直流伺服电动机的分类

合集下载

伺服电机的分类

伺服电机的分类

伺服电机是自动控制系统和计算装置中广泛应用的一种执行元件,很多第一次接触到这个产品的朋友肯定一头雾水,不知道它到底是什么。

下面小编就给大家详细介绍一下到底伺服电机是什么东西以及它的分类。

伺服电动机(或称执行电动机)是自动控制系统和计算装置中广泛应用的一种执行元件。

其作用为把接受的电信号转换为电动机转轴的角位移或角速度。

按电流种类的不同,伺服电动机可分为直流和交流两大类。

一、交流伺服电动机结构和原理交流伺服电动机的定子绕组和单相异步电动机相似,它的定子上装有两个在空间相差90°电角度的绕组,即励磁绕组和控制绕组。

运行时励磁绕组始终加上一定的交流励磁电压,控制绕组上则加大小或相位随信号变化的控制电压。

转子的结构形式笼型转子和空心杯型转子两种。

笼型转子的结构与一般笼型异步电动机的转子相同,但转子做的细长,转子导体用高电阻率的材料作成。

其目的是为了减小转子的转动惯量,增加启动转矩对输入信号的快速反应和克服自转现象。

空心杯形转子交流伺服电动机的定子分为外定子和内定子两部分。

外定子的结构与笼型交流伺服电动机的定子相同,铁心槽内放有两相绕组。

空心杯形转子由导电的非磁性材料(如铝)做成薄壁筒形,放在内、外定子之间。

杯子底部固定于转轴上,杯臂薄而轻,厚度一般在0.2—0.8mm,因而转动惯量小,动作快且灵敏。

交流伺服电动机的工作原理和单相异步电动机相似,LL是有固定电压励磁的励磁绕组,LK是有伺服放大器供电的控制绕组,两相绕组在空间相差90°电角度。

如果IL与Ik 的相位差为90°,而两相绕组的磁动势幅值又相等,这种状态称为对称状态。

与单相异步电动机一样,这时在气隙中产生的合成磁场为一旋转磁场,其转速称为同步转速。

旋转磁场与转子导体相对切割,在转子中产生感应电流。

转子电流与旋转磁场相互作用产生转矩,使转子旋转。

如果改变加在控制绕组上的电流的大小或相位差,就破坏了对称状态,使旋转磁场减弱,电动机的转速下降。

直流伺服电动机及其控制方法

直流伺服电动机及其控制方法
加。 为了保持电压平衡关系, 电枢电流和电磁转矩都
要下降, 直到电枢电流恢复到原来的数值,使电磁转
矩和总阻转矩重新平衡时, 才达到稳定状态。 但这是
一个更高转速n2时的新的平衡状态。 这就是电动机转 速n随电枢电压Ua升高而升高的物理过程。
为了清晰起见, 可把这个过程用下列符号表示: 当Ts、 Φ不变时,
电枢电压Ua控制电动机转速变化的物理过程如下: 开始时, 电动机所加的电枢电压为Ua1 , 电动机的转 速为n1, 产生的反电势为Ea1 , 电枢中的电流为Ia1 , 根据电压平衡方程式, 则
Ua1 =Ea1 +Ia1 Ra=CeΦn1+Ia1Ra
(3 - 19)
这时, 电动机产生的电磁转矩T=CTΦIa1 。 由于电 动机处于稳态, 电磁转矩T和电动机轴上的总阻矩Ts相 平衡, 即T1=Ts。
由式(3 - 3)得到
T
Ia CT
把它代入式(3 - 9), 并考虑到Ea=CeΦn, 则得
Ua
Cen
TRa
CT
移项后, 得到
Ua
Ua
Ce
TRa
CeCT 2
(3 - 20)
式中, T为电动机产生的电磁转矩。 在稳态时, 电动机的电磁转矩与轴上的阻转矩相平衡, 即T=Ts。 所以稳态时, 上式可以写成
如果保持电动机的负载转矩TL不变, 也即阻转矩 Ts不变, 而把电枢电压升高到Ua2 , 起初, 由于电动机 有惯性, 转速不能马上跟上而仍为n1, 因而反电势仍 为Ea1 。 由于Ua1 升高到Ua2 而Ea1 不变, 为了保持电压 平衡, Ia1 应增加到I′a, 因此电磁转矩也相应由T增加 到T′, 此时电动机的电磁转矩大于总阻转矩Ts, 使电 动机得到加速。随着电动机转速的上升, 反电势Ea增

