公因数、最大公因数与公倍数、最小公倍数

合集下载

(完整版)公倍数和公因数

(完整版)公倍数和公因数

第三单元:公倍数和公因数目标导航1、 认识公倍数和最小公倍数、公因数和最大公因数,会在集合图中分别表示两个数的倍数和它们的公倍数、因数和它们的公因数。

2、 学会用列举的方法找到10以内两个数的最小公倍数和100以内两个数的最大公因数,并能在解决问题的过程中主动探索简捷的方法,发现求两个数的最大公因数和最小公倍数的一些简捷的方法,并能根据两个数的关系选择用合理的方法求两个数的最大公因数和最小公倍数。

3、 自主探索求三个数的最小公倍数的方法,在解决实际问题的过程中提高学习数学的能力。

基础巩固题1、2、6的倍数有:( );8的倍数有:( );6和8的公倍数有:( );6和8的最小公倍数是:( )。

3、填空(1)48既能被8整除,又能被6整除,所以48是8和6的最小公倍数。

( )(2)先将18和24分解质因数,再求出它们的最小公倍数。

18=( ) 24=( ) 18和24的最小公倍数( )。

(分解质因数只针对于合数,质数4的倍数 5的倍数4和5的公倍数指除了1和它本身之外的数,如:2、3、5、7等)(3)4和5的最小公倍数是( ),16和24的最小公倍数是( )。

(4)下面这些图形,如果这样排列下去,在第( )个时都是有颜色的图形呢。

4、求下列各组数的最小公倍数。

7和9 15和45 12和1824和16 11和6 4、5和65、1路和2路公共汽车早上6时同时从起始站发车,1路车每5分钟发一辆车,2路车第4分钟发一辆车。

完成下表并回答问题: 1路车 6:002路车 6:00(1)几时这两路车第二次同时发车?(2)解决这个问题就是求( )。

6、 一个汽车总站有甲、乙两路车。

甲路车每3分钟发一次车;乙路车每5分钟发一次车。

甲、乙两路车第二次同时发车的时间与第一次同时发车的时间至少间隔多少分钟?7、8、18的因数有:( );24的因数有:( );18和24的公因数有:( );18和24的最大公因数有:( )。

公因数和公倍数知识点

公因数和公倍数知识点

公因数和公倍数知识点公因数和公倍数公因数是指两个或多个数公有的因数,而公倍数是指两个或多个数公有的倍数。

在数学中,我们常常需要求两个数的最大公因数和最小公倍数。

首先,我们需要了解一些基本知识。

两个自然数如果公因数只有1,那么它们就是互素数。

而分子、分母是互素数的分数则被称为简分数。

求最大公因数的方法有分解素因数法和短除法。

最小公倍数的求法有分解素因数和短除法,即用最大公因数乘以各自独有的因数。

对于两个数的最大公因数和最小公倍数,有三种基本情况:特殊互素、较大数是较小数的倍数、一般关系。

对于特殊情况,我们可以直接求解,而对于一般情况,我们可以使用列举法、单列举法、分解质因数法、短除法、除法算式法等方法来求解最大公因数。

对于最小公倍数的求解,我们可以使用列举法、单列举法、大数翻倍法、分解质因数法或短除法等方法。

最后,我们需要记住,当两个数是倍数关系时,最大公因数是较小的数,最小公倍数是较大的数;当两个数是互质关系时,最大公因数是1,最小公倍数是它们的乘积。

12的倍数为12、24、36、48.一种方法是单列举法,比如求18和12的最小公倍数,先找出18的倍数:18、36、54、72,再从小到大找这些倍数中哪个同时也是另一个数的倍数,最小公倍数为36.另一种方法是大数翻倍法,将较大的数翻倍,每次翻倍后检查结果是否也是另一个数的倍数,直到找到最小公倍数为止。

比如求18和12的最小公倍数,可以将18翻倍,得到36,而36又是12的倍数,因此36是18和12的最小公倍数。

还有一种方法是短除法,先用两个数同时除以一个质数(要能整除),再同时除以另一个质数,直到得到两个互质的商为止,最后将所有的除数和商相乘即可得到最小公倍数。

对于问题1,(1)既是30的因数又是45的因数的数共有4个,其中最大的是15;(2)既是30的倍数又是45的倍数的数最小是90.对于问题2,将168分解质因数得到2×2×2×3×7,其中一个因数必为7,因此这三个连续自然数只有6、7、8和7、8、9两种可能,而7、8、9这三个数任意两个数的公因数都是1,因此这三个连续自然数只能是6、7和8,它们的和为21.随堂练:1、既是30的倍数又是45的倍数还是75的倍数的数最小是450;2、三个连续自然数的最小公倍数是660,这三个连续自然数分别是220、221和222.最小公倍数和最大公因数在数学中有着广泛的应用。

五年级数学下册最大公因数和最小公倍数知识点

五年级数学下册最大公因数和最小公倍数知识点

五年级数学下册最大公因数和最小公倍数知识点-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN(没有教不会的学生,只有不会教的老师)1、因数和倍数在整数除法中,(第一个条件)如果商是整数而没有余数,(第二个条件)结论是:我们就说被除数是除数的倍数,除数是被除数的因数。

2、一个数的倍数的求法:依次乘以非0自然数。

加省略号。

3、一个数的因数的求法:成对地按顺序找。

(除数和商)。

4、2的倍数特征(能被2整除):个位上是0,2,4,6,8的数都是2的倍数。

5、3的倍数特征(能被3整除):一个数各位上的数字之和是3的倍数,这个数就是3的倍数。

6、5的倍数特征(能被5整除):个位上是0或5的数,是5的倍数。

7、2的倍数特征(能被2整除):奇数、偶数。

因数个数质数、合数。

质合判断看因数,奇偶判断被2除,质2和3应记住,奇单偶双分清楚。

8、20以内质数:口诀2、3、5、7、11(一十一)13、19和179、分数:①整体:一个物体、一些物体、一个单位都可以看作一个整体。

②单位“1”:把一个整体用自然数1来表示。

③分数:把单位“1”平均分成若干份,表示其中一份或几份的数。

④分数单位:把单位“1”平均分成若干份,表示其中一份的数叫做分数单位。

⑤分数与除法关系分数的基本性质。

⑥分数的分类:真分数、假分数、带分数。

10、因数和倍数、公因数、最大公因数、公倍数最小公倍数理解:公因数、最大公因数;公倍数、最小公倍数的意义。

11、求最大公因数方法:(约分)求12和16的最大公因数①列举法②圈画法③短除法2④分解质因数法(甲=2×3×5,乙=2×3×7,甲和乙的最大公因数是().)⑤辗转相除法最大公因数不难算,三种类型最常见。

倍数关系是小数,互质是1不用算。

以上两种都不是,短除法来最简便。

1、找出下列各数的最大公因数。

5和13 6和7 5和8 4和686和12 9和3 25和102、用短除法求下列各组数的最大公因数.56和42 225和15 84和10554、72和90 60、90和12012、求最小公倍数方法:(通分)求6、8最小公倍数①列举法②圈画法③短除法④分解质因数法⑤翻番法最大公因数不难算,三种类型最常见。

最大公因数 最小公倍数 通分 约分

最大公因数 最小公倍数 通分 约分

找最大公因数1、几个数相同的因数叫作这个数的公因数;其中最大的一个叫作它们的最大公因数。

2、列举法求两个数的公因数和最大公因数的方法:先分别找出两个数各自所有的因数,再从中找出两个数的公因数,其中最大的一个就是这两个数的最大公因数。

3、短除法求两个数的最大公因数:如用短除法求18和27的最大公因数,用18和27的最小质因数3去除这两个数,看这两个数的商是不是互质;若不是互质,再接着往下除,一直除到商是互质为止,然后把所有的除数相乘,所得的积就是18和27的最大公因数。

18和27的最大公因数是3×3=9。

一、约分1、把一个分数的分子、分母同时除以公因数,分数的值不变,这个过程叫作约分。

2、分子、分母只含有公因数1的分数,叫作最简分数。

3、约分的方法:(1)逐次约分法:用分子和分母的公因数(1除外)逐次去除分子和分母,直到得出一个最简分数;(2)一次约分法:用分子和分母的最大公因数去除分子和分母。

二、最小公倍数1、几个数公有的倍数,叫作这几个数的公倍数。

其中最小的一个,叫作它们的最小公倍数。

2、求两个数的最小公倍数的方法:(1)列举法:先分别写出两个数各自的倍数,再从中找出公倍数和最小公倍数;(2)试除法:先写出两个数中较大数的倍数,再用这些数按从小到大的顺序依次除以较小数,第一个能被较小数整除的数就是它们的最小公倍数。

