轴上的投影,点M 为PD 上一点,且满足45MD PD =,当点P 在圆上运动时,求点M 的轨迹方程.四、参数法:如果动点(),P x y 的坐标之间的关系不容易找,可以考虑将,x y 用一个或几个参数表示,最后消参数,得出,x y 之间的关系式,即轨迹方程.常用参数有角度θ、直线的斜率、点的横、纵坐标,线段的长度等.例4、过抛物线24y x =的顶点O 引两条互相垂直的直线分别与抛物线相交于,A B 两点,求线段AB 的中点P 的轨迹方程.巩固训练1:设椭圆方程为2214y x +=,过点()0,1M 的直线l 交椭圆于,A B ,O 是坐标原点,直线l 的动点P 满足()12OP OA OB =+,当直线l 绕点M 旋转时,求点P 的轨迹方程.五、交轨法:写出动点所满足的两个轨迹方程后,组成方程组分别求出,x y ,再消去参数,即可求解,这种方法一般适合于求两条动直线交点的轨迹方程.例5、设1A 、2A 是椭圆22195x y +=的长轴的两端点,1P 、2P 是垂直于12A A 的弦的端点,求直线11A P 与22A P 的交点的轨迹方程.巩固训练1:已知双曲线2212x y -=的左、右顶点分别为1A 、2A ,点()11,P x y 、()11,Q x y -是双曲线上不同的两个动点,求直线1A P 与2A Q 的交点的轨迹E 的方程.。
求点的轨迹方程常用方法
求点的轨迹方程的常用方法一.直接法.1.设点()()1,0,1,0A B -,直线,AM BM 相交于点,M 且它们的斜率之积为2,求点M 轨迹方程.2.已知动点(),Px y 与定点()4,0F 的距离和它到直线25:4l x =的距离的比是常数45,求点P 轨迹方程.二.定义法3.y 轴及y 轴右侧的点M 到点()1,0F 的距离比它到y 轴的距离大1,求点M 轨迹方程.4. 已知动圆M 过定点()4,0P-,且与圆22:80C x y x +-=相切,求动圆圆心M 的轨迹方程.5.已知椭圆2214x y +=的左、右焦点12,;F F P 是椭圆上一个动点,如果延长1F P 到Q ,使2,PQ PF =那么动点Q 的轨迹方程.6. 已知ABC ∆的顶点()()4,0,4,0,A B -C 为动点,且满足5sin sin sin ,4B A C +=求顶点C 轨迹方程.三.相关点法(代入法)7.已知点()4,0D,在圆224x y +=上任取一点P ,求线段PD 的中点M 的轨迹方程.8.在圆224x y +=上任取一点P ,过点P 做x 轴的垂线段PD ,D 为垂足,当点M 在DP 的延长线上,且3,2DM DP =当点P 在圆上运动时,求点M 的轨迹方程.9.已知椭圆2214x y +=的焦点12,;F F P 是椭圆上一个动点,12F PF ∠的外角平分线,l 点2F 关于直线l 的对称点为Q ,2F Q 交l 于点,R 求动点R 的轨迹方程.四.参数法10.已知动圆222:42640,Mx y bx by b ++-+-=求动圆圆心M 的轨迹方程.11.已知动圆22:6cos 4sin 0,Mx y x y ββ++-=求动圆圆心M 的轨迹方程.高考实战(2013年)1.已知动圆P 与圆()22:11Mx y ++=外切,且与圆()22:19N x y -+=相内切,求动圆圆心P 的轨迹方程.(2014年)2.已知点()2,2P ,圆22:80C x y y +-=,过点P 的动直线l 与圆C 交于,A B ,求线段AB 的中点M 的轨迹方程.(2017年)3.在椭圆22:12x C y +=上任取一点M ,过点M 做x 轴的垂线段MN ,N 为垂足,点P 满足2,NPNM =求点P 的轨迹方程.(2013年)4.在平面直角坐标系xoy 中,已知圆P 在x 轴上,截得线段长为P 在y 轴上,截得线段长为求点P 的轨迹方程.参考答案; 1. ()22102y x y -=≠ 2. 221259x y += 3. 24y x =4. 221412x y -=5. (2216x y ++=6. ()2210259x y y +=≠ 7. ()2221x y -+= 8. ()221049x y y +=≠ 9. ()2240x y y +=≠ 10. ()2044x y x +=-<< 11.22194x y += 1. ()221243x y x +=≠- 2. ()()22132x y -+-= 3. 222x y += 4. 221y x -=。
