最小二乘法
最小二乘法知识

最小二乘法知识最小二乘法是一种最优化方法,经常用于拟合数据和解决回归问题。
它的目标是通过调整模型参数,使得模型的预测值与观测值之间的差异最小。
最小二乘法的核心思想是最小化误差的平方和。
对于给定的数据集,假设有一个线性模型y = β₀ + β₁x₁ + β₂x₂ + ... +βₙxₙ,其中β₀, β₁, β₂, ... , βₙ 是需要求解的未知参数,x₁, x₂, ... , xₙ 是自变量,y 是因变量。
那么对于每个样本点 (xᵢ, yᵢ),可以计算其预测值ŷᵢ = β₀ + β₁x₁ + β₂x₂ + ... + βₙxₙ,然后计算预测值与实际值之间的差异 eᵢ = yᵢ - ŷᵢ。
最小二乘法的目标是使得误差的平方和最小化,即最小化目标函数 E = ∑(yᵢ - ŷᵢ)²。
对于简单的线性回归问题,即只有一个自变量的情况下,最小二乘法可以通过解析方法求解参数的闭合解。
我们可以通过求偏导数,令目标函数对参数的偏导数等于零,求解出参数的最优解。
然而,对于复杂的非线性回归问题,解析方法通常不可行。
在实际应用中,最小二乘法通常使用迭代方法进行求解。
一种常用的迭代方法是梯度下降法。
梯度下降法通过反复进行参数更新的方式逐步降低目标函数的值,直到收敛到最优解。
具体而言,梯度下降法首先随机初始化参数的值,然后计算目标函数对于每个参数的偏导数,根据偏导数的方向更新参数的值。
迭代更新的过程可以通过下式表示:βₙ = βₙ - α(∂E/∂βₙ)其中,α 是学习率参数,控制每次更新参数的步长。
学习率需要适当选择,过小会导致收敛过慢,过大会导致震荡甚至不收敛。
最小二乘法除了可以用于线性回归问题,还可以用于其他类型的回归问题,比如多项式回归。
在多项式回归中,我们可以通过增加高次项来拟合非线性关系。
同样地,最小二乘法可以通过调整多项式的系数来使得拟合曲线与实际数据更加接近。
除了回归问题,最小二乘法还可以应用于其他领域,比如数据压缩、信号处理和统计建模等。
最小二乘法实现公式

最小二乘法实现公式最小二乘法是一种常用的回归分析方法,用于估计线性模型中的参数。
它通过最小化观测值与预测值之间的误差平方和,来确定最优的参数估计值。
下面将详细介绍最小二乘法的原理和应用。
一、最小二乘法原理最小二乘法的基本思想是,通过找到一条线(或曲线),使得该线与观测数据点之间的误差最小化。
具体来说,对于一个线性模型 y = β0 + β1x + ε,其中 y 是因变量,x 是自变量,β0 和β1 是待估计的参数,ε 是误差项。
最小二乘法的目标是找到最优的参数估计值β0* 和β1*,使得观测值与预测值之间的误差平方和最小化。
为了实现最小二乘法,需要定义一个衡量误差的函数,通常选择误差的平方和作为目标函数。
即最小化目标函数:min Σ(yi - (β0 + β1xi))^2通过对目标函数求导,可以得到参数估计值的解析解。
令目标函数的导数等于零,可以得到以下两个方程:Σyi - nβ0 - β1Σxi = 0Σxiyi - β0Σxi - β1Σxi^2 = 0解这个方程组,可以求得最优的参数估计值β0* 和β1*。
最小二乘法的核心思想就是通过最小化误差平方和来确定最优的参数估计值。
二、最小二乘法的应用最小二乘法广泛应用于各个领域的回归分析中。
下面将介绍最小二乘法在经济学、统计学和工程学中的应用。
1. 经济学中的应用最小二乘法在经济学中被广泛应用于建立经济模型和估计经济参数。
经济学家可以利用最小二乘法来估计需求函数、供给函数和生产函数等。
通过回归分析,经济学家可以研究各种经济变量之间的关系,并对经济现象进行解释和预测。
2. 统计学中的应用最小二乘法是统计学中最常用的参数估计方法之一。
通过最小二乘法,统计学家可以估计线性回归模型中的参数,并进行统计推断。
最小二乘法还可以用于解决多重共线性、异方差性和自相关等统计问题。
3. 工程学中的应用最小二乘法在工程学中有着广泛的应用。
例如,在信号处理中,最小二乘法可以用于信号滤波和信号重构。
最小二乘法(least sqaure method)

