北师大版八年级上册第一章勾股定理1.1.1 探索勾股定理(教案)

合集下载

1.1.1探索勾股定理 北师大版数学八年级上册

1.1.1探索勾股定理  北师大版数学八年级上册

121.52 + 68.52 ≈ 139.72
售货员没有搞错.
课堂小结
内容
直角三角形两直角边的平方和等于斜边的平方




如果直角三角形两直角边分别为a,b,斜边为c,
字母表示
那么 a2 b2 c2
第一章 勾股定理
课程结束
北师大版八年级(初中)数学上册 授课老师:孙老师
C A
B
C Aa c
b B
(3)如果直角 三角形的两直角边 分别为 1.6 个单位 长度和 2.4 个单位 长度,上面所猜想 的数量关系还成立 吗?说明你的理由.
(每个小正方形的面积为单位 1)
1.6 2.4
直角三角形两直角边的平方和等于斜边的平
方,这就是著名的“勾股定理”.
如果用a,b和c分别表示直角三角形的两直角
第一章 勾股定理
1 探索勾股定理(1)
北师大版八年级(初中)数学上册 授课老师:孙老师
复习回顾 三角形
定义
由不在同一条直线上的三条线段首尾顺次 相接组成的平面图形.
角 三角形的内角和是 180°.
边 两边之和大于第三边,两边之差小于第三边.
直角 三角形
定义 有一个角是 90°的三角形是直角三角形.

直角三角形的两个锐角互余;两个锐角互余 的三角形是直角三角形.
边?
新课导入 我们知道,任意三角形的三条边必须满足定理:三角形 的两边之和大于第三边.
对于一些特殊的三角形,是否还存在其他特殊的关 系?
新知探究
(1)在纸上画若干个直角三角形,分别测量 它们的三条边,看看三边长的平方之间有怎样的 关系. 与同伴进行交流.
B
左图

北师大版八年级上册探索勾股定理教案

北师大版八年级上册探索勾股定理教案

说课教案课题:1.1勾股定理教材:义务教育数学课程标准实验教科书——八年级上册(北京师范大学出版社)第一章勾股定理第一节探索勾股定理授课教师:辽宁省营口市实验中学刘丽辉1、教学目标:(1)知识与技能:掌握勾股定理,并能运用勾股定理解决一些实际问题。

(2)过程与方法:经历探索勾股定理的过程,体验数学学习探究的方法。

经历观察、归纳、猜想、概括等数学学习活动过程,发展合情推理能力,体会数形结合思想。

(3)情感态度与价值观:进一步丰富数学学习的成功体验,认识到数学是解决实际问题的重要工具,初步形成积极参与数学活动的意识;通过追溯勾股定理的历史,增强学生的爱国情感。

2、教学重点:重点:勾股定理的发现及其简单应用难点:勾股定理的发现3、教学方法与教学手段本课运用“探究式”“启发式”“开放式”的教学方法,运用多媒体等手段充分调动学生参与课堂学习的积极性,鼓励学生积极思考并实现合作学习。

4、教学过程:创设情境,引发思考――自主探索,合作交流――追溯历史,激发情感――应用拓展,能力提升――回顾反思,提炼升华――布置作业,课堂延伸(一)、创设情境,引发思考探究活动1故事引入:相传两千多年前,古希腊著名的哲学家、数学家毕达哥拉斯去朋友家做客。

在宴席上,其他的宾客都在尽情欢乐,只有毕达哥拉斯却看着朋友家的方砖地发起呆来。

原来,朋友家的地是用一块块直角三角形形状的砖铺成的,黑白相间,非常美观大方。

主人看到毕达哥拉斯的样子非常奇怪,就想过去问他,谁知,毕达哥拉斯突然恍然大悟的样子,站起来,大笑着跑回家去了。

原来,他发现了地砖上的三个正方形存在某种数学关系。

(黑白相间的地砖)教师与学生行为:教师给出一个历史小故事,设置悬念,引发学生思考。

教学效果预估与对策:学生对故事中的问题很感兴趣,能够激发学生的探究欲望。

设计意图:由毕达哥拉斯在朋友家做客的偶然发现入手,引入本节课的课题――勾股定理,学生接受起来更自然,贴切。

(二)、自主探索,合作交流探究活动1问题1:你能发现下图中三个正方形面积之间有怎样的关系?问题2:下图中的各组图形面积之间都有上述的结果吗?问题3:你能用等腰直角三角形的边长表示正方形的面积吗?由此猜想等腰直角三角形三边有怎样的关系?教师与学生行为:对于问题(2)、(3)教师给学生足够的思考时间,然后让学生交流合作,得出结论。

北师大版探索勾股定理教案

北师大版探索勾股定理教案

课题1、1 探索勾股定理教材义务教育课程标准实验教科书(北师大版)八年级数学上册第一章第1节P2~ P6。

勾股定理揭示了直角三角形三边之间的一种美妙关系,将形与数密切联系起来,在数学的发展和现实世界中有着广泛的作用。

本节是直角三角形相关知识的延续,同时也是学生认识无理数的基础,充分体现了数学知识承前启后的紧密相关性、连续性。

此外,历史上勾股定理的发现反映了人类杰出的智慧,其中蕴涵着丰富的科学与人文价值。

授课教师: 刘洋教学目标1、知识与技能目标:掌握直角三角形三边之间的数量关系,学会用符号表示。

学生在经历用数格子与割补等办法探索勾股定理的过程中,体会数形结合的思想,体验从特殊到一般的逻辑推理过程。

2、能力目标:通过分层训练,使学生学会熟练运用勾股定理进行简单的计算,在解决实际问题中掌握勾股定理的应用技能。

3、情感目标:通过数学史上对勾股定理的介绍,激发学生学数学,爱数学,做数学的情感。

使学生从经历定理探索的过程中,感受数学之美,探究之趣。

教学重点、难点重点:用面积法探索勾股定理,理解并掌握勾股定理。

难点:计算以斜边为边长的大正方形C面积及割补思想的理解与应用。

教学方法选择引导探索法,采用“问题情境----建立模型----解释、应用与拓展”的模式进行教学。

教具准备多媒体课件;若干张已画好直角三角形的方格纸;剪刀;已剪好的纸片若干张。

教学过程一、创设情境,引入新课(师)请同学们观察动画,我国科学家曾向太空发射勾股图试图与外星人沟通,在2002年的国际数学家大会上采用弦图作为会标,它为什么有如此大的魅力呢?它蕴涵着怎样迷人的奥妙呢?这节课我就带领大家一起探索勾股定理。

(设计意图:用一段生动有趣的动画,点燃学生的求知欲,以景激情,以情激思,引领学生进入学习情境。

)二、师生互动,探究新知活动1:(观察图1)你知道正方形C的面积是多少吗?你是怎样得出上面结果的呢?(生)独立思考后交流,采用直接数方格的办法,或者是分割成几个等腰直角三角形的方法计算正方形C的面积。

北师大版八年级数学上册第一章 勾股定理 探索勾股定理(第1课时)

北师大版八年级数学上册第一章 勾股定理 探索勾股定理(第1课时)

答:斜边AB的长度为13厘米.
方法点拨:已知直角三角形的两边求第三边,关键是 先明确所求的边是直角边还是斜边,再应用勾股定理.
巩固练习
变式训练
求下列图形中未知边的长度:
解:由勾股定理得: 62+x2=102 ,
所以x2=64, 所以x=8.
探究新知
素养考点 2 利用勾股定理求面积问题
1.寻求图形面积之间的关系
探究新知
素养考点 1 利用勾股定理求直角三角形的边长
例1 如果直角三角形两直角边长分别为 BC=5厘米,AC=12厘米,
求斜边AB的长度.
A
b
c
解:在Rt△ABC中根据勾股定理, AC²+BC²=AB², AC=12,BC=5
所以12²+5²=AB²,
C aB
所以AB²=12²+5²=169, 所以AB=13厘米.
12AB×CD.
所以CD=
15 2.
C
4
B
课堂检测
能力提升题
如图所示,直角三边形三边上的半圆面积从小到大依次记为
S1、S2、S3,则S1、S2、S3的关系是( A)
A. S1+S2=S3 B. S12+S22=S32 C. S1+S2>S3 D. S1+S2<S3
课堂检测
拓广探索题
如图,已知△ABC是腰长为1的等腰直角三 角形,以Rt△ABC的斜边AC为直角边,画第 2个等腰Rt△ACD,再以Rt△ACD的斜边AD为 直角边,画第3个等腰Rt△ADE,…,依此类
a
b
c
a2,b2,c2之间关系
探究新知 问题1 你能发现下图中三个正方形面积之间有怎样的关系?

北师大版-数学-八年级上册-第一章第1节探索勾股定理(1) 教案

北师大版-数学-八年级上册-第一章第1节探索勾股定理(1) 教案

北师大版八年级上第一章第1节探索勾股定理(1)教案教学目标:(一)教学知识点1. 经历用计算和数格子的办法探索勾股定理的过程,进一步发展学生的合情推理意识,主动探究的习惯,进一步体会数学与现实生活的紧密联系。

.2.掌握勾股定理的内容,能应用勾股定理解决简单的实际问题.(二)能力训练要求通过探索直角三角形的三边之间的数量关系,进一步发展学生的说理和简单的推理的意识及能力。

(三)情感与价值观通过自主学习的发展体验获取数学知识的感受;了解勾股勾股定理的历史,体会它的重大意义和文化价值教学重点:了解勾股定理的由来并能用它解决一些简单问题。

教学难点:勾股定理中数量关系的发现的发现课堂导入:我们生活的这个世界,蕴涵着无穷的秘密,人们不断去发现它,探索它,促使人类社会不断发展进步,可以说,人类不断发展的历史就是我们不断认识自然、发现自然规律的过程,其中有一些重要的发现对人类的历史进程产生了重大的影响。

我们今天所要研究的就是这样一个伟大的发现,无论是我国古代科技所代表的东方文明还是毕达哥拉斯学派所代表的西方文明,先后都发现了这个规律,有的科学家建议把这个规律作为地球人和外星文明交流的工具。

教学过程:1、知识准备谁能有办法得到下面几个格点图形的面积在网格图形中,简单的图形可以通过数格子的方法得到面积,复杂的图形总可以利用长方形和直角三角形的和或差得到面积。