短除法求最小公倍数:如用短除法求18和27的最小公倍数,用18和27的最小质因数3去除这两个数,看这两个数的商是不是互质;若不是互质,再接着往下除,一直除到商是互质为止,然后把所有的除数和商相乘,所得的积就是18和27的最小公倍数。

18和27的最小公倍数是3×3×2×3=54。

三、分数的大小1、比较分数大小的方法:画图比较法,通分比较法。

2、通分的含义:把分母不相同的分数化成和原来分数相等、并且分母相同的分数,这个过程叫做通分。

3、通分的方法:用原来几个分数分母的公倍数作公分母,为了计算简便,通常选用最小公倍数作公分母,再把每个分数都化成用这个最小公倍数作分母的分数。

公因数和公倍数知识点

公因数和公倍数知识点

公因数和公倍数知识点公因数和公倍数知识点回顾】1、公因数1)互素数:公因数只有1的两个自然数叫做互素数。

2)简分数:分子、分母是互素数的分数叫做简分数。

3)求最大公因数的方法:分解素因数法和短除法。

2、公倍数求最小公倍数的方法:分解素因数和短除法,即用最大公因数×各自独有的因数。

3、求两个数的最大公因数和最小公倍数,有3种基本情况,区别如下:两个数的关系最大公因素最小公倍数特互素(7和8)1两个数的积(7×8=56)殊较大数是较小数的倍数较小数(12)较大数(48)关(12和48)系一般关系(12和18)用短除法将除数连乘将除数和商连乘2×3=6)(2×3×2×3=36)4、求最大公因数和最小公倍数的方法:1、特殊情况:1)倍数关系的两个数,最大公因数是较小的数,最小公倍数是较大的数。

(如;6和12的最大公因数是6,最小公倍数是12.)2)互质干系的两个数,最大公因数是1,最小公倍数是它们的乘积。

(如,5和7的最大公因数时1,最小公倍数是5×7=35)二、一般情况:1)求最大公因数:列举法、单列举法、分解质因数法、短除法、除法算式法。

①列举法:如,求18和27的最大公因数先找出两个数的所有因数18的因数有:1、2、3、6、9、1827的因数有:1、3、9、27再找出两个数的公因数:18的因数有:1、2、3、6、9、1827的因数有:1、3、9、271、3、9最后找出最大公因数:9②单列举法:如,求18和27的最大公因数先找出其中一个数的因数:18的因数有:1、2、3、6、9、18再找这些因数中那些又是另一个数的因数:1、3、9又是27的因数末了找出最大公因数:9③短除法:3.18.273 6.92.3除到商是互质数为止,最后把所有的除数相乘3×3=9④除法算式法:用这两个数同时除以公因数,除到最大公因数为止。

18139就是18和27的最大公因数279(2)求最小公倍数:列举法、单列举法、大数翻倍法、分解质因数法或短除法。

公因数和公倍数知识点

公因数和公倍数知识点

公因数和公倍数知识点————————————————————————————————作者:————————————————————————————————日期:ﻩ公因数和公倍数【知识点回顾】1、公因数(1)互素数:公因数只有1的两个自然数叫做互素数。

(2)简分数:分子、分母是互素数的分数叫做简分数。

(3)求最大公因数的方法:分解素因数法和短除法。

2、公倍数求最小公倍数的方法:分解素因数和短除法,即用最大公因数×各自独有的因数。

3、求两个数的最大公因数和最小公倍数,有3种基本情况,区别如下:两个数的关系最大公因素最小公倍数特殊关系互素(7和8) 1 两个数的积(7×8=56)较大数是较小数的倍数(12和48)较小数(12) 较大数(48)一般关系(12和18) 用短除法将除数连乘(2×3=6) 将除数和商连乘(2×3×2×3=36)4、求最大公因数和最小公倍数的方法:一、特殊情况:(1)倍数关系的两个数,最大公因数是较小的数,最小公倍数是较大的数。

(如;6和12的最大公因数是6,最小公倍数是12。

)(2)互质关系的两个数,最大公因数是1,最小公倍数是它们的乘积。

(如,5和7的最大公因数时1,最小公倍数是5×7=35)二、一般情况:(1)求最大公因数:列举法、单列举法、分解质因数法、短除法、除法算式法。

①列举法:如,求18和27的最大公因数先找出两个数的所有因数18的因数有:1、2、3、6、9、1827的因数有:1、3、9、27再找出两个数的公因数:18的因数有:1、2、3、6、9、1827的因数有:1、3、9、271、3、9最后找出最大公因数: 9②单列举法:如,求18和27的最大公因数先找出其中一个数的因数:18的因数有:1、2、3、6、9、18再找这些因数中那些又是另一个数的因数:1、3、9又是27的因数最后找出最大公因数: 9③短除法:3 18 273 6 92 3除到商是互质数为止,最后把所有的除数相乘3×3=9 ④除法算式法:用这两个数同时除以公因数,除到最大公因数为止。

公因数、最大公因数与公倍数、最小公倍数

公因数、最大公因数与公倍数、最小公倍数

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 公因数、最大公因数与公倍数、最小公倍数公因数与最大公因数、公倍数与最小公倍数知识点复习:知识点复习:1、公因数:2、最大公因数:3、公倍数:4、最小公倍数:5、1、公因数:2、最大公因数:3、公倍数:4、最小公倍数:5、求几个数的最大公因数与最小公倍数的常用方法:倍数法、分解质因数法、短除法倍数法、分解质因数法、短除法 6、100 以内的质数有:2,3 ,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97. 7 、最大的公因数是 1 的两个自然数,叫做互质数操练练习:一、判断下列说法是否正确。

(1)16 是 2 和 4 的公倍数。

()(2)5 的公倍数是 20。

()(3)3 和 5 的公倍数中有 15、30。

1 / 5()(4)12 是 3 和 4 的最小公倍数。

()(5)几个数的公倍数是无限的,最小的只有一个.()(6)两个不同的自然数的最大公因数一定比最小公倍数小.()(7)如果三个自然数两两互质,它们的最大公因数是 1,最小公倍数就是三个数的乘积.()(8)如果一个质数与一个合数不是互质数,那么这个合数是这两个数的最小公倍数.()(9)一个数的因数必定小于它的倍数.()二、按要求写数。

(1)12 的因数有:(2)18 的因数有: (3)12 和 18 的公因数有:(4)12 和 18 的最大公因数是: (5)几个公有的因数叫做它们的(),其中最大的一个叫做这几个数的()。

(6)在下面集合圈内,分别填上下列数的因数和公因数,再说说它们的最大公因数是多少。

9 的因数 18 的因数 24 的因数 32 的因数9 和 18 的公因数 24 和 32 的公因数 9 和18 的最大的公因数是() 24 和 32 的最大公因数是()三、选择题。

