浅谈激光焊接机的原理与维修

合集下载

激光焊接机的原理

激光焊接机的原理

激光焊接机的原理作为一种现代化的焊接技术,激光焊接已经在各种行业中被广泛应用。

它的成功离不开它独特的工作原理。

本文将详细解析激光焊接机的工作原理。

一、激光焊接简介激光焊接旨在利用激光束的高聚焦能力,将能量精确地聚焦在一个非常小的区域内,从而使两个物体粘合在一起。

用于激光焊接的激光器非常强大,能够产生高能量密度,使金属表面瞬间熔化。

当激光束在母材中扫过时,会在焊缝地区形成一个熔融坑。

这个熔融坑以非常高的速率冷却,从而形成一个牢固的焊缝,并能够保留所焊接材料的各种有益物理特性。

二、激光焊接机的技术原理1. 激光产生激光焊接机使用激光器发生器产生高强度、高能量的激光束。

激光器发生器中包含一个激光介质,例如Nd:YAG或Nd:YVO4晶体。

在正常条件下,这些晶体中的粒子处于低能量状态,而经过特定的处理后,激发它们并将它们转移到高能量状态。

当这些粒子返回到低能量状态时,它们会放出一种特殊的能量形式——激光束。

2. 激光束激光束是由激光器发生器产生的,它的波长通常在400nm到1064nm之间。

激光束由激光器发生器中的反射镜反射并集中在透镜上,进而形成高密度、高强度的光束。

通过透镜调焦,可以将激光束精密地聚焦到小于0.2mm的焦点。

3. 板材熔化激光束焦点经由对焊件(例如板材)的扫描或自由移动,以产生分化,其功率密度高于材料的熔化点,从而在扫描过程中的瞬间在工件表面形成一定深度的熔池。

通过对激光束、扫描速度和加工监控等核心参数进行控制,可以确保焊缝的深度和宽度。

4. 累积形成焊缝在建造焊缝的过程中,激光焊接机通过缓慢移动激光光束并剥离一层层,逐个建造焊缝的部分。

在光斑运动的时间内,银合金流体持续加入到光斑,因为银是难熔液体,所以从光斑周围的光斑内推动挤压,光束中的盐类,即镁和氯化物溶解到熔体中,保证了光斑和银之间的黏附。

完成焊缝后,光束向其余焊接部分移动,以逐步焊接整个工件。

总之,通过连续控制激光束的位置和强度,利用金属材料迅速熔化并重新凝固,就能快速、准确地完成焊接工作。

激光焊接机工作原理

激光焊接机工作原理

激光焊接机工作原理
激光焊接机是一种利用激光束进行焊接的设备,它通过激光束的高能量浓缩,可以将金属材料快速熔化并连接在一起。

激光焊接机的工作原理是基于激光的高能量和高聚焦性,下面将详细介绍激光焊接机的工作原理。

首先,激光焊接机通过激光器产生高能量的激光束。

激光器会将电能转化为光能,然后将光能集中成一束高能量的激光束。

这个激光束具有高度的单色性和方向性,能够准确地聚焦在焊接的工件上。

其次,激光束聚焦到一个极小的焦点上。

激光焊接机通过透镜或镜片将激光束聚焦到一个非常小的区域,使得激光束的能量密度非常高。

这样可以在极短的时间内将工件表面的金属材料瞬间熔化。

然后,熔化的金属材料形成焊接池。

激光束的高能量使得金属材料瞬间熔化,并形成一个熔化的池子。

在这个瞬间,激光束的热量将工件表面的金属材料熔化并混合在一起,形成焊接接头。

接着,激光束移动焊接接头。

激光焊接机通过控制激光束的移动轨迹,将激光束沿着需要焊接的接头移动。

这样可以确保焊接池的形成和焊接接头的连接质量。

最后,焊接接头冷却凝固。

一旦激光束移动到下一个焊接点,焊接接头开始冷却并凝固。

这样就完成了一次焊接过程。

总的来说,激光焊接机的工作原理是利用高能量、高聚焦的激光束将金属材料瞬间熔化并连接在一起。

激光焊接机具有焊接速度快、热影响区小、焊接接头质量高等优点,因此在工业生产中得到了广泛的应用。

希望通过本文的介绍,读者对激光焊接机的工作原理有了更深入的了解。

浅谈激光焊接机的原理与维修

浅谈激光焊接机的原理与维修

浅谈激光焊接机的工作原理【摘要】文章以深圳大族激光科技股份有限公司生产的W150A型激光焊接机为例介绍了激光焊接机的工作原理及内部电路的工作流程1 前言激光焊接主要应用在要求焊接精度比较高的场合,如钟表游丝、显像管电子枪的组装、锂电、集成电路引线等。

激光焊接的主要优点是焊接速度快、深度大、变形小,能在室温和特殊条件下进行焊接。

焊接过程为热传导型,可以通过控制激光脉冲的宽度、能量、峰功率和频率等参数使工件熔化,形成特定熔池,达到想要的焊接效果。

激光焊接因其独特的焊接方式决定了其独特的工作原理。

目前国内主要生产商有深圳大族激光、武汉楚天激光、武汉高能激光等厂家,其生产的激光焊接机在工作原理上都大同小异,但在控制系统上都有许多差别。

下面以深圳大族激光生产的W150A型激光焊接机为例来说明一下其工作原理。

2 整机原理2.1 氙灯氙灯是一种内部充满氙气的柱状玻璃灯管,其阳极、阴极直接接触气体,分布在灯管外部两端的电极和内部电极直接相连。

氙灯工作时分为预燃状态和放电状态两种状态,首先通过在外部电极施加一高电压脉冲来将灯管内惰性气体离子化使其进入预燃状态并且得以维持,然后再通入大的电流使其过渡为高电流密度的弧光放电,产生极强的闪光。