1观察图1,正方形A中有_______个小方格,即A的面积为______个单位。

正方形B中有_______个小方格,即A的面积为______个单位。

正方形C 中有_______个小方格,即A 的面积为______个单位。

1、 你是怎样得出上面的结果的?在学生交流回答的基础上教师直接发问:2、 图2中,A,B,C 之间的面积之间有什么关系?学生交流后形成共识,教师板书,A+B=C 。

2、做一做出示投影提问:1、图3中,A,B,C 之间有什么关系?2、图4中,A,B,C 之间有什么关系?1、 从图1, 2, 3, 4中你发现什么?学生讨论、交流形成共识后,教师总结:以三角形两直角边为边的正方形的面积和,等于以斜边的正方形面积。

初中数学北师大八年级上册(2023年修订) 勾股定理探索勾股定理教案

初中数学北师大八年级上册(2023年修订) 勾股定理探索勾股定理教案

第一章勾股定理第一节探索勾股定理:一、教学目标(一)知识与技能:.了解勾股定理的历史背景,体会勾股定理的探索过程..掌握直角三角形中的三边关系和三角之间的关系。

(二)能力训练要求.通过拼图活动,体验数学思维的严谨性,发展形象思维。

.在探究活动中,学会与人合作并能与他人交流思维的过程和探究的结果。

(三)情感与态度:.通过对勾股定理历史的了解,感受数学文化,激发学习热情。

.在探究活动中,体验解决问题方法的多样性,培养学生的合作交流意识和探索精神。

二、教学重难点重点:经历探索和验证勾股定理的过程,会利用两边求直角三角形的另一边长。

难点:拼图法验证勾股定理,会利用两边求直角三角形另一边长。

三、教学方法引导—探究—发现法.四、教学过程(一)自学指导请同学们认真看可课本至页内容,并解决下列问题:、“做一做”中的问题,你能完成吗?你能发现什么规律呢?、什么是勾股定理?、解答“想一想”中的问题(二)合作交流对于自学中的困惑请提出来,看你的同桌是否能帮助你,必要时请教老师,力争解决自己在学习过程中的疑惑。

如果你感觉还行,请不要保留地传授给你的同桌你的经验和收获。

(三)检查自学效果.观察下面两幅图,对做一做中的问题,通过讨论动手操作,总结规律。

结论: 以直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积..勾股定理:如果直角三角形两直角边长分别为、,斜边长为,那么 222c b a =+.即直角三角形两直角边的平方和等于斜边的平方.数学小史:勾股定理是我国最早发现的,中国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦,“勾股定理”因此而得名.(在西方称为毕达哥拉斯定理). 利用勾股定理解出折断处与旗杆顶间的长为米,所以旗杆折断前米高。

(四)当堂训练.求下列图形中未知正方形的面积或未知边的长度:弦股勾225100x 1517.在△中∠=度,若,则..如图所示,一棵大树在一次强烈台风中于离地面10m 处折断倒下,树顶落在离树根24m 处. 大树在折断之前高多少?.小明妈妈买了一部英寸(厘米)的电视机. 小明量了电视机的屏幕后,发现屏幕只有厘米长和厘米宽,他觉得一定是售货员搞错了.你同意他的想法吗?你能解释这是为什么吗?.某工人拿一个2.5m 的梯子,一头放在离墙1.5m 处,另一头靠墙,以便去修理梯子另一头的有线电视分线盒(如图)。

《探索勾股定理》教学设计

《探索勾股定理》教学设计

《探索勾股定理》教学设计竞存中学数学组甄伟伟【教学内容】北师大版八年级数学上册第一章第一节《探索勾股定理》第一课时【教材分析】本节课的主要内容是勾股定理的探索及简单应用,勾股定理是几何中的重要定理之一,揭示的是直角三角形的三边关系,通过探索勾股定理的过程可以加深对直角三角形的认识和理解,很大程度上影响后续课时的学习。

【学情分析】八年级学生已经具备了一定的生活经验和动手实践能力,并且对直角三角形的概念有了初步的认识,因而能够在教师的引导下,通过操作、观察、猜想、验证的过程,掌握勾股定理,并加以应用。

【教学目标】一、知识与技能目标通过测量数格子的方法探索勾股定理,掌握勾股定理,并能简单运用。

二、过程与方法目标通过操作、观察、猜想、发现勾股定理的过程,发展学生的合情推理和归纳概括能力,渗透数形结合的思想。

三、情感、态度与价值观目标经历积极交流讨论,探索勾股定理的数学活动过程,发展学生的合作意识,把实际问题转化为数学问题,让学生感受到数学就在日常生活中。

【教学重点】勾股定理的探索和理解。

【教学难点】在探索勾股定理的过程中如何计算具体图形的面积,以及勾股定理的简单运用。

【课时划分】本课共两课时,本设计为第一课时【教学过程】一、板书课题二、出示学习目标三、出示自学指导:认真看课本1--2页内容,注意;1.任意画两个直角三角形,通过测量发现三边的平方存在怎样的关系.2.数图1-2和图1-3中的格子数(即面积)发现具有什么关系.3.熟记勾股定理的内容.(六分钟后检测)四、学生自学,教师巡视。

五、检测与指导问题一:在纸上画若干个直角三角形,分别测量它们的三条边,看看三边长的平方之间有怎样的关系?(学生展示)师:基于测量值的计算,肯定有些误差,因此,我们需借助格子图进一步验证。

问题二:出示图1-2,你能发现下面图中分别以直角三角形的三边长为边所做的正方形面积之间有怎样的关系。

(兵教兵,学生展示讲解)①直接数出正方形内部所包含的完整小方格的个数,而将不足一个方格的部分都算半个(结果也恰好相等,这时教师可以给予学生适当的鼓励,并进一步追问其中的道理,使得学生明确这个方法的缺陷,甚至使学生可能对这个方法进行完善,并得到方法②);②将不足一个方格的部分进行适当的拼凑,以拼凑出若干个完整的小方格;③将斜边上的正方形划分为若干个边长都是整数的直角三角形,再利用三角形面积公式得出其面积;④在斜边上的正方形的各边上补一个直角三角形,得到一个大的正方形。

北师大版数学八年级上册《探索勾股定理》教案1

北师大版数学八年级上册《探索勾股定理》教案1

北师大版数学八年级上册《探索勾股定理》教案1一. 教材分析《探索勾股定理》是北师大版数学八年级上册的一章内容。

本章通过探究直角三角形三边之间的关系,引导学生发现并证明勾股定理。

教材内容丰富,既有历史文化的传承,也有数学证明的严谨性,有助于提高学生的学习兴趣和探究能力。

二. 学情分析学生在七年级时已经学习了相似三角形、平方根等知识,为本章的学习奠定了基础。

但勾股定理的证明较为复杂,需要学生具有较强的逻辑思维能力和推理能力。

此外,学生对数学文化的认识还不够深入,需要教师在教学中加以引导。

三. 教学目标1.了解勾股定理的发现过程,感受数学文化的魅力。

2.掌握勾股定理的内容,并能运用勾股定理解决实际问题。

3.培养学生的探究能力、合作能力和数学思维能力。

四. 教学重难点1.重难点:勾股定理的证明及应用。

2.难点:理解并证明勾股定理,运用勾股定理解决实际问题。

五. 教学方法1.采用问题驱动法,引导学生主动探究勾股定理。

2.运用历史背景法,让学生了解勾股定理的文化价值。

3.采用合作交流法,培养学生团队合作精神。

4.利用几何画板等软件,直观展示勾股定理的证明过程。

六. 教学准备1.教师准备PPT、几何画板等教学工具。

2.学生准备笔记本、尺子、圆规等学习用品。

七. 教学过程1.导入(5分钟)利用PPT展示勾股定理的历史背景,引导学生了解勾股定理的文化价值。

2.呈现(10分钟)教师通过几何画板展示直角三角形,引导学生观察并猜想勾股定理。

3.操练(15分钟)学生分组讨论,每组尝试用尺子、圆规等工具验证勾股定理。

教师巡回指导,解答学生疑问。

4.巩固(10分钟)学生代表汇报验证结果,其他学生补充意见。

教师总结勾股定理的证明过程。

5.拓展(10分钟)教师提出一系列与勾股定理相关的问题,引导学生运用勾股定理解决实际问题。

6.小结(5分钟)教师引导学生总结本节课的学习内容,巩固勾股定理的知识。

7.家庭作业(5分钟)布置一道运用勾股定理解决问题的作业,巩固所学知识。

北师大版八年级上册第一章勾股定理1.1.2 探索勾股定理(教案)

北师大版八年级上册第一章勾股定理1.1.2 探索勾股定理(教案)