最大公因数和最小公倍数总结

最大公因数和最小公倍数总结

最大公因数和最小公倍数总结一、最大公因数(GCD)1.定义:最大公因数,也被称为最大公约数,是指一组数中能够同时整除所有这些数的最大的正整数。

2.求解方法:-因数分解法:将各个数进行因数分解后,最大公因数是所有数的因数中的最小公因数。

-辗转相除法:将两个数进行相除,余数为0时,被除数即为最大公因数;余数不为0时,将除数作为被除数,余数作为除数进行下一次相除,直到余数为0为止。

二、最小公倍数(LCM)1.定义:最小公倍数是指能够同时整除一组数的最小的正整数。

2.求解方法:-因数分解法:将各个数进行因数分解后,最小公倍数是所有数的因数的最大公倍数。

-辗转相乘法:将两个数进行相乘,再除以它们的最大公因数,得到的商即为最小公倍数。

三、最大公因数和最小公倍数的性质1.互质关系:如果两个数的最大公因数是1,则它们被称为互质数或互质的。

互质数的最小公倍数等于它们的乘积。

2.二者关系:两个数的乘积等于它们的最大公因数与最小公倍数的乘积。

3.分数化简:当分数的分子和分母有相同的因数时,可以将分子和分母都除以最大公因数,使分数化简为最简形式。

4.方程求解:在求解含有多个未知数的方程时,可以通过求解各个未知数的最大公因数来减少未知数的个数,进而简化方程。

四、应用举例1.分数化简:将分数4/8化简为最简形式。

首先可以找到4和8的最大公因数为4,然后将分子和分母都除以4,得到1/2,即为最简形式。

2.方程求解:解方程2x+3y=10。

首先可以观察到2和3的最大公因数为1,因此可以将方程同时除以最大公因数1,得到2x+3y=10。

这样一来,只剩下两个未知数x和y,方程的求解就更加简化了。

通过对最大公因数和最小公倍数的学习和理解,我们可以更加灵活地运用它们解决实际问题。

在数学中,最大公因数和最小公倍数是数论的基础,更是数学计算的重要工具。

掌握了最大公因数和最小公倍数的求解方法和应用技巧,对数学学科的理解和运用都将得到很大的提升。

倍数与因数公因数与公倍数——基本知识点

倍数与因数公因数与公倍数——基本知识点

倍数与因数公因数与公倍数——基本知识点1.倍数与因数1.1倍数:一个数a如果能够被另一个数b整除,那么a就是b的倍数。

例如,6是2的倍数,因为6能够被2整除。

1.2因数:对于一个数a来说,如果存在一些数b使得a能够被b整除,那么b就是a的因数。

例如,2是6的因数,因为6能够被2整除。

2.公因数与公倍数2.1公因数:对于两个数a和b来说,如果存在一些数c同时是a和b的因数,那么c就是a和b的公因数。

例如,4是8和12的公因数,因为4同时是8和12的因数。

2.2公倍数:对于两个数a和b来说,如果存在一些数c同时是a和b的倍数,那么c就是a和b的公倍数。

例如,24是8和12的公倍数,因为24同时是8和12的倍数。

3.公因数与公倍数的性质3.1公因数的性质:-任何一个数的因数都是它的公因数。

-0的所有因数都是任何一个数的公因数。

-两个数的公因数的集合中一定包含它们的最大公因数。

3.2公倍数的性质:-任何一个数的倍数都是它的公倍数。

-两个数的公倍数的集合中一定包含它们的最小公倍数。

4.最大公因数与最小公倍数4.1 最大公因数:对于两个数a和b来说,它们的最大公因数,记作gcd(a, b),是同时是a和b的因数中最大的一个数。

例如,gcd(8, 12) = 44.2 最小公倍数:对于两个数a和b来说,它们的最小公倍数,记作lcm(a, b),是同时是a和b的倍数中最小的一个数。

例如,lcm(8, 12) = 245.两个数的最大公因数与最小公倍数的关系对于两个数a和b来说,有以下关系成立:a *b = gcd(a, b) * lcm(a, b)6.公因数与公倍数的计算方法6.1公因数的计算方法:-可以将两个数的所有因数列举出来,然后找出它们的公因数。

-使用辗转相除法来计算最大公因数,具体步骤如下:-用较大的数除以较小的数,得到商和余数。

-若余数为0,则较小的数就是最大公因数。

-若余数不为0,则将较小的数作为被除数,余数作为除数,继续进行除法运算,直到余数为0为止。

倍数因数最大公因数最小公倍数

倍数因数最大公因数最小公倍数

倍数因数最大公因数最小公倍数在数学中,倍数、因数、最大公因数和最小公倍数是四个基础概念。

它们在数论、代数、几何等领域都有广泛的应用。

在这里,我们将讨论这四个概念之间的联系和一些相关的性质。

倍数和因数是密切相关的概念。

一个数b是另一个数a的倍数,当且仅当a能够被b整除。

例如,6是3的倍数,因为6能够被3整除。

相反,如果b能够整除a,则b是a的因数。

例如,3是6的因数,因为3能够整除6。

最大公因数是一组数中最大的因数。

例如,12和18的最大公因数是6,因为6是它们之间最大的公因数。

最小公倍数是一组数中最小的倍数。

例如,12和18的最小公倍数是36,因为36是它们之间最小的公倍数。

倍数、因数、最大公因数和最小公倍数之间有许多有趣的性质。

下面是其中一些:1. 一个数的因数必定是它的最大公因数的因数。

例如,12和18的最大公因数是6,而6是12的因数和18的因数。

2. 两个数的最大公因数和最小公倍数的积等于这两个数的积。

例如,12和18的积为216,而它们的最大公因数为6,最小公倍数为36,而6×36=216。

3. 两个数的最大公因数和最小公倍数的比等于这两个数的比。

例如,12和18的比为2:3,而它们的最大公因数为6,最小公倍数为36,而6/36=2/3。

4. 如果a和b是正整数,那么a×b的最大公因数等于a和b的最大公因数的积。

例如,12和18的最大公因数为6,而它们的积为216,而216的因数中有6,因此6是12和18的最大公因数。

以上性质是倍数、因数、最大公因数和最小公倍数的一些基本性质。

在数学中它们还有很多应用,例如在求解分数的约分和通分、解方程等方面。

因此,对这些概念的理解和掌握是数学学习中的重要一步。

上海市六年级(上)数学同步讲义 第3讲 (难)分解素因数(二)(解析版)

上海市六年级(上)数学同步讲义 第3讲   (难)分解素因数(二)(解析版)

