全等三角形综合测试卷(word含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全等三角形综合测试卷(word含答案)
一、八年级数学轴对称三角形填空题(难)
1.如图,在菱形ABCD中,∠ABC=120°,AB=10cm,点P是这个菱形内部或边上的一点.若以P,B,C为顶点的三角形是等腰三角形,则P,A(P,A两点不重合)两点间的最短距离为______cm.
-
【答案】10310
【解析】
解:连接BD,在菱形ABCD中,
∵∠ABC=120°,AB=BC=AD=CD=10,∴∠A=∠C=60°,∴△ABD,△BCD都是等边三角形,分三种情况讨论:
①若以边BC为底,则BC垂直平分线上(在菱形的边及其内部)的点满足题意,此时就转化为了“直线外一点与直线上所有点连线的线段中垂线段最短”,即当点P与点D重合时,PA最小,最小值PA=10;
②若以边PB为底,∠PCB为顶角时,以点C为圆心,BC长为半径作圆,与AC相交于一点,则弧BD(除点B外)上的所有点都满足△PBC是等腰三角形,当点P在AC上时,AP
-;
最小,最小值为10310
③若以边PC为底,∠PBC为顶角,以点B为圆心,BC为半径作圆,则弧AC上的点A与点D均满足△PBC为等腰三角形,当点P与点A重合时,PA最小,显然不满足题意,故此种情况不存在;
-(cm).
综上所述,PA的最小值为10310
-.
故答案为:10310
点睛:本题考查菱形的性质、等边三角形的性质,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.
2.在等腰△ABC中,AD⊥BC交直线BC于点D,若AD=1
2
BC,则△ABC的顶角的度数为
_____.
【答案】30°或150°或90°
【解析】
试题分析:分两种情况;①BC为腰,②BC为底,根据直角三角形30°角所对的直角边等于斜边的一半判断出∠ACD=30°,然后分AD在△ABC内部和外部两种情况求解即可.
解:①BC为腰,
∵AD⊥BC于点D,AD=1
2 BC,
∴∠ACD=30°,
如图1,AD在△ABC内部时,顶角∠C=30°,
如图2,AD在△ABC外部时,顶角∠ACB=180°﹣30°=150°,
②BC为底,如图3,
∵AD⊥BC于点D,AD=1
2 BC,
∴AD=BD=CD,
∴∠B=∠BAD,∠C=∠CAD,
∴∠BAD +∠CAD =
12
×180°=90°, ∴顶角∠BAC =90°, 综上所述,等腰三角形ABC 的顶角度数为30°或150°或90°.
故答案为30°或150°或90°.
点睛:本题考查了含30°交点直角三角形的性质,等腰三角形的性质,分类讨论是解题的关键.
3.如图,ABC ∆中,90BAC ∠=︒,AD BC ⊥,ABC ∠的平分线BE 交AD 于点F ,AG 平分DAC ∠.给出下列结论:①BAD C ∠=∠;②EBC C ∠=∠;③AE AF =;④//FG AC ;⑤EF FG =.其中正确的结论是______.
【答案】①③④
【解析】
【分析】
①根据等角的余角相等即可得到结果,故①正确;②如果∠EBC=∠C ,则
∠C=12
∠ABC ,由于∠BAC=90°,那么∠C=30°,但∠C 不一定等于30°,故②错误;③由BE 、AG 分别是∠ABC 、∠DAC 的平分线,得到∠ABF=∠EBD .由于
∠AFE=∠BAD+∠FBA ,∠AEB=∠C+∠EBD ,得到∠AFE=∠AEB ,可得③正确;④连接EG ,先证明△ABN ≌△GBN ,得到AN=GN ,证出△ANE ≌△GNF ,得∠NAE=∠NGF ,进而得到GF ∥AE ,故④正确;⑤由AE=AF ,AE=FG ,而△AEF 不一定是等边三角形,得到EF 不一定等于AE ,于是EF 不一定等于FG ,故⑤错误.
【详解】
∵∠BAC=90°,AD ⊥BC ,
∴∠C+∠ABC=90°,∠C+∠DAC=90°,∠ABC+∠BAD=90°,
∴∠ABC=∠DAC ,∠BAD=∠C ,
故①正确;
若∠EBC=∠C ,则∠C=
12
∠ABC , ∵∠BAC=90°,
那么∠C=30°,但∠C 不一定等于30°,
故②错误;
∵BE 、AG 分别是∠ABC 、∠DAC 的平分线,
∴∠ABF=∠EBD ,
∵∠AFE=∠BAD+∠ABF,∠AEB=∠C+∠EBD,
又∵∠BAD=∠C,
∴∠AFE=∠AEF,
∴AF=AE,
故③正确;
∵AG是∠DAC的平分线,AF=AE,
∴AN⊥BE,FN=EN,
在△ABN与△GBN中,
∵
90
ABN GBN
BN BN
ANB GNB
∠=∠
⎧
⎪
=
⎨
⎪∠=∠=︒
⎩
,
∴△ABN≌△GBN(ASA),
∴AN=GN,
又∵FN=EN,∠ANE=∠GNF,
∴△ANE≌△GNF(SAS),
∴∠NAE=∠NGF,
∴GF∥AE,即GF∥AC,
故④正确;
∵AE=AF,AE=FG,
而△AEF不一定是等边三角形,
∴EF不一定等于AE,
∴EF不一定等于FG,
故⑤错误.
故答案为:①③④.
【点睛】
本题主要考查等腰三角形的判定和性质定理,全等三角形的判定和性质定理,直角三角形的性质定理,掌握掌握上述定理,是解题的关键.
4.如图,P为∠AOB内一定点,M,N分别是射线OA,OB上一点,当△PMN周长最小时,∠OPM=50°,则∠AOB=___________.
【答案】40°
【解析】
【分析】
作P关于OA,OB的对称点P1,P2.连接OP1,OP2.则当M,N是P1P2与OA,OB的交点