1.1.2 探索勾股定理1.掌握勾股定理,理解和利用拼图验证勾股定理的方法.2.能运用勾股定理解决一些简单的实际问题.通过拼图法验证勾股定理,使学生经历观察、猜测、验证的过程,进一步体会数形结合的思想.培养学生大胆探索,不怕失败的精神.【重点】经历勾股定理的验证过程,能利用勾股定理解决实际问题.【难点】用拼图法验证勾股定理.【教师准备】教材图1 - 4,1 - 5,1 - 6,1 - 7的图片.【学生准备】4个全等的直角三角形纸片.导入一:【提问】直角三角形的三边有怎样的关系?在研究直角三角形三边关系时,我们是通过测量、数格子的方法发现了勾股定理,那么,我们怎样用科学的方法去证明勾股定理的正确性呢?请跟我一起去探索吧!导入二:上节课我们用什么方法探索发现了勾股定理?学生思考(测量、数格子).一、勾股定理的验证思路一【师生活动】师:投影教材P4图1 - 4,分别以直角三角形的三条边的长度为边长向外作正方形,你能利用这个图说明勾股定理的正确性吗?你是如何做的?与同伴进行交流.生:割补法进行验证.师:出示教材P5图1 - 5和图1 - 6,想一想:小明是怎样对大正方形进行割补的?生:讨论交流.师总结:图1 -5是在大正方形的四周补上四个边长为a,b,c的直角三角形;图1 -6是把大正方形分割成四个边长为a,b,c的直角三角形和一个小正方形.图1 - 5采用的是“补〞的方法,而图1 - 6采用的是“割〞的方法,请同学们将所有三角形和正方形的面积用a,b,c的关系式表示出来.(1)动笔操作,独立完成.师:图1 - 5中正方形ABCD的面积是多少?你们有哪些方法求?与同伴进行交流. (2)分组讨论面积的不同表示方法.ab+c2两种方法.生:得出(a+b)2,4×12(3)板书学生讨论的结果.【提问】你能利用图1 - 5验证勾股定理吗?生:根据刚刚讨论的情况列出等式进行化简.师:化简之后能得到勾股定理吗?生:得到a2+b2=c2,即两直角边的平方和等于斜边的平方,验证了勾股定理.师:你能用图1 - 6也证明一下勾股定理吗?独立完成.师:(强调)割补法是几何证明中常用的方法,要注意这种方法的运用.思路二教师出示教材图1 - 4及“做一做〞,让学生观察图1 - 5和图1 - 6.【提问】小明是怎样拼的?你来试一试.(学生以小组为单位展开拼图尝试,同伴之间讨论、争辩、互相启发,将拼好的图形画下来)【思考】“做一做〞的三个问题.教师讲评验证勾股定理的方法.二、勾股定理的简单应用思路一:出示教材P5例题,教师分析并抽象出几何图形.【问题】(1)图中三角形的三边长是否满足AB2=AC2+BC2?(2)要想求敌方汽车的速度,应先求什么?你能利用勾股定理完成这道题吗?(学生独立完成,教师指名板演)出示教材P8图1 - 8.【提问】判断图中三角形的三边长是否满足a2+b2=c2.(学生以组为单位合作完成,分别计算出每个正方形的面积.独立完成,有困难的可以合作完成)思路二我方侦察员小王在距离东西向公路400 m处侦察,发现一辆敌方汽车在公路上疾驶.他赶紧拿出红外测距仪,测得汽车与他相距400 m,10 s后,汽车与他相距500 m,你能帮小王计算敌方汽车的速度吗?〔解析〕 根据题意,可以画出右图,其中点A 表示小王所在位置,点C ,点B 表示两个时刻敌方汽车的位置.由于小王距离公路400 m,因此∠C 是直角,这样就可以由勾股定理来解决这个问题了.解:由勾股定理,可以得到AB 2=BC 2+AC 2,也就是5002=BC 2+4002,所以BC =300. 敌方汽车10 s 行驶了300 m,那么它1 h 行驶的距离为300×6×60=108000(m),即它行驶的速度为108 km/h .[知识拓展] 利用面积相等来验证勾股定理,关键是利用不同的方法表示图形的面积,一要注意局部面积和等于整体面积的思想,二要注意拼接时要做到不重不漏. 曾任美国总统的伽菲尔德在?新英格兰教育日志?上发表了他提出的一个勾股定理证明,如下图,这就是他拼出的图形.它的面积有两种表示方法,既可以表示为12(a +b )(a +b ),又可以表示为12(2ab +c 2),所以可得12(a +b )(a +b )=12(2ab +c 2),化简可得a 2+b 2=c 2.1.勾股定理的验证方法{测量法数格子法面积法2.在实际问题中,首先要找到直角三角形,然后再应用勾股定理解题. 1.以下选项中,不能用来证明勾股定理的是 ( )解析:A,B,C 都可以利用图形面积得出a ,b ,c 的关系,即可证明勾股定理,故A,B,C 选项不符合题意;D,不能利用图形面积证明勾股定理,故此选项正确.应选D .2.用四个边长均为a ,b ,c 的直角三角板,拼成如下图的图形,那么以下结论中正确的选项是 ( )A.c 2=a 2+b 2B.c 2=a 2+2ab +b 2C.c2=a2-2ab+b2D.c2=(a+b)2解析:由题意得到四个完全一样的直角三角板围成的四边形为正方形,其边长为c,ab×4+(b-a)2,整理得c2=a2+b2.里面的小四边形也为正方形,边长为b-a,那么有c2=12应选A.3.如下图,大正方形的面积是,另一种方法计算大正方形的面积是,两种结果相等,推得勾股定理是.ab+c2,即(a+b)2=4×解析:如下图,大正方形的面积是(a+b)2,另一种计算方法是4×121ab+c2,化简得a2+b2=c2.2ab+c2a2+b2=c2答案:(a+b)24×124.操作:剪假设干个大小形状完全相同的直角三角形,三边长分别记为a,b,c(如图(1)所示),分别用4张这样的直角三角形纸片拼成如图(2)(3)所示的形状,图(2)中的两个小正方形的面积S2,S3与图(3)中小正方形的面积S1有什么关系?你能得到a,b,c 之间有什么关系?解析:根据图形的形状得出面积关系,进一步证明勾股定理即可求解.解:分别用4张直角三角形纸片,拼成如图(2)(3)所示的形状,观察图(2)(3)可发现,图(2)中的两个小正方形的面积之和等于图(3)中的小正方形的面积,即S2+S3=S1,这个结论用关系式可表示为a2+b2=c2.1.1.21.勾股定理的验证.2.勾股定理的简单应用.一、教材作业【必做题】教材第6页随堂练习.【选做题】教材第7页习题1.2第3题.二、课后作业【根底稳固】1.我国古代数学家赵爽的?勾股圆方图?是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如下图).如果大正方形的面积是13,小正方形的面积是1,直角三角形的两直角边长分别为a,b,那么(a-b)2的值是 ()A.1B.2C.12D.132.历史上对勾股定理的一种证法采用了如下图的图形,其中两个全等的直角三角形边AE,EB在一条直线上.证明中用到的面积相等的关系是()A.SΔEDA =SΔCEBB.SΔEDA+SΔCEB=SΔCDEC.S四边形CDAE =S四边形CDEBD.SΔEDA+SΔCDE+SΔCEB=S四边形ABCD3.北京召开的第24届国际数学家大会会标的图案如下图.(1)它可以看做是由四个边长分别为a,b,c的直角三角形拼成的,请从面积关系出发,写出一个关于a,b,c的等式.(要有过程)(2)请用四个这样的直角三角形再拼出另一个几何图形,也能验证(1)中所写的等式.(不用写出验证过程)(3)如果a2+b2=100,a+b=14,求此直角三角形的面积.【能力提升】4.勾股定理是几何中的一个重要定理.在我国古算书?周髀算经?中就有“假设勾三,股四,那么弦五〞的记载.如图(1)所示的是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图(2)是由图(1)放入矩形内得到的,∠BAC=90°,AB=6,AC=8,点D,E,F,G,H,I都在矩形KLMJ的边上,那么矩形KLMJ的面积为.5.在北京召开的国际数学家大会的会标如下图,它是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形,假设大正方形的面积是13,小正方形的面积是1,直角三角形的较长直角边为a,较短直角边为b,那么a4+b4的值为()A.35B.43C.89D.976.据传当年毕达哥拉斯借助如下图的两个图验证了勾股定理,你能说说其中的道理吗?7.如下图,在平面内,把矩形ABCD 绕点B 按顺时针方向旋转90°得到矩形A'BC'D'.设AB =a ,BC =b ,BD =c.请利用该图验证勾股定理.【拓展探究】8.我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图〞,后人称其为“赵爽弦图〞(如图(1)所示).图(2)是由弦图变化得到的,它是用八个全等的直角三角形拼接而成的.记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为S 1,S 2,S 3.假设S 1+S 2+S 3=16,那么S 2的值是.9.勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法〞给了小聪以灵感,他惊喜地发现,当两个全等的直角三角形如图(1)或图(2)摆放时,都可以用“面积法〞来证明,下面是小聪利用图(1)证明勾股定理的过程.将两个全等的直角三角形按图(1)所示摆放,连接DC ,其中∠DAB =90°,求证a 2+b 2=c 2.证明:连接DB ,过点D 作BC 边上的高DF ,那么DF =EC =b-a. ∵S 四边形ADCB=S ΔACD+S ΔABC=12b 2+12ab ,又∵S 四边形ADCB =S ΔADB+S ΔDCB=12c 2+12a (b-a ),∴12b 2+12ab =12c 2+12a (b-a ),∴a 2+b 2=c 2.请参照上述证法,利用图(2)完成下面的验证过程.将两个全等的直角三角形按图(2)所示摆放,其中∠DAB =90°,连接BE. 验证a 2+b 2=c 2.证明:连接 , ∵S 五边形ACBED= , 又∵S 五边形ACBED= ,∴a 2+b 2=c 2. 【答案与解析】1.A(解析:根据勾股定理可得a 2+b 2=13,四个直角三角形的面积和是12ab ×4=13-1=12,即2ab =12,那么(a-b )2=a 2-2ab +b 2=13-12=1.应选A.) 2.D(解析:由S ΔEDA+S ΔCDE+S ΔCEB=S 四边形ABCD,可知12ab +12c 2+12ab =12(a +b )2,∴c 2+2ab =a 2+2ab +b 2,整理得a 2+b 2=c 2,∴证明中用到的面积相等的关系是S ΔEDA+S ΔCDE+S ΔCEB=S 四边形ABCD.应选D .)3.解:(1)大正方形的面积=4个三角形的面积+小正方形的面积,即c 2=4×12ab +(a-b )2=a 2+b 2. (2)如下图. (3)∵2ab =(a +b )2-(a 2+b 2)=196-100=96,∴ab =48,∴S =12ab =12×48=24.4.440(解析:如下图,延长AB 交KL 于P ,延长AC 交LM 于Q ,那么ΔABC ≌ΔPFB ≌ΔQCG ,∴PB =AC =8,CQ =AB =6,∵图(2)是由图(1)放入矩形内得到的,∴IP =8+6+8=22,DQ =6+8+6=20,∴矩形KLMJ 的面积=22×20=440.故答案为440.)5.D(解析:依题意有:a 2+b 2=大正方形的面积=13,2ab =四个直角三角形的面积和=13-1=12,ab =6,那么a 4+b 4=(a 2+b 2)2-2a 2b 2=(a 2+b 2)2-2(ab )2=132-2×62=169-72=97.应选D .)6.解:根据题意,第一个图形中间空白小正方形的面积是c 2;第二个图形中空白的两个小正方形的面积的和是a 2+b 2,∵它们的面积都等于边长为a +b 的正方形的面积-4个直角边分别为a ,b 的直角三角形的面积和,∴a 2+b 2=c 2,即在直角三角形中斜边的平方等于两直角边的平方和.7.解:连接D'D ,依题意,图中的四边形DAC'D'为直角梯形,ΔDBD'为等腰直角三角形,Rt ΔDAB 和Rt ΔBC'D'的形状和大小完全一样,设梯形DAC'D'的面积为S ,那么S =12(a +b )(a +b )=12(a 2+b 2)+ab ,又S =S Rt ΔDBD'+2S Rt ΔABD =12c 2+2×12ab =12c 2+ab ,∴12(a 2+b 2)+ab =12c 2+ab ,因此a 2+b 2=c 2.8.163(解析:∵八个直角三角形全等,四边形ABCD ,EFGH ,MNKT 是正方形,∴CG =NG ,CF =DG =NF =GK ,∴S 1=(CG +DG )2=CG 2+DG 2+2CG ·DG =GF 2+2CG ·DG ,S 2=GF 2,S 3=(NG-NF )2=NG 2+NF 2-2NG ·NF ,∴S 1+S 2+S 3=GF 2+2CG ·DG +GF 2+NG 2+NF 2-2NG ·NF =3GF 2=16,∴GF 2=163,∴S 2=163.故答案为163.)9.证明:连接BD ,过点B 作DE 边上的高BF ,那么BF =b-a ,∵S 五边形ACBED =S ΔACB +S ΔABE +S ΔADE =12ab +12b 2+12ab ,又∵S 五边形ACBED =S ΔACB +S ΔABD +S ΔBDE =12ab +12c 2+12a (b-a ),∴12ab +12b 2+12ab =12ab +12c 2+12a (b-a ),∴a 2+b 2=c 2.在课堂教学中,始终注意了调动学生的积极性.兴趣是最好的老师,所以无论是引入、拼图,还是历史回忆,都注意去调动学生,让学生满怀激情地投入到活动中.勾股定理作为“千古第一定理〞,其魅力在于其历史价值和应用价值,因此充分挖掘了其内涵.特别是让学生事先进行调查,再在课堂上进行展示,这极大地调动了学生的积极性,既加深了对勾股定理文化的理解,又培养了学生收集、整理资料的能力.在教学过程中,过于让学生发散思维,而导致课堂秩序略有松散.勾股定理的验证既是本节课的重点,也是本节课的难点,为了突破这一难点,可以设计拼图活动,先让学生从形上感知,再层层设问,从面积(数)入手,师生共同探究,最后由学生独立探究,这样学生较容易突破本节课的难点.随堂练习(教材第6页)解:因为OM 2=MN 2+NO 2=302+402=502,所以OM =50 km .因为OQ 2=OP 2+PQ 2=502+1202=1302,所以OQ =130 km .所以该沿江高速公路的造价预计是(50+130)×5000=900000(万元).答:该沿江高速公路的造价预计是900000万元.习题1.2(教材第6页)1.解:因为42+32=52,所以旗杆折断之前的高为5+3=8(m).2.解:因为S 梯形=12(a +b )·(a +b )=12(a 2+2ab +b 2)=12a 2+ab +12b 2,S 梯形=12ab +12ab +12c 2=ab +12c 2,所以12a 2+ab +12b 2=ab +12c 2,所以a 2+b 2=c 2.(这个方法与本节探索的方法思路一样,都是构造一个图形,利用两种方法计算该图形的面积,从而得到a 2+b 2=c 2)3.解:箱子能放进储藏室,因为0.82+0.52<1.22.古诗中的数学题请你先欣赏下面一首诗:平平湖水清可鉴,面上半尺生红莲;出泥不染亭亭立,忽被强风吹一边;渔人观看忙向前,花离原位两尺远;能算诸君请解题,湖水如何知深浅?你能用所学的数学知识解决上述诗中的问题吗?〔解析〕 要解决诗中提出的问题,关键是将实际问题转化为数学问题,画出符合题意的图形,如下图.在Rt ΔBCD 中,由勾股定理建立方程求线段的长.解:如下图,AD 表示莲花的高度,CD 是水的深度,CB 是莲花吹倒后离原位的距离.设CD =x 尺,那么AD =BD =(x +12)尺. 在Rt ΔBCD 中,∠BCD =90°,由勾股定理得BD 2=CD 2+BC 2,即(x +12)2=22+x 2. 解得x =3.75.所以所求的湖水深度为3.75尺.[方法总结]建立数学模型是解决实际问题的常用方法.本例是利用莲花无风时与水面垂直构造直角三角形这一几何模型.在直角三角形中常用勾股定理建立方程求线段的长.。