分解素因数(二)内容分析分解素因数是六年级数学上学期第一章第二节内容,主要包含素数、合数的概念以及分解素因数,公因数与最大公因数,公倍数与最小公倍数这三大块内容,这节课主要讲解公倍数与最小公倍数,重点是最小公倍数的概念,难点是最小公倍数在实际问题中的综合运用.通过这节课的学习一方面为我们后面学习分数奠定基础,另一方面用所学知识解决实际问题,加强学生对数学学习的兴趣.知识结构模块一:公倍数与最小公倍数知识精讲1、公倍数与最小公倍数公倍数:几个整数公有的倍数叫做它们的公倍数;最小公倍数:几个整数公有的倍数中,最小的一个叫做它们的最小公倍数.2、最小公倍数的求法求两个整数的最小公倍数,只要取它们所有公有的素因数,再取它们各自剩余的素因数,将这些数连乘,所得的积就是这两个数的最小公倍数;如果两个整数中某一个数是另一个数的倍数,那么这个数就是它们的最小公倍数;如果两个数互素,那么它们的乘积就是它们的最小公倍数.例题解析【例1】用短除法求18和24的最大公因数和最小公倍数.【难度】★【答案】6;72.【解析】 2 18 243 9 123 4∴18与24的最大公因数是2×3=6;最小公倍数是2×3×3×4=72.【总结】本题考察了用短除法求两个数的最大公因数和最小公倍数.【例2】用分解素因数的方法求24和90的最大公因数和最小公倍数.【难度】★【答案】6;360.【解析】因为24=2×2×2×3,90=2×3×3×5;所以18与24的最大公因数是2×36;最小公倍数是2×2×2×3×3×5=360.【总结】本题考察了用分解素因数法求两个数的最大公因数和最小公倍数.【例3】求下列各组数的最小公倍数.(1)8和15;(2)9和45;(3)19和21.【难度】★【答案】(1)8和15的最大公因数是1;8和15的最小公倍数是120;2/ 15(2)9和45的最大公因数是9;9和45的最小公倍数是45; (3)19和21的最大公因数是1;19和21的最小公倍数是399. 【解析】(1)(3)互素的两个数最大公因数是1,最小公倍数是它们的乘积;(2) 成倍数关系的两个数,最大公因数是较小数,最小公倍数是较大数;【总结】本题考察了求两个特殊关系的数的最大公因数和最小公倍数的方法.【例4】若2235m =⨯⨯⨯,2337n =⨯⨯⨯,则m 、n 的最小公倍数为___________. 【难度】★ 【答案】1260【解析】m 、n 的最小公倍数是:(2×3)×2×5×3×7=1260. 【总结】本题考察了用分解素因数法求两个数的最大公因数和最小公倍数.【例5】求10,12和15的最小公倍数. 【答案】60【解析】 2 10 12 15 3 5 6 15 5 5 2 5 1 2 1∴10、12、15的最小公倍数是:2×3×5×1×2×1=60. 【总结】本题考察了求三个数的最大公因数和最小公倍数的方法.【例6】已知三个连续奇数的和是15,那么这三个奇数的最小公倍数是多少? 【答案】105【解析】设三个数为22n n n -+,,. 则:2215n n n -+++=解得:5n =,这三个数是:3,5,7. ∴3、5、7的最小公倍数是:3×5×7=105. 【总结】本题考察了求三个数的最小公倍数的方法.4 / 15【例7】两个数的积是144,它们的最小公倍数是36,这两个数各是多少? 【答案】4和36.【解析】由已知得:这两个数的最大公因数是4;设这两个数是4a ,4b (a 、b 互素),则44144a b ⨯=.所以9ab =.因为a 、b 互素,所以a =1×4=4,b =9×4=36. 即这两个数是9、36.【总结】本题考察了两个数的最小公倍数、最大公倍数和它们乘积的关系:两个数的最小公倍数与最大公倍数的乘积等于这两个数的乘积.【例8】甲、乙两户人家相邻而居,甲每6天去超市购物一次,乙每7天去同一家超市 购物一次,元旦这一天两户人家都去这家超市购物,再经过多少天他们又会在同一天都去超市?【答案】42天【解析】6与7的最小公倍数是42.答:再经过42天他们又会在同一天都去超市. 【总结】本题考察了两个数的最小公倍数的应用.【例9】幼儿园一个班买书,如买35本,平均分给每个小朋友差一本;如买56本,平均分给每个小朋友后还剩2本;如买69本,平均分给每个小朋友则差3本.这个班的小朋友最多有几人?师生总结1、求最小公倍数的方法有哪些?2、求两个数和三个数的最小公倍数的方法有什么不同?【难度】★★★ 【答案】18人【解析】35+1=36,56-2=54,69+3=72,而36、54、72的最大公因数是18. 答:这个班的小朋友最多有18人. 【总结】本题考察了两个数的最大公因数的应用.1、 两数的最大公因数与最小公倍数的关系已知数a 和数b ,两数的最大公因数为m ,最小公倍数为n ,则:a b m n ⨯=⨯【例10】求下列各组数的最大公因数和最小公倍数.(1)48和18;(2)27和81.【难度】★【答案】(1)48,18的最大公因数是6,最小公倍数是144; (2)27,81的最大公因数是27,最小公倍数是81. 【解析】(1)一般求两数的最大公因数和最小公倍数,用短除法,(2)成倍数关系的两个数,最大公因数是较小数,最小公倍数是较大数.例题解析知识精讲模块二:最大公因数与最小公倍数综合6 / 15【总结】本题考察了求两个数的最大公因数和最小公倍数的方法.【例11】求下列各组数的最大公因数和最小公倍数.(1)4、8和12;(2)15、75和90.【难度】★【答案】(1)4,8,12的最大公因数是4,最小公倍数是24; (2)15,75,90的最大公因数是15,最小公倍数是450. 【解析】均用短除法或分解素因数法等可求得;【总结】本题考察了求三个数的最大公因数和最小公倍数的方法.【例12】如果甲数235=⨯⨯,乙数237=⨯⨯,那么甲数与乙数的最大公因数是________, 最小公倍数是_________. 【难度】★【答案】6, 210;【解析】最大公因数是:2×3=6;最小公倍数是:(2×3)×5×7=210. 【总结】本题考察了用分解素因数法求两个数的最大公因数和最小公倍数.【例13】已知甲、乙两数的最大公因数是3,最小公倍数是30,甲数是6,乙数是多少? 【答案】15【解析】 设另一个数是x , 则:6 x =3×30 解得:x =15 答:乙数是15.【总结】本题考察了两个数的最小公倍数、最大公倍数和它们乘积的关系:两个数的最小公倍数与最大公倍数的乘积等于这两个数的乘积.【例14】判断下列说法是否正确,对的打“√”,错的打“×”,并说明理由. (1)两个数的公倍数的个数是有限的. ( ) (2)30是15和10的最小公倍数.()(3)如果较大数能被较小数整除,那么较小数就是这两个数的最大公因数,较大数就是这两个数的最小公倍数.( )(4)不相同的两个数的最小公倍数一定比它们的最大公因数大.( )【答案】(1)×;(2)√;(3)√;(4)√.【解析】(1)错误,两个数的倍数就是这两个数最小公倍数的倍数,有无限个;(2)正确;(3)正确;(4)正确;【总结】本题考察了两个数的最小公倍数、最大公倍数的相关概念.【例15】两个数的最大公因数是4,最小公倍数是252,其中一个是28,另一个是多少?【答案】另一个数是36.【解析】设另一个数是x,则:28x=4×252.解得:x=36.答:乙数是36.【总结】本题考察了两个数的最小公倍数、最大公倍数和它们乘积的关系:两个数的最小公倍数与最大公倍数的乘积等于这两个数的乘积【例16】已知两个数的最大公因数是6,最小公倍数是144,求这两个数的和是多少?【答案】120或66.【解析】设这两个数是6a,6b(a、b互素),则:6ab=144∴ab=24=1×24=3×8;当a=1,b=24,这两个数是6、144,和为:6+144=120;当a=3,b=8,这两个数是18、48,和为:18+48=66;【总结】本题考察了两个数的最小公倍数、最大公倍数的相关概念.【例17】两个数的最小公倍数是140,最大公因数是4,且小数不能整除大数,这两个数分别是多少?【答案】20和28【解析】设这两个数是4a,4b(a、b互素),则:4ab=140.8 / 15∴ab =35=1×35=5×7,∵小数不能整除大数 ∴a =5,b =7,这两个数是20、28.【总结】本题考察了两个数的最小公倍数、最大公倍数的相关概念.【例18】张三、李四、王五三位同学分别发出新年贺卡x 、y 、z 张.如果已知x 、y 、z 的最小公倍数为60,x 和y 的最大公因数为4,y 和z 的最大公因数为3,那么张三发出的新年贺卡共有多少张? 【难度】★★★ 【答案】20或4.【解析】设4123x a y b z c ===,,(a ,b ,c 为素数),则12abc =60. 所以abc =5=1×1×5.(1)a =5,这三个数是20,12,3; (2)b =5,这三个数是4,60,3; (3)c =5,这三个数是4,12,151; 答:张三发出的新年贺卡为20张或4张.【总结】本题考察了两个数的最小公倍数、最大公倍数的相关概念.【习题1】如果数a 能被数b 整除,则a 和b 的最大公约数是______,最小公倍数是______. 【难度】★ 【答案】b , a .【解析】两个数成倍数关系,最大公因数是较小数,最小公倍数是较大数; 【总结】本题考察了成倍数关系的两个数的最大公因数和最小公倍数的求法.【习题2】自然数b 的最小倍数__________它的最大约数.(填大于、小于或等于)随堂检测【难度】★【答案】等于【解析】自然数的最大因数是它本身,最小倍数是它本身,所以相等;【总结】本题考察了因数和倍数的相关概念;【习题3】11和15的最大公因数是________,最小公倍数是________.【难度】★【答案】1;165.【解析】互素的两个数,最大公因数是1,最小公倍数是它们的乘积;【总结】本题考察了互素的两个数的最大公因数和最小公倍数的求法.【习题4】求2520和5940的最大公因数和最小公倍数.【答案】最大公因数是180,最小公倍数是83160.【解析】因为2520=2×2×2×3×3×5×7;5940=2×2×3×3×3×5×11;所以2520与5940的最大公因数是:2×2×3×3×5=180;最小公倍数是:(2×2×3×3×5)×2×7×3×11=83160.【总结】本题考察了用分解素因数法求两个较大数的最大公因数和最小公倍数.【习题5】一个电子原钟,每整点响一次铃,每走9分钟亮一次灯,已知中午12时整,它既响铃又亮灯,那么下一次既响铃又亮灯是什么时候?【答案】15:00【解析】因为60与9的最小公倍数是180,而180分钟=3小时,12+3=15.答:那么下一次既响铃又亮灯在15:00.【总结】本题考察了两个数的最小公倍数的应用.【习题6】已知两个互素的数的最小公倍数是33,求这两个数的和.【答案】34或14【解析】因为33=1×33=3×11.(1)这两个数可能是1和33,此时和为34;(2)这两个数可能是3和11,此时和为14;【总结】本题考察了互素的两个数的最小公倍数的求法.【习题7】在上海火车站,地铁1号线每隔3分钟发车,轨道交通3号线每隔5分钟发车.如果地铁1号线和轨道交通3号线早上6:00同时发车,至少再过多少时间它们又同时发车?【答案】15分钟【解析】3与5的最小公倍数是15.答:至少再过15分钟它们又同时发车.【总结】本题考察了两个数的最小公倍数的应用.【习题8】用96朵红花和72朵黄花扎成花束,如果每个花束里红花朵数相同,黄花朵数也相同,每个花束里至少有几朵花?【答案】7朵【解析】因为96与72的最大公因数是24,所以(96+72)÷24=7朵.答:每个花束里至少有7朵花.【总结】本题考察了两个数的最大公因数的应用.【习题9】若一块长方形绿地,长120米,宽30米,要在它的四周和四个角种树,且每相邻两棵树之间的距离相等,那么最少需要种多少棵树?【答案】10棵【解析】120与30的最大公因数是30,2(120+30)÷30=10棵.答:最少需要种10棵树.【总结】本题考察了两个数的最大公因数的应用.10/ 15【习题10】被10除余2,被11除余3,被12除余4,被13除余5的最小自然数是多少?【难度】★★★【答案】8572【解析】由题意可知:这个自然数加8是10、11、12、13的公倍数;又10、11、12、13这四个数的最小公倍数是8580,所以8580-8=8572.答:这个自然数最小是8572.【总结】本题考察了两个数的最小公倍数的应用.【习题11】一筐苹果,2个一拿,3个一拿,4个一拿,5个一拿都正好拿完而没有剩余,那么这筐苹果最少应有多少个?【难度】★★★【答案】60个【解析】2、3、4、5这四个数的最小公倍数是60.答:这筐苹果最少应有60个.【总结】本题考察了两个数的最小公倍数的应用.【习题12】小明7月和8月参加了钢琴和美术的培训,两项培训都是从7月1日开始,钢琴课每上一次休息4天,美术课每上一次休息6天,请问整个暑假中有几天是两项培训在同一天进行的?【难度】★★★【答案】12天【解析】4与6的最下公倍数是12,31×2÷12=5…2.答:整个暑假中有5天是两项培训在同一天进行的.【总结】本题考察了两个数的最小公倍数的应用.课后作业【作业1】写出下列各组数的最小公倍数:12 / 151与299( ) 12与36( ) 12与13( ) 13与52( ) 10与14( ) 21与49( ) 6与15()22与66()25与35()【难度】★【答案】299; 36; 156; 52; 70; 147; 30; 66; 175; 【解析】 略【作业2】已知甲数357A =⨯⨯⨯,乙数37A =⨯⨯,若甲、乙两数的最大公因数是42,求A的值. 【难度】★ 【答案】2【解析】由已知得:甲数和乙数的最大公因数是:3×7×A=42, 解得:A =2.【总结】本题考察用分解素因数法求两个数最大公因数.【作业3】已知两个数的积是100,它们的最大公因数是5,试求这两个数的最小公倍数. 【答案】20【解析】 设这两个数的最小公倍数是x , 则:5x =100 解得:x =20答:这两个数的最小公倍数是20.【总结】本题考察了两个数的最小公倍数、最大公倍数和它们乘积的关系:两个数的最小公倍数与最大公倍数的乘积等于这两个数的乘积.【作业4】两个数的最大公因数是42,最小公倍数是2940,且这两个数的和是714,这两个数各是多少?【答案】这两个数是420和294.【解析】设这两个数是42a,42b(a、b互素),则:42ab=2940,42(a+b)=714.∴ab=70,a+b=17∴a=7,b=10,这两个数是420、294.【总结】本题考察了两个数的最小公倍数、最大公倍数的相关概念.【作业5】有铅笔433支、橡皮260块,平均分配给若干学生.学生人数在30~50之间,最后剩余铅笔13支、橡皮8块,问学生究竟有多少人?【答案】42人【解析】433-13=420,260-8=252,而420与252的最大公因数是84.又学生人数在30~50之间,84=2×42.答:学生有42人.【总结】本题考察了两个数的最大公因数的应用.【作业6】若一个正整数加上3能被15和20整除,那么符合条件的数中最小的数是多少?【答案】57【解析】因为15与20的最小公倍数是60,所以60-3=57.答:符合条件的数中最小的数是57.【总结】本题考察了两个数的最小公倍数的应用.【作业7】一筐苹果有500多个,每次拿3个,每次拿4个,每次拿5个都恰好多一个,这筐苹果共有多少个?【答案】60个【解析】3、4、5的最小公倍数是60,而苹果有500多个,所以60×9=540个.答:这筐苹果共有540个.【总结】本题考察了两个数的最小公倍数的应用.【作业8】一排电线杆每两根之间的距离是60米,现在要改为45米,如果起点的一根不动,再过多远又有一根不动?【难度】★★★【答案】180米【解析】60与45的最小公倍数是180.答:再过180米又有一根不动.【总结】本题考察了两个数的最小公倍数的应用.【作业9】公共汽车总站有三条线路,第一条每8分钟发一辆车,第二条每10分钟发一辆车,第三条每16分钟发一辆车,早上6:00三条路线同时发出第一辆车,该总站发出最后一辆车是20:00.求该总站最后一次三辆车同时发出的时刻.【难度】★★★【答案】19:20【解析】8、10、16这三个数的最小公倍数是80.(20-6)×60=840分钟840÷80=10…40分钟答:该总站最后一次三辆车同时发出的时刻是19:00.【总结】本题考察了两个数的最小公倍数的应用.【作业10】数23具有下列性质:被2除余1,被3除余2,被4除余3,求具有这种性质的最小三位数.【难度】★★★【答案】11【解析】由题意可知:这个自然数加1是2、3、4的公倍数;又2、3、4的最小公倍数是12.∴12-1=11答:这个自然数最小是11.【总结】本题考察了两个数的最小公倍数的应用.14/ 15。

