高一数学 周练答案 试题

合集下载

高一上学期数学周练13答案

高一上学期数学周练13答案

高一上学期数学周练13一、选择题.请把答案直接填涂在答题卡相应位置上......... 1.已知函数()f x 的定义域为[]-2,2,则函数()()3g x f x = ( D )A .2,13⎡⎤⎢⎥⎣⎦B .[]1,1-C .123,⎡⎤-⎢⎥⎣⎦D .22,33⎡⎤-⎢⎥⎣⎦2.设⎭⎬⎫⎩⎨⎧-∈3,21,1,1α,则使函数αx y =的定义域为R 且为奇函数的所有的α的值为 ( A )A.1,3B.-1,1C.-1,3D.-1,1,3 3.若幂函数()()22433m f x m m x -=--在()0,+∞上为减函数,则实数m =( B )A.41m m ==-或B.1m =-C. 21m m ==-或D. 4m =4.已知ba cb a ==⎪⎭⎫ ⎝⎛=,2.0log ,31312.0,则c b a 、、的大小关系为( B )A 、c b a <<B 、b a c <<C 、b c a <<D 、a c b <<5.已知函数()()log 4(0a f x ax a =->且1a ≠)在[]0,2上单调递减,则a 的取值范围是 ( B ) A .()0,1 B .()1,2 C .()0,2 D .[)2,+∞6.已知函数()()()()21,11log ,013aa x x f x x x ⎧->⎪=⎨-<≤⎪⎩,当1>0x ,20x >,且12x x ≠时,()()12120f x f x x x -<-,则实数a 的取值范围是 ( C )A .10,2⎛⎫ ⎪⎝⎭B .11,32⎡⎫⎪⎢⎣⎭C .10,3⎛⎤ ⎥⎝⎦D .1,3⎛⎤-∞ ⎥⎝⎦ 7.函数()ln 1f x x =-的图象大致是 ( B )A .B .C .D .8.已知函数()3122xxf x x =+-,若()()2120f a f a -+≤,则实数a 的取值范围为 ( D )春雨教育A. (]1,1,2⎡⎫-∞-+∞⎪⎢⎣⎭B. 1,12⎡⎤-⎢⎥⎣⎦ C. [)1,1,2⎛⎤-∞-+∞ ⎥⎝⎦ D.11,2⎡⎤-⎢⎥⎣⎦二、多选题:(每小题给出的四个选项中,不止一项是符合题目要求的,请把正确的所有选项填涂在答题卡相应的位置上)9.(多选)下列各式比较大小,正确的是 ( BC )A .1.72.5>1.73 B .24331()22-> C .1.70.3>0.93.1D .233423()()34>10.(多选)若,,()()(y)x y R f x y f x f ∀∈+=+有,则函数()f x 满足 ( ACD )A. (0)0f = B.为偶函数()f x C.()f x 为奇函数 D.(2020)2020(1)f f = 11.(多选)下列说法正确的是 ( ABD )A .函数()24f x x x =-在区间()2,+?上单调递增B .函数()24xxf x e -=在区间()2,+?上单调递增C .函数()()2ln 4f x x x =-在区间()2,+?上单调递增D .若函数()()1f x x ax =-在区间()0,+?上单调递增,则0a ≤12.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,他和阿基米德、牛顿并列为世界三大数学家,用其名字命名的“高斯函数“为:设x ∈R ,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数,例如:[ 3.5]4-=-,[2.1]2=.已知函数1()12=-+x xe f x e ,则关于函数()[()]g x f x =的叙述中正确的是 ( BC )A.()g x 是偶函数 B.()f x 是奇函数C.()f x 在R 上是增函数D.()g x 的值域是{}1,0,1-【解析】选BC ()()()111[012e g f e ==-=+,1111(1)[(1)][[]112121e g f e e-=-=-=-=-++,()()11g g ∴≠-,则()g x 不是偶函数,故A 错误; 1()12=-+x x e f x e 的定义域为R , 111()()11121211xxx x x x x x e e e e f x f x e e e e---+=-+-=+-++++11011x x xe e e=+-=++,()f x ∴为奇函数,故B 正确; 111111()121221x x x xxe ef x e e e +-=-=-=-+++, 又x e 在R 上单调递增,11()21xf x e ∴=-+在R 上是增函数,故C 正确;春雨教育0x e > ,11x e ∴+>,则1011x e <<+,可得11112212x e -<-<+,即11()22f x -<<. ()[()]{1g x f x ∴=∈-,0},故D 错误.故选BC.三、填空题.请把答案直接填写在答题卡相应位置上......... 13.已知定义在R 上的奇函数,当0x <时有3()2x f x x =-+,则()f x =____332,00,02,0x x x x x x x -⎧+>⎪=⎨⎪-+<⎩_____14.若关于x 的函数12(log )x y a =是R 上的减函数,则实数a 的取值范围是1(,1)2. 15.设函数2()log )f x x =,若对任意的(1,)x ∈-+∞,不等式(ln )(24)0f x a f x -++<恒成立,则a 的取值范围是___(0,]e ____.16.设函数()()()2,142,1x a x f x x a x a x ⎧-<⎪=⎨--≥⎪⎩. ①若1a =,则()f x 的最小值为____1-___;②若()f x 恰有2个零点,则实数a 的取值范围是___[)1,12,2⎡⎫+∞⎪⎢⎣⎭____.四、解答题.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.17. 设函数()()⎪⎭⎫ ⎝⎛⋅=4log 8log 22x x x f ,144x ≤≤,(1)求⎪⎭⎫⎝⎛41f 的值(2)若2log t x =,求t 取值范围;(3)求()f x 的最值,并给出最值时对应的x 的值。