氙灯发光强,亮度很高,功率大,发出的强光在这里用来激发激光物质产生出激光,所以也称泵浦光源或光泵。

2.2 激光的产生Nd:YAG激光器)在现实中要想产生激光,就必须满足两个条件:首先能够找到实现粒子数反转的工作物质,即激光介质;第二要建立一个谐振腔,使某一频率的能量源在腔内谐振,在激光介质中多次往返时有足够的机会去激励处于粒子数反转状态的激光介质。

只有这样才能产生激光。

这些受激发射的光子又去激发其它原子,一个变两个,两个变四个……,产生连锁反应,光被雪崩似地放大,产生出强烈的激光。

Nd:YAG激光器是固态晶体激光器的一种,它采用Nd:YAG晶体棒做激光介质。

Nd:YAG晶体是将激光介质钕(Nd)原子掺在晶体钇铝石榴石(YAG)中,被制做成棒状,具有良好的光学性能、机械性能和热力学性能。

激光焊接机

激光焊接机

激光焊接机激光焊接机是一种利用激光产生高热进行材料焊接的设备。

它可以实现高效、精准、无损伤的焊接,广泛应用于汽车、航空航天、船舶、电子、机械制造等领域。

一、激光焊接机的原理激光焊接机是利用激光产生高能量,使工件局部区域受热,迅速熔化、凝固,达到将两个工件或者多个工件连接在一起的目的。

激光焊接机的原理和普通焊接不同,它采用激光作为热源,激光束经过透镜将激光集中在焊接处,从而使焊接部位产生高温,使工件表面熔化,形成液态,再通过液态金属流动、冷凝形成焊接。