公因数、最大公因数、公倍数和最小公倍数

公因数、最大公因数、公倍数和最小公倍数

公因数、最大公因数、公倍数和最小公倍数公因数、最大公因数、公倍数和最小公倍数在数学中,我们常常需要求出多个数的公因数、最大公因数、公倍数和最小公倍数。

掌握这些概念和求法是非常重要的。

最大公因数是几个数公有的因数中最大的那个,可以用列举法、观察法和短除法等方法求得。

例如,求8和6的最大公因数,我们可以先列出它们的因数,然后找出它们的公因数,最后找出它们的最大公因数,即2.观察法可以应用于特殊情况,例如两个数具有倍数关系时,它们的最大公因数就是其中较小的数;两个数是互质数时,它们的最大公因数就是1.如果两个数不是倍数和互质关系,我们可以用小数缩小法,即把较小的数缩小,每次缩小后看得到的商是不是另一个数的因数,直到所得的商是另一个数的因数为止。

短除法是一般情况下求最大公因数的常用方法。

我们可以用这两个数除以它们的公因数,一直除到所得的两个商只有公因数1为止。

然后把最后所有的除数连乘,就得到了二个数最大公因数。

除了最大公因数,我们还需要掌握最小公倍数的求法。

最小公倍数是几个数公有的倍数中最小的那个,可以用列举法、分解质因数法和公式法等方法求得。

例如,求6和8的最小公倍数,我们可以先列出它们的倍数,然后找出它们的公倍数,最后找出它们的最小公倍数,即24.最后,我们需要学会如何解有关最大公因数和最小公倍数的应用题,例如求某些数的最大公因数或最小公倍数,或者求某些数的倍数关系等。

通过练,我们可以更好地掌握这些知识点,并在实际问题中灵活运用。

12和24的最大公因数是4,可以表示为(12,24)=4.互质数是指公因数只有1的两个数,例如1和任何自然数都是互质数,相邻两个自然数如2和3、8和9也是互质数。