最小二乘法(least sqauremethod)专栏文章汇总文章结构如下:1:最小二乘法的原理与要解决的问题2 :最小二乘法的矩阵法解法3:最小二乘法的几何解释4:最小二乘法的局限性和适用场景5:案例python实现6:参考文献1:最小二乘法的原理与要解决的问题最小二乘法是由勒让德在19世纪发现的,形式如下式:标函数 = \sum(观测值-理论值)^2\\观测值就是我们的多组样本,理论值就是我们的假设拟合函数。
目标函数也就是在机器学习中常说的损失函数,我们的目标是得到使目标函数最小化时候的拟合函数的模型。
举一个最简单的线性回归的简单例子,比如我们有 m 个只有一个特征的样本: (x_i, y_i)(i=1, 2, 3...,m)样本采用一般的 h_{\theta}(x) 为 n 次的多项式拟合,h_{\theta}(x)=\theta_0+\theta_1x+\theta_2x^2+...\theta_nx^n,\theta(\theta_0,\theta_1,\theta_2,...,\theta_n) 为参数最小二乘法就是要找到一组\theta(\theta_0,\theta_1,\theta_2,...,\theta_n) 使得\sum_{i=1}^n(h_{\theta}(x_i)-y_i)^2 (残差平方和) 最小,即,求 min\sum_{i=1}^n(h_{\theta}(x_i)-y_i)^22 :最小二乘法的矩阵法解法最小二乘法的代数法解法就是对 \theta_i 求偏导数,令偏导数为0,再解方程组,得到 \theta_i 。
矩阵法比代数法要简洁,下面主要讲解下矩阵法解法,这里用多元线性回归例子来描:假设函数h_{\theta}(x_1,x_2,...x_n)=\theta_0+\theta_1x_1+...+\t heta_nx_n 的矩阵表达方式为:h_{\theta}(\mathbf{x})=\mathbf{X}\theta\\其中,假设函数 h_{\theta}(\mathbf{x})=\mathbf{X}\theta 为 m\times1 的向量, \theta 为 n\times1 的向量,里面有 n 个代数法的模型参数。
最小二乘法的原理和应用

最小二乘法的原理和应用最小二乘法是一种常见的数学统计方法,常用于数据分析、回归分析和预测模型的建立。
听起来有些抽象,但如果您掌握了最小二乘法,您将能够更好地理解许多现代技术的工作原理。
一、最小二乘法的原理所谓“最小二乘法”,是指根据离散点的数据,以一条最佳直线来逼近这些点,这条直线被称为“回归线”,这个过程也叫做“回归分析”。
当然,如果数据呈非线性关系,类似的曲线模型也可以使用最小二乘法来拟合。
那么,最小二乘法到底是如何工作的呢?它的基本思路是,根据实际数据的偏差,通过数学方法,找到一条最佳的回归线,这条线距离所有数据点的距离之和最小。
也就是说,最小二乘法的目标是尽可能地减少偏差,使回归线的拟合效果越来越好。
那么,如何计算这个距离之和呢?具体来说,我们可以使用误差平方和这个指标。
误差平方和是指所有数据点与回归线之间的距离平方和,也就是所有偏差的平方之和。
这可以通过计算最小二乘法函数来实现。
二、最小二乘法的应用最小二乘法是一种非常广泛应用的数学方法,尤其是在数据分析、回归分析和预测建模方面。
无论是商业分析,还是学术研究,都可以使用最小二乘法来处理真实的数据,并获得更准确的结果。
其中,最常见的应用之一就是从数据中预测未来趋势。
我们可以使用最小二乘法模型来分析可预测的变化趋势、发现趋势异常,甚至拟合出完善的预测模型,为未来的计划和决策提供直观的信息支持。
在市场营销和销售方面尤为突出。
此外,最小二乘法还可以用于估计相应变量的效应。
例如,在经济学上,我们可以使用最小二乘法来分析支出、收入和利率之间的关系,进而预测未来的经济走势。
另外,最小二乘法还可以给强大的机器学习算法提供支持。
例如,在图像识别和自然语言处理领域,我们可以使用最小二乘法来训练神经网络,或优化线性回归模型,进而实现更准确、更稳定的机器学习算法。