二、激光焊接机的特点1、高效率激光焊接机的焊接速度比传统的焊接速度快10倍以上,可以大大提高工作效率。

2、高精度激光焊接机的焊接精度极高。

它可以焊接0.1mm以下的细小零件,而且焊接部位热影响区非常小,对焊接部位的影响非常小。

3、无污染激光焊接机的焊接过程无需接触,无需溶剂,更无需焊接材料,无产生任何污染。

4、无损伤激光焊接机的焊接过程不会对工件造成损伤,而且焊接部位的热影响区域非常小,对工件的性能影响也很小。

三、激光焊接机的应用1、汽车行业汽车行业是激光焊接机的重要应用领域。

激光焊接可以将轻量化材料、铝合金等材料进行焊接,而且焊接后产生的缝隙也很小,让车身从内部得到更好的保护。

2、航空航天行业激光焊接机广泛应用于飞机制造,可以更好地焊接高密度、难加工和高强度材料,特别是纤维复合材料的部件,如翼尖。

3、机械制造行业激光焊接机可以焊接复杂的钣金结构,既能保证产品强度,又能大大提升生产效率。

四、总结激光焊接机的应用领域非常广泛,并且可以应用于很多需要高精度、高效率的生产环境中。

在今后的不断发展中,激光焊接机的应用领域和技术水平将会不断提高,给各个行业带来更多的变化和机遇。

激光焊接机的工作原理讲解

激光焊接机的工作原理讲解

激光焊接机的工作原理讲解
首先,激光器会发射出一束高能量的激光光束。

这个激光光束是由一
束相干光束经过准直、扩束和聚焦透镜等光学器件处理后得到的。

准直、
扩束和聚焦透镜可以调整光束的直径和焦点位置,以满足不同焊接需求。

当激光光束照射到金属材料表面时,它会被吸收并转化为热能。

这个
过程主要依靠激光光束与金属材料的能量吸收系数以及光束的功率来决定。

当光束功率足够高时,金属表面温度会迅速升高。

当金属材料表面温度升高到熔点以上时,材料就会熔化并形成液态区域。

这个液态区域称为熔池。

激光焊接机通过控制激光的功率、焦点位置
和工作速度来控制熔池的形成和大小。

在焊接过程中,激光焊接机通常采用自动焊接模式。

焊接工件通过数
控机床或焊接机械手等设备来控制焊接路径。

激光焊接机会根据预设的焊
接路径,在金属材料上形成一条或多条焊缝。

同时,通过精确控制激光束
的功率和焦点位置,可以实现焊接的深度和质量控制。

总结来说,激光焊接机的工作原理是通过发射高能量激光光束,将光
能转化为金属材料的热能,使其熔化并形成焊缝。

控制光束的功率、焦点
位置和工作速度,可以实现焊接路径的控制和焊接质量的调整。

激光焊接
机具有高效、精确、自动化程度高等优点,广泛用于各种金属材料的焊接。

激光焊接机工作原理

激光焊接机工作原理

激光焊接机工作原理
激光焊接机是一种利用激光束进行金属材料焊接的设备。

其工作原理主要包括以下几个步骤:
1. 激光产生:激光生成器产生高功率激光束,通常采用CO2激光器或固体激光器等。

2. 激光聚焦:激光束通过光学系统聚焦成高能密度的光斑,通常通过透镜或镜组来实现,以实现焦点处的局部加热。

3. 材料加热:激光束聚焦后照射到待焊接的金属材料上,激光在金属表面吸收并转化为热能,导致焊缝区域的温度升高。

4. 熔融与混合:随着焊缝区域的升温,金属材料开始熔化和混合,激光束在焊缝区域形成融池。

5. 焊接联接:熔融状态下的金属通过热传导迅速冷却,形成焊接接头。

焊接接头的质量和强度受到激光参数、焊接速度、焊接材料等多个因素的影响。

6. 控制与监测:激光焊接机通常配备有实时温度监测、光束质量控制、焊接位置控制等系统,以确保焊接过程稳定、准确和高效。

总的来说,激光焊接机利用激光束在焊缝区域产生高温,使金属材料熔化与混合,最终形成牢固的焊接接头。

激光焊接具有
焊缝窄、深度可控、热影响区小等优点,被广泛应用于汽车、航空航天、电子、机械制造等领域。

激光焊接机的原理

激光焊接机的原理

激光焊接机的原理
激光焊接机是一种利用激光技术进行焊接的设备。

其原理是利用激光束的高能量密度和高一致性来实现材料的快速加热和熔化,从而实现焊接的目的。

激光焊接机的工作过程主要包括以下几个步骤:
1. 激光发生器产生激光束:激光发生器产生高能量密度的激光束,通常采用固体激光器或半导体激光器。

2. 激光束的聚焦:激光束经过光学系统的聚焦,将光束的直径缩小并增加其能量密度,以便能够快速加热和熔化焊接材料。

3. 材料准备:需要焊接的材料表面要进行处理,以确保接触到激光束时能够有效吸收激光能量,并且保持良好的接触状态。

4. 激光照射和加热:聚焦后的激光束被照射到焊接接头上,激光束的高能量密度使焊接接头迅速加热至熔点甚至更高温度。

5. 熔化和混合:焊接接头在激光束的作用下迅速熔化,形成熔池。

同时,激光束还能够在熔池中引起物质的搅拌和混合,实现焊接接头的良好结合。

6. 冷却和固化:焊接接头在激光束停止照射后,开始进行冷却和固化,形成坚固的焊缝。

激光焊接机的优点包括焊接速度快、热影响区小、焊缝质量高,
适用于各种金属及其合金的焊接。

但同时也存在着设备成本高、适用范围有限等缺点。

激光焊接机的工作原理