常见轨迹方程的求法
动点轨迹方程的常见求法一、待定系数法;它常常适用于动点轨迹的曲线类型已知或利用已知条件可直接推断出其轨迹的曲线方程。
其解题步骤为:先设出对应类型的轨迹方程;再求出所设方程中的待定系数。
例1、已知椭圆中心在原点,焦点在坐标轴上,焦距为213,另一双曲线和椭圆有公共焦点,且椭圆的半长轴比双曲线的半实轴大4,椭圆的离心率和双曲线的离心率之比为3 / 7。
求椭圆和双曲线的方程。
解:如果双曲线和椭圆的焦点在x 轴上,即椭圆的长轴、双曲线的实轴在x 轴上,那么可设椭圆方程为22a x +22by = 1,双曲线的方程为22mx -22n y = 1。
Θ2c = 213 , ∴c = 13 .Θa – m = 4 , m c : n c = 73 , ∴a = 7 , m = 3 . Θ b 2 = a 2-c 2 = 36 , n 2 = c 2- m 2 =4 .∴椭圆方程为492x +362y = 1,双曲线的方程为92x -42y = 1 ; 如果双曲线和椭圆的焦点在y 轴上,同理可得:∴椭圆方程为492y +362x = 1,双曲线的方程为92y -42x = 1 。
二、直译解析法;该方法的主要思路就是将题目中的几何条件直接翻译为代数条件。
它主要通过建系、设点、列式、化简、讨论等步骤得到所求的曲线轨迹方程。
例2、已知两定点A 、B ,AB = 3,求使∠PBA = 2∠PAB 成立的动点P 的轨迹方程。
解: 以点A 为坐标原点,射线AB 为x 轴的正半轴,建立直角坐标系如右图: 则B 点坐标为(3, 0),设P 点坐标为(x, y),∠PAB = α , 则∠PBA =2αΘ3-x y = K PB = tg(π-2α) = - tg2α =αα212tg tg -- = 2)(1)(2xy x y -- = 222y x xy -- ∴y = 0 (0<x<3) 或31-x = 222y x x --, 即y = 0 (0<x<3) 或(x -1)2-32y = 1 (x ≥2)。
求轨迹方程方法总结
求轨迹方程方法总结轨迹方程是描述物体运动路径的数学表达式。
当我们了解物体的运动规律时,可以使用轨迹方程来描述其运动轨迹,从而帮助我们更好地理解和预测物体的运动。
下面将总结几种常用的推导轨迹方程的方法。
一、基础几何方法:1. 直线运动:对于直线运动,轨迹方程可以通过位移与时间的关系来推导。
如果物体的初始位置为(x0, y0),速度为v,则物体在时间t后的位置(x,y)可以表示为 x = x0 + vt,y = y0。
从而得到轨迹方程 y = y0 + vt。
2.曲线运动:对于曲线运动,可以通过几何关系来推导轨迹方程。
例如,对于抛体运动,可以通过重力加速度和初速度的关系,推导出位置关于时间的二次方程,从而得到轨迹方程。
二、解微分方程方法:1.一阶微分方程:对于一阶微分方程,可以通过求解微分方程得到轨迹方程。
例如,对于匀加速直线运动,可以得到速度关于时间的一阶微分方程,通过求解得到速度与时间的表达式,再通过积分得到位移与时间的表达式,从而得到轨迹方程。
2.二阶微分方程:对于二阶微分方程,可以通过推导得到物体的运动规律,并进一步得到轨迹方程。
例如,对于单摆运动,可以通过考虑受力平衡和受力大小的关系,推导出物体的运动方程,从而得到轨迹方程。
三、向量方法:1.位矢法:对于具有速度和加速度的运动,可以通过位矢法推导轨迹方程。
位矢是一个描述位置和方向的向量,通过将速度积分得到位矢,再通过对位矢微分得到速度,通过对速度微分得到加速度,从而得到物体的位矢关于时间的表达式。