高一数学周末练习 ( 含答案)

高一数学周末练习 (  含答案)

高一数学周末练习 2015-5-241.不等式2x x <的解集是2. 从1,2,3,4这四个数中一次随机取两个数,则其中一个数是另一个 的两倍的概率为 .3. 阅读右边的程序框图,运行相应的程序,则输出的值为 .4.在各项均为正数的等比数列{}n b 中,若783b b ⋅=, 则3132log log b b ++……314log b += .5. 数列{}n a 的前n 项和*23()n n S a n N =-∈,则=n a .6. 一支田径队有男运动员48人,女运动员36人,若用分层抽样的方法从该队的全体运动员中抽取一个容量为21的样本,则抽取男运动员的人数为 . 7.ABC ∆中,若a ,b ,c 成等差数列,30B =,ABC ∆的面积为23, 那么b =________.8.数列{}n a 满足12a =,112n n na a --=,则n a = . 9.已知31x y +=,则28x y +的最小值为____________.10.若ABC ∆的三个内角,,A B C 成等差数列,1AB =,4BC =,则边BC 上的中线AD 的长为 .11. 设y x ,为实数,若1422=++xy y x ,,则y x +2的最大值是 . 12.在ABC ∆中边,,a b c 成等比数列,则B 的取值范围是 . 13.若关于的不等式对任意的正实数恒成立,则实数的取值范围是 .14.ABC ∆中,D 在边BC 上,且2BD =,1DC =,60B ∠=,150ADC ∠=,则ABC ∆的面积为 .15. 在△ABC 中,设角A ,B ,C 的对边分别为a ,b ,c ,且.(1)求角A 的大小;(2)若,求边c 的大小.i x 2(20)lg 0aax x-≤x a 1cos 2a C cb +=a =4b =16.经过长期观测得到:在交通繁忙的时段内,某公路段汽车的车流量y (千辆/小时)与汽车的平均速度v (千米/小时)之间的函数关系为:2920(0)31600vy v v v =>++. (1)在该时段内,当汽车的平均速度v 为多少时,车流量有何最大值?(保留分数形式) (2)若要求在该时段内车流量超过10千辆/小时,则汽车的平均速度应在什么范围内?17.将n 2个数排成n 行n 列的一个数阵:111213121222323132333123n n n n n n nna a a a a a a a a a a a a a aa 已知a 11=2,a 13=a 61+1.该数阵第一列的n 个数从上到下构成以m 为公差的等差数列,每一行的n 个数从左到右构成以m 为公比的等比数列,其中m 为正实数. (Ⅰ)求第i 行第j 列的数a ij ;(Ⅱ)求这n 2个数的和.参考答案:1、{|1x x >或0}x <.2、31. 3、4. 4、7. 5、123-⋅=n n a . 6、12. 7、1、51()22n -. 9、、. 12、(0,]3π. 14、解:在△ABC 中,∠BAD =150o -60o =90o ,∴AD =2sin60o=3.在△ACD 中,AC 2=(3)2+12-2×3×1×cos150o =7,∴AC =7.∴AB =2cos60o =1.S △ABC =21×1×3×sin60o =343. 15(2)用余弦定理,得16、解:(Ⅰ)依题意,,83920160023920)1600(3920=+≤++=vv y 当且仅当1600v v =,即40v =时,max 92083y =(千辆/小时)(Ⅱ)由条件得,10160039202>++v v v整理得v 2-89v +1600<0, 即(v -25)(v -64)<0,解得25<v <64.答:当v =40千米/小时,车流量最大,最大车流量约为11.1千辆/小时.如果要求在该时段内车流量超过10千辆/小时,则汽车的平均速度应大于25千米/小时且小于64千米/小时.2222cos .a b c bc A =+-17、解:(Ⅰ)由a 11=2,a 13=a 61+1,得2m 2=2+5m +1.………2分解得m =3或m =12-(舍去). ………………………………………4分11113[2(1)]3(31)3j j j ij i a a i m i ---=⋅=+-=-.…………………………7分(Ⅱ)S =111212122212()()()n n n n nn a a a a a a a a a ++++++++++=11121(13)(13)(13)131313n n n n a a a ---+++---………………………………10分=1(231)1(31)(31)(31)224n n n n n n +--⋅=+-.…………………………15分。

高一年级数学周测试卷(优秀经典数学周测试卷及答案详解)

高一年级数学周测试卷(优秀经典数学周测试卷及答案详解)