总之,最小二乘法是一种非常重要的数学方法,适用于许多领域,其原理和应用仅仅是数学的一小部分。
如果您能掌握它的高级应用,比如说自动建模和自动预测等,您将能够在数据分析和决策中站得更高,走得更远。
最小二乘法的基本公式

最小二乘法的基本公式最小二乘法,这玩意儿听起来是不是有点高大上?但别怕,其实它并没有那么复杂,就像咱们学骑自行车,一开始觉得难,掌握窍门后就变得轻松自如啦!先来说说最小二乘法到底是啥。
简单来讲,它就是一种找数据最佳拟合直线或者曲线的方法。
比如说,你记录了一堆气温和日期的数据,想找出它们之间的规律,这时候最小二乘法就派上用场了。
那它的基本公式是啥呢?咱们来瞧瞧。
假设咱们有一堆数据点(x₁, y₁), (x₂, y₂),..., (xₙ, yₙ),然后要找一条直线 y = ax + b 来拟合这些点。
那最小二乘法就是要让每个点到这条直线的垂直距离的平方和最小。
这个垂直距离,咱们叫它残差。
具体的公式就是:Q = Σ(yi - (axi + b))²,这里的Σ是求和符号,就是把所有的残差平方加起来。
然后通过求 Q 对 a 和 b 的偏导数,令它们等于 0 ,就能解出 a 和 b 的值,从而得到最佳拟合直线的方程。
我给您讲个我亲身经历的事儿吧。
有一次我带着学生们去做一个关于植物生长和光照时间关系的实验。
我们每天记录植物的高度和对应的光照时长,最后想用最小二乘法来找出它们之间的关系。
一开始,学生们都被这些数据弄得晕头转向的。
有的说:“老师,这也太乱了,怎么找规律啊?”我就告诉他们,别着急,咱们有最小二乘法这个法宝呢!然后我一步一步地给他们讲解公式的原理和计算方法。
有个叫小明的同学特别认真,眼睛紧紧盯着黑板,手里的笔不停地记着。
可算到中间的时候,他突然举手说:“老师,我这一步算错了,得重新来。
”我鼓励他说:“没关系,重新算,多算几遍就熟练啦。
”最后,经过大家的努力,我们终于算出了最佳拟合直线的方程。
当我们把这个方程画在图上,看到那些数据点都很接近这条直线的时候,孩子们都兴奋得欢呼起来。
从那以后,学生们对最小二乘法的理解可深刻多了。
他们知道了,数学不仅仅是书本上的公式,还能真真切切地帮助我们解决生活中的问题。
最小二乘法推导

最小二乘法推导最小二乘法是一种常用的统计估计方法,其基本思想是如果需要估计的数据可用某种方程描述,那么应该选择使和残差平方和最小化的方程作为估计参数。
本文介绍了最小二乘法的原理及其推导过程。
1. 最小二乘法的基本原理最小二乘法的基本思想是,通过拟合某一样本数据,找到合适的参数,使得拟合函数和样本数据之间的差异最小。
2. 最小二乘法的最优解广泛应用于统计分析中的最小二乘法,有着它特有的最优解,即:最小二乘法所得到的解决方案就是使得样本数据和拟合函数均方差之和最小的那个解。
3. 最小二乘法推导(1)问题描述设总体U满足均值θ,方差σ2的正态概率分布,X为观测变量向量,考虑最小二乘法拟合求θ的估计问题。
(2)损失函数的确定最小二乘法的损失函数通常采用残差平方和――即,所有残差的平方和。
L =Σ i (X i − θ)2(3)最小二乘估计量的拟合令损失函数L 对θ求微分为0,则得到最小二乘估计量:θ^= Σ i X i /n由此可见,在最小二乘法中,参数的估计量等于样本的算数平均。
(4)事后概率的表达若以(3)所得的最小二乘估计量θ 作为估计模型的参数,则对于偏差平方和损失函数L来讲,事后概率为P(L ≤ l) =1/√(2πσ2) ∫ θ1 θ2 3/(2σ2)·e−(θ−θ)2 /2σ2 dθ即分布为】正态分布,其平均值为l,标准差为σ2。
4. 最小二乘法的优缺点(1)最小二乘法的优点:最小二乘法使参数估计均值无偏,这意味着它提供了月佳的估计,并可以得到最小的方差,因此,最小二乘法是最常用的估计方法之一。
此外,它简化了估计的计算,使得可以用简单而有效的方式来得到参数估计值,增强了算法的鲁棒性。
(2)最小二乘法的缺点:最小二乘法可能出现过拟专及收敛现象,导致参数估计异常,因此需要对样本数据质检,进行数据的正规化处理。
此外,最小二乘法也只能处理线性模型,而不能拟合非线性模型。