直流伺服电动机

直流伺服电动机
直流伺服电动机
一、直流伺服电动机的结构和分类
直流伺服电动机实质上就是一台他励式直流电动机。
分类: ㈠ 传统型直流伺服电动机:普通型直流伺服电机,分为电
磁式和永磁式两种。 ㈡ 低惯量型直流伺服电动机 ⑴ 盘形电枢直流伺服电动机; ⑵ 空心杯电枢直流伺服电动机; ⑶ 无槽电枢直流伺服电动机。
图7.2.1 盘形电枢直流伺服电动机结构
当转矩为零时,电机转速仅与电枢电压有关,此时的转速
称为理想空载转速。
n
n0
U ke
当转速为零时,电机转矩仅与电枢电压有关,此时的转矩 称为堵转转矩。
U TD Ra kT
直流伺服电动机的机械特性如图7.2.4所示:
图7.2.4 电枢控制的直流伺服电机机械特性
图7.2.5 直流伺服电机调节特系。
图7.2.2 空心杯电枢直流伺服电动机结构
图7.2.3 无槽电枢直流伺服电动机结构
二、直流伺服电动机的运行特性
转速关系式:
n
U ke
Ra kekT
Tem
1、机械特性:指在控制电压保持不变的情况下,直流伺服
电动机的转速n随转矩变化的关系。
n n0 kTem
式中:
n0
U ke
,k
Ra kekT
控制方式:电枢控制和磁极控制,实际中主要采用电枢控制方式。
直流伺服电动机的调节特性如图7.2.5所示。

第一章-直流伺服电机

第一章-直流伺服电机

图1-1 电枢控制原理图
控制方式
2.磁场控制
电枢绕组电压保持不变,变化励磁回路旳电压。若电 动机旳负载转矩不变,当升高励磁电压时,励磁电流 增长,主磁通增长,电机转速就降低;反之,转速升 高。变化励磁电压旳极性,电机转向随之变化。 尽管磁场控制也可到达控制转速大小和旋转方向旳目 旳,但励磁电流和主磁通之间是非线性关系,且伴随 励磁电压旳减小其机械特征变软,调整特征也是非线 性旳,故少用。
1.2.2 运营特征
(2)电枢电压对机械特征旳影响
n0和Tk都与电枢电压成正比,而斜率k则与电枢电压无关。 相应于不同旳电枢电压能够得到一组相互平行旳机械特征曲线。
直流伺服电动机由放大器供电时, 放大器能够等效为一种电动势源 与其内阻串联。内阻使直流伺服 电动机旳机械特征变软。
图 1-3 不同控制电压时旳机械特征
较小、 电枢电阻 Ra 较大、转动惯量 J 较大
时是这种情况。
图1-6 在 4 e m 时, n、ia 旳过渡过程
过渡过程曲线
(2)

4 e
m
时,由
p1,.2
1 2 e
1
1 4 e m
, p1 和
p2
两根是共轭复数。
在过渡过程中,转速和电流随时间旳变化是周期性旳。
由e
La Ra
和m
2JRa 60CeCt
2
可知,电枢
电感 La 较大、 电枢电阻 Ra 较小、转动
惯量 J 较小时,就会出现这种振荡现象。
图1-7 在 4 e m 时, n、ia 旳过渡过程
过渡过程曲线
⑶ 当4 e m 时(多数情况满足这一条件), e 很小能够忽视不计。
于是式
m e