高一年级下学期数学周测试卷一、选择题(本题12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求)。

1、= 210sin A 23 ;B 23- ;C 21 ;D 21- 2、函数|sin |x y =的一个单调增区间是A 、)4,4(ππ-B 、)43,4(ππ C 、)23,(ππ D 、)2,23(ππ 3、不等式0412>--x x 的解集是 A 、(-2,1) B 、(2,+∞) C ),2()1,2(+∞- D ),1()2,(+∞--∞4、设集合}23{<<-∈=m Z m M ,}31{≤≤-∈=n Z n N ,则=⋂N M A .}1,0{ B. }1,0,1{- C. }2,1,0{ D }2,1,0,1{-5、函数x xx f -=1)(的图像关于 A . y 轴对称 B.直线y=-x C.坐标原点对称 D.直线y=x6、若动直线a x =与函数x x f sin )(=和x x g cos )(=的图像分别交于M 、N 两点,则MN 的最大值为( )A .1 B. 2 C. 3 D.27、已知正四棱锥S-ABCD 的侧棱长与底面边长都相等,E 是SB 的中点,则AE 、SD 所成的角的余弦值为( )A . 31 B. 32 C. 33 D. 32 8、要得到函数y =sin(4x -π3)的图像,只需将函数y =sin4x 的图像( ) A .向左平移π12个单位 B .向右平移π12个单位 C .向左平移π3个单位 D .向右平移π3个单位 9.a 、b 为非零向量,且|a +b |=|a |+|b |,则( )A .a ∥b ,且a 与b 方向相同B .a 、b 是方向相反的向量C .a =-bD .a 、b 无论什么关系均可10.某单位有老年人27人,中年人54人,青年人81人,为了调查他们的身体状况的某项指标,需从他们中间抽取一个容量为36的样本,则老年人、中年人、青年人分别应抽取的人数是( )A .7,11,19B .6,12,18C .6,13,17D .7,12,1711.把函数f (x )=sin 2x +1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到函数g (x )的图象,则g (x )的最小正周期为( )A .2πB .Π C.π2D.π412.sin 120°cos 210°的值为( )A .-34 B.34 C .-32D.14 二、填空题(每小题5分,共20分)13.在△ABC 中,=a ,=b ,=c ,则a +b +c =________. 14、1-tan 15°1+tan 15°= 15、设f(x)是周期为2的奇函数,当0≤x ≤1时,f(x)=2x(1-x),则⎪⎭⎫ ⎝⎛-25f = 16、已知⎪⎭⎫ ⎝⎛∈ππα,2,55sin =α,则tan2α=_______________。

高一年级下学期数学周练4答案

高一年级下学期数学周练4答案

2bc
2
又 A 为△ABC 的内角,所以 A=π. 6
8.已知函数 f(x)=2sin(2x+π),记函数 f(x)在区间[t,t+π]上的最大值为 M,最小值为 m,设
6
4
函数
h(t)=Mt-mt.若
t∈[ π ,5π],则函数 12 12
h(t)的值域为__________.
[解析] 由已知函数 f(x)的周期 T=π,区间[t,t+π]的长度为T.作出函数 f(x)在[ π ,2π]的图象.
B(2,b),且 cos2α=2,则|a-b|=(
)
3
A.1 5
B. 5 5
C.2 5 5
D.1
[解析] 由 cos2α=2cos2α-1=2可得 cos2α=5= cos2α = 1 ,化简可得 tanα=± 5.
3
6 sin2α+cos2α tan2α+1
5
当 tanα= 5时,可得a= 5,b= 5,即 a= 5,b=2 5,此时|a-b|= 5;当 tanα=- 5时,
所以 cos 2α=1-2sin2α=1-2× 9 =-1. 16 8
3
10. 已知向量 a=(2cosx, 3sinx),b=(cosx,2cosx),函数 f(x)=a·b+m,m∈R,且当
x∈[0,π]时,f(x)的最小值为 2. 2
(1)求 f(x)的单调递增区间;
66
6
6
-2 3.
(2) ①若 m⊥n,则 m·n=0,即-sin α(sin α-2)-cos2α=0,即 sin α=1,可得α=2kπ+π或α
2
6
=2kπ+5π,k∈Z. 6
②若|m-n|= 2,则(m-n)2=2,即(2sin α-2)2+(-2cos α)2=2,