激光焊接机的工作原理

激光焊接机的工作原理激光焊接机是一种高科技设备,它利用激光束将工件加热至高温状态,以达到将工件焊接在一起的目的。

它的工作原理可以分为三个步骤:激光束的生成和聚焦、激光与工件的相互作用和焊接结果的评估。

在本文中,我们将深入探讨这三个步骤中的每一个步骤。

第一步是激光束的生成和聚焦。

激光器良好的功率输出是激光焊接机的基础。

一般情况下,激光器由三部分组成:激光生成器、放大器和输出镜。

首先,激光生成器产生并放大激光。

接下来,放大的激光经过准直器和分束器后到达输出镜。

输出镜的目的是将激光能量聚焦在一个点上,以保证达到足够的功率和焦距。

第二步是激光与工件的相互作用。

当激光束与工件接触时,它会被吸收并转化为热能。

当激光束通过工件时,会在其路径上产生熔融区域,将其附近的区域加热至熔点及以上温度,直到焊接区域的材料达到熔点。

在激光束焊接期间,降低焊接区域的温度极为重要。

这是因为高温会导致冷凝和气泡,从而造成焊接区域的损坏。

因此,焊接区域的工件必须保持一定的温度,同时焊接区域周围的工件必须保持冷却。

如果正确操作,则激光焊接机可以确保焊接区域内产生的微小熔池,以及相互作用和合并,最终形成高支持的合金相。

第三步是焊接结果的评估。

当焊接结束后,必须对焊接点进行详细的检查。

在焊接后,工件会冷却并在其周围形成热效应区域。

热效应区域由部分冷却的金属构成,常常在焊接点周围形成一圈。

通过控制焊接机的参数,可以将热效应最小化,并提高焊接的质量。

综上所述,激光焊接机的工作原理包含三个步骤。

首先,激光束的生成和聚焦,然后是激光与工件的相互作用,最后是焊接结果的评估。

如果操纵正确,激光焊接可以比传统的加工方法效率更高,速度更快,并且具有更少的变形和变形。

与传统的加工方式相比,它具有更少的污染和更短的加工周期。

由于其高效和准确性,激光焊接机被广泛应用于汽车、电子、航空航天、船舶和建筑等领域。

激光焊接机原理

激光焊接机原理

激光焊接机原理
激光焊接机是一种利用激光能量进行焊接的设备。

其原理主要基于激光束的高能量聚焦和熔化工件表面,从而实现焊接的目的。

首先,激光产生装置会通过电子能级跃迁的方式激发激光材料,使其产生激光光束。

这个过程中,激光材料通常是一种具有受激辐射特性的物质,如气体、固体或液体。

然后,激光光束通过光束传输系统,被聚焦到一个非常小的焦点上。

聚焦可以通过使用透镜或反射镜等光学元件来实现。

焊接过程中,激光束聚焦在工件的焊接接头上。

由于激光束的高能量密度,工件的表面立即被熔化和加热。

随后,加热的区域会迅速冷却并形成焊接接头。

为了确保成功的焊接,激光焊接机通常会配备辅助设备,如气体保护装置。

气体保护可以在焊接区域形成一层保护性气氛,以防止外部环境的影响。

另外,激光焊接机还可以根据不同的焊接需求进行参数调节,如激光功率、脉冲频率、束径等。

这些参数的调节可以控制焊接的深度、速度和质量,以满足不同工件的要求。

总的来说,激光焊接机通过将激光能量聚焦在工件上实现熔化和焊接的过程,具有高效、精确和无损的特点。

它广泛应用于
各种材料的焊接,如金属、塑料和玻璃等,成为现代焊接技术中的重要一环。

激光焊接机工作原理

激光焊接机工作原理

激光焊接机工作原理1.激光发生器激光发生器是激光焊接机的核心部件,它能够产生一束单色、一致相位和方向的激光束。

激光发生器通常采用固体激光器或气体激光器。

其中,固体激光器通过在激活介质中释放能量来产生激光束,气体激光器则在激光气体中通过放电来产生激光束。

2.激光束控制系统激光束控制系统是激光焊接机中的另一个重要部件,它能够控制激光束的大小、方向和焦点位置,从而使其能够精确地照射到焊接接头上。

激光束控制系统通常由准直器、大小系统、扫描控制系统和光束稳定系统等组成。

3.工件定位系统工件定位系统是激光焊接机中用于固定并定位待焊接工件的部件。

它能够根据工件的形状和尺寸进行调整,并确保待焊接的接头位于激光焊接机的焊接范围内。

4.辅助气体系统辅助气体系统是激光焊接机中用于辅助焊接过程的部件。

它能够通过向焊接接头上方喷射惰性气体,如氩气或氮气,来保护焊接接头不被外界气体和氧气污染。

辅助气体还可以用于吹除接头表面的灰尘和杂质,提供清洁的焊接环境。

5.焊接监控系统焊接监控系统是激光焊接机中用于监测和控制焊接过程的部件。

它可以通过对焊接接头的温度、形状、质量和焊接速度等参数进行测量和分析,从而及时发现并修正潜在的焊接缺陷。

6.焊接过程当激光束穿过激光焊接机的准直器和大小系统后,它将被聚焦到焊接接头上,产生高温区。

在高温区内,接头材料被熔化并与其他接头材料相融合,形成一个坚固的焊接连接。

焊接过程中,辅助气体会从激光焊接机的喷嘴中喷射出来,保护焊接接头并吹除焊接区域的灰尘和杂质。

总结:激光焊接机工作原理是通过激光束在焊接接头上产生高温,使接头材料熔化并连接。

它由激光发生器、激光束控制系统、工件定位系统、辅助气体系统和焊接监控系统等组成。