伺服电机的分类

伺服电机的分类

伺服电机是自动控制系统和计算装置中广泛应用的一种执行元件,很多第一次接触到这个产品的朋友肯定一头雾水,不知道它到底是什么。

下面小编就给大家详细介绍一下到底伺服电机是什么东西以及它的分类。

伺服电动机(或称执行电动机)是自动控制系统和计算装置中广泛应用的一种执行元件。

其作用为把接受的电信号转换为电动机转轴的角位移或角速度。

按电流种类的不同,伺服电动机可分为直流和交流两大类。

一、交流伺服电动机结构和原理交流伺服电动机的定子绕组和单相异步电动机相似,它的定子上装有两个在空间相差90°电角度的绕组,即励磁绕组和控制绕组。

运行时励磁绕组始终加上一定的交流励磁电压,控制绕组上则加大小或相位随信号变化的控制电压。

转子的结构形式笼型转子和空心杯型转子两种。

笼型转子的结构与一般笼型异步电动机的转子相同,但转子做的细长,转子导体用高电阻率的材料作成。

其目的是为了减小转子的转动惯量,增加启动转矩对输入信号的快速反应和克服自转现象。

空心杯形转子交流伺服电动机的定子分为外定子和内定子两部分。

外定子的结构与笼型交流伺服电动机的定子相同,铁心槽内放有两相绕组。

空心杯形转子由导电的非磁性材料(如铝)做成薄壁筒形,放在内、外定子之间。

杯子底部固定于转轴上,杯臂薄而轻,厚度一般在0.2—0.8mm,因而转动惯量小,动作快且灵敏。

交流伺服电动机的工作原理和单相异步电动机相似,LL是有固定电压励磁的励磁绕组,LK是有伺服放大器供电的控制绕组,两相绕组在空间相差90°电角度。

如果IL与Ik 的相位差为90°,而两相绕组的磁动势幅值又相等,这种状态称为对称状态。

与单相异步电动机一样,这时在气隙中产生的合成磁场为一旋转磁场,其转速称为同步转速。

旋转磁场与转子导体相对切割,在转子中产生感应电流。

转子电流与旋转磁场相互作用产生转矩,使转子旋转。

如果改变加在控制绕组上的电流的大小或相位差,就破坏了对称状态,使旋转磁场减弱,电动机的转速下降。

伺服电机的几大分类和一些用途

伺服电机的几大分类和一些用途

伺服电机的几大分类和一些用途伺服电机是一种具有闭环控制功能的电动执行器,能够根据输入的控制信号准确地控制输出的位置、速度和力矩。

伺服电机在工业自动化领域中使用非常广泛,具有精度高、稳定性好、响应速度快等优点。

根据不同的工作原理和应用场景,伺服电机可以分为以下几大分类:1.直流伺服电机:直流伺服电机是最早应用于伺服系统中的电机之一、其结构简单、可靠性高,并且输出的扭矩和速度范围广。