北师大版八年级数学上册第一章《勾股定理》教案

北师大版八年级数学上册第一章《勾股定理》教案

第一章勾股定理1 探索勾股定理第1课时勾股定理(1)1.经历测量和用数格子的办法探索勾股定理的过程,进一步发展学生的合情推理意识,主动探究的习惯,进一步体会数学与现实生活的紧密联系.2.探索并理解直角三角形的三边之间的数量关系,进一步发展学生的说理和简单推理的意识及能力.3.利用勾股定理,已知直角三角形的两边求第三边长.4.在勾股定理的探索过程中,发展合情推理能力,体会数形结合的思想.5.经历观察与发现直角三角形三边关系的过程,感受勾股定理的应用意识.6.通过对勾股定理历史的了解,感受数学变化,激发学习热情.7.在探究活动中,体现解决问题方法的多样性,培养学生的合作交流意识和探索精神.【教学重点】探索勾股定理.【教学难点】用测量和数格子的方法探索勾股定理.一、创设情境,导入新课我们知道,任意三角形的三条边必须满足定理:三角形的两边之和大于第三边.对于等腰三角形和等边三角形的边,除满足三边关系定理外,它们还分别存在着两边相等和三边相等的特殊关系.那么对于直角三角形的边,除满足三边关系定理外,它们之间也存在着特殊的关系,这就是我们这一节要研究的问题:勾股定理.出示投影1(章前的图文P1),介绍数学家曾用这个图形作为与“外星人”联系的信号.【教学说明】通过复习旧知识,引入新课.出示投影,介绍与勾股定理有关的背景,激发学生的学习兴趣.二、思考探究,获取新知勾股定理做一做:1.在纸上画若干个直角三角形,分别测量它们的三条边,看看三边长的平方之间有怎样的关系?与同伴交流.【教学说明】学生根据教师的要求完成这个问题,自主交流发现直角三角形的性质.2.观察教材图1—2,正方形A中有个小方格,即A的面积为个面积单位.正方形B中有个小方格.即B的面积为个面积单位.正方形C中有个小方格,即C的面积为个面积单位.你是怎样得出上面结果的?在学生交流回答的基础上教师接着发问.教材图1—2中,A、B、C之间的面积之间有什么关系?【教学说明】通过观察特殊图形下方格数与正方形面积之间的转化,进一步体会探索勾股定理.归纳得出结论:S A+S B=S C.3.教材图1—3中,A、B、C之间是否还满足上面的关系?你是如何计算的?【教学说明】通过观察计算一般情况下方格数与正方形面积之间的转化,进一步加强对勾股定理的理解.4.如果直角三角形两直角边分别是1.6个单位长度和2.4个单位长度,上面所猜想的数量关系还成立吗?说明你的理由.【教学说明】渗透从特殊到一般的数学思想,充分发挥学生的主体地位,让学生体会到观察、猜想、归纳的思想,也让学生的分析问题、解决问题的能力得到了提高.议一议:你能发现直角三角形三边长度之间的关系吗?【教学说明】学生自主探究,发现直角三角形的性质,并整合成精确的语言将之表达出来,有利于培养学生综合概括能力和语言表达能力.【归纳结论】直角三角形的两直角边的平方和等于斜边的平方.这就是著名的“勾股定理”.也就是说:如果直角三角形的两直角边为a、b,斜边为c,那么a2+b2=c2.我国古代称直角三角形的较短的直角边为勾,较长的直角边为股,斜边为弦,这便是勾股定理的由来.三、运用新知,深化理解1.在直角三角形ABC中,∠C=90°,若a=5,b=12,则c= .2.在直角三角形的ABC中,它的两边长的比是3∶4,斜边长是20,则两直角边长分别是.【教学说明】学生的完成,加深对勾股定理的理解和检测对勾股定理的简单运用,对学生的疑惑或出现的错误及时指导,并进行强化.【答案】1.13;2.12,16四、师生互动,课堂小结通过本节课的学习,你掌握了哪些新知识,还有什么困惑?【教学说明】教师引导学生回顾新知识,加强对勾股定理的理解,进一步完善了学生对知识的梳理.完成练习册中本课时相应练习.本节内容重在探索与发现,要给充分的时间让学生讨论与交流.适当的练习以巩固所学也是必要的,当然,这些内容还需在后面的教学内容再加深加广.第2课时勾股定理(2)1.经历运用拼图的方法说明勾股定理是正确的过程,在数学活动中发展学生的探究意识和合作交流的习惯.2.掌握勾股定理和它的简单应用.3.通过从实际问题中抽象出直角三角形这一模型,初步掌握转化和数形结合的思想方法.4.经历探究勾股定理在实际问题中的应用过程,感受勾股定理的应用方法.5.在数学活动中发展了学生的探究意识和合作交流的习性;体会勾股定理的应用价值,通过本节课学习,让学生体会到数学来源于生活,又应用到生活中,增加学生应用数学知识解决实际问题的经验和感受.【教学重点】能熟练应用拼图法证明勾股定理.【教学难点】用面积证勾股定理.一、创设情境,导入新课我们已经通过数格子的方法发现了直角三角形三边的关系,究竟是几个实例,是否具有普遍的意义,还需要加以论证,下面就是今天所要研究的内容.【教学说明】让学生经历从特殊到一般的数学方法,明白数学问题是需要通过一定的论证才能说明它的正确性,为后面学习证明打下埋伏.二、思考探究,获取新知勾股定理的验证及简单运用做一做:1.画一个直角三角形,分别以这个直角三角的三边为边长向外作正方形,你能利用这个图证明勾股定理的正确性吗?你是如何做的?与同伴进行交流.【教学说明】让学生进一步体会探索勾股定理的过程,体会数形结合的思想.2.为了计算教材图1—4中大正方形的面积,小明对这个大正方形适当割补后,得到教材P51—5、1—6图.(1)将所有三角形和正方形的面积用a,b,c的关系式表示出来;(2)教材图1—5、1—6中正方形ABCD的面积分别是多少?你们有哪些表示方式?与同伴进行交流.(3)你能分别利用教材图1—5、1—6验证勾股定理吗?【教学说明】学生通过各种方法验证勾股定理的正确性,加深对勾股定理的理解,又让学生体会到一题多解.【归纳结论】勾股定理的证明方法达300多种,请同学们利用业余时间探究、讨论并阅读教材P7-8的其它证明勾股定理的方法,以开阔事学们的视野.三、运用新知,深化理解1.一块长3m,宽2.2m的薄木板能否从一个长2m,宽1m的门框内通过,为什么?2.飞机在空中水平飞行,某一时刻刚好飞到一个男孩头顶正上方4000米处,过了20秒,飞机距离这个男孩头顶5000米,飞机每小时飞行多少千米?【教学说明】让学生从实际生活的角度大胆的去考虑,用生活经验和学过的知识去解答.并学会把实际问题抽象为直角三角形的数学模型的过程,能够熟练地将勾股定理应用到现实生活中去.【答案】1.能,让薄木板的宽从门框的对角线斜着通过.2.分析:根据题意,可以先画出符合题意的图形.如图,图中△ABC的∠C=90°,AC=4000米,AB=5000米欲求飞机每时飞行多少千米,就要知道20秒时间里飞行的路程,即图中的CB的长,由于△ABC的斜边AB=5000米,AC=4000米,这样BC就可以通过勾股定理得出,这里一定要注意单位的换算.解:由勾股定理得BC2=AB2-AC2=52-42=9(km2)即BC=3千米飞机20秒飞行3千米.那么它1小时飞行的距离为:3600/20×3=540(千米/时)答:飞机每小时飞行540千米.四、师生互动,课堂小结通过这节课的学习,你学会了哪几种证明勾股定理的方法?还有哪些疑问?【教学说明】总结归纳帮助学生进一步掌握解决实际问题的关键是抽象出相应的数学模型.完成练习册中本课时相应练习.了解多种证明勾股定理的方法,有助于加深对勾股定理内容的理解,但这需要花一定的时间,可以让学生课外了解.并运用所学知识解决实际问题,体验数学来源于生活,生活中也蕴含着许多数学道理.2 一定是直角三角形吗1.掌握直角三角形的判别条件,并能进行简单应用.2.通过用三角形的三边的数量关系来判断三角形的形状,体验数形结合方法的应用.3.敢于面对数学学习中的困难,并有独立克服困难和运用知识解决问题的成功经验,进一步体会数学的应用价值,发展运用数学的信心和能力,初步形成积极参与数学活动的意识.【教学重点】探索并掌握直角三角形的判别条件.【教学难点】运用直角三角形判别条件解题.一、创设情境,导入新课展示一根用13个等距的结把它分成等长的12段的绳子,请三个同学上台,按老师的要求操作.甲:同时握住绳子的第一个结和第十三个结.乙:握住第四个结.丙:握住第八个结.拉紧绳子,让一个同学用量角器,测出这三角形其中的最大角.发现这个角是多少度?古埃及人曾经用这种方法得到直角,这三边满足了什么条件?怎样的三角形才能成为直角三角形呢?这就是我们今天要研究的内容.【教学说明】利用古埃及人得到直角的方法,学生亲自动手实践,体验从实际问题中发现数学,同时明确了本节课的研究问题.既进行了数学史的教育,又锻炼了学生的动手实践、观察探究的能力.二、思考探究,获取新知直角三角形的判别做一做:下面的三组数分别是一个三角形的三边a、b、c.5、12、137、24、258、15、171.这三组数都满足a2+b2=c2吗?2.分别用每组数为三边作三角形,用量角器量一量,它们都是直角三角形吗?3.如果三角形的三边长为a、b、c,并满足a2+b2=c2.那么这个三角形是直角三角形吗?【教学说明】鼓励学生大胆发言,让他们体验通过实际的计算和探究得到结论的乐趣,增强了他们勇于探索的精神.【归纳结论】如果三角形的三边长a、b、c满足a2+b2=c2,那么这个三角形是直角三角形.满足a2+b2=c2的三个正整数,称为勾股数.大家可以想这样的勾股数是很多的.今后我们可以利用“三角形三边a、b、c满足a2+b2=c2时,三角形为直角三角形”来判断三角形的形状,同时也可以用来判定两条直线是否垂直的方法.三、运用新知,深化理解1.下列几组数能否作为直角三角形的三边长?说说你的理由.(1)9,12,15;(2)15,36,39;(3)12,35,36;(4)12,18,22.2.已知△ABC中BC=41,AC=40,AB=9,则此三角形为三角形,是最大角.3.四边形ABCD中已知AB=3,BC=12,CD=13,DA=4,且∠DAB=90°,求这个四边形的面积.