最小二乘法

数值分析作业最小二乘法最小二乘法是提供“观测组合”的主要工具之一,它依据对某事件的大量观测而获得最佳”结果或最可能”表现形式。
如已知两变量为线性关系y= a+ bx,对其进行n(n> 2)次观测而获得n对数据。
若将这n对数据代入方程求解a,b之值则无确定解。
最小二乘法提供了一个求解方法,其基本思想就是寻找最接近”这n 个观测点的直线。
最小二乘法不仅是19世纪最重要的统计方法,而且还可以称为数理统计学之灵魂。
相关回归分析、方差分析和线性模型理论等数理统计学的几大分支都以最小二乘法为理论基础。
作为其进一步发展或纠正其不足而采取的对策,不少近现代的数理统计学分支也是在最小二乘法基础上衍生出来的。
正如美国统计学家斯蒂格勒(S.M. Stigler)所说,最小二乘法之于数理统计学犹如微积分之于数学”最小二乘法创立的历史过程充满着丰富的科学思想,这些对今日的数学创造仍有着重要的启示意义。
本文旨在全面认识最小二乘法的历史系统发育过程以及创立者的思路。
一先驱者的相关研究天文学和测地学的发展促进了数理统计学及其他相关科学的发展。
丹麦统计史家哈尔德曾指出天文学在数理统计学发展中所起的作用。
“天文学自古代至18 世纪是应用数学中最发达的领域。
观测和数学天文学给出了建立数学模型及数据拟合的最初例子,在此种意义下,天文学家就是最初的数理统计学家。
天文学的问题逐渐引导到算术平均,以及参数模型中的种种估计方法,以最小二乘法为顶峰。
” 这也说明了最小二乘法的显著地位。
有关统计计算思想记载的著作要首推天文学家罗杰柯茨的遗作,即1715年其所发论文中所蕴含的统计方法,亦即对各种观测值赋予加权后求其加权平均。
尽管当时得到认可,然而事实证明如此计算的结果不太精确。
1749年,欧拉(L. Euler,1707—1783)在研究木星和土星之间相互吸引力作用对各自轨道影响时,最后得到一个含8个未知量75个方程的线性方程组。
欧拉的求解方法繁杂而奇特,只能看作是一次尝试。
最小二乘法原理

最小二乘法(又称最小平方法)是一种数学优化技术。
它通过最小化误差的平方和寻找数据的最佳函数匹配。
利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。
最小二乘法还可用于曲线拟合。
其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达。
考虑超定方程组(超定指未知数小于方程个数):其中m代表有m个等式,n代表有n 个未知数,m>n ;将其进行向量化后为:,,显然该方程组一般而言没有解,所以为了选取最合适的让该等式"尽量成立",引入残差平方和函数S(在统计学中,残差平方和函数可以看成n倍的均方误差MSE)当时,取最小值,记作:通过对进行微分求最值,可以得到:如果矩阵非奇异则有唯一解[2]:在我们研究两个变量(x,y)之间的相互关系时,通常可以得到一系列成对的数据(x1,y1.x2,y2... xm,ym);将这些数据描绘在x -y 直角坐标系中,若发现这些点在一条直线附近,可以令这条直线方程如(式1-1)。
(式1-1)其中:a0、a1 是任意实数为建立这直线方程就要确定a0和a1,应用《最小二乘法原理》,将实测值Yi与利用计算值Yj(Yj=a0+a1Xi)(式1-1)的离差(Yi-Yj)的平方和最小为“优化判据”。
令:φ=(式1-2)把(式1-1)代入(式1-2)中得:φ=(式1-3)当最小时,可用函数φ对a0、a1求偏导数,令这两个偏导数等于零。
∑2(a0 + a1*Xi - Yi)=0(式1-4)∑2Xi(a0 +a1*Xi - Yi)=0(式1-5)亦即:na0 + (∑Xi ) a1 = ∑Yi (式1-6)(∑Xi ) a0 + (∑Xi^2 ) a1 = ∑(Xi*Yi) (式1-7)得到的两个关于a0、a1为未知数的两个方程组,解这两个方程组得出:a0 = (∑Yi) / n - a1(∑Xi) / n (式1-8)a1 = [n∑(Xi Yi) - (∑Xi ∑Yi)] / (n∑Xi^2 -∑Xi∑Xi)(式1-9) 这时把a0、a1代入(式1-1)中,此时的(式1-1)就是我们回归的一元线性方程即:数学模型。