两个质数一定是互质数,而两个合数可能是互质数,例如8和9、25和49.2和所有奇数都是互质数,质数与比它小的合数也是互质数。

需要注意的是,质数是对一个数来说,而互质数是对两个数的关系来说的。

在练中,需要判断每组数是不是互质关系或倍数关系,并求出它们的最大公因数。

最大公因数和最小公倍数的计算方法

最大公因数和最小公倍数的计算方法

最大公因数和最小公倍数的计算方法大家好,今天咱们来聊聊数学中一个特别有用的概念——最大公因数和最小公倍数。

虽然这两个听起来有点复杂,但其实理解起来并不难,就像学骑自行车一样,掌握了诀窍就轻松了。

咱们分步骤来,一步步搞清楚它们到底是啥,怎么计算。

1. 最大公因数(GCD)的理解与计算1.1 什么是最大公因数?最大公因数,顾名思义,就是两个或多个数的“最大”公共因数。

比如说,你有两个数字,12和18。

它们的因数分别是:12 的因数:1, 2, 3, 4, 6, 12。

18 的因数:1, 2, 3, 6, 9, 18。

从中我们可以看到,1, 2, 3, 6都是它们的公共因数。

而最大公因数就是这几个公共因数中最大的一一个。

在这个例子中,最大公因数就是6。

1.2 如何计算最大公因数?有几种常见的方法可以计算最大公因数,最简单的就是“列举法”,就是把两个数的所有因数列出来,然后找出最大那个。

如果想要更快速的方法,可以用“辗转相除法”:1. 把较大的数除以较小的数。

2. 用得到的余数去除以较小的数。

3. 反复进行,直到余数为0。

此时,除数就是最大公因数。

比如:计算12和18的最大公因数。

18 ÷ 12 = 1 余612 ÷ 6 = 2 余0所以,最大公因数是6。

2. 最小公倍数(LCM)的理解与计算2.1 什么是最小公倍数?最小公倍数就是两个或多个数的“最小”公共倍数。

打个比方,咱们还是用12和18:12 的倍数:12, 24, 36, 48, 60, 72, …。

18 的倍数:18, 36, 54, 72, …。

你会发现36和72都是它们的公共倍数,其中最小的那个就是最小公倍数,也就是36。

2.2 如何计算最小公倍数?计算最小公倍数最简单的方法是“列举法”,找到两个数的所有倍数,然后选出最小的一个。

但如果想要更高效的方法,可以用“最大公因数法”:1. 先算出两个数的最大公因数。

2. 然后用两个数的乘积除以最大公因数,得到的结果就是最小公倍数。

五年级 第4讲 最大公因数与最小公倍数(教师版)【修订版1.0】

五年级 第4讲 最大公因数与最小公倍数(教师版)【修订版1.0】

第4讲最大公因数与最小公倍数一、教学目标1.掌握公因数与公倍数、最大公因数与最小公倍数的概念.2.学会求多个数的最大公因数与最小公倍数的方法.3.学会利用最大公因数与最小公倍数解决实际应用题.二、知识要点1.公因数与最大公因数:公因数,亦称“公约数”,即多个自然数公共的因数.它是一个能同时整除若干个整数的整数.其中最大的一个,叫做这几个数的最大公约数,a、b 的最大公因数记作:(a,b).公因数只有1的两个数,叫互质数.例如,8和9是一组互质数,也可以说8和9互质.注意:对任意的若干个正整数,1总是它们的公因数.2.最小公倍数:同理,公倍数即几个自然数公有的倍数,叫做这几个数的公倍数,其中最小的一个自然数,叫做这几个数的最小公倍数,a、b的最小公倍数记作:[a,b].3.短除法:短除符号与除式倒过来的符号十分相似,待分解的数放在被除数位置,除数位置放能整除待分解数的一个共有约数,一直除到商互质为止.格式如图:口诀:最大公因算一边,最小公倍算一圈.被除数待分解21812396324.最大公因数的性质:①几个数都除以它们的最大公约数,所得的几个商是互质数;①几个数的公约数,都是这几个数的最大公约数的约数;①几个数都乘一个自然数n,所得的积的最大公约数等于这几个数的最大公约数乘以n.5.最小公倍数的性质:①两个数的任意公倍数都是它们最小公倍数的倍数.①两个互质的数的最小公倍数是这两个数的乘积.①两个数具有倍数关系,则它们的最大公约数是其中较小的数,最小公倍数是较大的数.三、例题精选【例1】51与87的最大公因数与最小公倍数分别是多少?【①①①①①】【解析】(51,87)=3,[51,87]=1479.51=3×17,87=3×29,(51,87)=3,[51,87]=3×17×29=1479.【巩固1】24与60的最大公因数与最小公倍数分别是多少?【①①①①①】【解析】(24,60)=12,[24,60]=120.24=23×3,60=22×3×5,(24,60)=22×3=12,[24,60]=23×3×5=120.【例2】12、28与36的最大公因数与最小公倍数分别是?【①①①①①】【解析】(12,28,36)=4,[12,28,36]=252.12=22×3,28=22×7,36=22×32;(12,28,36)=22=4,[12,28,36]=22×32×7=252.【巩固2】15、20与45的最大公因数与最小公倍数分别是?【①①①①①】【解析】(15,20,45)=5,[15,20,45]=180.15=3×5,20=22×5,45=32×5;(15,20,45)=5,[15,20,45]=22×32×5=180.【例3】有三根铁丝,长度分别是120厘米、180厘米和300厘米.现在要把它们截成相等的小段,每根都不能有剩余,每小段最长多少厘米?一共可以截成多少段?【①①①①①】【解析】60厘米,10段.需要截成相等的小段且无剩余,则每段长度必须是120、180、300的公因数.又要求每段尽可能长,则所求应为其最大公因数.(120,180,300)=60,所以每小段最长为60厘米.(120+180+300)÷60=10(段)【巩固3】长48分米,宽40分米的长方形卧室铺地砖,请问最大可以选用边长为多少分米的方砖,能铺的又整齐又节约?【①①①①①】【解析】8分米.正方形边长相等,所以要求的边长长度必须是48和40的公因数,又问边长最大可取多少,则所求应为其最大公因数.(48,40)=8,所以边长最大可取8分米.【例4】一次会餐供有三种饮料.餐后统计,三种饮料共用了65瓶.平均每2个人饮用一瓶A饮料,每3人饮用一瓶B饮料,每4人饮用一瓶C饮料.问参加会餐的人数是多少人?【①①①①①】【解析】60人.由题意可知,参加会餐人数应是2、3、4的公倍数,首先求出2、3、4的最小公倍数:[2,3,4]=12,故参加会餐的人数应是12的倍数,又12人共需:12÷2+12÷3+12÷4=13(瓶),即12人需要13瓶饮料.一共用了65瓶饮料,65÷13=5,则知参加会餐的总人数应是12的5倍,12×5=60(人),即得参加会餐的总人数为60人.【巩固4】加工某种机器零件,要经过三道工序.第一道工序每个工人每小时可完成3个零件,第二道工序每个工人每小时可完成10个,第三道工序每个工人每小时可完成5个,要使加工生产均衡,三道工序至少各分配几个工人?【①①①①①】【解析】第一道工序10人,第二道工序3人,第三道工序6人.要使加工生产均衡,各道工序生产的零件总件数应是3、10、5的公倍数.要求三道工序“至少”要多少工人,首先求3、5、10的最小公倍数.[3,5,10]=30,均衡各道工序,一轮最少应加工30个零件,各道工序最少需要:3÷3=10(人),30÷10=3(人),30÷5=6(人)【例5】两个自然数的和是125,它们的最大公约数是25,两个数是多少?【①①①①①】【解析】25、100或50、75.125÷25=5,5=1+4=2+3,所以两数可以为1×25=25、4×25=100或2×25=50、3×25=75.【巩固5】已知两数的最大公约数是21,最小公倍数是126,求这两个数的和是多少?【①①①①①】【解析】105或147.假设这两个数是21a和21b,易得21×a×b=126,所以a×b=6,由a和b互质,就有6=1×6=2×3这两种情况.所以甲乙是21×1=21、21×6=126或21×2=42、21×3=63这两种情况,它们的和是147或105.【例6】在一根长木棍上用红、黄、蓝三种颜色做标记,分别将木棍平均分成了10等份、12等份和15等份.如果沿这三种标记把木棍锯断,木棍总共被锯成多少段?【①①①①①】【解析】28段.首先求10、12、15最小公倍数:[10,12,15]=60.60÷10=6、60÷12=5、60÷15=4,则知将木棍分成60小份后,每隔6小份有一个红标记,5小份有一个黄标记,4小份有一个蓝标记,因此断点为:4,5,6,8,10,12,15,16,18,20,24,25,28,30,32,35,36,40,42,44,45,48,50,52,54,55,56,则知木棍一共被锯成28段.【巩固6】父子二人在雪地散步,父亲在前,每步80厘米,儿子在后,每步60厘米.在120米内一共留下多少个脚印?【①①①①①】【解析】301个.首先求60、80最小公倍数:[60,80]=240.则知每240厘米,即2.4米有一个脚印踩到了一起,120÷2.4=50,则知120米可以分成50个2.4米,每2.4米中,爸爸脚印有240÷80=3(个),儿子脚印有240÷60=4(个),排除重复脚印则一共有3+4-1=6(个),50个2.4米则有50组6步,故有50×6=300(个),又在0米处二人开始走时也有一个脚印,即共有脚印300+1=301(个).四、回家作业【作业1】18与48的最大公因数与最小公倍数分别是多少?【①①①①①】【解析】(18,48)=6,[18,48]=144.18=2×32,48=24×3,(18,48)=2×3=6,[18,48]=24×32=144.【作业2】12、24与36的最大公因数与最小公倍数分别是多少?【①①①①①】【解析】(12,24,36)=12,[12,24,36]=72.12=22×3,24=23×3,36=22×32;(12,24,36)=12,[12,24,36]=23×32=72.【作业3】有三根棉线,长度分别是9厘米、18厘米和36厘米.现在要把它们截成相等的小段,每根都不能有剩余,每小段最长多少厘米?一共可以截成多少段?【①①①①①】【解析】7段.需要截成相等的小段且无剩余,则每段长度必须是9、18、36的公因数.又要求每段尽可能长,则所求应为其最大公因数.(9,18,36)=9,所以每小段最长为9厘米.(9+18+36)÷9=7(段)【作业4】一个汽车站有1路车和3路车,1路车每隔20分钟发一辆车,3路车每隔25分钟发一辆车.已知上午8时正1路车和3路车同时出发,再过多长时间两车又同时从车站出发?是几时几分?【①①①①①】【解析】100分(1时40分)后,9时40分;首先求20、25最小公倍数:[20,25]=100.则知100分后辆车又同时出发,100分=1时40分.8时+1时40分=9时40分.【作业5】已知两个自然数的最大公约数为4,最小公倍数为60,两个数是多少?【①①①①①】【解析】4与60、12与20.这两个数分别除以最大公约数所得的商乘积等于最小公倍数除以最大公约数的商,60÷4=15,将30分解成两个互质数的乘积,有1、15,3、5。