2.矢量投影法:对于运动方向发生变化的运动,可以利用矢量投影法推导轨迹方程。
将位矢投影到坐标轴上,得到物体在各个坐标轴上的分量,从而得到轨迹方程。
四、参数方程方法:1.参数方程是一种用参数表示物体运动轨迹的方法。
可以将物体的运动分解为水平方向与竖直方向上的分量,再通过参数来表示时间的变化。
将水平和竖直方向的分量分别定义为x(t)和y(t),则轨迹方程可以表示为(x(t),y(t))。
高中高考轨迹方程的求法总结
轨迹方程的求法【方法介绍】方法一:直接法课本中主要介绍的方法。
若命题中所求曲线上的动点与已知条件能直接发生关系,这时,设曲线上动点坐标),(y x 后,就可根据命题中的已知条件研究动点形成的几何特征,在此基础上运用几何或代数的基本公式、定理等列出含有x 、y 的关系式。
从而得到轨迹方程,这种求轨迹方程的方法称为直接法。
例题1等腰三角形的顶点为)2,4(A ,底边一个端点是)5,3(B ,求另一个端点C 的轨迹方程。
练习一1.已知点)0,2(-A 、)0,3(B ,动点),(y x P 满足2x PB PA =⋅→→。
求点P 的轨迹方程。
2. 线段AB 的长等于2a,两个端点A 和B 分别在x 轴和y 轴上滑动,求AB 中点P 的轨迹方程?3.动点P (x,y )到两定点)0,3(-A 和)0,3(B 的距离的比等于2(即:2=PB PA )。
求动点P 的轨迹方程?4.动点P 到一高为h 的等边△ABC 两顶点A 、B 的距离的平方和等于它到顶点C 的距离平方,求点P 的轨迹?5.点P 与一定点)0,2(F 的距离和它到一定直线8=x 的距离的比是2:1。
求点P 的轨迹方程,并说明轨迹是什么图形。
6.已知)0,4(P 是圆3622=+y x 内的一点,A 、B 是圆上两动点,且满足△APB=90°,求矩形APBQ 的顶点Q 的轨迹方程。
7.过原点作直线l 和抛物线642+-=x x y 交于A 、B 两点,求线段AB 的中点M 的轨迹方程。
方法二:相关点法 利用动点是定曲线上的动点,另一动点依赖于它,那么可寻它们坐标之间的关系,然后代入定曲线的方程进行求解,就得到原动点的轨迹。
例题2已知一条长为6的线段两端点A 、B 分别在X 、Y 轴上滑动,点M 在线段AB 上,且AM : MB=1 : 2,求动点M 的轨迹方程。
练习二1.已知点)(00,y x P 在圆122=+y x 上运动,求点M ),2(0y x 的轨迹方程。
轨迹方程求轨迹方程的的基本方法
轨迹方程求轨迹方程的的基本方法:直接法、定义法、相关点法、参数法、交轨法、向量法等。
1.直接法:如果动点运动的条件就是一些几何量的等量关系,这些条件简单明确,不需要特殊的技巧,易于表述成含x,y的等式,就得到轨迹方程,这种方法称之为直接法;例1、某检验员通常用一个直径为2 cm和一个直径为1 cm的标准圆柱,检测一个直径为3 cm的圆柱,为保证质量,有人建议再插入两个合适的同号标准圆柱,问这两个标准圆柱的直径为多少?【解析】设直径为3,2,1的三圆圆心分别为O、A、B,问题转化为求两等圆P、Q,使它们与⊙O相内切,与⊙A、⊙B相外切.建立如图所示的坐标系,并设⊙P的半径为r,则 |PA|+|PO|=1+r+1.5-r=2.5∴点P在以A、O为焦点,长轴长2.5的椭圆上,其方程为=1 ①同理P也在以O、B为焦点,长轴长为2的椭圆上,其方程为(x-)2+y2=1 ②由①、②可解得,∴r=故所求圆柱的直径为cm.◎◎双曲线的两焦点分别是、,其中是抛物线的焦点,两点A(-3,2)、B(1,2)都在该双曲线上.(1)求点的坐标;(2)求点的轨迹方程,并指出其轨迹表示的曲线.【解析】(1)由得,焦点(-1,0).(2)因为A、B在双曲线上,所以,.①若,则,点的轨迹是线段AB的垂直平分线,且当y=0时,与重合;当y=4时,A、B均在双曲线的虚轴上.故此时的轨迹方程为x=-1(y≠0,y≠4).②若,则,此时,的轨迹是以A、B为焦点,,,中心为(-1,2)的椭圆,其方程为,(y≠0,y≠4)故的轨迹是直线x=-1或椭圆,除去两点(-1,0)、(-1,4)评析:1、用直接法求动点轨迹一般有建系,设点,列式,化简,证明五个步骤,最后的证明可以省略,但要注意“挖”与“补”。
