苏教版必修四第二章 平面向量 第二讲 向量的线性运算1 向量的加减法(学案含答案)
苏教版高中数学必修四向量的线性运算教案(2)(1)
2.2.1 向量的加法一、课题:向量的加法二、教学目标:1.理解向量加法的概念及向量加法的几何意义; 2.熟练掌握向量加法的平行四边形法则和三角形法则,会作已知两向量的和 向量;3.理解向量的加法交换律和结合律,并能熟练地运用它们进行向量计算。
三、教学重、难点:1.如何作两向量的和向量; 2.向量加法定义的理解。
四、教学过程: (一)复习:1.向量的概念、表示法。
2.平行向量、相等向量的概念。
3.已知O 点是正六边形ABCDEF 的中心,则下列向量组中含有相等向量的是( )(A )OB uuu r 、CD uuu r 、FE u u u r 、CB u u u r (B )AB u u u r 、CD uuu r 、FA u u u r 、DE u u u r(C )FE u u u r 、AB u u u r 、CB u u u r 、OF u u u r (D )AF u u u r 、AB u u u r 、OC u u ur 、OD u u u r(二)新课讲解:1.向量的加法:求两个向量和的运算叫做向量的加法。
表示:AB BC AC +=u u u r u u u r u u u r.规定:零向量与任一向量a r ,都有00a a a +=+=r r r r r.说明:①共线向量的加法: a r b r a b +r r②不共线向量的加法:如图(1),已知向量a r ,b r ,求作向量a b +r r .作法:在平面内任取一点O (如图(2)),作OA a =u u u r r ,AB b =r r ,则OB a b =+u u u r r r.(1) (2) 2.向量加法的法则:(1)三角形法则:根据向量加法定义得到的求向量和的方法,称为向量加法的三角形法则。
表示:AB BC AC +=u u u r u u u r u u u r .(2)平行四边形法则:以同一点A 为起点的两个已知向量a r ,b r为邻边作ABCD Y,则则以A 为起点的对角线AC u u u r 就是a r 与b r的和,这种求向量和的方法称为向量加Fb r a rO BA AB C法的平行四边形法则。
高中数学 第2章 平面向量 2.2.2 向量的减法课件 苏教版必修4
梳理
(1) 向量减法的定义 若 b+x=a ,则向量x叫做a与b的差,记为a-b ,求两个 向量差的运算,叫做向量的减法. (2)向量的减法法则 以O为起点,作向量O→A=a,O→B=b,则B→A=a-b, 即当向量a,b起点 相同时,从b 的终点指a向 的终点的向量就是a-b.
[思考辨析 判断正误]
跟踪训练 3 在四边形 ABCD 中,设A→B=a,A→D=b,且A→C=a+b,
|a+b|=|a-b|,则四边形 ABCD 的形状一定是_矩__形_∴四边形ABCD为平行四边形,
又∵D→B=a-b,|a+b|=|a-b|, ∴|A→C|=|D→B|.
∴四边形ABCD为矩形.
提示 两个相等向量之差等于0.
提示 答案
题型探究
类型一 向量减法的几何作图
例1 如图,已知向量a,b,c不共线,求作向量a+b-c. 解 方法一 如图①,在平面内任取一点O,
作O→A=a,A→B=b,则O→B=a+b, 再作O→C=c,则C→B=a+b-c.
方法二 如图②,在平面内任取一点O,
作O→A=a,A→B=b,则O→B=a+b, 再作C→B=c,连结 OC,则O→C=a+b-c.
答案
梳理
(1)定义:如果两个向量长度相等 ,而方向相反 , 那么称这两个向 量是相反向量. (2)性质:①对于相反向量有:a+(-a)=0. ②若a,b互为相反向量,则a=-b,a+b=0. ③零向量的相反向量仍是零向量 .
知识点二 向量的减法
思考
根据向量的加法,如何求作a-b? 答案 先作出-b,再按三角形或平行四边形法则作出a+(-b).
第2章 §2.2 向量的线性运算
2.2.2 向量的减法
学习目标
苏教版数学高一苏教版必修4学案2.2向量的线性运算
课堂导学 三点剖析 1.向量的加减法运算数乘的定义及其运算律 【例1】 在四边形中,已知AB =a ,AD =b ,BC =c ,试用向量a ,b ,c 表示向量DC .思路分析:连结AC ,则将四边形ABCD 分成两个三角形.利用向量的三角形法则,将AC 用a ,b ,c 与DC 来表示,即可求出DC .解:在下图中作向量AC .由向量加法的三角形法则,得AC =a +c ,AC =b +DC .所以 a +c =b +DC .因此DC =a +c -b .温馨提示找到向量AC 并以AC 建立DC 与a ,b ,c 的关系是本题的关键.【例2】在平行四边形ABCD 中,E 、F 分别为AB 、CD 的中点,设AB =a ,AD =b ,求作向量a -b ,21a -b ,b +21a . 思路分析:利用向量数乘、减法的法则来作图.解:如图a -b =AB -AD =DB .21a -b =-=. b +21a =+DF =. 2.对向量数乘运算律的理解和应用【例3】设x 是未知量,解方程2(x-31a )-21(b -3x+c )+b =0. 思路分析:向量方程与实数方程类似,我们可以用和实数方程类似的方法来解决.解:原方程化为2x-32a -21b +23x-21c +b =0, 27B-32a +21b -21c =0, 27x =32a -21b +21c , ∴x =214a -71b +71c . 3.向量共线的应用【例4】如右图所示,在平行四边形ABCD 中,AD =a ,AB =b ,M 是AB 的中点,点N 是BD 上一点,|BN|=31|BD|.求证:M 、N 、C 三点共线.思路分析:本题主要考查运用向量知识解决平面几何问题.要证三点共线(M 、N 、C ),不妨证、具有一定的倍数关系,只要用已知条件a ,b 表示出,,问题就可以解决.证明:∵=a ,=b ,∴=-=a -b .∴=+=21b +31 =21b +31 (a -b )= 31a +61b =61(2a +b ). 又∵=+=21b +a =21 (2a +b ), ∴=3.又与有共同起点,∴M 、N 、C 三点共线.温馨提示几何中证明三点共线,可先在三点中选取起点和终点确定两个向量,看能否找到唯一的实数λ使两向量具有一定的倍数关系.各个击破类题演练1已知平行四边形ABCD ,=a ,=b ,用a 、b 分别表示向量,.思路分析:利用向量加法、减法的平行四边形法则. 解:连结AC 、DB ,由求向量和的平行四边形法则,则AC =AB +AD =a +b .依减法定义得,DB =AB -AD =a -b .变式提升1 (2006广东高考,4)如右图所示,D 是△ABC 的边AB 上的中点,则向量CD 等于( )A.-+21 B.--21 C.-21 D.+21 思路分析:由三角形法则得知CD =BD -BC =21BA -BC . 答案:A类题演练2若O 为平行四边形ABCD 的中心,=4e 1,=6e 2,则3e 2-2e 1=______________. 解:3e 2=21,2e 1=21AB ,∴3e 2-2e 1=21-21AB =21(-AB )=21(+BA )=21BD . 答案:21 变式提升2化简32[(4a -3b )+ 31b -41(6a -7b )]=__________________. 解析:原式=32(4a -3b +31b -23a +47b ) =32[(4-23)a +(-3+31+47)b ] =32(25a -1211b )=35a -1811b . 答案:35a -1811b 类题演练3设x 为未知向量,解方程31x +3a -152b =0. 解:原方程化为31x+(3a -152b )=0, 所以31x =0-(3a -152b ),31x=-3a +152b .所以x=-9a +52b . 变式提升3(2006山东高考,文4)设向量a =(1,-3),b =(-2,4).若表示向量4a 、3b -2a 、c 的有向线段首尾相接能构成三角形,则向量c 为( )A.(1,-1)B.(-1,1)C.(-4,6)D.(4,-6)解析:依题可知4a +(3b -2a )+c =0,所以c =2a -4a -3b =-2a -3b =-2(1,-3)-3(-2,4)=(4,-6).答案:D类题演练4已知两个非零向量e 1和e 2不共线,如果=2e 1+3e 2,=6e 1+23e 2,=4e 1-8e 2,求证:A 、B 、D 三点共线.思路分析:本题主要考查向量共线问题及向量的线性运算.欲证A 、B 、D 三点共线,只需证AD 、AB 共线,根据题目的条件如何才能求得AD 呢?显然AD =AB +BC +CD 证明:∵=++=2e 1+3e 2+6e 1+23e 2+4e 1-8e 2=12e 1+18e 2=6(2e 1+3e 2) =6, ∴向量与向量共线. 又∵AB 和AD 有共同的起点A ,∴A 、B 、D 三点共线.变式提升4a =e 1+2e 2,b =3e 1-4e 2,且e 1、e 2共线,则a 与b ( )A.共线B.不共线C.可能共线,也可能不共线D.不能确定思路分析:∵e 1与e 2共线,则存在实数e 1=λe 2,∴a =e 1+2e 2=(λ+2)e 2,b =3e 1-4e 2=(3λ-4)e 2,∴a =λ+32λ-4b ,故a 与b 共线. 答案:A。
高中数学 第二章 平面向量 2.2.2 向量的减法 苏教版必修4
[预习导引] 1.向量减法的定义 若b+x=a,则向量x叫做a与b的 差 ,记为a-b,求两个 向量差的运算,叫做 向量的减法 .
2.向量减法的平行四边形法则 以向量A→B=a,A→D=b 为邻边作 平行四边形ABCD ,则对角 线的向量B→D=b-a,D→B=a-b. 3.向量减法的三角形法则 在平面内任取一点 O,作O→A=a,O→B=b,则B→A=a-b,即 a -b 表示从向量 b 的终点指向向量 a 的终点的向量.
=0.
(2)B→D+D→C+A→B-A→C. 解 B→D+D→C+A→B-A→C =(B→D+D→C)+(A→B-A→C) =B→C+C→B
=0.
要点二 用已知向量表示其他向量 例2 如图,解答下列各题: (1)用 a,d,e 表示D→B; 解 由题意知,A→B=a,B→C=b,C→D=c,
D→E=d,E→A=e,则 D→B=D→E+E→A+A→B=d+e+a.
(2)用 b,c 表示D→B; 解 D→B=C→B-C→D=-B→C-C→D=-b-c. (3)用 a,b,e 表示E→C; 解 E→C=E→A+A→B+B→C=e+a+b. (4)用 d,c 表示E→C. 解 E→C=-C→E=-(C→D+D→E)=-c-d.
规律方法 (1)用已知向量表示其他向量时,关键是利 用向量加法的三角形法则及向量减法的几何意义. (2)用几个基本向量表示其他向量的一般步骤: ①观察待表示的向量位置;②寻找相应的平行四边形 或三角形;③运用法则找关系,化简得结果.
=(C→F+B→F)+(E→D+E→A)+(A→B+D→C).
∵E、F分别是AD、BC的中点,
∴E→D+E→A=0,C→F +B→F=0.