使用最小二乘法的条件

使用最小二乘法的条件
最小二乘法是一种常用的预测和估计方法,也被称为最小平方法、最优二乘估计或简称最小二乘估计。
在有关统计建模和机器学习领域中,最小二乘法用于拟合数据,估计模型参数,拟合最佳函数曲线。
最小二乘法受到优化问题的思想指导,其基本原理是有误差,或者说有给定数据。
要在给定数据的情况下找出能最好拟合数据的函数关系,使得拟合曲线与给定数据之间的差别最小,这就是最小二乘法。
最小二乘法有几种使用条件:
一是存在可被测量的随机误差,即给定的m个数据点之间存在某种形式的随机误差,其对对应的点有随机的扰动;
二是用于拟合的模型的所有参数都是需要估算的,是未知参数;
三是满足第一范式条件,即:差异函数完全一致且扰动项(如误差)的期望值未知;
四是满足最大不相关条件,即:扰动项不相关,同时具有常数平方和分布。
五是满足独立性,即:每个观测点都是独立的,不存在任何联系。
通过最小二乘法拟合数据,可以更好地估计参数,从而获得更准确、有效的预测结果。
最小二乘法原理

最小二乘法原理最小二乘法(也称为最小二乘法)是一种数学优化技术。
它通过最小化误差平方和来找到数据的最佳函数匹配。
最小二乘法可用于轻松获取未知数据,并使获取的数据与实际数据之间的误差平方和最小。
最小二乘法也可以用于曲线拟合。
通过最小化能量或最大化熵,也可以通过最小二乘法来表达一些其他优化问题。
当我们研究两个变量(x,y)之间的关系时,通常可以得到一系列配对数据(x1,y1。
x2,y2 ... xm,ym);将这些数据绘制在x处。
在y直角坐标系中,如果在直线附近找到这些点,则该直线的方程式可以为(方程1-1)。
Yj = a0 + a1 X(公式1-1)其中:a0,a1是任何实数要建立此线性方程,必须确定a0和a1,应用“最小二乘原理”,并将测量值Yi 与计算值(Yj = a0 + a1X)(Yi-Yj)进行比较。
平方[∑(Yi-Yj)2]是“优化标准”。
令:φ= ∑(Yi-Yj)2(式1-2)将(公式1-1)代入(公式1-2),我们得到:φ= ∑(Yi-a0-a1 * Xi)2(等式1-3)当∑(Yi-Yj)的平方最小时,函数φ可用于获得a0和a1的偏导数,因此这两个偏导数等于零。
那是:m a0 +(∑Xi)a1 = ∑Yi(式1-6)(∑Xi)a0 +(∑Xi2)a1 = ∑(Xi,Yi)(公式1-7)关于a0和a1的两个方程是未知数。
求解这两个方程,得到:a0 =(∑Yi)/ m-a1(∑Xi)/ m(公式1-8)a1 = [m∑Xi Yi-(∑Xi ∑Yi)] / [m∑Xi2-(∑Xi)2)](等式1-9)此时,将a0和a1代入(方程式1-1),这时(方程式1-1)是我们返回的基本线性方程:数学模型。
在回归过程中,回归相关公式不可能传递每个回归数据点(x1,y1。
x2,y2 ... xm,ym)。
为了判断相关公式,可以使用相关系数“R”,统计“F”,剩余标准偏差“S”进行判断;“R”越接近1,越好;“F”的绝对值越大,越好;“S”越接近0越好。
最小二乘法讲解

历史简介
• 1801年,意大利天文学家朱赛普·皮亚齐发现了第一颗小行星谷神星。 经过40天的跟踪观测后,由于谷神星运行至太阳背后,使得皮亚齐失 去了谷神星的位置。随后全世界的科学家利用皮亚齐的观测数据开始 寻找谷神星,但是根据大多数人计算的结果来寻找谷神星都没有结果。 时年24岁的高斯也计算了谷神星的轨道。奥地利天文学家海因里 希·奥尔伯斯根据高斯计算出来的轨道重新发现了谷神星。
5
例题
6
例题
7
例题
8
例题
9
例题
10
例题
11
例题
12
例题
13
例题
14
例题
15
习题
假设关于某设备的使用年限x和所支出的维修费用y (万元)有如下统计资料:
x
2
3
4
5
6
y
2.2 3.8 5.5 6.5 7.0
(1)求回归直线方程;
(2)估计使用10年 时,维修费用约是
多少?