直流伺服电机通常采用分析控制器,其应用领域包括机床、机器人、自动化生产线等。

2.步进伺服电机:步进伺服电机是将步进电机和伺服控制技术相结合的一种电机。

步进伺服电机具有步进电机的精确定位特性,同时又具备伺服电机的速度控制和力矩控制能力。

步进伺服电机广泛应用于纺织机械、印刷设备、包装机械等需要高精度定位的领域。

3.交流伺服电机:交流伺服电机主要包括无刷交流伺服电机和有刷交流伺服电机。

无刷交流伺服电机体积小、噪音低、扭矩稳定性好,适用于医疗设备、航空航天等高要求的场合。

有刷交流伺服电机则体积较大,应用于机床、冶金设备等工业领域。

4.超声波伺服电机:超声波伺服电机是一种基于超声波技术的新型伺服电机。

它采用超声波振荡器产生超声波,并通过压电陶瓷或压电陶瓷驱动器将超声波转换为机械振动。

超声波伺服电机具有高频率、高效率、低噪音等优点,广泛应用于电子设备、精密仪器等领域。

5.直线伺服电机:直线伺服电机是一种能够实现直线运动的伺服电机。

它由直流电机和滚珠丝杠组成,通过减速机构实现高速、高精度的直线运动。

直线伺服电机常用于数控机床、注塑机等要求高精度直线运动的设备。

除了以上几大分类外,还有一些特殊用途的伺服电机,例如:1.扭矩电机:扭矩电机是一种在高负载条件下能提供高扭矩输出的伺服电机。

它通常用于需要高力矩输出的设备,如船舶、冶金机械等。

2.精密电机:精密电机是一种能够实现超精密定位和高速运动的伺服电机。

它通常用于需要极高精度定位的设备,如半导体设备、光学仪器等。

简述伺服电动机的种类特点及应用

简述伺服电动机的种类特点及应用

简述伺服电动机的种类特点及应用伺服电动机是一种能够精确控制运动位置、速度和加速度的电动机。

它具有高精度、高速度和高可靠性的特点,广泛应用于工业机械、机器人、自动化设备、医疗设备等领域。

根据结构和控制方式的不同,伺服电动机可以分为直流伺服电动机、交流伺服电动机和步进伺服电动机。

1. 直流伺服电动机:直流伺服电动机是应用最广泛的一种伺服电动机。

它的特点是转矩波动小、动态性能好,可以快速响应外部控制信号,适用于高精度、高速度控制的场合。

直流伺服电动机的控制比较简单,通常采用闭环控制系统,通过编码器反馈信号来实时监测电机转速和位置,进而调整电机的电流和电压。

直流伺服电动机的应用非常广泛,如CNC机床、注塑机、纺织机、纸张机械等工业设备,以及医疗设备、机器人、印刷设备等。

它可以实现高速度、高精度的运动控制,满足不同领域的精确定位和稳定运动需求。

2. 交流伺服电动机:交流伺服电动机逐渐取代直流伺服电动机在某些领域的应用,因为它具有结构简单、体积小、维护方便等优点,同时具备较高的动态性能和较大的功率范围。

交流伺服电动机通常采用矢量控制或矢量直流控制方式,通过闭环反馈控制系统来实现位置和速度的精确控制。

交流伺服电动机的应用范围广泛,如自动化机械、半导体设备、食品包装设备、纺织设备等。

它能够实现高精度、高性能的运动控制,在工业生产过程中提高生产效率和产品质量。

3. 步进伺服电动机:步进伺服电动机是将步进电机与伺服控制器相结合的一种电机。

它具有步进电机的精密定位能力和伺服电机的动态性能,能够实现高精度、高分辨率的位置控制。

步进伺服电动机通过闭环控制系统来保证位置的准确性,通常采用编码器或位置传感器来实时反馈位置信息。

步进伺服电动机广泛应用于自动化设备、医疗设备、印刷设备、纺织设备等领域。

它可用于需要高分辨率、高精度定位的场合,如3D打印机、数控雕刻机、纺织机械等。

总的来说,伺服电动机是一种能够实现高精度、高速度和高可靠性运动控制的电动机。

《微特电机及其控制》(电机本体部分)课程重点内容

《微特电机及其控制》(电机本体部分)课程重点内容

绪论1.微特电机的分类。

2.微特电机新的发展趋势。

第二章伺服电动机与伺服系统1.从结构上,直流伺服电动机的分类。

分为两大类,传统型直流伺服电动机,低惯量型直流伺服电动机。

传统型直流伺服电动机其结构与普通直流电动机基本相同,只是功率和容量小得多,它可以再分为电磁式和永磁式两种;低惯量型直流伺服电动机可分为空心杯电枢直流伺服电动机,盘式电枢直流伺服电动机,无槽电枢直流伺服电动机2.直流伺服电机的静态特性1.机械特性:给出机械特性n=f(T e)的方程,绘制机械特性的曲线。

机械特性:控制电压恒定时,电机转速随电磁转矩的变化关系n=f (Te)2.调节特性:给出调节特性n=f(U a)的方程,绘制调节特性的曲线,结合调节特性曲线,掌握失灵区的概念。

调节特性负载转矩恒定时,转速随控制电压变化n=f (Ua)3.直流伺服电机的动态特性1.机电时间常数的计算公式,影响因素及相应的减小机电时间常数的方法。

机电时间常数与转动惯量成正比;与电机的每极气隙磁通的平方成反比,为了减小电机机械时间常数,应增加每极气隙磁通;与电枢电阻Ra的大小成正比,为减小时间常数,应尽可能减小电枢电阻,当伺服电动机用于自动控制系统,并由放大器供给控制电压时,应计入放大器的内阻Ri,Ra+Ri;直流伺服电动机的机电时间常数一般<30ms,低惯量直流伺服电机的时间常数<10ms。