高一数学周考试题 参考答案

高一数学周考试题 参考答案

高一数学周考试题 参考答案一.选择题: 1-5:ABDAC6——10:BBADA 10.解:()f x =====令1sin 2cos x m x +=-,则1sin 2cos x m m x +=-,sin cos 21x m x m +=-)2n(1x m ϕ=+-得)sin(x ϕ=+1≤解得403m ≤≤,()f x =单增,值域为⎡⎢⎣11 .; 12. 1344a b +; 13. 20; 14. 1; 15.⎫⎪⎭. 15.解: 222221122(2),2,0()21211(1),,0x x x x x x x f x x x x x x x x -≤-----≤⎧⎧==⎨⎨->-----+>⎩⎩,绘出简图 若方程()f x m =有三个根,则104m <<,且当0x >时方程可化为20x x m -+-=,易知,231x x +=,23x x m =;当0x ≤时方程可化为220x x m --=,可解得1x = 记y=2222212312323()212x x x x x x x x m ++=++-=-3928m =-+令t =,则2312116816y t t =--+,求得y ⎫∈⎪⎭三.解答题.( 本大题共6小题,共75分.解答须写出文字说明、证明过程和演算步骤.)16. 解:(Ⅰ)令tan x α=,则132x x -=-,22320x x +-=,解得12x =或2x =-, 2παπ<<,tan 0α<,故tan 2α=-; (Ⅱ)3cos()cos()sin cos 2tan 1211cos sin()2παπααααπαα+--+==+=-+=-- 17. 解:(Ⅰ) 571510714,,(,3)885888d a b λλλλλλλλ⎛⎫⎛⎫=+=+-= ⎪ ⎪⎝⎭⎝⎭2||d λ=+=1±,(1,3)d =或(1,3)d =--(Ⅱ) (34,2),2(5,2)a kc k k b a +=++-=-,由题得(34)(5)(2)02k k ⨯+--⨯+=,解得1613k =- 18.解:(Ⅰ)当1a >时,21max min (),()f x a f x a -==,则2218a a a -==,解得2a =; 当01a <<时,12max min (),()f x a f x a -==,则1328a a a --==,解得12a =; (Ⅱ) 当1a >时,由前知2a =,不等式2log (22)log (1)a a a x x +<+即为222log (42)log (1)x x +<+224202421230x x x x x x +>>-⎧⎧⇔⇔⎨⎨+<+-->⎩⎩213x x >-⎧⇔⎨<->⎩或得解集为(2,1)(3,)--+∞.19. 解:(Ⅰ)当2ω=时,2()4sin(2)3g x x π=+2()4sin(2)4sin(2)6333g x x x ππππ-=-+=+ ()4sin(2)3p x x π=+,令23x k ππ+=,得62k x ππ=-+,中心为,0()62k k Z ππ⎛⎫-+∈ ⎪⎝⎭; (Ⅱ)2()4sin()(cos )3f x x x πωω=+-14sin ()cos cos 2x x x ωωω⎡=-⋅-+⎢⎣22sin cos x x x ωωω=-sin 2cos2)x x ωω=-+2sin(2)3x πω=--由题意,Tπ=,2,12ππωω∴== 令23t x π=-是x的增函数,则需2sin y t =-是t 的增函数 故222232k x k πππππ-≤-≤+,522266k x k ππππ-≤≤+,51212k x k ππππ-≤≤+ 函数()f x 的单增区间是5,()1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦. 20.解:(Ⅰ) 若()f x 是偶函数,则有()()f x f x -=恒成立,即:22log (41)log (41)x x mx mx -+-=++ 于是2222412log (41)log (41)log ()log (41)24x x xx x mx x -+=+-+=-+=- 即是22mx x =-对x R ∈恒成立,故1m =- (Ⅱ)当0m >时,2log (41)x y =+,在R 上单增,y mx =在R 上也单增所以2()log (41)x f x mx =++在R 上单增,且(0)1f = 则()242418(log )2log 41f x x m ++-=可化为()242418(log )2log 4(0)f x f x m ++-= 又()f x 单增,得242418(log )2log 40x x m ++-=,换底得2222log 48()2log 40log 4x x m -+-=即22242(log )2log 40x x m -+-=,令2log t x =,则3[0,]2t ∈,问题转换化为 242240t t m -+-=在3[0,]2t ∈有两解24224t t m⇔=-++ 令2224y t t =-++,29312()(0)222y t t =--+≤≤,max 19()22y y ==, 作出29312()(0)222y t t =--+≤≤与4y m =的简图知,4942m ≤<解得819m <≤ 又0m >,故819m <≤. 21.解:(Ⅰ)由[][]()()(2)(1)(1)1(1)(1)1f x f y f xy x y f x y y f y x +=--+=-+-+=--+ 令1,1m x n y =-=-,则,0m n >,且有(1)(1)(1)f m f n f mn +++=+对任意,0m n >均成立 令1m n ==即有(2)(2)(2)f f f +=,得(2)0f =;(Ⅱ)由(1)(1)(1)f m f n f mn +++=+有(1)(1)(1)f mn f n f m +-+=+,只需1m >就好 设211,1x mn x n =+=+,其中,0,1n m m >>,则21(1)0x x n m -=->,故21x x >则21()()(1)(1)(1)f x f x f mn f n f m -=+-+=+,1,12m m >+>所以(1)0f m +>, 即21()()0f x f x ->,21()()f x f x >,()f x 在(1,)+∞单调递增(Ⅲ)由(1)(1)(1)f m f n f mn +++=+令3m n ==,有(4)(4)(10)f f f +=,(10)2f = 令19,9m n ==,由1(91)(1)(911)099f f f ⋅+++==+,故10()29f =-,由奇偶性10()29f -=- 则()2f x <的解集是 10(,)(1,10)9-∞-于是问题等价于是否存在实数k 使10sin 2(4)(sin cos )9k k θθθ--++<-或1sin 2(4)(sin cos )10k k θθθ<--++<对任意的[0,]θπ∈恒成立令sin cos ,[t t θθ=+∈-,问题等价于210(4)19t k t k --+-<-或21(4)110t k t k <--+-<对[t ∈-恒成立令2()(4)1g t t k t k =--+-,则10()9g t <-对[t ∈-恒成立的必要条件是10(1)9109g g ⎧-<-⎪⎪⎨⎪<-⎪⎩即123091109k k ⎧-+<⎪⎪⎨⎪+++<⎪⎩得1391989k k ⎧<⎪⎪⎨⎪>+++⎪⎩,此时无解; 同理1()10g t <<恒成立的必要条件是1(1)10110g g <-<⎧⎪⎨<<⎪⎩,即124101(1110k k <-<⎧⎪⎨<-++<⎪⎩解得57218k k ⎧<<⎪⎨⎪--<<+⎩,得572k <<; 当572k <<时,2()(4)1g t t k t k =--+-的对称轴042k t -=33,42⎛⎫∈- ⎪⎝⎭, (1)当47k +≤<时,对称轴04322k t -⎫=∈⎪⎭,在区间[-的右侧 2()(4)1g t t k t k =--+-在[-单调递减,1()10g t <<恒成立1(1)10110g g <-<⎧⎪⇔⎨<<⎪⎩成立故47k +≤<时,1()10g t <<恒成立;(2)当542k <<+042k t -=34⎛∈- ⎝ ,2()(4)1g t t k t k =--+-在[-先减后增 1()10g t <<恒成立还需min 4()12k g t g -⎛⎫=> ⎪⎝⎭,即2(4)4(4)1142k k k k ----+-> 化简为212240k k -+<,2(6)12k -<,即6k -<-<,解得66k -<<+故有66542k k ⎧-<<+⎪⎨<<+⎪⎩解得64k -<<+;综上所述存在()67k ∈-,使()sin 2(4)(sin cos )2f k k θθθ--++<对任意的[0,]θπ∈恒成立.。