2、求轨迹方程一般只要求出方程即可,求轨迹却不仅要求出方程而且要说明轨迹是什么。
2.定义法:利用所学过的圆的定义、椭圆的定义、双曲线的定义、抛物线的定义直接写出所求的动点的轨迹方程,这种方法叫做定义法.这种方法要求题设中有定点与定直线及两定点距离之和或差为定值的条件,或利用平面几何知识分析得出这些条件.例2、已知ΔABC中,A,B,C所对应的边为a,b,c,且a>c>b,a,c,b成等差数列,|AB|=2,求顶点C的轨迹方程【解析】|BC|+|CA|=4>2,由椭圆的定义可知,点C的轨迹是以A、B为焦点的椭圆,其长轴为4,焦距为2, 短轴长为2, ∴椭圆方程为,又a>b, ∴点C在y轴左侧,必有x<0,而C点在x轴上时不能构成三角形,故x≠─2,因此点C的轨迹方程是:(─2<x<0)◎◎一动圆与圆外切,同时与圆内切,求动圆圆心的轨迹方程,并说明它是什么样的曲线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中学数学解题方法讨论-------求轨迹方程的方法道县五中 周昌雪内容提要:求轨迹方程是每年高考的必考内容且分值较高、难度较大,所以能否正确求轨迹方程对高考的成败至关重要。
本篇论文归纳了六种常用的求轨迹方程的方法。
曲线形状明确且便于使用标准形式的圆锥曲线轨迹问题,一般用待定系数法求方程;直接将动点满足的几何等量关系“翻译”成动点x ,y ,得方程,即为所求动点的轨迹方程,用直译法求解;若动点运动的几何条件恰好与圆锥曲线的定义吻合,可直接根据定义建立动点的轨迹方程,用定义法求解可先确定曲线的类型与方程的具体结构式,再用待定系数法求之;当所求轨迹上的动点P 随着曲线f(x,y)=0而变动时,且Q 的坐标可且动点P 的坐标(x 0,y 0)代入动点Q 的曲线方程即得曲线P 的轨迹方程,这就是所谓的轨迹代入法,即相关点法;若动点坐标满足的等量关系不易直接找到,可选取与动点坐标有密切关系的量(如角、斜率k 、比值等)作参数t ,根据已知条件求出动点的参数式方程,然后消去参数t 即得动点的轨迹方程,这种求轨迹的方程的方法叫参数法;如果动点是某两条动曲线的交点,则可联立两动曲线方程,消去方程中的有关参数,即为所求动点的轨迹方程,“交轨法”实际上也属于参数法,但它不拘于求出动点的坐标后再消参。
曲线与方程包括求曲线的方程和由方程研究曲线的性质两个方面的内容,每年必考。
求曲线方程的一般思路是:在平面直角分会坐标系中找出动点P (x,y )的纵坐标y 和横坐标x 之间的关系式(),0f x y =,即为曲线方程,其核心步骤是建系、设点、列式、代入、化简、检验。
检验即为由曲线上的点所具备的条件确定x,y 的范围。
、交轨法等求之。
求曲线方程有两类基本题型:其一是曲线形状明确且便于使用标准形式,此时用待定系数法求方程;另一类是曲线形状不明确,或不便用标准形式表示,这时常用直译法、定义法、思恋法、参数法由方程研究曲线,特别是圆锥曲线的几何性质问题常化为等式求解,这时要加强等价转化思想的训练。
求轨迹在求出轨迹方程后必须说明轨迹的形状。
一、用待定系数法求轨迹方程曲线形状明确且便于使用标准形式的圆锥曲线轨迹问题,一般用待定系数法求方程。
例1 已知椭圆2251470x y +=和直线:90l x y -+=,在直线l 上任取一点P ,过P 且以已知椭圆的焦点为焦点作椭圆,求作出的所有椭圆中长轴最短的椭圆的方程。
解 已知椭圆的焦点()()123,0F 30F -和,,从而设所求椭圆的方程为222219x y a a +=-。
若过l 上的P 点,且椭圆长轴最短,由平面几何知识与椭圆相切。
把直线方程代入椭圆方程,利用判别式等于0,得245a =,从而椭圆方程为2214536x y +=.例2 已知双曲线C 的两个焦点为12,F F ,直线L 过点2F ,与线段12F F 夹角为,α且 tan α=2,与线段12F F 垂直平分的交点为P ,线段2PF 与双曲线的交点为Q ,且22PQ QF =,求双曲线方程。