4.交流异步伺服电动机1.不同转子电阻对机械特性的影响,分析为什么异步伺服电动机的转子电阻较普通异步电动机大。

增大转子电阻的三个好处:1. 可以增大调速范围由电机学原理知,异步电机的稳定运行区仅在: 0<s<sm,而正常电机的sm=0.1~0.2, 所以调速范围甚小。

增大转子电阻,使sm增大,从而增大调速范围。

2.使机械特性更加线性如右图中,曲线3的线性度比曲线2要好。

sm1=0.2, sm2=1.1, sm3=1.8能消除自转现象T=T1+T2,在正向旋转时, 0<s<1, T>0。

直流电动机伺服系统概述

直流电动机伺服系统概述

6.4 直 流 电 动 机伺 服系统
1)静态特性
一般励磁式直流电机的工作原理是建立在电磁力定律基础上,由励
磁绕组和磁极建立磁场,电枢绕组作为通电导体切割磁力线,产生电
磁转矩,转矩的大小正比于电机中气隙磁场和电枢电流,电磁转矩由
下式表示:
T CT Ia
(6-4)
式中:CT-转矩常数;
φ-磁场磁通;
在改变转速时,要求在速度指令发出后,电动机的转速能以最 大的加减速度达到新的指令速度值,在速度指令值不变时,要求电 动机速度保持恒定。直流伺服电动机的机械特性比较软,在外加电 压不变时,电动机的转速随负载的变化而变化。对电动机的调速, 要求在负载变化时或电动机驱动电源电压波动时保持电动机的转速 稳定不变。
6.4 直 流 电 动 机伺 服系统
1. SCR系统的组成 SCR调速系统组成框图如图6-29所示。 1)控制回路:速度环、电流环、触发脉冲发生器等。 2)主回路:可控硅整流放大器等。 3)速度环:速度调节。作用:好的静态、动态特性。 4)电流环:电流调节。作用:加快响应,启动、低频稳定等。 5)触发脉冲发生器:产生移相脉冲,使可控硅触发角前移或后移。 6)可控硅整流放大器:整流、放大、驱动,使电动机转动。
2. 性能特点与特性曲线 普通型大惯量宽调速永磁直流伺服电机的工作原理与一般励磁式
直流电机基本相同,但磁场的建立由永久磁铁实现,当电流通过电枢 绕组时,电流与磁场相互作用,产生感应电势、电磁力和电磁转矩, 使电枢旋转。永磁直流伺服电机特性原则上与一般直流电机相同,但 有很大的改进和变化,已不能简单的用电压、电流、转矩等参数来描 述,需用数据表和特性曲线来描述,使用时要查阅这些表和特性曲线 。
(6-6)
Ua Ce

伺服电机的几大分类和一些用途

伺服电机的几大分类和一些用途

脉冲转矩大,散热性能好,机电时间常数小,低速
运转性能好用于低速和起动反转频繁的系统
11:直流伺服电动机/无刷电枢(永磁式)没有 机械换向器和电刷,它以电子换向装置代替一般直 流电动机的机械换向装置。它由电动机本体、位置
传感器及电子换向开关电路三个基本部分组成调
速性能平稳范围宽,噪音低,可靠性高,寿命长,
磁电流和体积较大要求运行平滑的系统,如积分电
路等
4:交流伺服电动机/带有定位装置鼠笼型转子 为鼠笼结构,带有定位装置仅能单方向旋转 5:直流伺服电动机/有槽电枢(电磁或永磁)同 一般直流电动机的结构相似,但电枢铁心长度与直 径之比值大,气隙较小有下降的机械特性和线性的
调节特性,响应快一般直流伺服系统 6:直流伺服电动机/无槽电枢(电磁式或水磁) 电枢铁心为光滑的圆柱体,电枢绕组用耐热环氧树 脂固定在铁心表面,气隙大除具有一般直流伺服电 动机的特性外,其转动惯量小,机电时间常数小,
伺服电机的几大分类和一些用途
zac1e 异步电机 /
伺服电机的分类: 可分为鼠笼型交流伺服电机、齿轮减速鼠笼型 交流伺服电机、非磁性杯型交流伺服电机、带有定 位装置鼠笼型交流伺服电机、有槽电枢(电磁或永 磁)直流伺服电机、无槽电枢(电磁式或永磁)直流
伺服电机、齿轮减速永磁式直流伺服电机、空心杯 形电枢(永磁式)直流伺服电机、直流伺服电机/永 磁式直线伺服电机、印刷绕组电枢(永磁式)直流伺
动部分为动圈,亦称音圈电机作直线运动作直线运 动的控制电机 10:直流伺服电动机/印刷绕组电枢(永磁式) 磁极轴向安装,具有扇形面的极靴。电枢为圆盘绝 缘薄板,上面印制裸露的绕组,电枢没有铁心,定
子采用铝镍钴磁钢或铁氧体磁钢,一般不另设换向 器,而由电刷与电枢绕组表面一层的直线部分直接 滑动接触,电机转矩平滑,无齿槽效应,火花小,