∴E→F+E→F=A→B+D→C. 方法二 如图,在平面内取点O,连结AO、 EO、DO、CO、FO、BO,则 E→F=E→O+O→F=E→A+A→O+O→B+B→F,
苏教版高中数学必修4教案:第二章 平面向量 第2课时 2.2向量的加法
第2课时§2.2 向量的加法【教学目标】一、知识与技能(1)理解向量加法的含义,会用向量加法的三角形法则和平行四边形法则作两个向量的和;(2)掌握两个向量加法的交换律和结合律,并会用它们进行向量运算二、过程与方法从物体位移变化规律的探知中总结出向量加法规律三、情感、态度与价值观感受数学和生活的联系,增强学习数学的兴趣【教学重点难点】::1.如何作两向量的和向量;2.向量加法定义的理解。
【教学过程】一、复习:1.向量的概念、表示法。
2.平行向量、相等向量的概念。
3.已知O点是正六边形ABCDEF的中心,则下列向量组中含有相等向量的是()(A)OB、CD、FE、CB(B)AB、CD、FA、DE(C)FE、AB、CB、OF(D)AF、AB、OC、OD二、创设情景利用向量的表示,从景点O 到景点A 的位移为OA ,从景点A 到景点B 的位移为AB ,那么经过这两次位移后游艇的合位移是OB ,向量OA ,AB ,OB 三者之间有何关系?OBA三、讲解新课: 1.向量的加法:求两个向量和的运算叫做向量的加法。
表示:AB BC AC +=作法:在平面内任取一点O (如图(2)),作OA a =,AB b =,则OB a b =+ .(1) (2)2.向量加法的法则:(1)三角形法则:根据向量加法定义得到的求向量和的方法,称为向量加法的三角形法则。
表示:AB BC AC +=.(2)平行四边形法则:以同一点A 为起点的两个已知向量a ,b 为邻边作平行四边形ABCD ,则以A 为起点的对角线AC 就是a 与b 的和,这种求向量和的方法称为向量加法的平行四边形法则。
b a O B A3.向量的运算律:交换律:a b b a +=+.结合律:()()a b c a b c ++=++.说明:多个向量的加法运算可按照任意的次序与任意的组合进行: 例如:()()()()a b c d b d a c +++=+++;[()]()a b c d e d a c b e ++++=++++.四、例题分析:例1、 如图,一艘船从A 点出发以/km h 的速度向垂直于对岸的方向行驶,同时河水的流速为2/km h ,求船实际航行速度的大小与方向(用与流速间的夹角表示)。
高中数学 第2章 平面向量 2.2.2 向量的减法学案 苏教版必修4
2.2.2 向量的减法1.理解向量减法的意义及减法法则.(重点) 2.掌握向量减法的几何意义.(难点) 3.能熟练地进行向量的加、减运算.(易混点)[基础·初探]教材整理 向量的减法阅读教材P 66~P 67的全部内容,完成下列问题. 1.向量减法的定义若b +x =a ,则向量x 叫做a 与b 的差,记为a -b ,求两个向量差的运算,叫做向量的减法.2.向量的减法法则以O 为起点,作向量OA →=a ,OB →=b ,则BA →=a -b ,即当向量a ,b 起点相同时,从b 的终点指向a 的终点的向量就是a -b .图2210判断(正确的打“√”,错误的打“×”) (1)OP →-OQ →=PQ →.( )(2)若-b 与a 同向,则a -b 与a 同向.( ) (3)向量的减法不满足结合律.( )(4)AB →=OB →-OA →.( ) 【解析】 (1)×.OP →-OQ →=QP →;(2)√.-b 与a 同向,则a -b =-b +a 与a 同向. (3)×.如(a -b )+c =a +(c -b ). (4)√.【答案】 (1)× (2)√ (3)× (4)√[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流: 疑问1: 解惑: 疑问2: 解惑: 疑问3: 解惑:[小组合作型](1)NQ →-PQ →-NM →-MP →;(2)(AB →-CD →)-(AC →-BD →). 【导学号:06460045】 【精彩点拨】 充分利用向量减法的运算律求解. 【自主解答】 (1)原式=NQ →+QP →-(NM →+MP →) =NP →-NP →=0.(2)(AB →-CD →)-(AC →-BD →) =AB →-CD →-AC →+BD → =AB →+DC →+CA →+BD → =(AB →+BD →)+(DC →+CA →)=AD →+DA →=0.运用向量减法法则运算的常用方法:可以通过相反向量,把向量减法的运算转化为加法运算.运用向量减法的三角形法则,此时要注意两个向量要有共同的起点. 引入点O ,逆用向量减法的三角形法则,将各向量起点统一.[再练一题]1.化简:AC →-BD →+CD →-AB →=________. 【解析】 原式=(AC →-AB →)+DB →+CD →=BC →+CB → =0. 【答案】 0如图2211所示,已知OA =a ,OB =b ,OC =c ,OD =d ,OE =e ,OF →=f ,试用a ,b ,c ,d ,e ,f 表示:图2211(1)AD →-AB →;(2)AB →+CF →; (3)BF →-BD →.【精彩点拨】 寻找图中已知向量和所表示向量之间的关系,然后利用向量的加(减)法解决.【自主解答】 (1)AD →-AB →=BD →=OD →-OB →, ∵OD →=d ,OB →=b , ∴AD →-AB →=d -b .(2)∵AB →+CF →=(OB →-OA →)+(OF →-OC →), OA →=a ,OB →=b ,OC →=c ,OF →=f ,∴AB →+CF →=b +f -a -c . (3)BF →-BD →=DF →=OF →-OD →, ∵OF →=f ,OD →=d , ∴BF →-BD →=f -d .用几个基本向量表示某个些向量的技巧:首先,观察待表示向量的位置;其次,寻找或作相应的平行四边形和三角形; 再次,运用法则找关系; 最后,化简结果.[再练一题]2.如图2212,解答下列各题:图2212(1)用a ,d ,e 表示DB →; (2)用b ,c 表示DB →; (3)用a ,b ,e 表示EC →; (4)用d ,c 表示EC →.【解】 由题意知,AB →=a ,BC →=b ,CD →=c ,DE →=d ,EA →=e ,则 (1)DB →=DE →+EA →+AB →=d +e +a .(2)DB →=CB →-CD →=-BC →-CD →=-b -c . (3)EC →=EA →+AB →+BC →=e +a +b . (4)EC →=-CE →=-(CD →+DE →)=-c -d .[探究共研型]探究1 若【提示】 ①当a 与b 同向且|a |≥|b |时,在给定的直线l 上作出差向量a -b ;OA →=a ,OB →=b ,则BA →=a -b ;②当a 与b 同向且|a |≤|b |时,在给定的直线l 上作出差向量a -b :OA →=a ,OB →=b ,则BA →=a -b ;③若a 与b 反向,在给定的直线l 上作出差向量a -b :OA →=a ,OB →=b ,则B A →=a -b .探究2 结合探究1的图示及向量的减法法则,探究|a -b |与a ,b 之间的大小关系? 【提示】 当a 与b 不共线时,有:||a |-|b ||<|a -b |<|a |+|b |; 当a 与b 同向且|a |≥|b |时,有:|a -b |=|a |-|b |; 当a 与b 同向且|a |≤|b |时,有:|a -b |=|b |-|a |.已知|a |=6,|b |=8,且|a +b |=|a -b |,求|a -b |.【精彩点拨】 |a +b |=|a -b |→判断a 与b 的位置关系→求|a -b |的值.【自主解答】 如图,设AB →=a ,AD →=b ,以AB ,AD 为邻边作▱ABCD .则AC →=a +b ,DB →=a -b , 所以|AC →|=|DB →|.又四边形ABCD 为平行四边形, 所以四边形ABCD 为矩形. 故AD ⊥AB . 在Rt △DAB 中, |AB →|=6,|AD →|=8, 由勾股定理得 |DB →|=|AB →|2+|AD →|2=62+82=10, 所以|a -b |=10.1.以平行四边形ABCD 的两邻边AB ,AD 分别表示向量AB →=a ,AD →=b ,则两条对角线表示的向量为AC →=a +b ,BD →=b -a ,DB →=a -b ,这一结论在以后应用非常广泛,应该加强理解并记住.2.正确理解向量加(减)法的几何意义,恰当构造几何图形,是求解此类问题的关键.[再练一题]3.已知向量a ,b ,满足|a |=|b |=1,|a +b |=3,求|a -b |. 【解】 在▱ABCD 中,使AB →=a ,AD →=b ,则AC →=a +b ,DB →=a -b ,由于|a |=|b |=1,所以ABCD 为菱形,且AC ⊥BD ,交点为O ,∴AO =32,AB =1,OB =AB 2-AO 2=12,∴BD =2BO =1,即|a -b |=1.[构建·体系]1.化简AB →-AC →+BC →等于________. 【解析】 AB →-AC →+BC →=CB →+BC → =0. 【答案】 02.若a ,b 为相反向量,且|a |=1,|b |=1,则|a +b |=________,|a -b |=________. 【解析】 若a ,b 为相反向量,则a +b =0,∴|a +b |=0. 又a =-b ,∴|a |=|-b |=1. ∵a 与-b 共线,∴|a -b |=2. 【答案】 0 23.在平行四边形ABCD 中,下列结论正确的是________.【导学号:06460046】①AB →-DC →=0; ②AD →-BA →=AC →; ③AB →-AD →=BD →;【解析】 ∵ABCD 是平行四边形, ∴AB →=DC →,∴AB →-DC →=0,故①正确;又AD →=BC →,∴AD →-BA →=BC →-BA →=AC →, 故②正确;又AB →-AD →=DB →≠BD →,故③错误.【答案】 ①②4.如图2213,在四边形ABCD 中,设AB →=a ,AD →=b ,BC →=c ,则DC →=________.图2213【解析】 由三角形法则可知 DC →=AC →-AD → =(AB →+BC →)-AD → =a +c -b . 【答案】 a +c -b5.如图2214所示,▱ABCD 中,AB →=a ,AD →=b .图2214(1)用a ,b 表示AC →,DB →;(2)当a ,b 满足什么条件时,a +b 与a -b 所在直线互相垂直? (3)当a ,b 满足什么条件时,|a +b |=|a -b |? (4)a +b 与a -b 有可能为相等向量吗?为什么? 【解】 (1)AC →=AD →+AB →=b +a ,DB →=AB →-AD →=a -b . (2)由(1)知,a +b =AC →,a -b =DB →. 若a +b 与a -b 所在直线垂直,则AC ⊥BD .又∵四边形ABCD 为平行四边形, ∴四边形ABCD 为菱形,即应满足|a |=|b |. (3)假设|a +b |=|a -b |, 即|AC →|=|BD →|.∵四边形ABCD 为平行四边形, ∴四边形ABCD 是矩形,∴a⊥b , ∴当a 与b 垂直时,|a +b |=|a -b |.(4)不可能,∵▱ABCD 的两条对角线不可能平行,∴a +b 与a -b 不可能为共线向量,也就是不可能为相等向量.我还有这些不足:(1) (2)我的课下提升方案: (1) (2)学业分层测评(十六) 向量的减法(建议用时:45分钟)[学业达标]一、填空题1.在平行四边形ABCD 中,AC →-AD →的结论正确的是________. ①AB →;②BA →;③CD →;④DC →. 【解析】 ∵AC →-AD →=DC →, 又ABCD 为平行四边形, ∴DC →=AB →. ∴①④正确. 【答案】 ①④2.已知两向量a 和b ,如果a 的方向与b 的方向垂直,那么|a +b |________|a -b |.(填写“=”“≤”或“≥”)【解析】 以a ,b 为邻边的平行四边形是矩形,矩形的对角线相等.