在焊接过程中,激光束被聚焦到焊接接头上,辅助气体保护接头不受外界气体和氧气污染。

焊接监控系统可以实时监测和控制焊接过程,确保焊接质量达到要求。

激光焊接机具有高精度、高效率和低热影响区等特点,广泛应用于金属和非金属材料的焊接领域。

激光焊接机的原理

激光焊接机的原理

激光焊接机的原理
激光焊接是一种高效、精密的焊接方法,它利用激光束对工件进行加热,使其
局部熔化并与填充材料相融合,从而实现焊接的目的。

激光焊接机是实现激光焊接过程的关键设备,其原理包括激光发生、聚焦、传输和控制等多个方面。

首先,激光焊接机的原理之一是激光发生。

激光器是激光焊接机的核心部件,
它能够产生高能量、高单色性的激光光束。

激光器通常采用半导体激光器、光纤激光器或气体激光器等作为激光发生的源头,通过电子激发、光学共振等过程产生一束高能量的激光光束。

其次,激光焊接机的原理还包括激光光束的聚焦和传输。

激光光束经过激光发
生后,需要通过透镜或反射镜进行聚焦,使其能够在焊接区域形成高能量密度的光斑。

同时,激光光束还需要通过光纤、镜片等光学元件进行传输,保证激光光束能够准确地照射到焊接位置,实现焊接过程的精准控制。

另外,激光焊接机的原理还涉及焊接过程的控制。

在激光焊接过程中,激光光
束的功率、聚焦位置、焊接速度等参数需要进行精确控制,以实现对焊接过程的精准操控。

这通常通过计算机控制系统来实现,通过对激光器、光学系统和工件运动系统等部件的协调控制,实现焊接过程的自动化和精密化。

除此之外,激光焊接机的原理还包括激光焊接的应用。

激光焊接机广泛应用于
汽车制造、航空航天、电子器件、医疗器械等领域,其高效、精密的焊接特性使其成为现代制造业中不可或缺的焊接工艺。

总的来说,激光焊接机是利用激光光束进行焊接的设备,其原理包括激光发生、聚焦、传输和控制等多个方面。

激光焊接机的应用领域广泛,对于提高焊接质量、提高生产效率具有重要意义,是现代制造业中不可或缺的焊接设备。

激光焊接机的工作原理

激光焊接机的工作原理

激光焊接机的工作原理激光焊接技术是一种应用激光进行材料焊接的高效、精确的方法。

激光焊接机是利用激光束产生的高温和高能量将工件加热至熔化状态,并通过熔化的工件与填充材料的相互融合来实现焊接的过程。

本文将详细介绍激光焊接机的工作原理。

激光焊接机的基本工作原理是利用激光束射入焊接区域,通过对焊接区域的加热使其瞬间加热至融化状态,同时提供填充材料使其与工件相互融合。

激光束通过光学系统的调节和聚焦,可以实现对焊接区域的控制和加热能量的调节。

激光焊接机中常用的激光源有固体激光器、气体激光器和半导体激光器等。

固体激光器通过控制氕化镨标等掺杂离子的浓度,可以产生具有特定能级结构的固体激光。

气体激光器则是利用激光气体在电压作用下的放电放出激光束。

而半导体激光器则直接利用半导体材料发出激光。

在激光焊接的过程中,激光束照射到焊接工件表面时,会与表面发生相互作用。

当激光束照射到金属表面时,激光能量会被金属吸收并转化为热能,使金属表面温度迅速升高。

随着激光束的作用时间增加,金属表面温度将达到熔点并瞬间熔化。

在焊接过程中,通过控制激光束的参数、焊接速度和焊接轨迹等,可以实现对焊接过程的精确控制。

激光焊接机通常使用焦点跟踪系统来实现焊接过程中焦点位置的调整,确保焊接区域能够保持在焦点之内,从而获得足够的焦点能量密度。

激光焊接机的工作原理还涉及到焊接材料的选择和填充。

一般情况下,焊接材料应具有与工件相似的熔点和熔化性能,以便实现焊接区域的融合。

填充材料可以是相同材料的补充,也可以是不同材料的添加,用于调整焊缝的性能和结构。

总的来说,激光焊接机通过激光束的照射和控制,在焊接区域产生高温和高能量,使焊接材料迅速熔化并与工件相互融合。

激光焊接机的工作原理并不复杂,但需要对激光束的参数和焊接过程进行精确的控制,以确保焊接的质量和效果。

激光焊接技术因其高效、精确的特点,在许多工业领域得到了广泛的应用。

激光焊机原理

激光焊机原理

激光焊机原理激光焊接机是一种新型的加工装置,它可以将金属材料用高精度、高效率、可重复使用的焊接方法加工成需要的形状,用来生产各种精密配件,如机械零件、航空航天件等。

因其高精度快速、可重复使用等特点,激光焊接机被广泛应用于汽车、航空航天、通讯、家用电器、工业与医疗等方面。

一、激光焊接机的原理激光焊接机的原理是利用激光束和金属材料的热效应作用,将金属材料焊接成指定形状。

它把机械能变成光学能,利用激光焊接机能够在金属材料上焊接出精密的缝隙。

1、激光源改变激光焊接机的激光源可以用CO2气体激光源、YAG固体激光源或Nd:YAG激光源等不同的激光来完成。

使用CO2气体激光源制作的“氩弧焊”,温度能达到2000℃,可以处理厚板材料;使用YAG固体激光源的激光加工,温度可达1000℃,可以处理厚度在10毫米以内的材料;使用Nd:YAG激光源的激光加工,温度可达700℃,可以处理厚度在5毫米以内的材料。