伺服电机的几大分类和一些用途

伺服电机的几大分类和一些用途

伺服电机的几大分类和一些用途伺服电机是一种能够精确控制位置、速度和加速度的电动机。

它可以根据需要精确调节转子位置来实现精确控制,因此在工业自动化、机器人和电子设备等领域广泛应用。

下面将介绍几种常见的伺服电机分类及其应用。

1. 直流伺服电机(DC Servo Motor):直流伺服电机采用直流电源供电,通过直流电源的变化控制电机的速度和方向。

这种电机的优点是控制简单,响应速度快,适用于需要快速调节和高精度定位的应用,例如,工业机械、自动导航系统、机器人等。

2. 步进伺服电机(Stepper Servo Motor):步进伺服电机是一种将电动机、编码器和控制器集成在一起的电机系统。

它通过控制器逐步驱动电机转子,从而实现位置控制。

步进伺服电机具有定位精度高、可靠性强等特点,适用于CNC机床、自动化设备、3D 打印机等应用领域。

3. 交流伺服电机(AC Servo Motor):交流伺服电机使用交流电作为电源,由控制器控制电机速度和方向。

它具有低功率消耗、高效率和高控制精度的优点。

交流伺服电机广泛应用于印刷机械、纺织机械、工业自动化等领域。

4. 无刷伺服电机(Brushless Servo Motor):无刷伺服电机是一种采用无刷直流电机技术的伺服电机。

与传统的有刷直流电机相比,无刷伺服电机具有寿命长、运行平稳、转速范围广等优点。

它被广泛应用于机器人、自动化设备、医疗设备等领域。

5. 线性伺服电机(Linear Servo Motor):线性伺服电机是一种将电动机转换为直线运动的电机系统。

它通过控制器控制电机的速度和位置,具有定位精度高、响应速度快、传动效率高等优点。

线性伺服电机广泛应用于印刷机械、数控机床、激光切割机等领域。

除了上述几种分类,还有一些特殊类型的伺服电机,如超导伺服电机、无摩擦伺服电机等。

每种类型的伺服电机都有其特点和适用范围,根据不同的应用需求选择合适的伺服电机可以提高控制精度和效率,实现更好的运动控制效果。

直流伺服电动机的技术参数与特性参数,直流伺服电动机的特点特性及种类

直流伺服电动机的技术参数与特性参数,直流伺服电动机的特点特性及种类

直流伺服电动机的技术参数与特性参数,直流伺服电动机的特点特性及种类导语:直流伺服电动机是自动控制系统中具有特殊用途的直流电动机,又称执行电机,它能够把输入的电压信号变换成轴上的角位移和角速度等机械信号。

直流伺服电动机是自动控制系统中具有特殊用途的直流电动机,又称执行电机,它能够把输入的电压信号变换成轴上的角位移和角速度等机械信号。

直流伺服电动机的工作原理、基本结构及内部电磁关系与一般用途的直流电动机相同。

直流伺服电动机的控制电源为直流电压,分普通直流伺服电动机、盘形电枢直流伺服电机、空心杯直流伺服电机和无槽直流伺服电机等。

普通直流伺服电动机有永磁式和电磁式两种基本结构类型。

电磁式又分为他励、并励、串励和复励四种,永磁式可看作是他励式。

特点:转子直径较小、轴向尺寸大;转动惯量小,因此响应时间快。

但额定扭矩较小,一般必须与齿轮降速装置相匹配。

用于高速轻载的小型数控机床中。

1、直流伺服电动机的基本结构图为直流伺服电动机的结构,主要包括定子、转子、电刷与换向片三个部分2.直流伺服电动机的分类(1)根据电动机本身结构的不同,可分为以下几类:改进型直流伺服电动机转子的转动惯量较小,过载能力较强,且具有较好的换向性能。