公因数与最大公因数、公倍数与最小公倍数 1

公因数与最大公因数、公倍数与最小公倍数 1

第二讲:公因数与最大公因数、公倍数与最小公倍数第一部分:公因数与最大公因数知识点归纳:1:公因数和最大公因数的意义几个数公有的因数,叫做这几个数的公因数,其中最大的一个,称为这几个数的最大公因数。

注意:几个数的公因数必须包含它们公有的素因数(至少一个),而几个数的最大公因数必须包含它们全部公有的素因数。

2:互素的意义若两个数的公因数只有1 ,则称这两个数互素,它和素数、素因数是绝对不同的概念,素数是指一个数除了1和本身以外没有别的因数的数。

当素数是一个合数的因数时,则称这个素数为这个合数的素因数。

3:求公因数和最大公因数的方法若两个数互素,则它们的公因数为1.若两个数之间存在倍数关系,则它们的最大公因数是其中较小的那个数。

若两个数既不互素,也不存在倍数关系,则一般可用短除法或者分解素因数法找到它们全部公有的素因数,这些素因数的积就是这两个数的最大公因数。

典例练习1、用边长为6厘米、4厘米的正方形纸片分别铺长为18厘米、宽为12厘米的矩形。

哪种纸片能将矩形铺满?2、两个数的和是60 ,且它们的最大公因数为12 ,求这两个数。

3、若甲数= a×b×c ,乙数= a×c ×d (a、b 、c 、d 是不同的素数),则甲、乙两数的最大公因数是什么?4、有12米长的铁丝8根,18米长的铁丝7根,要把它们截成一样长的铁丝,不浪费,截下的铁丝要最长,铁丝长几米?可以截多少根?5、小华在制作船模时,将三根长分别为12厘米,18厘米,和30厘米的木条截成同样长的若干段,且都没有剩余,请你算一算每段最长是几厘米,一共截了多少段?6、把一张长42厘米,宽30厘米的长方形,剪成大小一样的正方形而无剩余,剪成的正方形至少有几个?7、甲、乙、丙三人是朋友,他们每隔不同的天数去图书馆一次,甲3天去一次,乙4天去一次,丙5天去一次,有一天,他们三人恰好在图书馆相会,问至少再经过多少天他们三人又在图书馆相会?8、1路、2路和5路公交车都从东站发车,1路车每隔10分钟发一辆,2路车每隔15分钟发一辆,而5路每隔20分钟发一辆,当这三种线路的车同时发车后,至少要过多少分钟又有这三种路线同时发车?9、有一个长方体木块,长60厘米,宽40厘米,高24厘米,如果要切成同样大小的小立方体,这些小立方体的棱长最长是多少厘米?10、一个数除253余1,除299余2,这个数最大是多少?11、一条成直角形状的街道,一条街道长840米,另一条街道长720米,要在这条街道的右侧等距离的装上路灯,且要求两端和转弯处都必须装灯,那么这条街道最少要装多少盏灯?12、有三个素数,它们的乘积是1001,求这三个素数分别是多少?13、某校购进72台同型号的录音机,由于发票上的字迹太淡,首尾两个数看不清楚,只能看出应付的钱数是 5928元,你能推算出这次学校购买的录音机的单价和总价吗?第二部分:公倍数与最小公倍数知识点归纳:1:公倍数和最小公倍数的意义几个数共有的倍数叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数。

公倍数公因数最大公因数最小公倍数的定义

公倍数公因数最大公因数最小公倍数的定义

公倍数公因数最大公因数最小公倍数的定义1. 引言1.1 什么是公倍数公倍数是指两个或多个数同时存在的倍数。

换句话说,公倍数就是能同时整除这些数的数。

2和3的公倍数包括6、12、18等等。

公倍数是数学中常见的概念,它在简化分数、求解方程等问题中起着重要作用。

通过找到两个数的公倍数,我们可以简化计算过程,使问题变得更加简单。

在求解两个数的最小公倍数时,我们只需要找到它们的公倍数中最小的那个数即可。

这样一来,我们可以节省时间和精力,提高计算的效率。

通过理解和掌握公倍数的概念,我们可以更好地理解数学中的相关知识,提高解决问题的能力。

掌握公倍数这一概念对于数学学习和应用来说是非常重要的。

希望大家能够认真学习公倍数的概念,并灵活运用于实际问题的解决中。

这样一来,我们能更好地理解数学,提高数学水平。

1.2 什么是公因数公因数,顾名思义是指能够同时整除两个或多个数的数。

换句话说,如果一个数能够同时整除两个数,那么这个数就是这两个数的公因数。

公因数在数学中具有重要的作用,它可以帮助我们简化分数、化简多项式、求解方程等。

对于数字12和18,它们的公因数包括1、2、3、6。

因为这些数字都可以整除12和18,所以它们是12和18的公因数。

而最大的公因数就是能够同时整除两个数中最大的那个数,即12和18的最大公因数是6。

公因数的概念在数学中有着广泛的应用,特别是在分解质因数、求解最大公约数等方面。

通过寻找两个或多个数的公因数,我们可以更快地找到它们的最大公因数,从而简化计算过程。

公因数是能够同时整除两个或多个数的数,它在数学中扮演着重要的角色,能够帮助我们简化计算、解决问题。

通过深入理解公因数的概念,我们可以更好地应用它们在数学中的各种场景中,提高计算效率,优化解决方案。

1.3 什么是最大公因数最大公因数是指一组数中可以同时整除这组数的最大整数。

换句话说,最大公因数是该组数的所有公因数中最大的一个。

最大公因数的概念在数论和代数中非常重要,它可以帮助我们简化分式运算、化简等式以及解决整数问题。

最大公因数和最小公倍数举例

最大公因数和最小公倍数举例

最大公因数和最小公倍数举例最大公因数和最小公倍数是数学中的两个重要概念,下面将分别对它们进行解释,并给出10个具体的例子。

一、最大公因数最大公因数又称为最大公约数,是指两个或多个整数中能够整除它们的最大正整数。

计算最大公因数的方法有很多,常见的有质因数分解法、辗转相除法等。

例子1:求出30和45的最大公因数。

解答:首先进行质因数分解,30=2×3×5,45=3×3×5。

最大公因数是3×5=15。

例子2:求出24和36的最大公因数。

解答:24=2×2×2×3,36=2×2×3×3。

最大公因数是2×2×3=12。

例子3:求出14和21的最大公因数。

解答:14=2×7,21=3×7。

最大公因数是7。

例子4:求出72和120的最大公因数。

解答:72=2×2×2×3×3,120=2×2×2×3×5。

最大公因数是2×2×2×3=24。

例子5:求出80和100的最大公因数。

解答:80=2×2×2×5,100=2×2×5×5。

最大公因数是2×2×5=20。

例子6:求出16和64的最大公因数。

解答:16=2×2×2×2,64=2×2×2×2×2×2。

最大公因数是2×2×2×2=16。

例子7:求出45和75的最大公因数。

解答:45=3×3×5,75=3×5×5。

最大公因数是3×5=15。

例子8:求出18和27的最大公因数。

解答:18=2×3×3,27=3×3×3。

最大公因数和最小公倍数

最大公因数和最小公倍数

第三讲最大公因数和最小公倍数一.基本概念和知识1.公因数和最大公因数几个数公有的因数,叫做这几个数的公因数;其中最大的一个,叫做这几个数的最大公因数。

2.公倍数和最小公倍数几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个,叫做这几个数的最小公倍数。

3.互质数如果两个数的最大公因数是1,那么这两个数叫做互质数。

二.例题例1:用一个数去除30、60、75,都能整除,这个数最大是多少?分析∵要求的数去除30、60、75都能整除,∴要求的数是30、60、75的公因数。

又∵要求符合条件的最大的数,∴就是求30、60、75的最大公因数。

解:(30,60,75)=15所以,这个数最大是15。

例2:一个数用3、4、5除都能整除,这个数最小是多少?分析由题意可知,要求求的数是3、4、5的公倍数,且是最小公倍数。

解:∵ [3,4,5] =60,∴用3、4、5除都能整除的最小的数是60。

例3:有三根铁丝,长度分别是120厘米、180厘米和300厘米。

现在要把它们截成相等的小段,每根都不能有剩余,每小段最长多少厘米?一共可以截成多少段?分析∵要截成相等的小段,且无剩余,∴每段长度必是120、180、300的公因数;又∵每段要尽可能长,∴要求的每段长度就是120、180、300的最大公因数。