2、焊接速度激光焊接机的焊接速度可在0.01-50m /min,相比电阻焊过程快了几百倍。

3、焊接精度焊缝的精度低于0.5mm,可满足各种零件的快速焊接。

4、可靠性激光焊接机焊接的表面均匀。

由于激光焊接能量非常大,所以在同样条件下可以获得更强的接头强度,降低焊接抗拉断裂率,使用寿命更长,因此可靠性更高。

二、激光焊接机的应用1、激光焊接机可用于制造航空航天、船舶、医疗和电子设备等产品不同组件的薄板焊接,可以提高产品的质量和结构强度,同时有效降低生产工艺成本。

2、激光焊接机还可用于机械制造,如汽车零部件的焊接,它可以有效提高零件的精度和强度,改善制造精度低或易磨损零件。

3、此外,激光焊接机还可以用于装配电子元器件,使电子元器件的连接变得更加可靠。

4、激光焊接机在铸造行业也可以改善焊缝的结构,提高它的强度,抗冲击力,抗腐蚀能力和真空性,加强夹具的牢固性和耐用性。

总之,激光焊接机具有精度高,速度快、焊接可靠等优点,得到了广泛的应用。

激光焊接机工作原理

激光焊接机工作原理

激光焊接机工作原理
激光焊接机是一种利用高能激光束对工件进行熔化连接的设备。

它的工作原理主要包括激光发射、聚焦、熔化、冷却等几个关键步骤。

首先,激光焊接机通过激光器产生高能激光束。

激光器通常采用稀土离子激光器或二氧化碳激光器等作为光源,通过电子激发原子或分子,使其产生受激辐射而产生激光。

这些激光束具有高能量、高单色性和高直线度等特点,适合用于焊接过程。

接下来,激光束经过透镜或反射镜的聚焦,使其能量密度集中到一个很小的区域。

这样可以在瞬间将工件表面局部加热到熔点以上,实现材料的熔化。

聚焦系统的设计和调整对焊接质量有着至关重要的影响,需要根据不同的工件材料和厚度进行合理的选择和调整。

随后,激光束照射到工件表面,使其局部熔化并与另一工件接触面熔化,形成一定的熔池。

在激光束的照射下,熔池中的金属迅速凝固,完成焊接连接。

在这个过程中,激光束的功率、照射时间、焦距等参数需要严格控制,以确保焊接质量和稳定性。

最后,焊接完成后,熔池冷却凝固,形成均匀的焊缝。

同时,激光焊接机通常配备有冷却系统,用于降低焊接区域的温度,防止过热和变形。

这些冷却系统包括气体冷却、水冷却等,能够有效保证焊接质量和工件的稳定性。

总的来说,激光焊接机通过高能激光束的聚焦和照射,实现工件的局部熔化和连接。

其工作原理简单清晰,但在实际应用中需要严格控制焊接参数和工艺,以确保焊接质量和稳定性。

激光焊接技术具有高效、精密、清洁等优点,已广泛应用于航空航天、汽车制造、电子设备等领域,成为现代制造业中不可或缺的重要工艺之一。

激光焊接机工作原理

激光焊接机工作原理

激光焊接机工作原理
激光焊接机是一种利用激光束进行材料焊接的设备。

它采用高能量密度的激光束瞬间照射在需要焊接的工件上,通过激光束在焊缝区域的局部加热和作用力的引导下,使工件表面局部熔化,然后迅速冷却固化,从而实现焊接。

激光焊接机的工作原理主要包括以下几个方面:
1. 激光发生器:激光发生器产生一束高纯度、高单色性、高相干性的激光束。

常用的激光发生器有固体激光器、气体激光器和半导体激光器等。

2. 光学系统:光学系统通过使用透镜和反射镜等光学元件,对激光束进行聚焦和导向,使其能够达到所需的焊接位置。

同时,光学系统还可以调整激光束的直径、能量密度和焦距等参数,以适应不同焊接需求。

3. 工件定位系统:工件定位系统用于确保焊接位置的准确性和稳定性。

通过使用夹具和定位装置等,将工件牢固地固定在焊接位置,避免在焊接过程中出现移动或变形。

4. 控制系统:控制系统对激光焊接机的整个工作过程进行控制和监控。

它可以调节激光功率、频率和脉冲宽度等参数,以满足不同焊接要求。

同时,控制系统还可以通过实时反馈和传感器监控焊接质量和工件温度等指标,以保证焊接质量和安全性。

5. 辅助装置:激光焊接机通常还配备有辅助装置,如气体保护
系统和冷却系统等。

气体保护系统可以通过喷射惰性气体(如氩气)来防止焊缝氧化和污染,从而提高焊接质量。

冷却系统则可以及时将激光焊接机产生的热量散发出去,保持设备的稳定运行。

综上所述,激光焊接机是通过激光束的局部加热和作用力来实现工件焊接的设备。

它具有高效、高精度、无接触和无污染等特点,在汽车、航空航天、电子和医疗等领域有着广泛的应用前景。

激光焊机原理

激光焊机原理

激光焊机原理激光焊机是一种利用激光作为热源进行焊接的设备。

激光焊机的原理是利用高能密度的激光束对焊接材料进行加热,使其瞬间熔化并在熔池表面形成一层保护膜,从而实现焊接的目的。

激光焊机具有焊接速度快、热影响区小、焊缝质量高等优点,因此在工业生产中得到了广泛应用。

激光焊机的工作原理主要包括激光发生、激光聚焦、激光照射和熔池形成等几个关键步骤。

首先,激光器产生高能激光束,然后通过透镜等光学元件对激光进行聚焦,使其能量密度集中到一个很小的区域内。

接着,聚焦后的激光束照射到焊接材料表面,将其加热至熔点以上,形成熔池。

最后,通过控制激光束的移动轨迹和焊接参数,实现对焊接材料的熔化和凝固,完成焊接过程。

激光焊机的原理可以简单概括为“光-热-物”转化的过程。

激光束作为能量载体,通过光-热转化将能量传递给焊接材料,使其发生物理和化学变化,最终实现焊接。

激光焊机在焊接过程中能够实现高能量密度的局部加热,因此可以在较短的时间内完成焊接,并且对热影响区的影响较小,有利于减少焊接变形和裂纹的产生,提高焊接质量。

除了工作原理外,激光焊机的应用也受到了广泛关注。

在汽车制造、航空航天、电子器件等领域,激光焊机都发挥着重要作用。

例如,在汽车制造中,激光焊机可以用于焊接车身结构件,提高焊接效率和质量;在航空航天领域,激光焊机可以用于焊接航空发动机零部件,提高零部件的耐高温性能;在电子器件生产中,激光焊机可以用于微焊接,实现对微小零件的高精度焊接。

总的来说,激光焊机作为一种高效、高质量的焊接工艺装备,具有重要的应用前景和市场需求。

随着激光技术的不断发展和成熟,激光焊机在未来将会有更广泛的应用和更深入的研究,为工业生产带来更多的技术进步和经济效益。

激光焊机原理

激光焊机原理

激光焊机原理激光焊机是一种利用高能激光束对工件进行加热、熔化和凝固的焊接设备。

它具有焊接速度快、热影响区小、焊缝质量高等优点,因而在工业生产中得到广泛应用。

激光焊机的原理主要包括激光发生、光束传输、焊接过程控制等几个方面。

首先,激光焊机的核心部件是激光器。

激光器产生的激光束具有高能量、高单色性和高直线度等特点,能够对工件进行高效加热。

激光器通常采用固体激光器、气体激光器或半导体激光器。

当电流或能量输入到激光器时,激光介质中的原子或分子受激发跃迁,产生光子,经过光放大器放大后,形成高能激光束。

其次,激光束经过准直器和聚焦镜透过光束传输系统,最终聚焦到工件表面。

准直器用于调整激光束的直径和方向,使其能够准确传输到焊接区域。

聚焦镜则用于将激光束聚焦成小直径光斑,提高能量密度,从而实现快速加热和熔化工件表面。

在焊接过程中,激光束对工件表面产生瞬时高温,使工件表面材料瞬间融化,形成熔池。

同时,通过控制激光束的功率、速度和焦距等参数,可实现对焊接过程的精确控制。

激光焊机通常配备有数控系统,能够实现对焊接轨迹、速度和功率的精确控制,以实现高质量的焊接效果。

除了上述原理外,激光焊机还需要考虑材料的选择、表面处理、气体保护等因素。

焊接材料的选择应考虑其熔点、导热系数、膨胀系数等因素,以保证焊接质量。

表面处理可以通过打磨、清洁等方式提高焊接接头的质量。

气体保护则可以采用惰性气体或活性气体,以防止焊接过程中的氧化和污染。

总的来说,激光焊机通过高能激光束对工件进行加热、熔化和凝固,实现高效、高质量的焊接。

它在汽车制造、航空航天、电子器件等领域都有着重要的应用价值。

随着激光技术的不断发展,激光焊机的应用范围将会更加广泛,成为现代制造业中不可或缺的焊接设备。

激光焊接机工作原理

激光焊接机工作原理

激光焊接机工作原理
激光焊接机的工作原理是利用激光束的高能量密度和聚焦性能,将激光能量聚焦在焊接接头上,使接头局部区域受热,并在短时间内熔化或蒸发,从而实现金属材料的连接。