小惯量直流电动机最大限度地减少了转子的转动惯量,能获得最好的快速特性。

永磁直流伺服电动机能在较大过载转矩下长期地工作,转动惯量较大,无励磁回路损耗,可在低速下运转。

无刷直流电动机由同步电动机和逆变器组成,而逆变器是由装在转子上的转子位置传感器控制。

(2)根据直流电动机对励磁绕组的励磁方式不同,可分为他励式、并励式、串励式和复励式四种。

直流伺服电动机的特点种类直流伺服电动机的结构和一般直流电动机一样,只是为了减小转动惯量而做得细长一些。

它的励磁绕组和电枢分别由两个独立电源供电。

也有永磁式的,即磁极是永久磁铁。

通常采用电枢控制,就是励磁电压f一定,建立的磁通量Φ也是定值,而将控制电压Uc加在电枢上,其接线图如下图所示。

直流伺服电机

直流伺服电机

2.宽调速直流伺服电机
1、结构
2.宽调速直流伺服电机
1、特点(5)
(1)高转矩 (3)动态响应好 (5)易于调试
(2)过载能力强
(4)调速范围宽,运行平稳
直流伺服电机
什么叫伺服电动机?
在伺服机构的末端,根据输入 信号来操纵或驱动负载机械的动力元件 直流伺服电动机具有起动转矩大、调速 范围宽、机械特性和调节特性线性度好、控制 方便等优点,被广泛应用在闭环或半闭环控制 的伺服系统中。
直流伺服电机
直流伺服电动机的分类
1、按结构分:永磁式和电磁式
2、 按 励 磁 分
直流伺服电机
目的:
1、了解伺服电机的结构与原理;
2、掌握直流伺服电机的特点。
内容:
一、小惯量直流伺服电机;
二、宽调速直流伺服电机。
直流伺服电机
直流电机因调速方便,较硬机械持性,所以 数控伺服系统中早有使用,但由于数控机床的特 殊要求,如:高位移精度,宽调速范围,带负载 能力强,运动稳定等,一般的直流电机不能满足 要求。因为,一般直流电机的转动惯量过大,而 其输出力矩则相对地过小,这样它的动态特性就 比较差,尤其是在低速运转条件下,这个缺点就 更为突出。因此,目前在进给伺服系统中使用的 都是近年发展起来的大功率直流伺服电机。
组或电枢绕组的接线端对调就可改变转向。
1.小惯量直流伺服电机
七、直流伺服电机驱动器
1.小惯量直流伺服电机
七、直流伺服电机驱动器
直流伺服电机 驱动器主要用于接收编 码器的反馈信号和主机 给定的速度信号,实时 地控制伺服电机电枢电 压。驱动器与伺服电机 配套使用.
驱动器的型号为:DA0D020DT64S00。
1.小惯量直流伺服电机