高一数学第一学期周练15+答案

高一数学第一学期周练15+答案

高一数学周练(15)一、选择题:(本题共12小题,每小题5分,共60分)1.tan390°的值等于()A.B.C.﹣D.﹣2.已知M={0,1,2},N={x|x=2a,a∈M},则M∪N=()A.{0}B.{0,1}C.{0,1,2}D.{0,1,2,4}3.设P是△ABC所在平面内的一点,,则()A.P、A、C三点共线B.P、A、B三点共线C.P、B、C三点共线D.以上均不正确4.给出下列四个式子:①=x;②a3>a2;③(log a3)2=2log a3;④log23>log49.其中正确的有()A.0 个B.1个C.2个D.3个5.如图,已知∠AOB=2弧度,点A1、A2、A3在OA上,点B1、B2、B3在OB上,其中每一条实线段和虚线段长度均为1个单位.一个动点M从点O出发,沿着实线段和以点O为圆心的实线圆弧匀速运动,速度为1单位/秒.则动点M到达A2处所需时间为()秒.A.6B.8C.2+πD.2+3π6.下列四个函数中,在(0,+∞)上为增函数的是()A.y=﹣1B.y=x2﹣3x C.y=﹣D.y=﹣|x|7.设f(x)=3x+3x﹣8,用二分法求方程3x+3x﹣8=0在x∈(1,3)内近似解的过程中取区间中点x0=2,那么下一个有根区间为()A.(1,2)B.(2,3)C.(1,2)或(2,3)D.不能确定8.已知函数f (x )=,若f (f (﹣1)=18,那么实数a 的值是( )A .0B .1C .2D .39.若,则sin2α的值为( )A .B .C .D .10.如图2-3-6所示,△ABC 中,若D ,E ,F 依次是AB 的四等分点,则以CB →=e 1,CA →=e 2为基底时,CF →=________.A. 34e 1+14e 2 B.C. D.11.已知函数f (x )=Asin (wx +φ)(A >0,w >0,|φ|<,x ∈R )在一个周期内的图象如图所示.则y=f (x )的图象可由函数y=cosx 的图象(纵坐标不变)( )A .先把各点的横坐标缩短到原来的倍,再向左平移个单位B .先把各点的横坐标缩短到原来的倍,再向右平移个单位C .先把各点的横坐标伸长到原来的2倍,再向左平移个单位D .先把各点的横坐标伸长到原来的2倍,再向右平移个单位12.设函数f (x )为偶函数,且当x ≥0时,f (x )=()x ,又函数g (x )=|xsinπx |,则函数h (x )=f (x )﹣g (x )在[﹣,2]上的零点的个数为( )个. A .3B .4C .5D .6二、填空题(共4小题,每小题5分,满分20分)13.(5分)已知集合M={x |log 2(x ﹣3)≤0},N={x |y=},则集合M ∩N 为 .14.(5分)函数的单调增区间为 .15.(5分)甲、乙二人从A 地沿同一方向去B 地,途中都使用两种不同的速度v 1与v 2(v 1<v 2).甲前一半的路程使用速度v 1,后一半的路程使用速度v 2;乙前一半的时间使用速度v 1,后一半时间使用速度v 2.请在如图坐标系中画出关于甲、乙二人从A 地到达B 地的路程与时间的函数图象(其中横轴t 表示时间,纵轴s 表示路程,C 是AB 的中点,t 1是t 2的一半).16.定义在R 上的函数)(x f 既是偶函数又是周期函数,若)(x f 的最小正周期是π,且当]2,0[π∈x 时,x x f sin )(=,则)35(πf 的值是 . 三.解答题:(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(1)已知||=1,||=,若与的夹角为,求|﹣|.(2)已知=(﹣4,3),=(1,2),求(﹣3)•(2+)的值.18.已知角α的顶点在坐标原点,始边与x 轴的非负半轴重合,终边经过点P (﹣3,4).(1)求sinα,cosα的值;(2)的值.19.已知函数)32sin(23π+-=x y .(1)求函数的值域; (2)求函数取最小值时x 的集合; (3)当⎥⎦⎤⎢⎣⎡-∈3,3ππx 时,求函数的最大值.20.设函数f (x )=log a x ,x (0<a <1). (1)比较f (sin1)与f (cosl )的大小;(2)记函数f (x )的反函数为g (x ),若a +kg (x ﹣1)≥0在x ∈[2,+∞)上恒成立,求k 的最小值.21.已知函数2()log (21)x f x =+(1)求证:函数()f x 在(,)-∞+∞内单调递增;(2)若关于x 的方程2log (21)()x m f x -=+在[1,2]上有解,求m 的取值范围。