由加减法的几何意义知 |a +b |=|a -b |.【答案】 =3.化简下列向量式,结果为0的个数是________.①RS →-RT →+ST →;②BD →+DC →+AB →-AC →;③AB →-AC →-CB →;④AB →+BC →-AC →.【导学号:06460047】【解析】 ①RS →-RT →+ST →=0. ②BD →+DC →+AB →-AC →=BC →+CB →=0. ③AB →-(AC →+CB →)=0. ④AB →+BC →-AC →=0. 【答案】 44.如图2215所示,在正方形ABCD 中,已知AB →=a ,BC →=b ,OD →=c ,则图中能表示a -b +c 的向量是________.图2215【解析】 由已知得a -b =AB →-AD →=DB →,c =OD →,∴a -b +c =DB →+OD →=OB →. 【答案】 OB →5.(2016·南通高一检测)如图2216,已知平行四边形ABCD 的对角线AC 和BD 相交于O ,且OA →=a ,OB →=b ,若用a ,b 表示向量BC →,则BC →=________.图2216【解析】 BC →=OC →-OB →=AO →-OB →=-OA →-OB → =-a -b . 【答案】 -a -b6.已知|a |=7,|b |=2,若a∥b ,则|a -b |=________.【解析】 ∵a∥b ,当a 与b 同向时,|a -b |=|7-2|=5,当a 与b 反向时,|a -b |=|7+2|=9.【答案】 5或97.下列四个式子,不能化简为AD →的序号是________.①(AB →+CD →)-CB →;②(AD →-BM →)+(BC →-MC →);③OC →-OA →+CD →;④MB →+AD →-BM →.【解析】 ①原式=AB →+(CD →-CB →)=AB →+BD →=AD →;②原式=AD →+BC →-(BM →+MC →)=AD →+BC →-BC →=AD →;③原式=AC →+CD →=AD →;④原式=MB →+AD →+MB →≠AD →,∴只有④不能化为AD →.【答案】 ④8.(2016·南京高一检测)如图2217,D ,E ,F 分别是△ABC 的边AB ,BC ,CA 的中点,则下列各式不.正确的是________.图2217①AD →+BE →+CF →=0;②BD →-CE →+DF →=0;③AD →+CE →-CF →=0;④BD →-BE →-FC →=0.【解析】 ①AD →+BE →+CF →=DB →+BE →+CF →=-BD →+BE →+CF →=DE →+CF →=DE →+ED →=0;②BD →-CE →+DF →=(BD →+DF →)-CE →=BF →-CE →≠0;③AD →+CE →-CF →=AD →+(CE →-CF →)=AD →+FE →≠0;④BD →-BE →-FC →=(BD →-BE →)-FC →=ED →-FC →=ED →+CF →≠0.【答案】 ②③④二、解答题9.如图2218,已知向量a 和向量b ,用三角形法则作a -b +a .图2218【解】 作法:作向量OA →=a ,向量OB →=b ,则向量BA →=a -b .如图所示:作向量AC →=a ,则BC →=a -b +a .10.已知△OAB 中,OA →=a ,OB →=b ,满足|a |=|b |=|a -b |=2,求|a +b |与△OAB 的面积.【解】由已知得|OA →|=|OB →|,以OA →,OB →为邻边作平行四边形OACB ,则可知其为菱形,如图,有OC →=a +b ,BA →=a -b ,由于|a |=|b |=|a -b |,即OA =OB =BA ,∴△OAB 为正三角形,|a +b |=|OC →|=2×3=23,∴S △OAB =12×2×3= 3. [能力提升]1.如图2219,在平行四边形ABCD 中,OA →=a ,OB →=b ,OC →=c ,试用a ,b ,c 表示OD →,则OD →=________.图2219【解析】 因为OA →=a ,OB →=b ,OC →=c ,所以BC →=OC →-OB →=c -b ,又AD →=BC →,所以OD →=OA→+AD →=a +c -b .【答案】 a +c -b2.(2016·山西晋中四校联考)在平行四边形ABCD 中,E 和F 分别是边CD 和BC 的中点,若AC →=λAE →+μAF →,其中λ,μ∈R ,则λ+μ=________.【解析】 如图.∵四边形ABCD 为平行四边形,且E 、F 分别为CD 、BC 的中点,∴AC →=AD →+AB →=(AE →-DE →)+(AF →-BF →)=(AE →+AF →)-12(DC →+BC →)=(AE →+AF →)-12AC →, ∴AC →=23(AE →+AF →),∴λ=μ=23,∴λ+μ=43. 【答案】 433.边长为1的正三角形ABC 中,|AB →-BC →|的值为________.【解析】 如图所示,|AB →-BC →|=|AB →+BC ′→|=|AC ′→|,又|AB →|=1,|BC ′→|=1,∠ABC ′=120°,∴在△ABC ′中,|AC ′→|=2|AB →|cos 30°= 3.【答案】 34.已知a ,b 是两个非零向量,且|a |=|b |=|a -b |.求|a +b ||a -b |.【解】 设OA →=a ,OB →=b ,则BA →=OA →-OB →=a -b .∵|a |=|b |=|a -b |,∴BA =OA =OB ,∴△OAB 为正三角形.设其边长为1,则|a -b |=|BA →|=1,|a +b |=2×32=3, ∴|a +b ||a -b |=31= 3.。
2020-2021学年苏教版必修4 2.2.2 向量的减法 教案
2.2.1向量的加法(教学设计)一、学习目标:1、掌握向量的加法运算,并理解其几何意义。
2、会用向量加法的三角形法则和平行四边形法则作出两个向量的和,培养数形结合解决问题的能力。
3、通过向量的运算和熟悉的数学运算进行类比,使学生掌握向量加法的交换律与结合律,并会用它们进行向量运算,渗透类比的数学方法。
二、学习重点、难点重点:会用向量加法的三角形法则和平行四边形法则作出两个向量的和向量。
难点:理解向量加法的定义和几何意义。
三、教法、学法教法:本着“以教师为主导,以学生为主体,以问题解决为主线,以能力发展为目标”的指导思想,结合我校学生实际,主要采用“问题探究”式教学方法.通过创设问题情境,使学生对向量加法有了一定的感性认识;通过设置一条问题链,引导学生在自主学习与合作交流中经历知识的形成过程;通过层层深入的例题与习题的配置,引导学生积极思考,灵活掌握知识,使学生从“懂”到“会”到“悟”,提高思维品质,力求把传授知识与培养能力融为一体。
采用计算机辅助教学,通过直观演示体现形、动、思于一体的教学效果,优化课堂结构,提高教学质量。
四、学习过程 (一)知识储备 1、向量的有关概念(1)零向量的方向是___________,规定_________________。
(2)相等向量应满足__________________________________。
相反向量应满足___________________________________。
(3)共线向量是指____________________________________。
2、平行四边形对边____________________________________。
(二)自主先学 1、向量加法的定义已知向量a 和b ,在平面内任取一点o ,作,OA a AB b ==,则向量OB 叫做a 与b 的_____,记作_________,即a b OA AB OB +=+=. 如下图,分别作出a 与b 的和(1) (2) (3) (4)向量的加法:求两个向量____的运算叫做向量的加法。
高中数学《向量的线性运算》学案2 苏教版必修4
向量的减法一、课题:向量的减法二、学习目标:1.掌握向量减法及相反向量的的概念;2.掌握向量减法与加法的逆运算关系,并能正确作出已知两向量的差向量;3.能用向量运算解决一些具体问题。
三、学习重、难点:向量减法的定义。
四、学习过程:(一)复习:1.向量的加法法则。
2.数的运算:减法是加法的逆运算。
(二)新课讲解: 1.相反向量:与a 长度相等,方向相反的向量,叫做a 的相反向量,记作a - 。
说明:(1)规定:零向量的相反向量是零向量。
(2)性质:()a a --= ;()()0a a a a +-=-+= . 2.向量的减法:求两个向量差的运算,叫做向量的减法。
表示()a b a b -=+- . 3.向量减法的法则: 已知如图有a ,b ,求作a b - . (1)三角形法则:在平面内任取一点O ,作OA a = ,OB b = ,则BA a b =- . 说明:a b - 可以表示为从b 的终点指向a 的终点的向量(a ,b 有共同起点). (2)平行四边形:在平面内任取一点O ,作OA a = ,BO b =- , 则BA BO OA a b =+=- . 思考:若//a b ,怎样作出a b - ?4.例题分析: 例1 试证:对任意向量a ,b 都有||||||||||||a b a b a b -≤+≤+ . 证明:(1)当a ,b 中有零向量时,显然成立。
(2)当a ,b 均不为零向量时: ①a ,b ,即//a b 时,当a ,b 同向时,||||||||||||a b a b a b -<+=+ ; 当,b 异向时,||||||||||||a b a b a b -=+<+ . ②a ,b 不共线时,在ABC ∆中,||||||AB BC -< ||AC < ||||AB BC + , 则有||||||||||||a b a b a b -<+<+ . ∴||||||||||||a b a b a b -≤+≤+ 其中: 当a ,b 同向时,||||||a b a b +=+ , 当a ,b 同向时,||||||||a b a b -=+ . 例2 用向量方法证明:对角线互相平行的四边形是平行四边形。
高中数学 第二章 平面向量 2.2 向量的减法教案 苏教版必修4(2021年整理)
江苏省建湖县高中数学第二章平面向量2.2 向量的减法教案苏教版必修4 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(江苏省建湖县高中数学第二章平面向量2.2 向量的减法教案苏教版必修4)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为江苏省建湖县高中数学第二章平面向量2.2 向量的减法教案苏教版必修4的全部内容。
2.2 向量的减法教学思想:通过与实数的减法,与向量的加法的类比得到向量的减法的定义及运算法则学习目标:(1)知识与技能:理解向量减法的概念,掌握向量的几何表示,掌握向量的加法和减法的运算法则及运算律。
(2)过程与方法:在正确掌握向量加法减法运算法则的基础上能结合图形进行向量的计算,将数和形有机结合,并能利用向量运算完成简单的几何证明(3)情感态度与价值观:通过阐述向量的减法运算可以转化为向量加法运算及多个向量的加法运算可以转化成两个向量的加法运算,可以渗透化归的数学思想,使学生理解事物之间相互转化,相互联系的辨证思想,同时由于向量的运算能反映出一些物理规律,从而加强了数学学科与物理学科之间的联系,提高学生的应用意识.教学重点:向量的加减法的运算法则及其应用教学难点:向量减法的概念的理解教学方法:探究、讲练结合教学过程:(一)复习回顾:1,向量加法的运算法则2,向量加法运算规律3,相反向量(二)情景创设:已知两个力的合力是,其中一个力是1F则求另一个力2F(如果同样的情景运算对象是实数而不是向量,我们又是怎样解决的呢?)实数b,x,a,已知b+x=a,则x= ,x叫做求两个实数差的运算叫做尝试:类比数的减法,给出向量减法的定义(三)建构数学:定义:若a x b =+,则向量x 叫做a 与b 的差,记为b a -,求两个向量差的运算,叫做向量的减法 探究一:类比实数中)(b a b a -+=-,请问向量有怎样的结论?你能用学过的知识证明吗? 探究二:如图,已知两个不共线向量a 与b ,如何根据向量差的定义和向量加法的三角形法则,作出b a -小结: 探究三:如果非零向量a 与b 共线,怎么作出b a -?例1:已知a 与b ,求作b a - a a a a b b b b 例2:平行四边形ABCD 中,a AB =,b AD =,用b a ,表示向量DB AC , 变:已知向量=,=, 120=∠DAB ,3==b a b a b a 例3:(教材67,例2) 探究四:b a b a b a ≤≤, b a b a +b a),(为非零向量的大小关系吗?例4.已知|错误!|=10,|错误!|=7,|则|错误!|的取值范围为(四)课堂反馈1.化简+-+2。