具体工作原理如下:
1. 激光生成:通过激光器(如光纤激光器、半导体激光器等)产生一束高能量的激光束。

2. 激光传输:经过准直透镜和扩束透镜等光学器件的调整,将激光束传输到焊接头所在的位置。

3. 聚焦:激光束经过一个聚焦镜组将光线汇聚到焊接接头上,使焊接接头受到高能量密度的激光束照射。

4. 材料加热:激光束的高能量密度使焊接接头局部区域受热,达到材料熔化或蒸发的温度。

5. 材料熔合:局部区域受热后,金属材料熔化并形成一定的熔池,同时激光束起到搅拌熔池和熔池表面的作用,以获得良好的焊接质量。

6. 冷却:当激光束结束后,焊接接头开始冷却,熔池凝固成为焊缝,实现金属材料的连接。

激光焊接机工作原理的核心是利用激光束的高能量密度和聚焦能力,对金属材料进行加热和熔化,从而实现焊接。

该技术具
有高精度、速度快、变形小等优点,在航空、汽车、电子等行业广泛应用。

激光焊接机原理范文

激光焊接机原理范文

激光焊接机原理范文激光焊接机是一种利用激光技术进行焊接的设备,它主要由激光源、光学系统、焊接头和移动控制系统等组成。

激光焊接机具有焊接速度快、精度高、热影响区小等特点,广泛应用于汽车制造、电子设备生产、航空航天等领域。

1.激光源:激光焊接机一般采用固体激光器或半导体激光器作为激光源。

激光通过电子的激发态跃迁回到基态时释放出能量,形成一束高能量和高亮度的激光束。

2.光学系统:光学系统主要由准直器、聚焦镜头和扫描系统组成。

准直器用于将激光束从激光源输出口调整为平行光束。

聚焦镜头通过改变焦距来调整激光束的聚焦深度和焦点直径。

扫描系统可以控制激光束在焊接区域内的位置和方向。

3.焊接头:焊接头主要由工作台、焊枪和保护气体系统构成。

工作台是焊接工件的支撑平台,可以根据需要进行移动和旋转。

焊枪用于激光束的聚焦和喷射。

保护气体系统主要用于将惰性气体喷洒到焊接区域,防止工件的氧化和污染。

4.移动控制系统:移动控制系统可以通过控制焊接头的移动轨迹和速度来实现焊接操作。

通过精确控制焊接头的位置和速度,可以实现高精度、高稳定性的焊接。

1.光束聚焦:激光束通过光学系统的调整,经过聚焦镜头的聚焦,形成一个高能量密度的焦点。

2.热传导:激光束的高能量密度使焦点处的工件表面迅速加热,热量向周围区域传导。

热传导过程中,工件材料的温度升高,形成熔池。

3.熔池形成:当工件表面温度达到熔点时,熔池开始形成。

在激光束的照射下,熔池内的材料逐渐融化并开始混合。

同时,焊接头也会喷射保护气体,防止熔池内氧化。

4.冷却固化:当激光束停止照射后,熔池内的材料开始冷却并固化,焊缝形成。

工件冷却后,焊缝会得到进一步的强化,从而实现焊接连接。

总的来说,激光焊接机通过激光束的高能量密度加热工件表面,使其产生熔融和混合,然后冷却固化形成焊缝。

激光焊接机具有焊接速度快、精度高、热影响区小等优点,适用于对焊接质量要求较高的工件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浅谈激光焊接机的工作原理
【摘要】文章以深圳大族激光科技股份有限公司生产的W150A型激光焊接机为例介绍了激光焊接机的工作原理及内部电路的工作流程
1 前言
激光焊接主要应用在要求焊接精度比较高的场合,如钟表游丝、显像管电子枪的组装、锂电、集成电路引线等。

激光焊接的主要优点是焊接速度快、深度大、变形小,能在室温和特殊条件下进行焊接。

焊接过程为热传导型,可以通过控制激光脉冲的宽度、能量、峰功率和频率等参数使工件熔化,形成特定熔池,达到想要的焊接效果。

激光焊接因其独特的焊接方式决定了其独特的工作原理。

目前国内主要生产商有深圳大族激光、武汉楚天激光、武汉高能激光等厂家,其生产的激光焊接机在工作原理上都大同小异,但在控制系统上都有许多差别。

下面以深圳大族激光生产的W150A型激光焊接机为例来说明一下其工作原理。

2 整机原理
2.1 氙灯
氙灯是一种内部充满氙气的柱状玻璃灯管,其阳极、阴极直接接触气体,分布在灯管外部两端的电极和内部电极直接相连。

氙灯工作时分为预燃状态和放电状态两种状态,首先通过在外部电极施加一高电压脉冲来将灯管内惰性气体离子化使其进入预燃状态并且得以维持,
然后再通入大的电流使其过渡为高电流密度的弧光放电,产生极强的闪光。

氙灯发光强,亮度很高,功率大,发出的强光在这里用来激发激光物质产生出激光,所以也称泵浦光源或光泵。

2.2 激光的产生Nd:YAG激光器)
在现实中要想产生激光,就必须满足两个条件:首先能够找到实现粒子数反转的工作物质,即激光介质;第二要建立一个谐振腔,使某一频率的能量源在腔内谐振,在激光介质中多次往返时有足够的机会去激励处于粒子数反转状态的激光介质。