高一周测数学试卷(解析版)

高一周测数学试卷(解析版)

利用两角和的余弦公式可判断选项 C;利用两角差的正切公式可判断选项 D;
【详解】对于选项 A:由二倍角正弦公式可得 2 sin 75 cos 75 sin150 1 ,故选项 A 正确; 2
对于选项 B:由二倍角余弦公式1 2 sin2 π cos π 3 ,故选项 B 不正确;
12
62
对于选项 C:由两角和的余弦公式 cos 45 cos15 sin 45 sin15 cos 45 15

0
,所以 x
π 3
π 3
,
2π 3
π 3
,要使得
f
x

0,
2π 3
上单
调递增,则
2π 3
π 3
π 2
,解得
1 4
,又由题意可知
0
,所以
0
1 4
,故选:B
7.下列关于函数
y
tan
x-
π 4
的说法正确的是(

A.图象关于点
3π 4
,0
成中心对称
B.图象关于直线 x 3π 成轴对称 4
A.充要条件
B.必要不充分条件
C.充分不必要条件
D.既不充分也不必要条件
【详解】角 的终边在第三、四象限,则 sin 0 ,反之,若 sin 0 ,则角 的终边在第三、
四象限或者 y 轴的非正半轴,所以“角 的终边在第三、四象限”是“ sin 0 ”的充分不必要条
件。故选:C
4.若 lg tan 1 , 2tan 2 ,则 tan ( )
3π 2
,0
,则当
x
π 4
π 2
时,函数无意义故
D
错误,

2021-2022年高一数学“每周一练”系列试题及答案

2021-2022年高一数学“每周一练”系列试题及答案

高一数学“每周一练”系列试题及答案
1.某初级中学领导采用系统抽样方法,从该校预备年级全体800名学生中抽50名学生做牙
齿健康检查。

现将800名学生从1到800进行编号,求得间隔数k
800
50
=16
,即每16
人抽取一个人。

在1~16中随机抽取一个数,如果抽到的是7,则从33 ~ 48这16个数中应取的数是()
A.40.B.39.C.38.D.37.
2.某工厂有工人1 000名,其中250名工人参加过短期培训(称为A类工人),另外750名工人参加过长期培训(称为B类工人).现用分层抽样方法(按A类,B类分二层)从该工厂的工人中共抽查100名工人,调查他们的生产能力(生产能力指一天加工的零件数).
(1)A类工人中和B类工人中各抽查多少工人?
(2)从A类工人中的抽查结果和从B类工人中的抽查结果分别如下表1和表2.
生产能
力分组
[100,110)[110,120)[120,130)[130,140)[140,150) 人数48x 5 3 生产能
力分组
[110,120)[120,130)[130,140)[140,150) 人数6y 3618
(i)先确定x,y,再完成下列频率分布直方图,就生产能力而言,A类工人中个体间的差
异程度与B类工人中个体间的差异程度哪个更小?(不用计算,可通过观察直方图直接回答结论)。

2022-2023学年下学期高一数学周测试卷(解析版)

2022-2023学年下学期高一数学周测试卷(解析版)