16
习题
解:根据散点图知 x 与 y 成线性相关关系
(1)列表
xi
yi
xi 2
xi yi
2
2.2
4
4.4
3
3.8
9
11.4
4
5.5
16
22
5
6.5
25
32.5
6
7.0
36
42
合计 20
25
90 112.3
x4
y5
17
习题
112.3 5 4 5 b 90 5 42 1.23 a 5 1.23 4 0.08
2
历史简介
• 高斯使用的最小二乘法的方法发表于1809年他的著作《天体运动论》 中。
最小二乘法

最小二乘法概念阐述最小二乘法最早出现在勒让德1805年发表的论著《计算彗星轨道的新方法》附录中。
在此之前,前人多设法构造k个方程去求解,而勒让德没有因袭前人思想。
他认为:“赋予误差的平方和为极小,则意味着在这些误差间建立了一种均衡性,它阻止了极端情形所施加的过分影响。
这非常好地适用于揭示最接近真实情形的系统状态。
”该附录占据了这本80页小册子的最后9页,在前面关于卫星轨道计算的讨论中没有涉及最小二乘法,可以推测他当时感到这一方法尚不成熟。
最小二乘法主要用于解决函数模型最优解问题,是测量工作及其他科学工程领域中,应用最早也是最广泛的算法。
在生产实践中,经常会遇到利用一组观测数据来估计某些未知参数的问题。
历史发展关于最小二乘法,高斯宣称自1795年以来他一直使用这个原理。
这立刻引起了勒让德的强烈反击,他提醒说科学发现的优先权只能以出版物确定,并严斥高斯剽窃了他人的发明他们间的争执延续了多年。
因而,这两位数学家之间关于优先权的争论,在数学史上的知名度仅次于牛顿和莱布尼兹之间关于微积分发明权的争论。
现在一般认为,二人各自独立地发明了最小二乘法,尽管早在10年前,高斯就使用这个原理,但第一个用文字形式发表的是勒让德。
勒让德和高斯发现最小二乘法是从不同的角度入手的:一个是为解线性方程组,一个是寻找误差函数;一个用的是整体思维,考虑方程组的均衡性,一个用的是逆向思维,首先接受经验事实;一个是纯代数方法,一个致力于应用。
1809年,高斯发表论著《天体运动理论》。
在该书末尾,他写了一节有关“数据结合”的问题,以极其简单的手法导出误差分布——正态分布(描述偶然误差通常用正态分布,其特性:在一定观测条件下,误差的绝对值有一定的限制,或者说,超出一定限制的误差,其出现的概率为零;绝对值较小的误差比绝对值较大的误差出现的概率大;绝对值相等的正负误差出现的概率相同;偶然误差的数学期望为零),并用最小二乘法加以验证。
最小二乘法的基本原理公式

最小二乘法的基本原理公式
最小二乘法是一种数学方法,通过最小化预测值与实际观测值之间的残差平方和,来估计最佳参数值。
其基本原理公式如下:
对于给定的观测数据集{(x1, y1), (x2, y2), ..., (xn, yn)},我们希望找到一条直线y=ax+b,使得所有数据点到这条直线的垂直距离(即残差)的平方和最小。
其中,a和b是待求解的参数。
通过最小化残差平方和,我们可以得到以下线性方程组:
1. ∑(yi - ax - b)^2 = 最小值
2. ∑(xiyi - nx平均值y平均值 - axi - byi + nx平均值b + ny平均值a) = 0
3. ∑(xi^2 - nx平均值^2 - 2xia - b) = 0
通过求解这个方程组,我们可以得到最佳参数a和b的值。
最小二乘法的应用非常广泛,包括线性回归分析、曲线拟合、数据平滑、预测分析等。
它是一种非常有效的数学工具,可以帮助我们更好地理解和分析数据。
最小二乘法的原理和应用

最小二乘法的原理和应用1. 原理最小二乘法是一种最常用的参数估计方法,用于拟合数据点与理论模型之间的误差。
它通过最小化误差的平方和来确定模型参数的最佳估计值。
在最小二乘法中,我们假设数据点服从一个线性模型,即y = mx + b其中,y是因变量,x是自变量,m和b是待求的参数。
我们希望找到最优的m和b,使得模型的预测值与实际观测值之间的误差最小。
最小二乘法的核心思想是将误差平方化,即将每个数据点的误差差值平方,并将所有的差值平方求和。
通过最小化这个平方差和,我们可以得到最优的参数估计值。
2. 应用最小二乘法在各个领域中都有广泛的应用。
以下是一些常见的应用示例:2.1 线性回归最小二乘法在线性回归中被广泛使用。
线性回归是一种统计分析方法,用于确定两个变量之间的线性关系。
通过最小二乘法,我们可以估计线性回归模型中的斜率和截距,从而预测因变量的值。
2.2 数据拟合最小二乘法还可以用于数据拟合。
通过选择适当的模型和参数,最小二乘法可以拟合数据点,并生成一个描述数据行为的数学模型。
这对于预测未来的数据点或分析数据的趋势非常有价值。
2.3 图像处理最小二乘法在图像处理中也有应用。
例如,在图像平滑和去噪方面,最小二乘法可以用于拟合图像上的像素值,并通过消除噪声来提高图像的质量。