解 取12F F 所在直线为x 轴,12F F 的中垂线为Y 轴建立直角坐标系,设双曲线方程为22221x y a b-=,设()()12,0,,0F c F c -,由题意直线L 的方程为)y x c =-,令0x =,得点P 的坐标为0,2⎛⎫- ⎪ ⎪⎝⎭,又22P Q Q F =,由定比分点坐标公式可得点Q 坐标2,36c ⎛⎫-⎪ ⎪⎝⎭. 因为点Q 在双曲线上,所以22224211936c c a b-=, ① 又222c a b =+, ② 由①、②消去c ,化简整理得421641210b b a a ⎛⎫⎛⎫--= ⎪ ⎪⎝⎭⎝⎭解得b a =③又由已知有ab =④由③、④得a=1,b=,则所求双曲线方程为2213y x -=。
又由对称性知,双曲线2213x y -=也适合。
故所求双曲线方程为2213y x -=或2213x y -=二、用直译法求轨迹方程直接将动点满足的几何等量关系“翻译”成动点x ,y ,得方程,即为所求动点的轨迹方程,用直译法求解,列式容易,但在对等式等价变形与化简过程中应特别留心是否需要讨论。
例3 已知直角任何坐标平面上的点Q(2,0)和圆O:x 2+y 2=1,动点M 到圆O 的切线长与MQ 的比等于常数λ(λ>0)。
求动点M 的轨迹方程,并说明它表示什么曲线。
解 设直线MN 切圆于点N ,则动点M 组成的集合是P={M ∣∣MN ∣=λMQ }.设M(x,y)=()()2222214140x y x λλλ-+-++=经检验,坐标适合这个方程的点都属于集合P ,故这个方程为所求,当λ=1时,它表示一条直线,当λ≠1时,它表示一个圆。
例4 求与y 轴相切,并且和圆2240x y x +-=外切的圆的圆心的轨迹方程.解 由2240x y x +-=,有()22222x y -+=.设动圆的圆心P (x,Y ),由题意记A (2,0),则2PA x =+,2x =+,化简得244y x x =+,当0x ≥时,28;y x =当x ﹤0时,y=0.综上,所求圆心的轨迹方程为28y x =(x ≥0)或y=0(x <0)三、用定义法求轨迹方程若动点运动的几何条件恰好与圆锥曲线的定义吻合,可直接根据定义建立动点的轨迹方程,用定义法求解可先确定曲线的类型与方程的具体结构式,再用待定系数法求之。
例5 如图所示,直线1l 和2l 相交于M ,12l l ⊥,点1N l ∈,以A 、B 为端点的曲线C 上的任一点到2l 的距离与到点N 的距离相等,若△AMN 为锐角三角形,AM =3AN =,且6AB =,建立适当的坐标系,求曲线段C 的方程。
M N 1l解 如图所示,建立坐标系,以1l 和2l 为轴,线段MN 的垂直平分线为y 轴,点 O 为坐标原点建立直角坐标系。
依题意知:曲线段C 是以点 N 为焦点,以2l 为准线的抛物线的一段,其中A 、B 分别为C 的端点,设曲线段C 的方程为y 2=2px(p>0,x A ≤x ≤x B ,y>0)其中P=|MN |,M(-2P ,0),N(2P,0),由AM =,3AN =得22217,2922A A A A p p x px x px ⎛⎫⎛⎫++=-= ⎪ ⎪⎝⎭⎝⎭,联立解得1,4 2.2A A x p x P ====或△AMN 是锐角三角形,2A Px ∴>,舍去2,2A x P == 1,4A x P ∴== 又点B 在双曲线段上C 上,所以42B P x BN =-=,因此所求的曲线段C 的方程为y 2=8x(1≤x ≤4,y>0)例6 已知圆C ()22125x y ++=内一点A (1,0),Q 点为圆C 上任意一点,线段CQ 连线交于点M ,求点M 的轨迹方程。