高一春季数学周测答案一.选择题1.下列命题中正确的是( )A .终边和始边都相同的角一定相等B .始边相同而终边不同的角一定不相等C .小于90︒的角一定是锐角D .大于或等于0︒且小于90︒的角一定是锐角 【答案】B2.下图终边在阴影部分的角的集合可表示为( )A .{}18018030,k k k Z αα⋅<<⋅+∈B .{}18018030,k k k Z αα⋅≤≤⋅+∈C .{}36036030,k k k Z αα⋅<<⋅+∈D .{}36036030,k k k Z αα⋅≤≤⋅+∈【答案】B3.一个半径是R 的扇形,其周长为3R ,则该扇形圆心角的弧度数为( )A .1B .3C .πD .3π 【答案】A4.下列两组角的终边不相同的是()k ∈Z ( )A .512k ππ+与712k ππ−+ B .223k ππ−+与423k ππ+ C .126k ππ+与1326k ππ+D .14k ππ+与124k ππ±+【答案】D5.当α为第二象限角时,sin cos sin cos αααα−的值是( ). A .1B .0C .2D .2−【答案】C6.角α的终边上有一点P (a,a ),a ∈R ,且a ≠0,则sinα的值是( ) A .√22B .−√22C .±√22D .1【答案】C 7.已知sinα−2cosθ3sinα+5cosα=−5,则tanα的值为( )A .−2B .2C .2316 D .−2316 【答案】D8. 已知函数()()2242,1,log 1,1,x x x f x x x ⎧++≤⎪=⎨−>⎪⎩,若关于x 的方程()f x t =有四个不同的实数解1x ,2x ,3x ,4x ,且1234x x x x <<<,则)1234122x x x x ++的最小值为( ) A .72 B .8 C .92D .12 【答案】D【分析】先画出分段函数图像,确定1x ,2x ,3x ,4x 的范围,由()()3334log 1log 1x x −−=−结合对数运算可得()()34111x x −−=,)12x x 与34122x x +分别利用均值不等式求最小值,确认取等条件相同,即可得最小值.【详解】函数图像如图所示,()17f =,(]0,7t ∈,1234212x x x x <−<≤<<<,124x x +=−,由()()()()()()333433434log 1log 1log 110111x x x x x x −−=−⇒−−=⇒−−=, ∴()()34342112122251x x x x =−+++−5922≥=,当且仅当343,32x x ==时,等号成立,此时1t =;)()2212121212422x x x x x x x x ⎛⎫+⎛⎫=−≥−=−=− ⎪ ⎪ ⎪⎝⎭⎝⎭,当且仅当1222x x =−=−+1t =.所以)1234122x x x x ++的最小值为91422−=.9.终边在直线y =的角的集合为( )A .{}0=60+360,k k Z αα−∈B .{}0=60+180,k k Z αα−∈C .{}=120+360,k k Z αα∈D .{}=120+180,k k Z αα∈【答案】BD10.化简√1−sin 2160°的结果是( ) A .cos160° B .|cos160°| C .±cos160° D .cos20°【答案】BD11.下列各式中,值为1的是( ) A .122sin45−︒B .4222sin sin cos cos αααα++C .9tan π4D .lg2lg5⨯【答案】ABC12.已知π1sin 33x ⎛⎫−= ⎪⎝⎭,且π02x <<,则以下结论正确的有( )A.π1sin 63x ⎛⎫+= ⎪⎝⎭B.πsin 6x ⎛⎫+ ⎪⎝⎭C.2π1cos 33x ⎛⎫+=− ⎪⎝⎭D.2πcos 3x ⎛⎫+= ⎪⎝⎭【答案】BD 二.填空题13.25cos 4π⎛⎫−= ⎪⎝⎭__________.【答案】√2214.已知:p “角α的终边在第一象限”,:q “sin 0α>”,则p 是q 的________ 条件(填“充分非必要”、“必要非充分”、“充要”或“既不充分也不必要”) 【答案】充分非必要”15.设()cos 24n f n ππ⎛⎫=+ ⎪⎝⎭,则(1)(2)(3)(2022)f f f f ++++=__________.【答案】-√216.已知()()222log 2log 24f x x t x t =−++,在1,164x ⎡⎤∈⎢⎥⎣⎦时,()f x 的最小值为()g t ,当关于t 的方程有()10g t t a −−+=有两个不等实根时,a 的取值范围是__________. 【答案】()5,−+∞【分析】换元[]2log 2,4s t =∈−,求出二次函数2224y s ts t =−++在[]2,4s ∈−上的最小值()g t 的表达式,然后作出函数y a =−与函数()1y g t t =−−的图象,利用数形结合思想可求出实数a 的取值范围.【详解】当1,164x ⎡⎤∈⎢⎥⎣⎦时,令[]2log 2,4s x =∈−,则()g t 为二次函数2224y s ts t =−++在[]2,4s ∈−上的最小值,该二次函数图象开口向上,对称轴为直线s t =.①当2t ≤−时,函数2224y s ts t =−++在区间[]2,4−上单调递增, 此时,()()()22222468g t t t t =−−⨯−++=+;②当24t −<<时,二次函数2224y s ts t =−++在s t =处取得最小值,即()224g t t t =−++;③当4t ≥时,二次函数2224y s ts t =−++在区间[]2,4−上单调递减,此时,()242424620g t t t t =−⨯++=−+.综上所述,()268,224,24620,4t t g t t t t t t +≤−⎧⎪=−++−<<⎨⎪−+≥⎩.由()10g t t a −−+=得()1a g t t −=−−,则函数y a =−与函数()1y g t t =−−的图象有两个交点,令()()2277,233,2115,14721,4t t t t t h t g t t t t t t t +≤−⎧⎪−++−<<⎪=−−=⎨−++≤<⎪⎪−+≥⎩,作出函数y a =−与函数()y h t =的图象如下图所示:如图所示,当5a −<时,即当5a >−时,函数y a =−与函数()y h t =的图象有两个交点,此时,关于t 的方程有()10g t t a −−+=有两个不等实根. 