【教学说明】学生独立完成,能够加深判断一个三角形是直角三角形的条件的理解,帮助学生答疑解惑,及时指导,矫正强化.在完成上述题目后,引导学生完成《创优作业》中本课时的“课堂自主演练”部分.【答案】1.(1)(2)两组能作为直角三角形的三边长.∵92+122=152,152+362=392.∴这两个三角形都是直角三角形.2.直角,∠A3.解:连结BD,在△ABD中,∠DBA=90°,BD2=AB2+AD2=32+42,BD=5.在△DBC中,∵52+122=132,即DB2+BC2=DC2,∴△DBC为直角三角形,∠DBC=90°,∴S四边形ABCD=S△DAB+S△DBC=12×3×4+12×5×12=36.四、师生互动,课堂小结1.判断一个三角形是直角三角形的条件.2.今天的学习,你有哪些收获?还有哪些困惑?与同学交流.【教学说明】及时反馈教与学双边活动的结果,查漏补缺,让学生养成系统整理知识的好习惯.1.教材P10-11习题1.3第2、3、4题.2.完成练习册中本课时相应练习.这是勾股定理的逆向应用.大部分同学只要能正确掌握勾股定理的话,都不难理解.当然勾股定理的理解是关键.3勾股定理的应用1.能运用勾股定理及直角三角形的判别条件解决简单的实际问题.2.学生观察图形,勇于探索图形间的关系,培养学生的空间观念.3.在将实际问题抽象成几何图形的过程中,提高分析问题、解决问题的能力及渗透数学建模的思想.4.在不同条件,不同环境中反复运用勾股定理及直角三角形的判定条件,使学生达到熟练、灵活运用的程度.在解决问题的过程中,培养学生的空间观念,提高学生建立数学模型的能力.5.通过解决实际问题,提高了学生应用数学的意识和锻炼了学生与他人交流合作的意识,再次感悟勾股定理和直角三角形判定的应用价值.【教学重点】探索发现给定事物中隐含的勾股定理及直角三角表判定条件,并用它们解决生活中的实际问题.【教学难点】利用数学中的建模思想构造直角三角形,灵活运用勾股定理及直角三角形的判定,解决实际问题.一、创设情境,导入新课勾股定理的应用前几节课我们学习了勾股定理,你还记得它有什么作用吗?例如:欲登12米高的建筑物,为安全需要,需使梯子底端离建筑物5米,至少需要多长的梯子?日常生活当中,我们还会遇到下面的问题.【教学说明】回忆勾股定理,巩固旧知识,解决实际问题,完成知识的过渡,为学生学习新知识又一次打下了坚实的基础.二、思考探究,获取新知蚂蚁怎么走最近?出示问题:有一个圆柱,它的高等于12厘米,底面半径等于3厘米.在圆柱的底面A点有一只蚂蚁,它想吃到上底面上与A点相对的B点处的食物,需要爬行的最短路程是多少?(π的取值3).(1)同学们可自己做一个圆柱,尝试从A点到B点沿圆柱的侧面画出几条路线,你觉得哪条路线最短呢?(2)如图,将圆柱侧面剪开展开成一个长方形,从A点到B点的最短路线是什么?你画对了吗?(3)蚂蚁从A点出发,想吃到B点上的食物,它沿圆柱的侧面爬行的最短路程是多少?【教学说明】让学生经历把曲面上两点之间的距离转化为平面上两点之间线段最短更为直观,再次利用勾股定理解决生活中较为复杂的实际问题,使所学的知识得到充分运用.【归纳结论】我们知道,圆柱的侧面展开图是一长方形.好了,现在咱们就用剪刀沿母线AA′将圆柱的侧面展开(如下图).我们不难发现,刚才几位同学的走法:哪条路线是最短呢?你画对了吗?第(4)条路线最短.因为“两点之间的连线中线段最短”.三、运用新知,深化理解1.甲、乙两位探险者,到沙漠进行探险.某日早晨8∶00甲先出发,他以6千米/时的速度向东行走.1小时后乙出发,他以5千米/时的速度向北进行,上午10∶00,甲、乙两人相距多远?2.如图,有一个高1.5米,半径是1米的圆柱形油桶,在靠近边的地方有一小孔,从孔中插入一铁棒,已知铁棒在油桶外的部分是0.5米,问这根铁棒应有多长?【教学说明】学生独立解决,把生活中的实际问题转化为解直角三角形,对学生所学的知识进行强化,以利于教师及时纠正.【答案】1.分析:首先我们需要根据题意将实际问题转化成数学模型.解:(如图)根据题意,可知A是甲、乙的出发点,10∶00时甲到达B点,则AB=2×6=12(千米);乙到达C点,则AC=1×5=5(千米).在Rt△ABC中,BC2=AC2+AB2=52+122=169=132,所以BC=13千米.即甲、乙两人相距13千米.2.分析:从题意可知,没有告诉铁棒是如何插入油桶中,因而铁棒的长是一个取值范围而不是固定的长度,所以铁棒最长时,是插入至底部的A点处,铁棒最短时是垂直于底面时.解:设伸入油桶中的长度为x米,则应求最长时和最短时的值.(1)x2=1.52+22,x2=6.25,x=2.5所以最长是2.5+0.5=3(米).(2)x=1.5,最短是1.5+0.5=2(米).答:这根铁棒的长应在2~3米之间(包含2米、3米).四、师生互动,课堂小结通过本节课的学习,你掌握了哪些知识?还有哪些疑问?【教学说明】学生梳理知识,加强教与学的互通,进一步提高课堂教学的效果.1.教材P14~15第1、2、3、4题.2.完成练习册中本课时相应练习.这节课的内容综合性比较强,可能有些同学掌握得不是太好,今后要继续加强这方面的训练.本章归纳总结1.掌握勾股定理和如何判断一个三角形是直角三角形,能灵活运用它们解决实际问题.2.通过梳理本章知识点,回顾解决实际问题中所涉及的数形合的思想和逆向思维思考问题,以便能熟练灵活运用.3.让学生养成把已有的知识建立联系的思维习性,积极参与数学活动,在活动中学会思考、讨论、交流和合作,激发他们的求知欲望.4.用勾股定理和如何判断一个三角形是直角三角形解决简单问题.【教学难点】能理解运用勾股定理解题的基本过程;掌握在复杂图形中确定相应的直角三角形,根据勾股定理建立方程.一、知识框图,整体把握【教学说明】引导学生回顾本章知识点,构建知识结构框架,让学生比较系统地了解本章知识及它们之间的相互联系.二、释疑解惑,加深理解1.勾股定理的证明勾股定理的证明方法有多种,一般是采用剪拼的方法,它把“数与形”巧妙地联系起来,是几何与代数沟通的桥梁,同时也为后面的四边形、圆、圆形变换、三角函数等知识的学习提供了方法和依据.说明:利用面积相等是证明勾股定理的关键所在.2.勾股定理中的分类讨论在勾股定理的实际运用中,如果不明给出直角三角形中有两条边的长,要求第三条边的长就需要分两种情况讨论,即第一种情况是告诉两条直角边长求斜边,第二种情况是告诉一条直角边和斜边长求另一条直角边.3.曲面两点间的距离问题在解决曲面中两点间的距离时,往往是要将曲面问题转化为同一平面内两点之间的距离,这是解决问题的关键.三、典例精析,复习新知例1 一张直角三角形纸片,两直角边AC=6cm,BC=8cm,将△ABC折叠,使点B与点A重合,折痕是DE(如图所示),求CD的长.【分析】设CD为x,∵AD=BD,∴AD=8-x. ∴在△ACD中,根据勾股定理列出关于x的方程即可求解.解:由折叠知,DA=DB.在Rt△ACD中,由勾股定理得AC2+CD2=AD2,若设CD=xcm,则AD=DB=(8-x)cm,代入上式得62+x2=(8-x)2,解得x=7/4=1.75(cm),即CD的长为1.75cm.例2有一个立方体礼盒如图所示,在底部A处有一只壁虎,C′处有一只蚊子,壁虎急于捕捉到蚊子充饥.(1)试确定壁虎所走的最短路线;(2)若立方体礼盒的棱长为20cm,则壁虎如果想在半分钟内捕捉到蚊子,每分钟至少要爬行多少厘米?(保留整数)【分析】求几何表面的最短距离时,通常可以将几何体表面展开,把立体图形转化为平面图形.解:(1)若把礼盒上的底面A′B′C′D′竖起来,如图所示,使它与立方体的正面(ABB′A′)在同一平面内,然后连接AC′,根据“两点间线段最短”知线段AC′就是壁虎捕捉蚊子所走的最短路线.(2)由(1)得,△ABC′是直角三角形,且AB=20,BC′=40.根据勾股定理,得AC′2=AB2+BC′2=202+402,AC′≈44.7(cm),44.7÷0.5≈90(cm/min).所以壁虎要想在半分钟内捕捉到蚊子,它每分钟至少爬行90厘米(只入不舍).【教学说明】师生共同回顾本章主要知识,对于例题中需要注意的事项教师可以适当点评,便于学生熟练加以运用.四、复习训练,巩固提高1.已知在△ABC中,∠B=90°,一直角边为a,斜边为b,则另一条直角边c满足c2= .2.在Rt△ABC中,∠C=90°,若a=12,c-b=8,则b= ,c= .3.如图所示,在△ABC中,∠ACB=90°,CD⊥AB,D为垂足,AC=2.1,BC=2.8.求:(1)△ABC的面积;(2)斜边AB的长;(3)斜边AB上的高CD的长;(4)斜边被分成的两部分AD和BD的长.【答案】1.b2-a2;2.5,13;3.解:(1)S△ABC=12AC×BC=12×2.1×2.8=2.94.(2)AB2=AC2+BC2=2.12+2.82=12.5,∴AB=3.5.(3)由三角形的面积公式得12AC×BC=12AB×CD,所以12×2.1×2.8=12×3.5×CD,解得CD=1.68.(4)在Rt△ACD中,由勾股定理得AD2+CD2=AC2,∴AD2=AC2-CD2=2.12-1.682=(2.1+1.68)(2.1-1.68)=3.78×0.42=2×1.89×2×0.21=22×9×0.214×0.21.∴AD=2×3×0.21=1.26.∴BD=AB-AD=3.5-1.26=2.24.五、师生互动,课堂小结本节复习课你能灵活运用勾股定理和如何判断一个三角形是直角三角形的解决问题吗?还有哪些不足?【教学说明】教师引导学生归纳本章主要的知识点,对于遗漏或需要强调的地方,教师应及时补充和点拨.1.复习题4.5第11、12题.2.完成练习册中本课时相应练习.勾股定理是解决线段计算问题的主要依据,它单独命题比较少见,更多时候是与其他知识综合应用,在综合题中如何找到适当的直角三角形是解题的关键.。