解 连结AM ,点M 在线段AQ 的垂直平分线上,则AM=MQ,55CM MQ CM MA +=∴+=故点M(x,y)到点C (-1,0)和点A (1,0)的距离之和是常数5,且5>2,所以点P 的轨迹是一个以A 、C 为焦点的椭圆,∵2a=5, 2c=2, ∴222214b ac =-=, ∴点M 的轨迹方程为221252144x y +=. 四、用代入法求轨迹方程当所求轨迹上的动点P 随着曲线f(x,y)=0而变动时,且Q 的坐标可且动点P 的坐标(x 0,y 0)代入动点Q 的曲线方程即得曲线P 的轨迹方程,这就是所谓的轨迹代入法,即相关点法。
例7 抛物线x 2=4x 的焦点为F ,过点M(0,-1)作直线l 交抛物线于不同两点A 、B ,以AF 、BF为邻边作平行四边形FARB ,求顶点R 的轨迹方程。
解 设R(x,y),平行四边形FARB 的对角线的点为P(x 0,y 0),F(0,1)由中点坐标公式得001,22x y x y +==, 设A(x 1,y 1),B(x 2,y 2)则x 1≠x 2, 且x 12=4y 1,x 22=4y 2,,相减得x 12-x 22=4(y 1-y 2), 从而02AB x k =,又A 、P 、B 、M 四点共线,且001PM y k x +=,由K AB =K PM 得x 02=2(y 0+1)把001,22x y x y +==代入并整理得x 2=4y+12 注:动点是直线被方程圆锥曲线截得的弦中点,只要通过代点作差并以弦的斜率作为过渡,即可获得动点的轨迹方程,这事实上就是中点弦问题的处理方法。
五、用参数法求轨迹方程若动点坐标满足的等量关系不易直接找到,可选取与动点坐标有密切关系的量(如角、斜率k 、比值等)作参数t ,根据已知条件求出动点的参数式方程,然后消去参数t 即得动点的轨迹方程,这种求轨迹的方程的方法叫参数法。
例9 给出定点A(a,0)(a >0)和直线l :x=-1,B 是直线l 上的动点,∠BOA 的平分线交AB 于点C ,求点C 的轨迹方程,并讨论方程表示的曲线类型与a 的关系解 设B(-1,t),C(x,y),则OB =C 分BA 所成的比为11BC OBx y CA OA a a x y aλ+-===∴==--消去t 并整理得点C 的轨迹方程为(1-a)x 2-2ax+(1+a)y 2=0(0≤x <a) 当a=1时,轨迹方程为y 2=x(0≤x <a),它表示抛物线段;当a1≠时,轨迹方程可化为 222221111a x y a a a a a ⎛⎫- ⎪-⎝⎭+=⎛⎫⎪--⎝⎭(0≤x <a). 故当a >1时,方程表示双曲线一支上的弧段,当0<a <1时,表示方程椭圆弧段。
例10 已知点P 在直线x=2上移动,直线l 通过原点且和OP 垂直,通过点 A (1,0)及点P 的直线m 和直线l 相交于Q ,求点Q 的轨迹方程。
解 如右图所示,设OP 所在直线的斜率为k ,则点P 的坐标为(2由l OP ⊥,得直线的方程为x+ky=0. ① 易得直线m 的方程为y=2k(x-1). ②因为点Q (x,y )是直线l 和直线m 的交点,X所以由①②联立,消去k ,得点Q 的轨迹方程为2x2+y2-2x=0(x ≠1). Q六、用交轨法求轨迹方程 m如果动点是某两条动曲线的交点,则可联立两动曲线方程,消去方程中的有关参数,即为所求动点的轨迹方程。
“交轨法”实际上也属于参数法,但它不拘于求出动点的坐标后再消参。
例11 设点A 和B 为抛物线24(0)y px p =>上原点以外的两个动点,已知OA ⊥OB 、OM ⊥AB ,求点M 的轨迹,并说明它表示什么曲线。
解 设M(x,y),直线AB 方程为y=kx+b ,把它代入y 2=4px ,消去x 得ky 2-4py+4pb=0,从而124pby y k=,因此2122b x x k =. 由OA ⊥OB 得x 1x 2+y 1y 2=0,即b=-4kp ,所以y=kx+b=k(x-4p), 又OM ⊥AB,故x k y=-. 消去k 得点M 的轨迹方程x 2+y 2-4px=0(x ≠0).例12 已知点O 、点B 为二定点,1OB =,点P 是线段OB 上一点,分别以OP 、OB 为斜边在线段OB 的同一侧作等腰三角形OCP 和ODB 。