《向量的线性运算》学案2(苏教版必修4)
向量的减法一、课题:向量的减法二、学习目标:1.掌握向量减法及相反向量的的概念;2.掌握向量减法与加法的逆运算关系,并能正确作出已知两向量的差向量;3.能用向量运算解决一些具体问题。
三、学习重、难点:向量减法的定义。
四、学习过程:(一)复习:1.向量的加法法则。
2.数的运算:减法是加法的逆运算。
(二)新课讲解:1.相反向量:与长度相等,方向相反的向量,叫做的相反向量,记作。
说明:(1)规定:零向量的相反向量是零向量。
(2)性质:;.2.向量的减法:求两个向量差的运算,叫做向量的减法。
表示.3.向量减法的法则:已知如图有,,求作.(1)三角形法则:在平面内任取一点,作,,则.说明:可以表示为从的终点指向的终点的向量(,有共同起点).(2)平行四边形:在平面内任取一点,作,,则.思考:若,怎样作出?4.例题分析:例1 试证:对任意向量,都有.证明:(1)当,中有零向量时,显然成立。
(2)当,均不为零向量时:①,,即时,当,同向时,;当,异向时,.②,不共线时,在中,,则有.∴其中:当,同向时,,当,同向时,.例2 用向量方法证明:对角线互相平行的四边形是平行四边形。
已知:,,求证:四边形是平行四边形。
证明:设,,则,∴,∴,又∵点不在∴平行且等于所以,四边形是平行四边形.课堂小结:1.掌握向量减法概念并知道向量的减法的定义是建立在向量加法的基础上的;2.会作两向量的差向量;3.能够结合图形进行向量计算以及用两个向量表示其它向量。
作业:补充1.已知正方形的边长等于1,,,,求作向量:(1)(2);2.已知向量,的模分别是3,4,求的取值范围。
3.如图,已知平行四边形的对角线,交于点,若,,,求证.。
向量的加法---教案
向量的加法一、教学内容分析《向量的加法》是苏教版《必修4》第二章第二单元中“平面向量的线性运算”的第一节课。
本节内容有向量加法的平行四边形法则、三角形法则及应用,向量加法的运算律及应用,大约需要1课时。
向量的加法是向量的线性运算中最基本的一种运算,向量的加法及其几何意义为后继学习向量的减法运算及其几何意义、向量的数乘运算及其几何意义奠定了基础;其中三角形法则适用于求任意多个向量的和,在空间向量与立体几何中有很普遍的应用。
所以本课在“平面向量”及“空间向量”中有很重要的地位。
二、学生学习情况分析学生在上节课中学习了向量的定义及表示,相等向量,平行向量等概念,知道向量可以自由移动,这是学习本节内容的基础。
学生对数的运算了如指掌,并且在物理中学过力的合成、位移的合成等矢量的加法,所以向量的加法可通过类比数的加法、以所学的物理模型为背景引入,这样做有利于学生更好地理解向量加法的意义,准确把握两个加法法则的特点。
三、设计理念教学矛盾的主要方面是学生的学。
学是中心,会学是目的。
因此,在教学中要不断指导学生学会学习。
在教学过程中,从教材和学生的实际出发,按照学生认知活动的规律,精练、系统、生动地讲授知识,发展学生的智能,陶冶学生的道德情操;要充分发挥学生在学习中的主体作用,运用各种教学手段,调动学生学习的主动性和积极性,启发学生开展积极的思维活动,通过比较、分析、抽象、概括,得出结论;进一步理解、掌握和运用知识,从而使学生的智力、能力和其他心理品质得到发展。
四、教学目标根据新课标的要求: 培养数学的应用意识是当今数学教育的主题,本节课的内容与实际问题联系紧密,更应强化数学来源于实际又应用于实际的意识。
及本节教材的特点和高一学生对矢量的认知特点,我把本节课的教学目的确定为:1、通过对向量加法的探究,使学生掌握向量加法的概念,结合物理学实际理解向量加法的意义。
能正确领会向量加法的平行四边形法则和三角形法则的几何意义,并能运用法则作出两个已知向量的和向量。
必修四 2.2 平面向量的线性运算(教案)
人教版新课标普通高中◎数学④必修2.2 平面向量的线性运算教案 A第1课时教学目标一、知识与技能1.掌握向量的加减法运算,并理解其几何意义.2.会用三角形法则和平行四边形法则作两个向量的和向量和差向量,培养数形结合解决问题的能力.3.通过将向量运算与熟悉的数的运算进行类比,使学生掌握向量加减法运算的交换律和结合律,并会用它们进行向量计算,渗透类比的数学方法;二、过程与方法1.位移、速度和力这些物理量都是向量,可以合成,而且知道这些矢量的合成都遵循平行四边形法则,由此引入本课题.2.运用向量的定义和向量相等的定义得出向量加减法的三角形法则、平行四边形法则,并对向量加法的交换律、结合律进行证明,同时运用他们进行相关计算,这可让同学们进一步加强对向量几何意义的理解.三、情感、态度与价值观1.通过本节内容的学习,让学生认识事物之间的相互转化,培养学生的数学应用意识.2.体会数学在生活中的作用.培养学生类比、迁移、分类、归纳等能力.教学重点、难点教学重点:会用向量加法的三角形法则和平行四边形法则作两个向量的和向量和差向量.教学难点:理解向量加减法的定义.教学关键:向量加法的三角形法则和平行四边形法则的探究引导.教学突破方法:由物理中力的合成与分解拓展延伸,引导学生探讨得到结论.教法与学法导航教学方法;启发诱导,讲练结合.学习方法:数能进行运算,向量是否也能进行运算呢?数的加法启发我们,从运算的角度看,位移的合成、力的合成可看作向量的加法.借助于物理中位移的合成、力的合成来理解向量的加法,让学生顺理成章接受向量的加法定义.结合图形掌握向量加法的三角形法则和平行四边形法则.联系数的运算律理解和掌握向量加法运算的交换律和结合律.教学准备教师准备:多媒体或实物投影仪、尺规.1教师备课系统──多媒体教案2 学生准备:练习本、尺规.教学过程一、创设情境,导入新课上一节,我们一起学习了向量的有关概念,明确了向量的表示方法,了解了零向量、单位向量、平行向量、相等向量等概念,并接触了这些概念的辨析判断.数能进行运算,向量是否也能进行运算呢?这一节,我们将借助于物理中位移的合成、力的合成来学习向量的加法和减法.二、主题探究,合作交流提出问题:1.类比数的加法,猜想向量的加法,应怎样定义向量的加法?2.向量加法的法则是什么?3.与数的运算法则有什么不同?师生互动:向量是既有大小、又有方向的量,教师引导学生回顾物理中位移的概念,位移可以合成,如图.某对象从A点经B点到C点,两次位移AB、BC的结果,与A 点直接到C点的位移AC结果相同.力也可以合成,老师引导,让学生共同探究如下的问题.图(1)表示橡皮条在两个力的作用下,沿着G C的方向伸长了EO;图(2)表示撤去F1和F2,用一个力F作用在橡皮条上,使橡皮条沿着相同的方向伸长相同的长度.改变力F1与F2的大小和方向,重复以上的实验,你能发现F与F1、F2之间的关系吗?力F对橡皮条产生的效果与力F1与F2共同作用产生的效果相同,物理学中把力F 叫做F1与F2的合力.人教版新课标普通高中◎数学④必修合力F与力F1、F2有怎样的关系呢?由图(3)发现,力F在以F1、F2为邻边的平行四边形的对角线上,并且大小等于平行四边形对角线的长.数的加法启发我们,从运算的角度看,F可以认为是F1与F2的和,即位移、力的合成看作向量的加法.讨论结果:1.向量加法的定义:如下图,已知非零向量a、b,在平面内任取一点A,作AB=a,BC=b,则向量AC叫做a与b的和,记作a +b,即a+b=AB+BC=AC.求两个向量和的运算,叫做向量的加法.2.向量加法的法则:(1)向量加法的三角形法则在定义中所给出的求向量和的方法就是向量加法的三角形法则.运用这一法则时要特别注意“首尾相接”,即第二个向量要以第一个向量的终点为起点,则由第一个向量的起点指向第二个向量的终点的向量即为和向量.位移的合成可以看作向量加法三角形法则的物理模型.(2)向量加法的平行四边形法则如图,以同一点O为起点的两个已知向量a、b为邻边作平行四边形,则以O为起点的对角线OC就是a与b的和.我们把这种作两个向量和的方法叫做向量加法的平行四边形法则.力的合成可以看作向量加法平行四边形法则的物理模型.对于零向量与任一向量a,我们规定a+0=0+a=a.提出问题1.两共线向量求和时,用三角形法则较为合适.当在数轴上表示两个向量时,它们的加法与数的加法有什么关系?2.思考|a+b|,|a|,|b|存在着怎样的关系?3.数的运算和运算律紧密联系,运算律可以有效地简化运算.类似地,向量的加法是否也有运算律呢?师生互动:观察实际例子,教师启发学生思考,并适时点拨,诱导,探究向量的加法在特殊情况下的运算,共线向量加法与数的加法之间的关系.数的加法满足交换律与3教师备课系统──多媒体教案结合律,即对任意a,b∈R,有a+b=b+a,(a+b)+c=a+(b+c).任意向量a,b的加法是否也满足交换律和结合律?引导学生画图进行探索.讨论结果:1.两个数相加其结果是一个数,对应于数轴上的一个点;在数轴上的两个向量相加,它们的和仍是一个向量,对应于数轴上的一条有向线段.2.当a,b不共线时,|a+b|<|a|+|b|(即三角形两边之和大于第三边);当a,b共线且方向相同时,|a+b|=|a|+|b|;当a,b共线且方向相反时,|a+b|=|a|-|b|(或|b|-|a|).其中当向量a的长度大于向量b的长度时,|a+b|=|a|-|b|;当向量a的长度小于向量b的长度时,|a+b|=|b|-|a|.一般地,我们有|a+b|≤|a|+|b|.3.如下左图,作AB=a,AD=b,以AB、A D为邻边作ABC D,则BC=b,DC=a.因为AC=AB+AD=a+b,AC=AD+DC=b+a,所以a+b=b+a.如上右图,因为AD=AC+CD=(AB+BC)+CD=(a+b)+c,AD=AB+BD=AB+(BC+CD)=a+(b+c),所以(a+b)+c=a+(b+c).综上所述,向量的加法满足交换律和结合律.提出问题①如何理解向量的减法?②向量的加法运算有平行四边形法则和三角形法则,那么,向量的减法是否也有类似的法则?师生互动:数的减法运算是数的加法运算的逆运算,数的减法定义即减去一个数等于加上这个数的相反数,因此向量的减法运算也可定义为向量加法运算的逆运算.可类比数的减法运算,我们定义向量的减法运算,也应引进一个新的概念,这个概念又该如何定义?引导学生思考,相反向量有哪些性质?由于方向反转两次仍回到原来的方向,因此a和-a互为相反向量.于是-(-a)=a.我们规定,零向量的相反向量仍是零向量.任一向量与其相反向量的和是零向量,即a+(-a)=(-a)+a=0.所以,如果a、b是互为相反的向量,那么4人教版新课标普通高中◎数学④必修a=-b,b=-a,a +b=0.A.平行四边形法则如上图,设向量AB=b,AC=a,则AD=-b,由向量减法的定义,知AE=a+(-b)=a-b.又b+BC=a,所以BC=a-b.由此,我们得到a-b的作图方法.B.三角形法则如上图,已知a、b,在平面内任取一点O,作OA=a,OB=b,则BA=a-b,即a-b 可以表示为从b的终点指向a的终点的向量,这是向量减法的几何意义.讨论结果:①向量减法的定义.我们定义a-b=a+(-b),即减去一个向量相当于加上这个向量的相反向量.规定:零向量的相反向量是零向量.②向量的减法运算也有平行四边形法则和三角形法则,这也正是向量的运算的几何意义所在,是数形结合思想的重要体现.三、拓展创新,应用提高例1如下左图,已知向量a、b,求作向量a+b.活动:教师引导学生,让学生探究分别用向量加法的三角形法则和平行四边形法则作两个向量的和向量.在向量加法的作图中,学生体会作法中在平面内任取一点O的依据——它体现了向量起点的任意性.在向量作图时,一般都需要进行向量的平移,用平行四边形法则作图时应强调向量的起点放在一起,而用三角形法则作图则要求首尾相连.5教师备课系统──多媒体教案 6 解:作法一:在平面内任取一点O (上中图),作OA =a ,AB =b ,则OB =a +b .