最新北师大版八年级上册数学全册教案版

最新北师大版八年级上册数学全册教案版

第一章 勾股定理§1.1 探索勾股定理(一)教学目标:1、 经历用数格子的办法探索勾股定理的过程,进一步发展学生的合情推力意识,主动探究的习惯,进一步体会数学与现实生活的紧密联系。

2、 探索并理解直角三角形的三边之间的数量关系,进一步发展学生的说理和简单的推理的意识及能力。

重点难点:重点:了解勾股定理的由来,并能用它来解决一些简单的问题。

难点:勾股定理的发现 教学过程一、 创设问题的情境,激发学生的学习热情,导入课题出示投影1 (章前的图文 p1)教师道白:介绍我国古代在勾股定理研究方面的贡献,并结合课本p5谈一谈,讲述我国是最早了解勾股定理的国家之一,介绍商高(三千多年前周期的数学家)在勾股定理方面的贡献。

出示投影2 (书中的P2 图1—2)并回答:1、 观察图1-2,正方形A 中有_______个小方格,即A 的面积为______个单位。

正方形B 中有_______个小方格,即A 的面积为______个单位。

正方形C 中有_______个小方格,即A 的面积为______个单位。

2、 你是怎样得出上面的结果的?在学生交流回答的基础上教师直接发问:3、 图1—2中,A,B,C 之间的面积之间有什么关系?学生交流后形成共识,教师板书,A+B=C ,接着提出图1—1中的A.B,C 的关系呢? 二、 做一做出示投影3(书中P3图1—4)提问: 1、图1—3中,A,B,C 之间有什么关系? 2、图1—4中,A,B,C 之间有什么关系?3、 从图1—1,1—2,1—3,1|—4中你发现什么? 学生讨论、交流形成共识后,教师总结:以三角形两直角边为边的正方形的面积和,等于以斜边的正方形面积。

三、 议一议1、 图1—1、1—2、1—3、1—4中,你能用三角形的边长表示正方形的面积吗? 2、 你能发现直角三角形三边长度之间的关系吗? 在同学的交流基础上,老师板书:直角三角形边的两直角边的平方和等于斜边的平方。

北师大版初中数学八年级上册《1 探索勾股定理 探索勾股定理》 公开课教案_1

北师大版初中数学八年级上册《1 探索勾股定理 探索勾股定理》 公开课教案_1

第一章勾股定理
1.探索勾股定理(第一课时)
一、教学目标
知识目标:用数格子(或割、补、拼等)的办法体验勾股定理的探索过程并理解勾股定理反映的直角三角形的三边之间的数量关系,会初步运用勾股定理进行简单的计算和实际运用.
能力目标:让学生经历“观察—猜想—归纳—验证”的数学思想,并体会数形结合和特殊到一般的思想方法.
情感目标:在探索勾股定理的过程中,体验获得成功的快乐;通过介绍勾股定理在中国古代的研究,激发学生热爱祖国,热爱祖国悠久文化历史,激励学生发奋学习.
二、教学重难点
重点:掌握勾股定理并能利用它来解决实际问题。

难点:探索勾股定理。

三、教法学法
教学方法:引导—探究—发现法.
学习方法:自主探究与合作交流相结合.
四、教学准备
多媒体课件和几何画板等
五、教学过程
第一环节:创设情境,引入新课
1.观看视频:勾股定理的历史
2.预备知识
(1)直角三角形的两个锐角有什么关系?怎样求直角三角形的面积?
(2)正方形的面积公式是什么?
第二环节:探索发现勾股定理
1.探究活动一:
内容:(1)投影显示如下地板砖示意图,让学生初步观察:
(2)引导学生从面积角度观察图形:
问:你能发现各图中三个正方形的面积之间有何关系吗?
学生通过观察,归纳发现:
结论1 以等腰直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积.
学生分小组动手操作实践并验证
∵c2= 4× a2
∴c2=2a2
2.探究活动二:
由结论1我们自然产生联想:一般的直角三角形是否也具有该性质呢?。

北师大版八年级数学上册第一章1.1探索勾股定理(教案)