2.4 物理建模在物理建模中,最小二乘法可以用于确定物理系统的参数。
通过测量物理系统的输入和输出,并使用最小二乘法,我们可以估计出系统的参数,以便更好地理解和预测系统的行为。
3. 实现步骤最小二乘法的实现步骤如下:1.收集数据:首先,需要收集一组包含自变量和因变量的数据。
2.建立模型:根据问题的要求,选择适当的模型。
例如,在线性回归中,我们选择了y = mx + b的线性模型。
3.计算预测值:通过代入自变量的值,并使用模型中的参数,计算预测值。
4.计算误差:将预测值与实际观测值进行比较,并计算误差。
误差可以通过求差值的平方来计算。
5.求解参数:通过最小化误差的平方和,可以得到最优的参数估计值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最小二乘法
最小二乘法起源于以测量和观测为基础的天文学。
Gauss 在1794年利用最小二乘法解决了多余观测问题,当时他只有十七岁。
可以用下面的简单例子描述这类问题。
假定通过观测或实验得到如下一组数据(即列表函数):
我们的目的是一简单的式子表出这些数据间的关系。
从分析数据看出,这些点差不多分布在一条直线上,因此我们自然想到用线性式b ax y +=表示它们之间的关系。
这就须定出参数a 和b 的值来。
这实际上是多余观测问题,用插值法不能确定出a 和b 的值。
代定参数的确定归结为矛盾方程组的求解问题。
假定有某方法可以定出a 和b ,则按bx a y +=,给出一个x 便可以算出一个
y 。
我们记
).8,,1( =+=k bx
a y k
k y 称为k y 的估计值,显然它们不会是完全相同的,它们之间的差(通常称为残差)
)8,,1( =-=k y y k
k k ε
无疑是衡量被确定的参数a 和b (也就是近似多项式b ax y +=)好坏的重要标志。
可以规定许多原则来确定参数b a ,。
例如
(1) 参数的确定,将使残差绝对值中最大的一个达到最小,即
k
k
T ε
max =为最小;
(2) 参数的确定,将使残差绝对值之和达到最小,即∑k
k ε为最小;
(3) 参数的确定,将使残差的平方和达到最小,即∑2
k ε为最小。
(1) 和(2)两个原则是很直观的,也很理想,但很不好用;而原则(3)既直观又很好用。
按原则(3)确定待定参数,从而得到近似多项式的方法,就是通常所说的最小二乘法。
这一方法的理论根据是,概率理论已证明,只有这样的原则才能使得观测或实验的偶然误差对于所作的近似多项式有最小的影响。
回到所提出的问题上来,即用最小二乘法确定参数b a ,。
按最小二乘法,应使
∑=+-=s
i i i b a y b a S 12))((),(
取最小值。
因此,应有
.0))((2,0))((28
1
8
1
=+-=∂∂=+-=∂∂∑∑==i i i i i i i x b a y b S
b a y a S
由此,得到如下线性方程组:
.
,
8
1
8
1
2
8
1
8
1
81810∑∑∑∑∑∑=======+=+i i i i i i i i i i i i y x x b x a y x b i a
经过简单计算,这个方程组成为
⎩⎨
⎧=+=+.
3.4714028,
2.12288b a b a 解之可得,110.0,142.1==b a 从而得近似多项式.110.0142.1)(1x x p +=
现在转入讨论更为一般的情形。
设已知列表函数),,,1,0)((m i x f y i i ==并且我们想用一个通常的)(m n <次多项式
n
n n x a x a a x p +++= 10)(
(1.1)
去近似它。
问题是应该如何选择n a a a ,,,10 使)(x p n 能较好地近似列表函数
)(x f 。
按最小二乘法,应该选择n a a a ,,,10 使得
∑=-=m
i i n i n x p x f a a a S 0
210))()((),,,(
取最小。
注意到S 是非负的,且是n a a a ,,,10 的2次多项式,它必有最小值。
求S 对n a a a ,,,10 的偏导数,并令其等于零,得到
).,,1,0(0
)(0
10n k x x a x a a y
k
i m
i n i n i i
==----∑=
进一步,可以将它们写成
).,,1,0(0
1
10
00
n k x a x a x a x
y m
i n
k i
n m
i k i
m i k
i m
i k i
i =+++=∑∑∑∑=+=+==
引进记号
∑==m
i k
i k x s 0
和 ,0
∑==m
i k
i i k x y u
则上述方程组为
⎪⎪⎩⎪⎪⎨
⎧=+++=+++=+++++.