作法二:在平面内任取一点O (上右图),作OA =a ,OB =b .以OA 、OB 为邻边作OACB ,连接OC ,则OC =a +b . 例2 长江两岸之间没有大桥的地方,常常通过轮渡进行运输.如下图所示,一艘船从长江南岸A 点出发,以5 k m/h 的速度向垂直于对岸的方向行驶,同时江水的速度为向东2 k m/h .(1)试用向量表示江水速度、船速以及船实际航行的速度(保留两个有效数字);(2)求船实际航行的速度的大小与方向(用与江水速度间的夹角表示,精确到度).活动:本例结合一个实际问题说明向量加法在实际生活中的应用.这样的问题在物理中已有涉及,这里是要学生能把它抽象为向量的加法运算,体会其中应解决的问题是向量模的大小及向量的方向(与某一方向所成角的大小).引导点拨学生正确理解题意,将实际问题反映在向量作图上,从而与初中学过的解直角三角形建立联系.解:如上右图所示,AD 表示船速,AB 表示水速,以A D 、AB 为邻边作ABC D ,则AC 表示船实际航行的速度.(2)在Rt △ABC 中,|AB |=2,|BC |=5,所以|AC |=2952|||AB |2222=+=+BC ≈5.4. 因为tan ∠CAB =229,由计算器得∠CAB =68°. 答:船实际航行速度的大小约为5.4 km/h ,方向与水的流速间的夹角为68°. 点评:用向量法解决物理问题的步骤为:先用向量表示物理量,再进行向量运算,最后回扣物理问题,解决问题.例3 如图(1)已知向量a 、b 、c 、d ,求作向量a -b ,c -d .活动:教师让学生亲自动手操作,引导学生注意规范操作,为以后解题打下良好基础;点拨学生根据向量减法的三角形法则,需人教版新课标普通高中◎数学④ 必修 7 要选点平移作出两个同起点的向量. 作法:如图(2),在平面内任取一点O ,作OA =a ,OB =b ,OC =c ,OD =d .则BA =a -b ,DC =c -d .例4 如图,ABC D 中, AB =a ,AD =b ,你能用a 、b 表示向量AC 、DB 吗?活动:本例是用两个向量表示几何图形中的其他向量,这是用向量证明几何问题的基础.要多注意这方面的训练,特别要掌握用向量表示平行四边形的四条边与两条对角线的关系.解:由向量加法的平行四边形法则,我们知道AC =a +b ,同样,由向量的减法,知DB =AB -AD =a -b .四、小结1.先由学生回顾本节学习的数学知识:向量的加法定义,向量加法的三角形法则和平行四边形法则,向量加法满足交换律和结合律,几何作图,向量加法的实际应用.2.教师与学生一起总结本节学习的数学方法:特殊与一般,归纳与类比,数形结合,分类讨论,特别是通过知识迁移类比获得新知识的过程与方法.课堂作业1.下列等式中,正确的个数是( )①a +b =b +a ②a -b =b ③0-a =-a ④-(-a )=a ⑤a +(-a )=0A .5B .4C .3D .22.如图,D 、E 、F 分别是△ABC 的边AB 、BC 、CA 的中点,则AF -DB 等于( )A .FDB .FC C .FED .BE3.下列式子中不能化简为AD 的是( )A .(AB +CD )+BC B .(AD +MB )+(BC +CM )C .BM AD MB -+ D .OC -OA +CD教师备课系统──多媒体教案8 4.已知A、B、C三点不共线,O是△ABC内一点,若OA+OB+OC=0,则O是△ABC的()A.重心B.垂心C.内心D.外心参考答案:1.C 2.D 3.C 4.A.第2课时教学目标一、知识与技能1.通过经历探究数乘运算法则及几何意义的过程,掌握实数与向量积的定义,理解实数与向量积的几何意义,掌握实数与向量的积的运算律.2.理解两个向量共线的等价条件,能够运用两向量共线条件判定两向量是否平行.二、过程与方法充分抓住本节教学中的学生探究、猜想、推证等活动,引导学生画出草图帮助理解题意和解决问题.先由学生探究向量数乘的结果还是向量(特别地0·a=0),它的几何意义是把向量a沿a的方向或a的反方向放大或缩小,当λ>0时,λa与a方向相同,当λ<0时,λa与a方向相反;向量共线定理用来判断两个向量是否共线.然后对所探究的结果进行运用拓展.三、情感、态度与价值观通过探究,体会类比迁移的思想方法,渗透研究新问题的思想和方法,培养创新能力和积极进取精神.通过解决具体问题,体会数学在生活中的重要作用.教学重点、难点教学重点:实数与向量积的意义、两个向量共线的等价条件及其运用.教学难点:对向量共线的等价条件的理解运用.教学关键:两个向量共线的等价条件的探究过程的引导.教学突破方法:从向量共线的定义出发,引导学生分组讨论,得出结果.教法与学法导航教学方法:问题式教学,启发诱导.学习方法:合作探讨,在向量加减法的基础上进行推广.教学准备教师准备:多媒体、尺规.学生准备:练习本、尺规.教学过程一、创设情境,导入新课前一节课,我们一起学习了向量加减法运算,这一节,我们将在加法运算基础上研究相同向量和的简便计算及推广.在代数运算中,a+a+a=3a,故实数乘法可以看成是相人教版新课标普通高中◎数学④ 必修 9同实数加法的简便计算方法,那么相同向量的求和运算是否也有类似的简便计算.二、主题探究,合作交流 提出问题: ① 探究:已知非零向量a ,试一试作出a +a +a 和(-a )+(-a )+(-a ).② 你能说明它们的几何意义吗?③ 引入向量数乘运算后,你能发现数乘向量与原向量之间的位置关系吗?怎样理解两向量平行?与两直线平行有什么异同?师生互动:引导学生回顾相关知识并猜想结果,对于运算律的验证,点拨学生通过作图来进行.通过学生的动手作图,让学生明确向量数乘运算的运算律及其几何意义.教师要引导学生特别注意0·a =0,而不是0·a =0.这个零向量是一个特殊的向量,它似乎很不起眼,但又处处存在,稍不注意就会出错,所以要引导学生正确理解和处理零向量与非零向量之间的关系.实数与向量可以求积,但是不能进行加、减运算,比如λ+a ,λ-a 都无法进行.向量数乘运算的运算律与实数乘法的运算律很相似,只是数乘运算的分配律有两种不同的形式:(λ+μ)a =λa +μa 和λ(a +b )=λa +λb ,数乘运算的关键是等式两边向量的模相等,方向相同.判断两个向量是否平行(共线),实际上就是看能否找出一个实数,使得这个实数乘以其中一个向量等于另一个向量.一定要切实理解两向量共线的条件,它是证明几何中的三点共线和两直线平行等问题的有效手段.对问题①,学生通过作图可发现,OC =OA +AB +BC =a +a +a .类似数的乘法,可把a +a +a 记作3a ,即OC =3a .显然3a 的方向与a 的方向相同,3a 的长度是a 的长度的3倍,即|3a |=3|a |.同样,由下图可知,PN =MN QM PQ ++=(-a )+(-a )+(-a ),即(-a )+(-a )+(-a )=3(-a ).显然3(-a )的方向与a 的方向相反,3(-a )的长度是a 的长度的3倍,这样,3(-a )=-3a .对问题②,上述过程推广后即为实数与向量的积.我们规定实数λ与向量a 的积是一个向量,这种运算叫做向量的数乘,记作λa ,它的长度与方向规定如下:(1) |λa |=|λ||a |;(2) 当λ>0时,λa 的方向与a 的方向相同;当λ<0时,λa 的方向与a 的方向相反.由(1)可知,λ=0时,λa =0.根据实数与向量的积的定义,我们可以验证下面的运算律.实数与向量的积的运算律:教师备课系统──多媒体教案10 设λ、μ为实数,那么(1)λ(μa)=(λμ)a;(2)(λ+μ)a=λa+μa;(3)λ(a+b)=λa+λb.特别地,我们有(-λ)a=-(λa)=λ(-a),λ(a-b)=λa-λb.对问题③,向量共线的等价条件是:如果a(a≠0)与b共线,那么有且只有一个实数λ,使b=λa.推证过程教师可引导学生自己完成,推证过程如下:对于向量a(a≠0)、b,如果有一个实数λ,使b=λa,那么由向量数乘的定义,知a与b共线.反过来,已知向量a与b共线,a≠0,且向量b的长度是向量a的长度的μ倍,即|b|=μ|a|,那么当a 与b同方向时,有b=μa;当a与b反方向时,有b=-μa.关于向量共线的条件,教师要点拨学生做进一步深层探究,让学生思考,若去掉a≠0这一条件,上述条件成立吗?其目的是通过0与任意向量的平行来加深对向量共线的等价条件的认识.在判断两个非零向量是否共线时,只需看这两个向量的方向是否相同或相反即可,与这两个向量的长度无关.在没有指明非零向量的情况下,共线向量可能有以下几种情况:(1)有一个为零向量;(2)两个都为零向量;(3)同向且模相等;(4)同向且模不等;(5)反向且模相等;(6)反向且模不等.讨论结果:①数与向量的积仍是一个向量,向量的方向由实数的正负及原向量的方向确定,大小由|λ|·|a|确定.②它的几何意义是把向量a沿a的方向或a的反方向放大或缩小.③向量的平行与直线的平行是不同的,直线的平行是指两条直线在同一平面内没有公共点;而向量的平行既包含没有交点的情况,又包含两个向量在同一条直线上的情形.三、拓展创新,应用提高例1计算:(1)(-3)×4a;(2)3(a+b)-2(a-b)-a;(3)(2a+3b-c)-(3a-2b+c).活动:本例是数乘运算的简单应用,可让学生自己完成,要求学生熟练运用向量数乘运算的运算律.教学中,点拨学生不能将本题看作字母的代数运算,可以让他们在代数运算的同时说出其几何意义,使学生明确向量数乘运算的特点.同时向学生点出,向量的加、减、数乘运算统称为向量的线性运算.对于任意向量a、b,以及任意实数λ、μ1、μ2,恒有λ(μ1a±μ2b)=λμ1a±λμ2b.解:(1)原式=(-3×4)a=-12a;(2)原式=3a+3b-2a+2b-a=5b;(3)原式=2a+3b-c-3a+2b-c=-a+5b-2c.点评:运用向量运算的运算律,解决向量的数乘.其运算过程可以仿照多项式运算中的“合并同类项”.例2如图,已知任意两个非零向量a、b,试作OA=a+b,OB=a+2b,OC=a+3b.你能判断A、B、C三点之间的位置关系吗?为什么?人教版新课标普通高中◎数学④ 必修11活动:本例给出了利用向量共线判断三点共线的方法,这是判断三点共线常用的方法.教学中可以先引导学生作图,通过观察图形得到A 、B 、C 三点共线的猜想,再将平面几何中判断三点共线的方法转化为用向量共线证明三点共线.本题只要引导学生理清思路,具体过程可由学生自己完成.另外,本题是一个很好的与信息技术整合的题材,教学中可以通过计算机作图,进行动态演示,揭示向量a 、b 变化过程中,A 、B 、C 三点始终在同一条直线上的规律.解:分别作向量OA 、OB 、OC 过点A 、C 作直线AC (如上图).观察发现,不论向量a 、b 怎样变化,点B 始终在直线AC 上,猜想A 、B 、C 三点共线.事实上,因为AB =OB -OA =a +2b -(a +b )=b , 而AC =OC -OA =a +3b -(a +b )=2b , 于是AC =2AB .所以A 、B 、C 三点共线.点评:关于三点共线问题,学生接触较多,这里是用向量证明三点共线,方法是必须先证明两个向量共线,并且有公共点.教师引导学生解完后进行反思,体会向量证法的新颖独特.例3 如图,ABC D 的两条对角线相交于点M ,且AB =a ,AD =b ,你能用a 、b 表示MA MB MC 、、和MD 吗?活动:本例的解答要用到平行四边形的性质.另外,用向量表示几何元素(点、线段等)是用向量方法证明几何问题的重要步骤,教学中可以给学生明确指出这一点.教师备课系统──多媒体教案12解:在ABC D 中,∵AC =AB +AD =a +b ,DB =AB -AD =a -b , 又∵平行四边形的两条对角线互相平分, ∴MA =21-AC =21-(a +b )=21-a -21b , MB =21DB =21(a -b )=21a -21b ,MC =21AC =21a +21b ,MD =MB -=-21DB =-21a +21b .点评:结合向量加法和减法的平行四边形法则和三角形法则,将两个向量的和或差表示出来,这是解决这类几何题的关键.四、小结1.