只有这样才能产生激光。

这些受激发射的光子又去激发其它原子,一个变两个,两个变四个……,产生连锁反应,光被雪崩似地放大,产生出强烈的激光。

Nd:YAG激光器是固态晶体激光器的一种,它采用Nd:YAG晶体棒做激光介质。

Nd:YAG晶体是将激光介质钕(Nd)原子掺在晶体钇铝石榴石(YAG)中,被制做成棒状,具有良好的光学性能、机械性能和热力学性能。

采用氙灯作为激励用的泵浦源,因为它能发出0.73um和0.8um的光,用这波长的光来激励Nd原子是最有效的。

把Nd:YAG激光棒和氙灯并排放在具有镀金聚光腔的光学腔体内,镀金聚光腔内表面是经过精密设计的,以便氙灯发出的泵浦光能全部聚集到Nd:YAG 晶体上。

工作时光学腔、激光晶体氙灯都需要用水冷却,所以光学腔内有流动的去离子水,且在光学腔的底部有一进水口和一出水口。

2.3 整机原理
激光焊接机主要由光学系统、控制系统、激光电源、冷却系统组成。

通电后水泵抽动冷却水在光学腔内做循环流动并且激光电源开始
启动,氙灯被点着后即激光电源启动成功。

通过激光电源对氙灯脉冲放电,形成一定频率、一定脉宽的光波,该光经镀金聚光腔辐射到Nd:YAG晶体上,激发晶体发出激光,发出的激光会入射到前面的半反射镜片和后面的全反射镜片上。

全反射镜片把照射到上面的光全
部反射回镀金聚光腔内,半反射镜
片只把照射到上面的光部分反射
回镀金聚光腔(两者只反射波长为
1.06um的激光),另一部分透射出
去。

被反射回镀金聚光腔的激光会
激发晶体产生更多的激光,它们共
同组成一个光谐振系统。

透过半反射镜片的激光经扩束后聚焦到要焊接的工件上,工作台会按设定的程序运动,完成焊接。

工作台X、Y 轴的运动速度和行程用机器面板上的按键进行设定,焊接时需要的脉冲波形、激光功率、峰值、脉冲宽度等参数由激光电源主控制板控制。

3.2 激光电源电路工作流程
根据电路工作原理图可以看出,接入交流380V电源后,变压器输出30V交流电压,经整流滤波后由稳压摸块IC1和IC2输出+5V和+12V 电压给控制电路。

主控制板首先检测冷却系统的水压力传感器和水温度传感器传来的信号是否正常,如果不正常,则显示屏上显示报警(故障代码为2-wp),电源不会启动。

如果正常,则主控制板发出高电平信号给V1,V1导通,继电器J1和J2吸合,把软启动电阻 R1 、R2、
R3接入电路,3相交流电经过软启动电阻后再整流、滤波,然后对电容组进行充电,充电约40s后,主控制板发出高电平信号给V2,V2导通,继电器J3吸合,把接触器K1的线圈接通,K1闭合,K1闭合后会把软启动电阻短路掉,3相交流电被全部接入电路。

接着主控制板发出脉冲信号给V3,使V3导通一下,在V3控制下继电器J7也会通断一下,J7的通断使高压包的次级线圈产生一个瞬时高压,这个高压和整流后的540V电压一起加在氙灯上去电离内部的气体。

如果气体成功被击穿,那么氙灯中就会有电流流过,使得540V直流电压经并联电阻R10 、R11 、R12及继电器J5的线圈到氙灯和负极构成回路(简称维持回路),继电器线圈上分的电压约为12V,J5吸合,吸合后反馈给主控制板一12V电压信号,表示预燃成功。

如果J7通断一次后氙灯没被击穿,则上述回路中没有电流流过,J5不吸合,主控制板得不到预燃成功信号,这时主控制板会再发出脉冲信号给V3让J7通断,使J7连续通断3次后氙灯还没被击穿的话,主控制板就发出低电平信号给V2,V2截止,把接触器K1断开,同时把故障代码“1-AW 或0-AW”显示在显示屏上,这时需要检查一下电路和氙灯是否有问题。

主控制板在接到继电器J5发来的预燃成功信号后,接着发出高电平信号给V4,V4导通,继电器J4吸合,把接触器K2的线圈接通,K2闭合,IGBT被接入电路。

然后主控制板给IGBT驱动板一脉冲信号,使IGBT打开一次,电容组上存储的电能经IGBT快速向氙灯释放,氙灯放电一次,这时显示屏上显示“0K 0K”,表示启动成功。

在氙灯放电的过程中,霍尔传感器会检测流过氙灯的电流是否正常,如不正
常,霍尔传感器就向主控制板发出出错信号,让主控制板发出低电平信号给V2和V4,使V2和V4截止,把接触器K1和K2断开,同时把故障代码(Hr-1或Hr-2)显示在显示屏上。

实际操作时,先把各个参数调节好,再由脚踏开关或机器面板上的RUN键发出运行信号,工作台就会在单片机板的控制下按设定程序运行,主控制板控制
电路原理图
IGBT的通断,电流经过IGBT对氙灯放电。

无运行信号时,IGBT断开,这时氙灯靠维持回路提供的小的持续电流维持导通(大约0.36A)。

机器关闭后,接触器K1的常闭触点K1D把放电电阻 R4接通,存储在电容组上的剩余电荷会通过R4全部放完。

【关键词】激光焊接机Nd:YAG晶体氙灯IGBT
参考文献
1 深圳大族激光, YAG系列激光焊接机使用手册
2 周志敏、周纪海等, IGBT和IPM及其应用电路,人民邮电出版社, 2006。

相关文档
最新文档