北师大版八年级数学上册第一章1.1探索勾股定理(教案)
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解勾股定理的基本概念。勾股定理是指在直角三角形中,两条直角边的平方和等于斜边的平方。它是解决直角三角形相关问题的重要工具,广泛应用于建筑、工程等领域。
2.案例分析:接下来,我们来看一个具体的案例。通过计算一个实际直角三角形的边长,展示勾股定理在实际中的应用,以及它如何帮助我们解决问题。
5.激发学生的创新意识,鼓励学生在探索勾股定理的过程中,提出不同的观点和证明方法,培养创新思维。
这些核心素养目标旨在帮助学生全面发展,将所学知识内化为自身能力,为新教材要求下的数学学习奠定坚实基础。
三、教学难点与重点
1.教学重点
(1)掌握勾股定理的表达式:直角三角形两条直角边的平方和等于斜边的平方。
北师大版八年级数学上册第一章1.1探索勾股定理(教案)
一、教学内容
本节内容选自北师大版八年级数学上册第一章1.1节,主要探索勾股定理。内容包括:
1.了解勾股定理的起源,通过探究活动引导学生发现直角三角形三边的关系。
2.掌握勾股定理的表达式:直角三角形两条直角边的平方和等于斜边的平方。
3.学会运用勾股定理解决实际问题,如计算直角三角形中未知边的长度。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了勾股定理的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对勾股定理的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
2.教学难点
(1)理解勾股定理背后的数学原理,如平方概念、直角三角形的性质等。

北师大版八年级上册初中数学教学设计1探索勾股定理

北师大版八年级上册初中数学教学设计1探索勾股定理
3.教师针对学生的反馈,进行针对性的解答和指导,巩固学生对勾股定理的理解。
4.强调勾股定理在实际生活中的重要性,激发学生对数学学科的兴趣和热爱。
5.布置课后作业,要求学生运用勾股定理解决实际问题,巩固课堂所学知识。
五、作业布置
为了巩固学生对勾股定理的理解和应用,特布置以下作业:
1.请同学们结合课堂所学的勾股定理,选取生活中的一个直角三角形实例,如窗户、楼梯等,测量并计算出其三条边的长度,验证勾股定理的正确性。
4.能够运用勾股定理推导出相似直角三角形的性质,如比例关系等。
(二)过程与方法
1.通过实际操作,引导学生观察、思考、分析勾股定理的规律,培养学生发现问题、解决问题的能力。
2.采用小组合作、讨论交流等形式,让学生在合作中学习,提高学生的沟通能力和团队协作精神。
3.设计丰富多样的练习题,使学生在练习中巩固知识,提高运算能力和解决问题的能力。
二、学情分析
八年级学生已具备一定的数学基础,掌握了直角三角形的基本性质,能够进行简单的几何计算。在此基础上,探索勾股定理,学生需要运用已学知识,通过观察、思考、实践,发现勾股定理的规律,并学会运用勾股定理解决实际问题。
学生对勾股定理的认识可能初步来源于生活实际,如建筑、测量等领域,但对勾股定理的严谨证明和应用可能尚不熟悉。因此,在教学过程中,教师需关注以下几点:
3.学生可能会提到直角三角形的边长关系,如两条直角边的平方和等于斜边的平方。教师给予肯定,并引出本节课的主题——勾股定理。
(二)讲授新知,500字
1.教师介绍勾股定理的概念,即直角三角形两条直角边的平方和等于斜边的平方。
2.通过动画演示或实物的形式,展示勾股定理的证明过程,如代数法、几何法等,使学生直观地理解定理的原理。

八年级数学上册1.1探索勾股定理第2课时验证勾股定理教案 新版北师大版

八年级数学上册1.1探索勾股定理第2课时验证勾股定理教案 新版北师大版

八年级数学上册1.1探索勾股定理第2课时验证勾股定理教案新版北师大版一. 教材分析《新版北师大版八年级数学上册》第一章“探索勾股定理”的目的是让学生了解勾股定理的发现过程,理解勾股定理的内涵,并能够运用勾股定理解决实际问题。