,,211011*********n n n n n n n n n u a s a s a s u a s a s a s u a s a s a s
(1.3)
它的系数行列式是
.211
21
10
1n
n n
n n
n s s s s s s s s s X
+++=
由)2,,1,0(n i s i =的定义及行列式性质,可以断言
.)),,,(()!
1(1
2101∑+=
+n n W n X ξξξ
(1.4)
此处符号W 表Vandermonde 行列式,而∑是对所有可能的),,1,0(n i i =ξ求和(每个i ξ可以取值,,,,10m x x x 并且当j i ≠时j i ξξ≠)。
由(1.4)式及Vandermonde 行列式的性质可知,当m x x x ,,,10 互异时,
.01
1
1
),,,(10221201010≠=n
n n n n n
n W ξξξξξξξξξξξξ
从而,(),001>≠+n X 方程组()3.1有唯一解,,,,10n a a a 且它们使()2.1取极小值.如此,我们应用最小二乘法找到了()x f 的近似多项式()x p n .
在利用最小二乘法组成和式()2.1时,所有点i x 都起到了同样的作用,但是有时依据某种理由认为∑中的某些项的作用大些,而另外一些作用小些(例如,一些i y 是由精度较高的仪器或操作上比较熟练的人员获得的,自然应该予以较大的信任),这在数学上表现为用和
()()()∑=-m
i i n i i x p x f 0
2
ρ 替代和()2.1取最小值.,0>i ρ且
,11
∑==n i i ρi ρ通常称之为权;而()5.1为加权和.
例1 设已知函数()x f 的表列值为
试按最小二乘法构造()x f 的二次近似多项式.
解 经过简单计算可得关于参数0a ,1a 和2a 的方程组(参阅下面的第一个
表):
50a +3.2501a +2.5032a =9.942 3.2500a +2.5031a +2.0902a =7.185 2.5030a +2.0901a +1.8262a =5.857 解之,得
2a =0.928, 1a =0.751, 0a =1.036.故
()x p 2 =0.9282x +0.751x +1.036.
下表给出了()x p 2在结点处的误差.
用多项式()n
n n x a x a a x p +++= 10去近似一个给定的列表函数(即给出的一组观测值()i i x f y =)时,需要确定的参数是;,,,10n a a a 而()x p n 可以看成是n a a a ,,,10 的线性函数.但是有时在利用观测或实验数据去确定一个经验公式时,往往要确定的函数和待定参数之间不具有线性形式的关系.这样问题就变得有些复杂.然而,常常可以通过变量替换使其线性化.例如:
()1
有时,我们希望用如下类型的函数:
()6.1q
pt s =
去近似一个由一组观测数据(列表)所描绘的函数,其中p 和q 是待定的两个参数.显然s 已非p 和q 的线性函数.怎样线性化呢?为此,我们在()6.1式两端取对数,得到
.ln ln ln t q p s += 记 s ln =y ,p ln =
0a ,1a =q ,x =t ln ,则 ()6.1式变成
x a a y 10+=.
这是一个一次多项式,它的系数0a 和1a 可以用最小二乘法求得. ()ii 我们经常希望用函数
()
7.1Ct
Ae S =
去近似一个以给定的列表函数,其中A 、C 是待定的参数.这时,我们可以在()
7.1的两端取对数:
Ct A S +=ln ln
记S ln =y ,t x a C a A ===,,ln 110,则()7.1式变成 x a a y 10+=
这样,仍可用最小二乘法定出10,a a (从而也就定出了C A ,),得到近似函数
Ct Ae S =.
例2 设已知如下一组实验数据:
t =2.2 2.7 3.5 4.1
S =65 60 53 50
试求一个()7.1型的函数去近似它.
解 计算以紧凑的形式表示如下:
0x t x l n = 2x S
y l n = xy 1 0.342 4 0.117 2 1.812 9 0.620 7 1 0.431 4 0.186 1 1.778 2 0.767 1 1 0.544 1 0.296 0 1.724 3 0.938 2 1 0.612 8 0.375 5 1.699 0 1.041 1 4 1.930 7 0.974 8 7.014 4 3.367 1 0S 1S 2S 0u 1u
由此得方程组 .
1367.38974.07930.1,4014.77930.141010=+=+a a a a
解之得 ,434.0,9.91,963.1ln 10-=====a q p p a 从而
.9.91434.0-=t S。