解:∵(120,180,300)=60,∴每小段最长60厘米。

120÷60+180÷60+300÷60=2+3+5=10(段)答:每段最长60厘米,一共可以截成10段。

例4:加工某种机器零件,要经过三道工序。

第一道工序每个工人每小时可完成3个零件,第二道工序每个工人每小时可完成10个,第三道工序每个工人每小时可完成5个。

要使加工生产均衡,三道工序至少各分配几个工人?分析要使加工生产均衡,各道工序生产的零件总数应是3、10和5的公倍数。

要求三道工序“至少”要多少工人,要先求3、10和5的最小公倍数。

解:∵[3,10,5]=30∴各道工序均应加工30个零件。

最大公因数最小公倍数知识点

最大公因数最小公倍数知识点

最大公因数最小公倍数知识点咱们今天来唠唠数学里的最大公因数和最小公倍数这俩有趣的家伙。

你看啊,最大公因数就像是一群小伙伴里最能代表大家共同特征的那个。

比如说,有一堆水果,苹果有12个,香蕉有18个。

咱们想把它们分成一样多的小堆,每堆里既有苹果又有香蕉,这个时候呢,最大公因数就派上用场啦。

12的因数有1、2、3、4、6、12,18的因数有1、2、3、6、9、18。

这里面相同的因数有1、2、3、6,最大的那个6就是它们的最大公因数。

这就好比是从苹果和香蕉的数量里找出那个能把它们整整齐齐分成小堆的最大的数,就像一个大家都认可的小组长,带着大家整齐地排队一样。

你说巧不巧?这就是最大公因数的魔力。

那最小公倍数呢?它就像是一个大容器,能把两个数的倍数都装下,而且是最小的那个容器。

还是拿苹果和香蕉举例,要是我们想知道按照某个数量去装袋,既能把苹果装完,又能把香蕉装完,这个数量就是最小公倍数。

12的倍数有12、24、36、48……18的倍数有18、36、54……这里面第一个相同的36就是它们的最小公倍数。

这就好比是我们要找一个盒子,这个盒子能刚好把苹果和香蕉按照各自的数量装进去,而且是最小的那个合适的盒子,不能再小啦,再小就装不下啦。

这最大公因数和最小公倍数啊,在生活里到处都能看到它们的影子。

就像家里铺地砖,房间的长和宽是固定的,地砖的边长要是长和宽的最大公因数,那就能铺得整整齐齐,一块不多一块不少。

要是我们要安排一些周期性的事情,比如说两个机器,一个每10分钟做一件事,一个每15分钟做一件事,那它们同时做事的周期就是最小公倍数30分钟。

这多神奇啊!你要是觉得找最大公因数和最小公倍数麻烦,也有小窍门哦。

像那种比较小的数,我们就可以把它们的因数一个个列出来,就像我刚刚列12和18的因数那样。

但是要是数大了呢?咱们可以用短除法。

这短除法就像是一把神奇的剪刀,把两个数剪成最简单的形式,然后就能很容易找到最大公因数和最小公倍数啦。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

公因数与最大公因数、公倍数与最小公倍数
知识点复习:
1、公因数:
2、最大公因数:
3、公倍数:
4、最小公倍数:
5、求几个数的最大公因数与最小公倍数的常用方法:倍数法、分解质因数法、短除法
6、100以内的质数有:2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97.
7、最大的公因数是1的两个自然数,叫做互质数
操练练习:
一、判断下列说法是否正确。

(1)16是2和4的公倍数。

()
(2)5的公倍数是20。

()
(3)3和5的公倍数中有15、30。

()
(4)12是3和4的最小公倍数。

()
(5)几个数的公倍数是无限的,最小的只有一个.()
(6)两个不同的自然数的最大公因数一定比最小公倍数小.()
(7)如果三个自然数两两互质,它们的最大公因数是1,最小公倍数就是三个数的乘积.()
(8)如果一个质数与一个合数不是互质数,那么这个合数是这两个数的最小公倍数.()
(9)一个数的因数必定小于它的倍数.()
二、按要求写数。

(1)12的因数有:
(2)18的因数有:
(3)12和18的公因数有:
(4)12和18的最大公因数是:
(5)几个公有的因数叫做它们的(),其中最大的一个叫做这几个数的()。

(6)在下面集合圈内,分别填上下列数的因数和公因数,再说说它们的最大公因数是多少。

9的因数 18的因数 24的因数 32的因数
和32的公因数
9和18的最大的公因数是() 24和32的最大公因数是()
三、选择题。

1.96是16和12的()
①公倍数②最小公倍数③公因数
2.几个质数的连乘积是()
①合数②质数③最大公因数④最小公倍数
3.甲是乙的15倍,甲和乙的最小公倍数是()
①15 ②甲③乙④甲×乙
4.12是24和36的()
①因数②质因数③最大公约数
5.一个数的最大因数()它的最小倍数.
①>②<③=
6.甲=2×2×5,乙=2×3×5,那么甲、乙的最小公倍数是()
①600 ②300 ③60 ④10
四、用短除法求出下列数的最大公因数和最小公倍数并填空。

1. 18和36的最小公倍数是(),最大公因数是()。

2. 45和135的最小公倍数是(),最大公因数是()。

3. 18和72的最小公倍数是(),最大公因数是()。

4. 16和24的最小公倍数是(),最大公因数是()。

5、 13和39的最小公倍数是(),最大公因数是()。

6、 44和121的最小公倍数是(),最大公因数是()。

7、 69和96的最小公倍数是(),最大公因数是()。

8、 30和75的最小公倍数是(),最大公因数是()。

强化训练:
一、填空。

1、甲=2×3×5,乙=2×3×7,甲和乙的最大公因数是().
2、甲数=2×3×5,乙数=7×11×13,甲数和乙数的最大公因数是()。

3、()的两个数,叫做互质数.
4、两个数为互质数,这两个数的最大公因数是().
5、所有自然数的公因数为().
6、8与9的最小公倍数是();48、12和16的最大公因数是();
7、30和45的最大公因数是();150和25的最小公倍数是().
二、判断(对的打“√”,错的打“×”).
1、30 、15和5的最大公因数是30.()
2、最小的合数和最小的质数这两个数不是互质数.()
3、相邻的两个自然数一定是互质数.()
4、两个数的公因数的个数是有限的. ( )
5、1和任意非零自然数的最大公因数是1. ()
三、找出下面每组数的最大公因数和最小公倍数。

(短除法)
5和10 12和15 24和36 15和19
65和39 48和108 144和36 28和98
四、应用题
1、两根铁丝分别长65米和91米,用一根绳子分别测量它们,都恰好量完无剩余,这根绳子最多有多长?
2、五年级一班有48人,二班有54人,如果把两个班的学生都平均分成若干组,要使两个班每个小组的人数相等,每组最多有多少人?
3、有一张长方形的纸,长80厘米,宽60厘米,如果要剪成若干张同样大小的正方形纸而没有剩余,剪出的小正方形的边长最长是多少厘米?
乘除法专题复习
(1)78×102 56×101 125×81 25×44
31×99 42×98 25×39 125×79
(2)小丽一家去公园去玩,去时的速度是12千米/时,共行了3小时。

返回时因为逆风,速度比去时每小时慢了3千米,返回时用了几小时?
(3)小红读一本298页的书,每天读24页,预计从8月20日开始读,到9月1日开学,她能在开学前读完这本书吗?
(4)李叔叔一个星期做完了225个零件。

照这样计算,十一月份全月能做多少个零件?
(5)有860箱矿泉水要运往超市,如果一辆卡车一次能运70箱,这些牛奶要几辆卡车才能运完?
(6)杨老师带了418元去买体育用品。

小篮球9元/个,小足球16元/个,乒乓球拍25元/副。

(1)如果买小足球,最多能买多少个?还剩多少元?
(2)最多能买多少副乒乓球拍?剩下的钱买小篮球,能买多少个?。

相关文档
最新文档