本节课是该章节的第一课时,主要让学生验证勾股定理。

二. 学情分析八年级的学生已经学习了平面几何的基本知识,对三角形、直角三角形等概念有一定的理解。

但他们对勾股定理的发现过程和证明方法可能还不够深入了解,因此需要通过本节课的教学,让学生从实践中感受勾股定理的真理,提高他们的数学思维能力。

三. 教学目标1.让学生了解勾股定理的发现过程,理解勾股定理的内涵。

2.培养学生运用几何图形进行推理和验证的能力。

3.提高学生对数学的兴趣和探索精神。

四. 教学重难点1.教学重点:让学生通过实际操作,验证勾股定理。

2.教学难点:引导学生理解并证明勾股定理。

五. 教学方法1.实践教学法:让学生通过实际操作,发现并验证勾股定理。

2.问题驱动法:教师提出问题,引导学生思考和探索。

3.小组合作学习:学生分组讨论,共同完成验证勾股定理的任务。

六. 教学准备1.准备三角形模型、直尺、圆规等教具。

2.制作课件,展示勾股定理的发现过程和证明方法。

七. 教学过程1.导入(5分钟)教师通过引入古希腊数学家毕达哥拉斯的故事,让学生了解勾股定理的发现过程,激发学生的学习兴趣。

2.呈现(10分钟)教师展示勾股定理的表述:直角三角形两条直角边的平方和等于斜边的平方。

然后提出问题:如何验证这个定理呢?3.操练(10分钟)学生分组讨论,运用教具和直尺,尝试构造直角三角形,并测量两条直角边和斜边的长度。

每组学生将自己的测量结果填入表格中。

4.巩固(5分钟)教师邀请几组学生汇报自己的测量结果,引导学生发现:不论直角三角形的直角边和斜边的长度如何变化,两条直角边的平方和总是等于斜边的平方。

5.拓展(5分钟)教师提出挑战性问题:如何证明这个结论对所有的直角三角形都成立呢?引导学生进一步思考和探索。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. 探究勾股定理1.经历用测量法和数格子的方法探究勾股定理的过程,开展合情推理才能,体会数形结合的思想.2.会解决直角三角形的两边求另一边的问题.1.经历“测量—猜测—归纳—验证〞等一系列过程,体会数学定理发现的过程.2.在观察、猜测、归纳、验证等过程中培养语言表达才能和初步的逻辑推理才能.3.在探究过程中,体会数形结合、由特殊到一般及化归等数学思想方法.通过让学生参加探究与创造,获得参加数学活动成功的经历.【重点】勾股定理的探究及应用.【难点】勾股定理的探究过程.【老师准备】分发给学生打印的方格纸.【学生准备】有刻度的直尺.导入一:展示教材P2开头的情境.如下图,从电线杆离地面8 m处向地面拉一条钢索,假如这条钢索在地面的固定点间隔电线杆底部6 m,那么需要多长的钢索?事实上,古人发现,直角三角形的三条边长度的平方存在一个特殊关系,学完了这节课,我们就会很容易地求出钢索的长度.[设计意图]创设问题情境,造成学生的认知冲突,激发学生的求知欲望.导入二:如下图,强大的台风使得一个旗杆在离地面9米处折断倒下,旗杆顶部落在离旗杆底部12米处.旗杆折断之前有多高?【师生活动】在直角三角形中,任意两条边确定了,第三条边确定吗?为什么?在直角三角形中,任意两条边确定了,第三条边也就随之确定,三边之间存在着一种特定的数量关系.事实上,古人发现,直角三角形的三条边长度的平方存在一种特殊的关系.让我们一起去探究吧!一、用测量的方法探究勾股定理思路一【学生活动】1.画一个直角三角形,使直角边长分别为3 cm和4 cm,测量一下斜边长是多少.2.画一个直角边长分别是6 cm和8 cm的直角三角形,测量一下斜边长是多少.3.画一个直角边长分别是5 cm和12 cm的直角三角形,测量一下斜边长是多少.【问题】你能观察出直角三角形三边之间的关系吗?[设计意图]帮助学生感知直角三角形三条边的长度存在特殊的关系,进而激发学生的探究欲望.思路二任意画一个直角三角形,分别测量三条边长,把长度标在图形中,计算三边的平方,把结果填在表格中.直角三角形直角边长直角边长斜边长123【师生活动】师:观察表格,有什么发现?生1:a2+b2=c2.生2:两直角边的平方和很接近斜边的平方.师:很准确,他用了很接近这个词,非常棒!有哪些数据得到了a2+b2=c2?生:3,4,5;6,8,10;2,1.5,2.5;5,12,13……师:哪些数据没得到a2+b2=c2?生:2,4,4.5;5,8,9.5;2.4,4.8,9.3……师:怎样验证直角三角形三边之间的平方关系呢?二、验证直角三角形三条边长度存在的特殊关系,用数格子的方法探究勾股定理1.探究等腰直角三角形的情况.思路一展示教材P2图1 - 2局部图.探究问题:(1)这个三角形是什么样的三角形?(2)直角三角形三边的平方分别是多少?它们满足怎样的数量关系?(学生通过数格子的方法可以得出S A+S B=S C)[设计意图]通过三个正方形面积的关系,得到直角三角形三边的关系.思路二展示教材P2图1 - 2,直角三角形三边的平方分别是多少,它们满足上面所猜测的数量关系吗?你是如何计算的?【师生活动】师:在这幅图中,边长的平方是如何刻画的?我们的猜测如何实现?生:用正方形A,B,C刻画的,就是证A+B=C.师:再准确点说呢?生:是用三个正方形A,B,C的面积刻画的,就是证明正方形A的面积加上正方形B的面积等于正方形C的面积.师:请同学们快速算一算正方形A,B,C的面积.(学生交流面积C的求法,老师巡视点评)生:A的面积是9,B的面积也是9,C的面积是18.师:你用什么方法得到正方形C的面积为18个单位面积?生1:我先数整个格子有12个,两个三角形格子拼成一个正方形格子,能凑6个,一共是18个.生2:把正方形对折,得到两个三角形.(学生板演,并列式计算) 生3:分成四个全等的直角三角形.(学生板演,口述面积求法)师:方法不错,你们很擅长动脑筋,我们用数格子、分割图形的方法得到C的面积,还有什么方法可以得到吗?生:在正方形C的外侧画一个大正方形,用大正方形的面积减去4个三角形的面积.(学生板演,口述面积求法)师:很好,他采用了补形的方法计算面积,我们能得到什么结论?生1:S A+S B=S C.生2:a2+b2=c2.师:我们看到上面的三角形具有特殊性,是等腰直角三角形,一般三角形能验证吗?2.探究边长为3,4,5的直角三角形的情况.展示教材P2图1 - 3局部图.对于一般的直角三角形是否也有这样的关系?你是如何计算的?【问题】(1)正方形A的面积是多少个方格?正方形B的面积是多少个方格?(2)怎样求出正方形C的面积是多少个方格?(3)三个正方形的面积之间有什么关系?同桌交流、小组讨论,共同讨论如何求正方形的面积,找到三边平方之间的关系.【提示】在正方形C的四周再补上三个相等的直角三角形,变成一个新的大正方形.【拓展】假如直角三角形的两直角边分别为1.6个单位长度和2.4个单位长度,上面所猜测的数量关系还成立吗?说明你的理由.学生考虑、交流,老师请学生口答,并板书,指出这就是这节课要学习的勾股定理.【学生总结】直角三角形两直角边的平方和等于斜边的平方.假如用a,b和c分别表示直角三角形的两直角边和斜边,那么a2+b2=c2.[考虑](1)运用此定理的前提条件是什么?(2)公式a2+b2=c2有哪些变形公式?(3)由(2)知直角三角形中,只要知道条边,就可以利用求出.[设计意图]让学生经历“独立考虑——小组讨论——合作交流〞的环节,进一步加深对勾股定理的理解,并激发学生的爱国热情.[知识拓展]1.由勾股定理的根本形式a2+b2=c2可以得到一些变形关系式,如a2=c2-b2=(c+b)(c-b);b2=c2-a2=(c+a)(c-a).2.在钝角三角形中,三角形三边长分别为a,b,c,假设c为最大边长,那么有a2+b2<c2,在锐角三角形中,三角形三边长分别为a,b,c,假设c为最大边长,那么有a2+b2>c2.1.勾股定理的由来.2.勾股定理的探究方法:测量法和数格子法.3.勾股定理:直角三角形两直角边的平方和等于斜边的平方.假如a,b和c分别表示直角三角形的两直角边和斜边,那么a2+b2=c2.1.直角三角形ABC的两直角边BC=12,AC=16,那么ΔABC的斜边AB的长是()C.9.6D.8解析:BC2=122=144,AC2=162=256,AB2=AC2+BC2=400=202.应选A.2.直角三角形两直角边长分别是6和8,那么周长与最短边长的比是()A.7∶1B.4∶1C.25∶7D.31∶7解析:利用勾股定理求出斜边的长为10.应选B.3.(2021·温州模拟)如下图,在ΔABC中,AB=AC,AD是ΔABC的角平分线,假设BC=10,AD=12,那么AC=.解析:根据等腰三角形三线合一,判断出ΔADC为直角三角形,利用勾股定理即可求出AC的长为13.故填13.4.如下图,在RtΔABC中,∠ACB=90°,AB=10,分别以AC,BC为直径作半圆,面积分别记为S1,S2,那么S1+S2的值等于.解析:根据半圆面积公式结合勾股定理,知S1+S2等于以斜边为直径的半圆的面积.所以S1+S2=1πAB2=12.5π.故填12.5π.8第1课时1.概念:直角三角形两直角边的平方和等于斜边的平方.2.表示法:假如用a,b和c分别表示直角三角形的两直角边和斜边,那么a2+b2=c2.一、教材作业【必做题】教材第3页随堂练习第1,2题.【选做题】教材第4页习题1.1第2题.二、课后作业【根底稳固】1.在RtΔABC中,AB=6,BC=10,∠A=90°,那么AC=.2.假设三角形是直角三角形,且两条直角边长分别为5,12,那么此三角形的周长为,面积为.3.(2021·凉山中考)直角三角形的两边长分别是3和4,那么第三边长为.4.假如梯子的底端离建筑物9米,那么15米长的梯子可以到达建筑物的高度是.【才能提升】5.如下图,在正方形网格中,ΔABC的三边长a,b,c的大小关系是() A.a<b<c B.c<a<b C.c<b<a D.b<a<c6.如下图,在一个由4×4个小正方形组成的正方形网格中,以EF为边的小正方形与正方形ABCD的面积比是.7.如下图,阴影局部是一个正方形,它的面积为.8.如下图,三个正方形的面积中,字母A所在的正方形的面积是.9.飞机在空中程度飞行,某一时刻飞机刚好飞到一个男孩头顶正上方4000米处,过20秒,飞机间隔这个男孩头顶5000米,飞机每小时飞行多少千米?10.一个门框的尺寸如下图,一块长3 m,宽2.2 m的薄木板能否从门框内通过?为什么?11.在ΔABC中,AB=25,AC=30,BC边上的高AD=24,求BC的长.【拓展探究】12.如下图,在RtΔABC中,∠ACB=90°,AC=3,BC=4,以点A为圆心,AC长为半径画弧,交AB于点D,那么BD=.13.如下图,一个机器人从O点出发,向正东方向走3米到A1点,再向正北方向走6米到达A2点,再向正西方向走9米到达A3点,…,按此规律走下去,当机器人走到A6点时,离O点的间隔是.【答案与解析】1.8(解析:AC2=BC2-AB2=64.)2.3030(解析:由题意得此直角三角形的斜边长为13.)3.5或√74.12米5.D(解析:两个正数比拟大小,可以按照下面的方法进展:假如a>0,b>0,并且a2>b2,那么a>b.可以设每一个小正方形的边长为1,在直角三角形BDC中,根据勾股定理可以求出a2=10,同理可以求出b2=5,c2=13,因为a>0,b>0,c>0,且b2<a2<c2,所以b<a<c.)6.5∶8(解析:可以设每个小正方形的边长为1,那么正方形ABCD的面积就是4×4=16,斜放的小正方形的边长应该是直角三角形DEF的斜边长,另外两条直角边长分别是1和3,根据勾股定理可以求出小正方形的面积是10.所以以EF为边的小正方形与正方形ABCD的面积比是10∶16=5∶8.)7.64 cm2(解析:设阴影局部的边长为x,那么它的面积为x2=172-152=64(cm2).)8.7(解析:根据正方形的面积公式和勾股定理,知以直角三角形的两条直角边为边的正方形的面积和等于以斜边为边的正方形的面积,由勾股定理可知A=16-9=7.故A的面积为7.)9.解:根据题意可以先画出符合题意的图形.如下图,在ΔABC中,∠C=90°,AC=4000米,AB=5000米,欲求飞机每小时飞行多少千米,就要知道飞机在20秒的时间里飞行的路程,即图中的CB长,由于RtΔABC的斜边AB=5000米=5千米,AC=4000米=4千米,由勾股定理得BC2=AB2-AC2,即BC=3千米.飞机20秒飞行3千米,那么它1小时飞行×3=540(千米).答:飞机每小时飞行540千米.的间隔为36002010.解:连接AC,在RtΔABC中,根据勾股定理得AC2=AB2+BC2=12+22=5.又因为2.22=4.84<5.所以AC>木板的宽,所以木板可以从门框内通过.11.解:在RtΔABD中,由勾股定理得BD2=AB2-AD2=252-242=49,所以BD=7.在RtΔADC中,由勾股定理得CD2=AC2-AD2=302-242=324,所以CD=18.所以BC=BD+DC=7+18=25.12.2(解析:∵在RtΔABC中,AC=3,BC=4,∴AB=5,∵以点A为圆心,AC 长为半径画弧,交AB于点D,∴AD=AC,∴AD=3,∴BD=AB-AD=5-3=2.)13.15(解析:解此题时要求出A1A2,A2A3,A3A4,A4A5,A5A6等各线段的长,再利用勾股定理求解.)从本节课教案的思路设计看,始终贯彻以学生为主体,充分运用各种手段调动学生参与探究活动的积极性.课前的导入利用生活中的问题,唤起学生带着问题进入本节课的学习.在探求直角三角形三边平方关系时,遵循了发现问题、证实问题到推导问题的认识过程.在引导学生进展探究的过程中,对学生的指导过多,不敢放手让学生自己进展尝试.比方在利用教材第2页下面的两幅图的时候,要求学生选取与教材一致的数据.在这里应该放手让学生自己选取数据.在总结勾股定理的时候,可以让学生自己总结勾股定理的数学表达式.在利用教材给出的例如进展勾股定理结论探究的时候,一定要立足于“面积相等〞这个探究的立足点,这样才能保证学生找准探究活动的方向.随堂练习(教材第3页)1.解:字母A代表的正方形的面积=225+400=625,字母B代表的正方形的面积=225-81=144.2.解:不同意他的想法,因为29 in的电视机是指屏幕长方形的对角线长为29 in,由屏幕的长为58 cm,宽为46 cm,可知屏幕的对角线长的平方=(46025.4)2+(58025.4)2,所以对角线长≈29 in.习题1.1(教材第4页)1.解:①x2=62+82=100,x=10.②y2=132-52=144,y=12.2.解:172-152=64,所以另一条直角边长为8 cm.面积为12×8×15=60(cm2).3.解:此题具有一定的开放性,现给出4种方案:如下图,设①的面积为g,③的面积为e,④的面积为f,⑦的面积为a,⑨的面积为b,⑧的面积为d ,⑩的面积为c ,那么(1)a +b +c +d =g ,(2)a +b +f =g ,(3)e +c +d =g ,(4)e +f =g.4.解:过C 点作CD ⊥AB 于D ,因为CA =CB =5 cm,所以AD =BD =12AB =3 cm .在Rt ΔADC 中,CD 2=AC 2-AD 2,所以CD =4 cm,所以S ΔABC =12AB ·CD =12×6×4=12(cm 2).(2021·淮安中考)如左下列图所示,在边长为1个单位长度的小正方形组成的网格中,点A ,B 都是格点,那么线段AB 的长度为( )C .7D .25〔解析〕 此题考察勾股定理的知识,解答此题的关键是掌握格点三角形中勾股定理的应用,建立格点三角形.如下图,利用勾股定理求解AB 的长度即可.由图可知AC =4,BC =3,那么由勾股定理得AB =5.应选A .如下图,直线l 上有三个正方形a ,b ,c ,假设a ,c 的面积分别为3和4,那么b 的面积为 .〔解析〕 ∵∠ACB +∠ECD =90°,∠DEC +∠ECD =90°,∴∠ACB =∠DEC.∵∠ABC =∠CDE ,AC =CE ,∴ΔABC ≌ΔCDE ,∴BC =DE.根据勾股定理的几何意义,b的面积=a的面积+c的面积,∴b的面积=3+4=7.故填7.。

相关文档
最新文档