让学生回顾本节学习的数学知识:向量的数乘运算法则,向量的数乘运算律,向量共线的条件.2.体会本节学习中用到的思想方法:特殊到一般、归纳、猜想、类比、分类讨论、等价转化.课堂作业1.31[21(2a +8b )-(4a -2b )]等于( ) A .2a -b B .2b -a C .b -a D .a -b2.设两非零向量e 1、e 2不共线,且k e 1+e 2与e 1+k e 2共线,则k 的值为( ) A .1 B .-1 C .±1 D .0 3.若向量方2x -3(x -2a )=0,则向量x 等于( )A .56a B .-6a C .6a D .56-a 4.在△ABC 中,AE =51AB ,EF ∥BC ,EF 交AC 于F ,设AB =a ,AC =b ,则BF用a 、b 表示的形式是BF =_________.5.在△ABC 中,M 、N 、P 分别是AB 、BC 、CA 边上的靠近A 、B 、C 的三等分点,O 是△ABC 平面上的任意一点,若OA +OC OB +=31e 1-21e 2,则OP ON OM ++=________.人教版新课标普通高中◎数学④ 必修136.已知△ABC 的重心为G ,O 为坐标原点,OA =a ,OB =b ,OC =c , 求证:OG =31(a +b +c ).参考答案:1.B2. C3. C 4.-a +51b 5.31e 1-21e 2. 6.连接A G 并延长,设A G 交BC 于M . ∵AB =b -a ,AC =c -a ,BC =c -b ,∴AM =AB +21BC =(b -a )+21(c -b )=21(c +b -2a ). ∴AG =32AM =31(c +b -2a ).∴OG =OA +AG =a +31(c +b -2a )=31(a +b +c ).教案 B第1课时教学目标一、知识与技能1.理解向量加减法的含义,并掌握加减法的三角形法则和平行四边形法则; 2.会用向量加法的交换律与结合律进行向量运算. 二、过程与方法经历向量加减法概念、法则的建构过程;通过观察、实验、类比、归纳等方法培养学生发现问题、分析问题、解决问题的能力.三、情感、态度与价值观经历运用数学来描述和刻画现实世界的过程;在动手探究、合作交流中培养学生勇于探索、敢于创新的个性品质. 教学重点、难点重点:运用向量加减法的三角形法则和平行四边形法则,作两个向量的和向量和差向量.难点: 理解向量的加减法法则及其几何意义.教师备课系统──多媒体教案14教学设想一、创设情境:类比是人类思维中最具创新的一部分,数能进行加减乘除的运算,向量也具有数的特征,那么向量也应该是可以进行运算的,那么向量的运算又如何呢?二、探究新知:(一)教师引导学生仔细阅读课本,分组讨论,归纳如下: 1.定义:求两个向量的和的运算,叫做向量的加法. 注意:两个向量的和仍旧是向量(简称和向量)2.三角形法则:强调:(1)“向量平移”(自由向量):使前一个向量的终点为后一个向量的起点. (2)可以推广到n 个向量连加.(3)a a a =+=+00.(4)不共线向量都可以采用这种法则——三角形法则. 3.已知向量a 、b ,求作向量a +b . 作法:在平面内取一点O , 作a OA = b AB =, 则b a OB +=.4.加法的交换律和平行四边形法则 上题中b +a 的结果与a +b 是否相同,验证结果相同.从而得到:(1)向量加法的平行四边形法则;(2)向量加法的交换律:a +b =b +a . 5. 向量加法的结合律:ABC Daca +b+c ba +bb+c ●A B a +b a +b a a b b a b a a +b b O ABaaa bb b人教版新课标普通高中◎数学④ 必修15(a +b ) +c =a + (b +c )证:作图:使a AB =, b BC =, c CD =,则(a +b ) +c =AD CD AC =+,a + (b +c ) =AD BD AB =+,∴(a +b ) +c =a + (b +c ).从而,多个向量的加法运算可以按照任意的次序、任意的组合来进行.(二)教师引导学生仔细阅读课本,类比向量加法的定义和运算法则,分组讨论,归纳如下:1.用“相反向量”定义向量的减法(1) “相反向量”的定义:与a 长度相同、方向相反的向量.记作 -a . (2) 规定:零向量的相反向量仍是零向量.-(-a )= a .任一向量与它的相反向量的和是零向量.a +(-a )= 0. 如果a 、b 互为相反向量,则a = -b , b = -a ,a + b = 0.(3) 向量减法的定义:.向量a 加上的b 相反向量,叫做a 与b 的差. 即:a - b = a +(-b ).求两个向量差的运算叫做向量的减法.2.用加法的逆运算定义向量的减法:向量的减法是向量加法的逆运算:若b + x = a ,则x 叫做a 与b 的差,记作a - b . 3.求作差向量:已知向量a 、b ,求作差向量. ∵(a -b )+ b = a +(-b )+ b = a + 0 = a .作法:在平面内取一点O , 作OA = a ,OB = b . 则BA = a - b .即a - b 可以表示为从向量b 的终点指向向量a 的终点的向量.AOABaB ’b -bbBa + (-b )abO a bBa ba -b教师备课系统──多媒体教案16注意:(1)BA 表示a - b .强调:差向量“箭头”指向被减数.(2)用“相反向量”定义法作差向量,a - b = a + (-b ).显然,此法作图较繁,但最后作图可统一.4.探究:(1)如果从向量a 的终点指向向量b 的终点作向量,那么所得向量是b - a .(2)若a ∥b , 如何作出a - b ? 三、例题讲解例1 如图,O 为正六边形ABC D EF 的中心,作出下列向量:(1)OA +OC ;(2)BC +FE ;(3)OA +FE .解:(1)因四边形OABC 是以OA 、OC 为邻边的平行四边形,OB 是其对角线, 故OA +OC =OB .(2)因BC =FE ,故BC +EF 与BC 方向相同,长度为BC 的长度的2倍, 故BC +FE =AD . (3)因OD =FE , 故OA +FE =OA +OD =0.点评: 向量的运算结合平面几何知识,在长度和方向两个方面做文章.应深刻理解向a -b A A B B B ’ O a -b a a bb O A O B a -b a -b B A O -b。
高中数学新苏教版精品教案《苏教版高中数学必修4 2.2 向量的线性运算》
2.2?平面向量的线性运算?教学设计【教学目标】1.掌握向量的加、减法运算,并理解其几何意义;2.会用向量加、减的三角形法那么和平行四边形法那么作两个向量的和向量,培养数形结合解决问题的能力;3.通过将向量运算与熟悉的数的运算进行类比,使学生掌握向量加法运算的交换律和结合律,并会用它们进行向量计算,渗透类比的数学方法;4.掌握实数与向量的积的定义以及实数与向量的积的三条运算律,会利用实数与向量的积的运算律进行有关的计算;5.理解两个向量平行的充要条件,能根据条件判断两个向量是否平行; 6.通过对实数与向量的积的学习培养学生的观察、分析、归纳、抽象的思维能力,了解事物运动变化的辩证思想【导入新课】 设置情景:1、复习:向量的定义以及有关概念强调:向量是既有大小又有方向的量长度相等、方向相同的向量相等因此,我们研究的向量是与起点无关的自由向量,即任何向量可以在不改变它的方向和大小的前提下,移到任何位置2、 情景设置:〔1〕某人从A 到B ,再从B 按原方向到C , 那么两次的位移和:〔2〕假设上题改为从A 到B ,再从B 按反方向到C , 那么两次的位移和:〔3〕某车从A 到B ,再从B改变方向到C ,A B CC A BACOAa aa bbb那么两次的位移和:〔4〕船速为,水速为,那么两速度和: 新授课阶段 一、向量的加法1.向量的加法:求两个向量和的运算,叫做向量的加法 2.三角形法那么〔“首尾相接,首尾连〞〕如图,向量a 、b在平面内任取一点,作=a ,=b,那么向量叫做a 与b的和,记作a +b,即 a +b,规定: a 0-= 0 a探究:〔1〕两相向量的和仍是一个向量; 〔2〕当向量与不共线时,的方向不同向,且||||,那么的方向与相同,且||=||-||;假设||<||,那么的方向与相同,且|b|=||-||〔4〕“向量平移〞〔自由向量〕:使前一个向量的终点为后一个向量的起点,可以推广到n 个向量连加例1 向量、,求作向量作法:在平面内取一点,作 ,那么 4.加法的交换律和平行四边形法那么ACABCab abaa b babb aa问题:上题中的结果与是否相同? 验证结果相同从而得到:1〕向量加法的平行四边形法那么〔对于两个向量共线不适应〕; 2〕向量加法的交换律:= 5.向量加法的结合律: = 证:如图:使, , , 那么 =, = ∴ =从而,多个向量的加法运算可以按照任意的次序、任意的组合来进行二、向量的减法1.用“相反向量〞定义向量的减法〔1〕 “相反向量〞的定义:与a 长度相同、方向相反的向量记作 -a 〔2〕 规定:零向量的相反向量仍是零向量--a = a 任一向量与它的相反向量的和是零向量a -a = 0如果a 、b 互为相反向量,那么a = -b , b = -a , a b = 0〔3〕 向量减法的定义:向量a 加上b 的相反向量,叫做a 与b 的差 即:a - b = a -b ,求两个向量差的运算叫做向量的减法 2.用加法的逆运算定义向量的减法: 向量的减法是向量加法的逆运算:假设b = a ,那么叫做a 与b 的差,记作a - b 3.求作差向量:向量a 、b ,求作向量a - b∵a -b b = a -b b = a 0 = a , 作法:在平面内取一点O , 作= a , = b 那么= a - bOabBa ba -b即a - b 可以表示为从向量b 的终点指向向量a 的终点的向量 注意:1︒表示a - b 强调:差向量“箭头〞指向被减数, 2︒用“相反向量〞定义法作差向量,a - b = a -b显然,此法作图较繁,但最后作图可统一4探究:1) 如果从向量a 的终点指向向量b 的终点作向量,那么所得向量是b - a2〕假设a ∥b , 如何作出a - b ?例2 向量a 、b 、c 、d ,求作向量a -b 、c -d解:在平面上取一点O ,作= a , = b , = c , = d , 作, ,那么= a -b , = c -dOAaB’ b -bbBa -babABCbad cDOa -bA ABBB’Oa -baab b O A OBa -ba -b BA O-b例3 平行四边形中,a ,b , 用a 、b 表示向量、解:由平行四边形法那么得: = a b , = = a -b变式一:当a , b 满足什么条件时,ab 与a -b 垂直?〔|a | = |b |〕 变式二:当a , b 满足什么条件时,|ab | = |a -b |?〔a , b 互相垂直〕 变式三:ab 与a -b对角线方向不同〕 三、向量数乘运算 1.定义:请大家根据上述问题并作一下类比,看看怎样定义实数与向量的积?〔可结合教材思考〕可根据小学算术中的解释,类比规定:实数与向量的积就是,它还是一个向量,但要对实数与向量相乘的含义作一番解释才行实数与向量的积是一个向量,记作 它的长度和方向规定如下: 〔1〕〔2〕时,的方向与的方向相同;当时,的方向与的方向相反;特别地,当或时,2.运算律:问:求作向量和〔为非零向量〕并进行比拟,向量与向量相等吗?〔引导学生从模的大小与方向两个方面进行比拟〕生:,师:设、为任意向量,、为任意实数,那么有:A BD C〔1〕;〔2〕;〔3〕通常将〔2〕称为结合律,〔1〕〔3〕称为分配律3.向量平行的充要条件:请同学们观察,,答复、有何关系?生:因为,所以、是平行向量引导:假设、是平行向量,能否得出?为什么?可得出吗?为什么?生:可以!因为、平行,它们的方向相同或相反师:由此可得向量平行的充要条件:向量与非零向量平行的充要条件是有且仅有一个实数,使得对此定理的证明,分两层来说明:其一,假设存在实数,使,那么由实数与向量乘积定义中第2条可知与平行,即与平行其二,假设与平行,且不妨令,设〔这是实数概念〕.接下来看、方向如何:①、同向,那么,②假设、反向,那么记,总而言之,存在实数〔或〕使例4 如图:,,试判断与是否平行.解:∵,∴与平行4〕单位向量:单位向量:模为1的向量向量〔〕的单位向量:与同方向的单位向量,记作思考:如何用来表示?〔〕例5 ,设,如果,那么为何值时,三点在一条直线上?解:由题设知,,三点在一条直线上的充要条件是存在实数,使得,即,整理得①假设共线,那么可为任意实数;②假设不共线,那么有解之,得综上,共线时,那么可为任意实数;不共线时,例6 在平行四边形ABCD中,分别是的中点,为与的交点,假设,,试以,表示、、.解:,,是△的重心,课堂小结〔1〕与的积还是向量,与是共线的;〔2〕向量平行的充要条件的内容和证明思路,也是应用该结论解决问题的思路该结论主要用于证明点共线、求系数、证直线平行等题型问题;〔3〕运算律暗示我们,化简向量代数式就像计算多项式一样去合并同类项作业P88-89习题3 A组 2、3、4、5P89习题3 B组 2、3拓展提升1设都是单位向量,那么以下结论中正确的选项是A.B.C.D.2正方形的边长为,,那么A B C D3 向量,且,那么用表示4,为线段上距较近的一个三等分点,为线段上距较近的一个三等分点,那么用表示的表达式为A B C D5 向量不共线,为实数,那么当时,有,6假设菱形的边长为,那么7,那么的取值范围是参考答案1.提示:因为是单位向量,2.提示:,∴3.4.提示:,∴,5.提示:假设不全为,比方,那么有,从而共线6.2 提示:7.提示:。