伺服电机的种类和优缺点

伺服电机的种类和优缺点

伺服电机的种类和优缺点伺服电机是一种用于控制系统中的电动机,具有精确的位置控制和速度调节功能。

根据不同的工作原理和使用场景,伺服电机可以分为几种不同的类型。

本文将介绍伺服电机的种类和各自的优缺点。

一、直流伺服电机(DC Servo Motor)直流伺服电机是最常见的伺服电机之一,由直流电源驱动。

这种电机结构简单,成本较低,适用于一些中低端的控制系统。

直流伺服电机响应速度较快,控制精度较高,可以实现较为精确的位置控制。

然而,直流伺服电机需要定期维护,且有一定的磨损和寿命限制。

二、交流伺服电机(AC Servo Motor)交流伺服电机采用交流电源供电,并通过调整电源频率和电压来实现速度和位置控制。

这种电机结构复杂,成本较高,但在高精度和高性能的应用中表现出色。

交流伺服电机具有较大的输出扭矩和过载能力,稳定性较好,适用于一些对运动平稳性和响应速度要求较高的场合。

三、步进伺服电机(Stepper Servo Motor)步进伺服电机是一种特殊的伺服电机,通过逐步驱动电机转子来控制位置和速度。

步进伺服电机具有良好的低速性能和高精度,适用于一些要求定位准确性的应用场景。

然而,步进伺服电机的最大缺点是只能以离散的步进方式进行轴的旋转,对于部分应用来说,这种离散控制不够平滑。

四、直线伺服电机(Linear Servo Motor)直线伺服电机是一种将转动运动转换为直线运动的伺服电机。

它具有较高的加速度和响应速度,能够实现精确的位置控制,并且在一些直线运动控制领域有着广泛的应用。

直线伺服电机精度高、噪音低,但成本较高,安装和维护也相对复杂一些。

五、柔性伺服电机(Flexible Servo Motor)柔性伺服电机是近年来发展起来的一种新型伺服电机。

它采用柔性材料作为传动部件,具有较高的运动自由度和灵活性,可以实现对复杂曲线轨迹的控制。

柔性伺服电机结构紧凑,适用于一些有限空间或者特殊形状要求的场景。

然而,柔性伺服电机技术还在不断发展中,需要进一步验证其可靠性和稳定性。

直流伺服电动机结构

直流伺服电动机结构

直流伺服电动机结构
流伺服电动机的结构包括转子、定子和其它附件。

1. 转子:包括电枢铁芯和永磁体。

电枢铁芯固定在电机轴上,永磁体装在电枢铁芯周围,其轴向位置对应于电枢绕组换向器片的几何中心。

2. 定子:包括凸极铁芯和均匀排列在凸极上的换向极绕组。

凸极铁芯用绝缘材料固定在电机外壳上,换向极绕组通过支架固定在凸极铁芯上,且凸极和换向极绕组的支架的外径一般均小于电枢铁芯,以保证足够的磁导率。

3. 其它附件:包括风扇、轴承、轴承支架、定位档块等。

定位档块用于限制电机轴向尺寸,也用于迫使电机在一定转速范围内变矩减小,防止超出额定负载时出现过大的失步。

风扇通常直接驱动伺服电机,以便散热。

另外,伺服电机也有多种控制装置,如极螺旋控制器和测速发电机或霍尔元件反馈器,这些可用于弱磁控制。

总的来说,直流伺服电动机的这些结构部分使得电机能够提供高精度和稳定的转矩,使其广泛应用于各种控制系统中。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直流伺服电动机的分类
直流伺服电动机具有良好的启动、制动和调速特性,可以便利地在较宽的范围内实现平滑无级调速,故其常用在对伺服电动机的调速性能要求较高的设备中。

直流伺服电动机依据磁场励磁的方式不同,可以分为它励式、永磁式、并励式、串励式、复励式五种;按结构来分,可以分为电枢式、无槽电枢式、印刷电枢式、空心杯电枢式等;按转速的凹凸可分为两大类,高速直流伺服电动机和低速大扭矩宽调速电动机。

1.高速直流伺服电动机
高速直流伺服电动机又可分为一般直流伺服电动机和高性能直流伺服电动机。

一般高速它励式直流伺服电动机的应用历史最长,但是,这种电动机的转矩-惯量比很小,不能适应现代伺服掌握技术进展的要求。

2.低速大扭矩宽调速电动机
低速大扭矩宽调速电动机又称为直流力矩电机,由于它的转子直径较大,线圈绕组多,所以力矩大,转矩—惯量比高,热容量高,能长时间过载,不需要中间传动装置就可以直联丝杠工作;并且,由于没有励磁回路的损耗,它的形状尺寸比其它直流伺服电机小。

另外,低速大扭矩宽调速电动机还有一个重要的特点:低速特性好,能够在较低的速度下平稳运行,最低速可以达到1r/min,甚至达到0.1r/min。

1。

相关文档
最新文档