高一数学 必修4示范教案:第二章第二节平面向量的线性运算(第二课时) Word版含解析
第二章第二节 平面向量的线性运算第二课时教学过程导入新课思路1.(问题导入)上节课,我们定义了向量的加法概念,并给出了求作和向量的两种方法.由向量的加法运算自然联想到向量的减法运算:减去一个数等于加上这个数的相反数.向量的减法是否也有类似的法则呢?引导学生进一步探究,由此展开新课.思路2.(直接导入)数的减法运算是加法运算的逆运算.本节课,我们继续学习向量加法的逆运算——减法.引导学生去探究、发现. 推进新课新知探究 提出问题①向量是否有减法?②向量进行减法运算,必须先引进一个什么样的新概念? ③如何理解向量的减法?④向量的加法运算有平行四边形法则和三角形法则,那么,向量的减法是否也有类似的法则?活动:数的减法运算是数的加法运算的逆运算,数的减法定义即减去一个数等于加上这个数的相反数,因此定义数的减法运算,必须先引进一个相反数的概念.类似地,向量的减法运算也可定义为向量加法运算的逆运算.可类比数的减法运算,我们定义向量的减法运算,也应引进一个新的概念,这个概念又该如何定义?引导学生思考,相反向量有哪些性质?由于方向反转两次仍回到原来的方向,因此a 和-a 互为相反向量. 于是-(-a )=a .我们规定,零向量的相反向量仍是零向量.任一向量与其相反向量的和是零向量,即a +(-a )=(-a )+a =0.所以,如果a 、b 是互为相反的向量,那么a =-b ,b =-a ,a +b =0. (1)平行四边形法则如图1,设向量AB →=b ,AC →=a ,则AD →=-b ,由向量减法的定义,知AE →=a +(-b )=a -b .图1又b +BC →=a ,所以BC →=a -b .由此,我们得到a -b 的作图方法. (2)三角形法则如图2,已知a 、b ,在平面内任取一点O ,作OA →=a ,OB →=b ,则BA →=a -b ,即a -b 可以表示为从b 的终点指向a 的终点的向量,这是向量减法的几何意义.图2讨论结果:①向量也有减法运算.②定义向量减法运算之前,应先引进相反向量.与数x 的相反数是-x 类似,我们规定,与a 长度相等,方向相反的量,叫做a 的相反向量,记作-a .③向量减法的定义.我们定义a -b =a +(-b ),即减去一个向量相当于加上这个向量的相反向量. 规定:零向量的相反向量是零向量.④向量的减法运算也有平行四边形法则和三角形法则,这也正是向量的运算的几何意义所在,是数形结合思想的重要体现.提出问题①上图中,如果从a 的终点到b 的终点作向量,那么所得向量是什么? ②改变上图中向量a 、b 的方向使a ∥b ,怎样作出a -b 呢?讨论结果:①AB →=b -a . ②略. 应用示例例1如图3(1),已知向量a 、b 、c 、d ,求作向量a -b ,c -d .图3活动:教师让学生亲自动手操作,引导学生注意规范操作,为以后解题打下良好基础;点拨学生根据向量减法的三角形法则,需要选点平移作出两个同起点的向量.作法:如图3(2),在平面内任取一点O ,作OA →=a ,OB →=b ,OC →=c ,OD →=d . 则BA →=a -b ,DC →=c -d . 变式训练在ABCD 中,下列结论错误的是( ) A.AB →=DC → B.AD →+AB →=AC → C.AB →-AD →=BD → D.AD →-BC →=0分析:A 显然正确,由平行四边形法则可知B 正确,C 中,AB →-AD →=BD →错误,D 中,AD →-BC →=AD →+DA →=0正确. 答案:C例2如图4,在ABCD 中,AB →=a ,AD →=b ,你能用a 、b 表示向量AC →、DB →吗?图4活动:本例是用两个向量表示几何图形中的其他向量,这是用向量证明几何问题的基础.要多注意这方面的训练,特别要掌握用向量表示平行四边形的四条边与两条对角线的关系.解:由向量加法的平行四边形法则,我们知道AC →=a +b ,同样,由向量的减法,知DB →=AB →-AD →=a -b .变式训练1.已知一点O 到ABCD 的3个顶点A 、B 、C 的向量分别是a 、b 、c ,则向量OD →等于( ) A .a +b +c B .a -b +c C.a +b -c D .a -b -c解析:如图5,点O 到平行四边形的三个顶点A 、B 、C 的向量分别是a 、b 、c ,结合图形有OD →=OA →+AD →=OA →+BC →=OA →+OC →-OB →=a -b +c .图5答案:B2.若AC →=a +b ,DB →=a -b .①当a 、b 满足什么条件时,a +b 与a -b 垂直? ②当a 、b 满足什么条件时,|a +b|=|a -b|?③当a 、b 满足什么条件时,a +b 平分a 与b 所夹的角? ④a +b 与a -b 可能是相等向量吗?解:如图6,用向量构建平行四边形,其中向量AC →、DB →恰为平行四边形的对角线且AB =a ,AD =b .图6由平行四边形法则,得 AC →=a +b ,DB →=AB →-AD →=a -b . 由此问题就可转换为:①当边AB 、AD 满足什么条件时,对角线互相垂直?(|a|=|b|) ②当边AB 、AD 满足什么条件时,对角线相等?(a 、b 互相垂直) ③当边AB 、AD 满足什么条件时,对角线平分内角?(|a|、|b|相等) ④a +b 与a -b 可能是相等向量吗?(不可能,因为对角线方向不同)点评:灵活的构想,独特巧妙,数形结合思想得到充分体现.由此我们可以想到在解决向量问题时,可以利用向量的几何意义构造几何图形,转化为平面几何问题,这就是数形结合解题的威力与魅力,教师引导学生注意领悟.例3判断题:(1)若非零向量a 与b 的方向相同或相反,则a +b 的方向必与a 、b 之一的方向相同.(2)△ABC 中,必有AB →+BC →+CA →=0.(3)若AB →+BC →+CA →=0,则A 、B 、C 三点是一个三角形的三顶点. (4)|a +b|≥|a -b |.活动:根据向量的加、减法及其几何意义.解:(1)a 与b 方向相同,则a +b 的方向与a 和b 方向都相同; 若a 与b 方向相反,则有可能a 与b 互为相反向量,此时a +b =0的方向不确定,说与a 、b 之一方向相同不妥.(2)由向量加法法则AB →+BC →=AC →,AC →与CA →是互为相反向量,所以有上述结论.(3)因为当A 、B 、C 三点共线时也有AB →+BC →+AC →=0,而此时构不成三角形. (4)当a 与b 不共线时,|a +b|与|a -b|分别表示以a 和b 为邻边的平行四边形的两条对角线的长,其大小不定.当a 、b 为非零向量共线时,同向则有|a +b|>|a -b|,异向则有|a +b|<|a -b |;当a 、b 中有零向量时,|a +b|=|a -b |. 综上所述,只有(2)正确.例4若|AB →|=8,|AC →|=5,则|BC →|的取值范围是( ) A .[3,8] B .(3,8) C .[3,13] D .(3,13)解析:BC →=AC →-AB →.(1)当AB →、AC →同向时,|BC →|=8-5=3;(2)当AB →、AC →反向时,|BC →|=8+5=13;(3)当AB →、AC →不共线时,3<|BC →|<13.综上,可知3≤|BC →|≤13. 答案:C点评:此题可直接应用重要性质||a|-|b||≤|a +b|≤|a|+|b |求解. 变式训练已知a 、b 、c 是三个非零向量,且两两不共线,顺次将它们的终点和始点相连接而成一三角形的充要条件为a +b +c =0.证明:已知a ≠0,b ≠0,c ≠0,且两两不共线,(1)必要性:作AB →=a ,BC →=b ,则由假设CA →=c ,另一方面a +b =AB →+BC →=AC →.由于CA →与AC →是一对相反向量,∴有AC →+CA →=0, 故有a +b +c =0.(2)充分性:作AB →=a ,BC →=b ,则AC →=a +b ,又由条件a +b +c =0, ∴AC →+c =0.等式两边同加CA →,得CA →+AC →+c =CA →+0.∴c =CA →,故顺次将向量a 、b 、c 的终点和始点相连接成一三角形. 知能训练 课本本节练习 解答:1.直接在课本上据原图作(这里从略). 2.DB →,CA →,AC →,AD →,BA →.点评:解题中可以将减法变成加法运算,如AB →-AD →=DA →+AB →=DB →,这样计算比较简便.3.图略. 课堂小结1.先由学生回顾本节学习的数学知识:相反向量,向量减法的定义,向量减法的几何意义,向量差的作图.2.教师与学生一起总结本节学习的数学方法,类比,数形结合,几何作图,分类讨论. 作业课本习题2.2 A 组6、7、8.设计感想1.向量減法的几何意义主要是结合平行四边形法则和三角形法则进行讲解的,两种作图方法各有千秋.第一种作法结合向量减法的定义,第二种作法结合向量的平行四边形法则,直接作出从同一点出发的两个向量a 、b 的差,即a -b 可以表示为从向量b 的终点指向向量a 的终点的向量,第二种作图方法比较简捷.2.鉴于上述情况,教学中引导学生结合向量减法的几何意义,注意差向量的方向,也就是箭头的方向不要搞错了,a -b 的箭头方向要指向a ,如果指向b 则表示b -a ,在几何证明题目中,特别要掌握用向量表示平行四边形的四条边与两条对角线的关系.备课资料一、向量减法法则的理解向量减法的三角形法则的式子内容是:两个向量相减,则表示两个向量起点的字母必须相同(否则无法相减),这样两个向量的差向量是以减向量的终点的字母为起点,以被减向量的终点的字母为终点的向量.只要学生理解法则内容,那么解决起向量加减法的题来就会更加得心应手,尤其遇到向量的式子运算题时,一般不用画图就可迅速求解,如下面例题:例1化简:AB →-AC →+BD →-CD →.解:原式=CB →+BD →-CD →=CD →-CD →=0.例2化简OA →+OC →+BO →+CO →.解:原式=(OA →+BO →)+(OC →+CO →)=(OA →-OB →)+0=BA →. 二、备用习题1.下列等式中,正确的个数是( )①a +b =b +a ②a -b =b -a ③0-a =-a ④-(-a )=a ⑤a +(-a )=0 A .5 B .4 C .3 D .2 答案:B2.如图7,D 、E 、F 分别是△ABC 的边AB 、BC 、CA 的中点,则AF →-DB →等于( )图7A.FD →B.FC →C.FE →D.BE → 答案:D3.下列式子中不能化简为AD →的是( )A .(AB →+CD →)+BC →B .(AD →+MB →)+(BC →+CM →) C.MB →+AD →-BM → D.OC →-OA →+CD → 答案:C4.已知A 、B 、C 三点不共线,O 是△ABC 内一点,若OA →+OB →+OC →=0,则O 是△ABC 的( )A .重心B .垂心C .内心D .外心 答案:A。
苏教版高中数学必修四学案向量加法与减法学案
一、学习目标:1、理解向量加法、减法的含义,会用三角形和平行四边形法则2、向量加法的结合律和交换律3、体会数形结合思想在向量加减法中的应用 二、学习重难点:重点:理解向量加法、减法的概念难点:理解向量加法、减法的应用和数形结合 三、学习过程: 【温故知新】:1、回顾向量的定义中的基本概念。
2、复习、总结物理中里的合成与分解的方法与法则,试用图形演示。
问题1、公园治安巡逻车在公园的各景点进行治安巡逻,如图所示,试表示从A 景点到B 景点通过两种路径的位移和路程。
问题2、类比数学向量与物理矢量,预习课本,总结向量加法定义和法则?并用图形演示?问题3、回顾实数加法运算规律,预习课本,总结向量加法的有关运算律?【知识应用】:1、如图,在正六边形ABCDEF 中,a AB =u u u r r , AF b =u u u r r ,求AC u u u r ,AD u u u r ,u u2、预习课本例1和例2。
思考,在三角形ABC V 中,求证:0AB BC CA ++=u u u r u u u r u u u rB问题4、思考【知识应用】2,若在四边形、五边形中呢,结论还成立吗?试推广总结。
思考:向量a r 与向量a r的相反向量的和等于多少?问题5、预习课本,根据减一个数等于加上它的相反数,总结向量的减法和相应法则,试用图形演示。
【知识应用】:(预习课本例题)3、在平行四边形ABCD 中,下列结论正确的是________①AB DC =u u u r u u u r,②AD AB AC +=u u u r u u u r u u u r ,③AB AD BD -=u u u r u u u r u u u r,④A 0CB =u u u r u u u r r D+4、下列等式正确的是________①0a a -=r r ,②()a a --=r r ,③()0a a +-=r r ,④a o a +=r r ,⑤()a b a b -=+-r r r r5、化简:OA OB CO OC -+--u u u r u u u r u u u r u u u r6、在四边形中,已知AB a =u u u r r ,AD b =u u u r r ,BC c =u u u r r ,试用向量b a c r r r 、、表示向量DC u u u r【探究应用】:1、已知两个非零向量,a b r r,则a b a b +=-r r r r 成立的条件是________2、已知四边形ABCD 的对角线AC 与BD 相交于O 点,且OC BO OD AO ==u u u r u u u r u u u r u u u r,。
苏教版必修四第二章 平面向量 第二讲 向量的线性运算1 向量的加减法(学案含答案)
苏教版必修四第二章平面向量第二讲向量的线性运算1 向量的加减法(学案含答案)二、重难点提示重点:相反向量的概念及向量的加法与减法之间的关系。
难点:掌握向量减法运算,并理解其几何意义。
向量的加法一、向量加法的定义及运算法则1. 求两个向量和的运算,叫做向量的加法。
其中0,()()0+=+-=-+=。
a a a a a a2. 向量加法的运算法则(1)三角形法则:如图1,已知向量a,b,在平面内任取一点O,作OA=a,AB=b,则向量OB叫做a与b的和,记做a+b,即a+b=OA+AB =OB。
图1(2)平行四边形法则:把向量a,b平移到同一点O,如图2,作出平行四边形,则a+b=OB。
图2【核心归纳】准确理解向量加法的三角形法则和平行四边形法则(1)两个法则的使用条件不同三角形法则适用于任意两个非零向量求和,平行四边形法则只适用于两个不共线的向量求和,但是在处理某些问题时,平行四边形法则有它一定的优越性,因此向量加法的三角形法则和它的平行四边形法则都应该熟练掌握。
(2)当两个向量不共线时,两个法则是一致的。
(3)在使用三角形法则时,应注意“首尾连接”;在使用平行四边形法则时应注意范围的限制及和向量与两向量起点相同。
二、向量加法的运算律(1)交换律:a+b=b+a;(2)结合律:(a+b)+c=a+(b+c)。
【核心突破】(1)两个向量的和仍然是一个向量。
(2)当两个非零向量a与b不共线时,a +b的方向与a,b都不相同,且a b a b++。
<(3)特殊位置关系的两向量的和①向量a与b同向,则a+b与a、b方向相同,则a b a b++;=②向量a与b反向,若a+b与b方向相同,则a b b a+。
=-(4)向量加法广泛应用于力的合成、速度的合成等。
示例:在四边形ABCD中,AC AB AD=+,试判断四边形的形状。
思路分析:要结合图形中的三角形运用加、减法的法则。
答案:如图所示由向量加法的三角形法则得=+∴=AC AD DC=+AC AB AD AB DC即AB∥DC,且AB DC=∴四边形ABCD是平行四边形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
向量的加法
重点:向量加法的三角形法则和平行四边形法则; 难点:向量加法的交换律与结合律的推导。
向量的减法
重点:相反向量的概念及向量的加法与减法之间的关系。
难点:掌握向量减法运算,并理解其几何意义。
向量的加法
一、向量加法的定义及运算法则
1. 求两个向量和的运算,叫做向量的加法。
其中0,()()0a a a a a a +=+-=-+=。
2. 向量加法的运算法则
(1)三角形法则:如图1,已知向量a ,b ,在平面内任取一点O ,作=a ,=b ,则向量叫做a 与b 的和,记做a +b ,即a +b =+=。
图1
(2)平行四边形法则:
把向量a ,b 平移到同一点O ,如图2,作出平行四边形,则a +b =。
图2
【核心归纳】
准确理解向量加法的三角形法则和平行四边形法则 (1)两个法则的使用条件不同
三角形法则适用于任意两个非零向量求和,平行四边形法则只适用于两个不共线的向量求和,但是在处理某些问题时,平行四边形法则有它一定的优越性,因此向量加法的三角形法
则和它的平行四边形法则都应该熟练掌握。
(2)当两个向量不共线时,两个法则是一致的。
(3)在使用三角形法则时,应注意“首尾连接”;在使用平行四边形法则时应注意范围的限制及和向量与两向量起点相同。
二、向量加法的运算律
(1)交换律:a +b =b +a ;
(2)结合律:(a +b )+c =a +(b +c )。
【核心突破】
(1)两个向量的和仍然是一个向量。
(2)当两个非零向量a 与b 不共线时,a +b 的方向与a ,b 都不相同,且a b a b <++。
(3)特殊位置关系的两向量的和
①向量a 与b 同向,则a +b 与a 、b 方向相同,则a b a b =++; ②向量a 与b 反向,若a +b 与b 方向相同,则a b b a =-+。
(4)向量加法广泛应用于力的合成、速度的合成等。
示例:在四边形ABCD 中,AC AB AD =+,试判断四边形的形状。
思路分析:要结合图形中的三角形运用加、减法的法则。
答案:如图所示
由向量加法的三角形法则得AC AD DC
=+AC AB AD AB DC =+∴=
即AB ∥DC ,且AB DC =∴四边形ABCD 是平行四边形。
技巧点拨:
如果再添上AB AD =,那么四边形ABCD 是菱形;如果AB AD 和垂直,那么四边形ABCD 是矩形。
向量的减法
一、向量的减法定义
如果b x a +=,则向量x 叫做a 与b 的差,记为a b -,求两个向量差的运算叫做向量的减法。
【要点诠释】
向量的减法是向量的加法的逆运算,利用相反向量的定义,AB BA -=,就可以把减法转化为加法。
二、向量减法的运算法则——三角形法则
在平面内任取一点O ,作,OA a OB b ==,则BA BO OA OB OA a b =+=-+=-,
即a b -表示从减向量b 的终点指向被减向量a 的终点的向量。
【要点诠释】
1. 向量的减法运算与向量的加法运算可以灵活转化,减去一个向量等于加上这个向量的相反向量。
2. 以向量,AB a AD b ==为邻边作平行四边形ABCD ,则两条对角线AC a b =+,
BD b a =-,DB a b =-。
向量的加法
例题1 (向量加法的化简与运算) 化简或运算:
如图所示,梯形ABCD=8=10+
思路分析:利用三角形法则,先求和向量,再求模。
答案:如图所示,作CE=DA,
则BC+DA=BC+CE=BE,
+
=10-8=2。
技巧点拨:
求向量的和要考虑用向量加法的运算律和运算法则,求和的关键是利用向量加法的三角形法则,在运用此法则时,要注意“首尾相接”,即求两个向量的和是以第一个向量的终点为第二个向量的起点,和向量是从第一个向量的起点指向第二个向量的终点。
此类题要利用运算律将“首尾相接”的两个向量分在一组,多个向量求和也要注意首尾相连。
例题2 (向量加法在平面几何中的应用)
如图,已知四边形ABCD的对角线AC与BD相交于点O,且AO=OC,DO=OB。
求证:四边形ABCD是平行四边形。
思路分析:要证明四边形ABCD是平行四边形,只需证明AD=BC,且A,B,C,D 不在一条直线上即可。
答案:由向量的加法法则,知:
又AO=OC,∴AD=BC,
∵A,B,C,D不在一条直线上,
∴A D与BC平行且相等,
∴四边形ABCD是平行四边形。
技巧点拨:
利用向量的加法可以得到线段的平行和相等,用向量法解几何问题的关键是把几何问题转化为向量问题,通过向量的运算得到结论,然后再把向量问题还原成几何问题。
向量的减法
例题1(已知向量作和(差)向量)
如图,已知向量a,b,c不共线,求作向量a+b-c。
思路分析:先将a,b首尾相连,作出a+b,然后根据向量减法的定义作a+b与c的差向量。
答案:
作法一如图(1)所示,在平面内任取一点O,作OA=a,AB=b,则OB=a+b,再作OC=c,则CB=a+b-c;
作法二如图(2)所示,在平面内任取一点O,作OA=a,AB=b,则OB=a+b,过点B作CB=c,则OC=a+b-c。
【重要提示】
1. 求作向量的和与差就是三角形法则或平行四边形法则的运用。
2. 求作向量的差可以转化为两个向量的和进行,也可以直接用向量减法的三角形法则,即把两向量的起点重合,则差向量就是连接两个向量的终点,并指向被减向量。
3. 作图时一定要注意箭头的方向。
例题2 (向量加减法的基本运算)
化简:(AB-CD)-(AC-BD)。
思路分析:思路一:相反向量法,即把向量的减法转化成向量的加法求解;思路二:利用减法的几何意义,即利用向量减法的三角形法则求解;思路三:向量分解法,即把向量转化成从一点出发的两向量的差向量,如AB=OB-OA等。
答案:
方法一(利用相反向量)
方法二(利用向量减法的几何意义)
方法三(利用AB=OB-OA)
设O是平面内任意一点,则
技巧点拨:
1. 向量减法运算的常用方法:
2. 注意在满足下列两种形式的情况下可以化简:
(1)首尾相连且为和;
(2)起点相同且为差。
做题时要注意观察是否有这两种形式,同时要注意逆向应用。
向量的加法
忽视零向量与数0的区别致误
化简++。
【错解】++=+=。
【错因分析】错解的原因是混淆了数0和零向量这两个不同的概念,结果应为零向量。
【防范措施】向量相加或相减,其结果仍然是向量,注意与0的不同。
【正解】++=+=。
向量的减法
利用“形”解决向量的模的求值问题
已知非零向量a,b满足|a|+1,|b|-1,且|a-b|=4,求|a+b|的值。
思路分析:解答本题可先由|a|,|b|及|a-b|出发,找出三者之间的数量关系,从而进一步判断三角形的形状,再求|a+b|的值。
答案:如图,OA=a,OB=b,则BA=|a-b|,以OA,OB为邻边作平行四边形OACB,
则OC=|a+b|,由于+1)2+-1)2=42.故
2
OA+2
OB=2
BA,所以△AOB
是∠AOB为90°的直角三角形,从而OA⊥OB,所以四边形OACB是矩形,根据矩形的对角线相等有OC=BA=4,即|a+b|=4。
技巧点拨:
向量在平面几何中的应用一般有两种题型:
(1)以平面几何为背景的向量计算、证明问题;
(2)利用向量运算证明平面几何问题,这是向量的主要应用。
解题的关键是应用向量加法、减法的几何意义,对相关向量进行合理转化。