因此,实数a 的取值范围是()5,−+∞. 故答案为:()5,−+∞. 三.解答题 17. 【答案】 (1)3sin 5α=−(2)5418. 【答案】(1)17;(2)15−. 19. 【答案】(1)−√39;(2)√22.20.【答案】(1)函数()()233log a f x a a x =−+是对数函数,233101a a a a ⎧−+=⎪∴>⎨⎪≠⎩,解得2a =,()2log f x x ∴=,211log 122f ⎛⎫∴==− ⎪⎝⎭(2)()2log f x x =在定义域()0,∞+上单调递增,()121f f m m ⎛⎫∴>− ⎪⎝⎭可得到21010121m mm m⎧⎪−>⎪⎪>⎨⎪⎪>−⎪⎩,解得112m <<,∴不等式()121f f m m ⎛⎫>−⎪⎝⎭解集为1,12⎛⎫ ⎪⎝⎭.21. 【答案】(1)(,4][2,)−∞−+∞;(2)存在,91,4⎛−+− ⎝⎦. 【解析】(1)利用绝对值三角不等式求得()f x 的最小值,进而根据不等式恒成立的意义得到关于a 的含绝对值的不等式,求解即得;(2)根据a 和x 的范围化简得到含有参数a 的关于x 的一元二次不等式,利用二次函数的图象和性质,并根据不等式恒成立的意义得到关于实数a 的有关不等式(组),求解即得.【详解】解:(1)∵()|31||3|f x x x a =−++,的∴()|(31)(3)||1|f x x x a a ≥−−+=+, 当且仅当(31)(3)0x x a −+≤时,取等号. ∴原不等式等价于13a +≥, 解得2a ≥或4a ≤−.故a 的取值范围是(,4][2,)−∞−+∞. (2)∵1a >−,∴133a −<, ∵1,33a x ⎡⎤∈−⎢⎥⎣⎦,∴()|31||3|1f x x x a a =−++=+,()(1) g x a x =+,∴原不等式恒成立22(1)53(6)30a x x x x a x ⇔+≥−−⇔−+−≤在1,33a x ⎡⎤∈−⎢⎥⎣⎦上恒成立,令2()(6)3u x x a x =−+−,2423039a u a a ⎛⎫−=+−≤ ⎪⎝⎭得a ≤≤且14410393u a ⎛⎫=−−≤ ⎪⎝⎭,得443a ≥−,又1a >−,得914a −+−<≤.故实数a 的取值范围是91,4⎛−+− ⎝⎦.22.【答案】(1)略;(2)17,18⎡⎤−−⎢⎥⎣⎦;(3)1⎡⎣. 【分析】(1)根据“伪奇函数”的概念,可以求出1x =±满足()()f x f x −=−,得到()f x 是“伪奇函数”;(2)由幂函数的概念求出n 的值,把结论转化为对勾函数在1,44⎡⎤⎢⎥⎣⎦的值域问题,进而解不等式得答案;(3)由题意把结论化为关于22x x −+的二次方程有解的问题,通过换元引入二次函数,进而转化二次函数为在给定的区间有零点问题,列不等式解得答案.【详解】(1)若函数2()21f x x x =−−为“伪奇函数”,则方程()()f x f x −=−有实数解, 即222121x x x x +−=−++有解,整理得21x =解得1x =±,所以()f x 为“伪奇函数”; (2)因为3()(1)(R)n g x n x n −=−∈为幂函数,所以11n −=即2n =,所以()g x x =, 则由()2x f x m =+为定义在[2,2]−上的“伪奇函数”, 所以22x x m m −+=−−在[2,2]−有解,整理得122222x x x xm −−=+=+, 令2x t =,则144t ≤≤,对于函数()1h t t t=+, 设12144t t ≤<≤,则()()()212121211t t h t h t t t t t −−=−⋅ 当121,,14t t ⎡⎤∈⎢⎥⎣⎦时,有()()21h t h t <,所以()h t 是减函数,当[]12,1,4t t ∈时,有()()21h t h t >,所以()h t 是增函数, 又()111744444h h ⎛⎫==+= ⎪⎝⎭,()12h =,所以()1724h t ≤≤,所以17224m ≤−≤解得1718m −≤≤−,所以实数m 的取值范围是17,18⎡⎤−−⎢⎥⎣⎦;(3)若12()422x x f x m m +=−⋅+−是定义在R 上的“伪奇函数”,则()()f x f x −=−在R 上有实数解,即2242224222x x x x m m m m −−−⋅+−=−+⋅−+,整理得()244222240x x x x m m −−+−++−=,()()2222222260x x x x m m −−+−++−=,令122222x x x x s −=+=+≥=,当且仅当0x =取到等号, 则222260s ms m −+−=在[)2,+∞上有解,令()()22222266h s s ms m s m m =−+−=−+−在[)2,+∞上有零点,所以()222Δ44260m m m ≥⎧⎪⎨=−⨯−≥⎪⎩,即2m m ≥⎧⎪⎨≤≤⎪⎩2m ≤或者()()222222420Δ44260m h m m m m ⎧<⎪⎪=−−≤⎨⎪=−⨯−≥⎪⎩,即211m m m <⎧⎪≤≤+⎨⎪≤≤⎩12m <,综上可得m的取值范围是1⎡⎣。

高一数学周考试题及答案

高一数学周考试题及答案

高一数学周考试题及答案一、选择题(每题3分,共30分)1. 函数f(x)=x^2-6x+8的零点个数是()。

A. 0B. 1C. 2D. 32. 已知函数f(x)=2^x,g(x)=x+1,则f[g(x)]等于()。

A. 2^(x+1)B. 2^x + 1C. x^2 + 2x + 2D. 2^x + 2^(x+1)3. 若a,b∈R,且a>b,则下列不等式中一定成立的是()。

A. a^2 > b^2C. 1/a < 1/bD. a/b > 14. 已知向量a=(3, -2),b=(1, 2),则向量a+2b的坐标为()。

A. (5, 2)B. (5, -2)C. (1, -6)D. (1, 2)5. 已知集合A={x|x^2-5x+6=0},则A的元素个数为()。

A. 0B. 1C. 2D. 36. 若函数f(x)=x^3-3x,求f'(x)的值()。

A. 3x^2-3C. x^2-3D. x^2+37. 已知等差数列{an}的首项a1=1,公差d=2,则a5的值为()。

A. 9B. 10C. 11D. 128. 已知双曲线x^2/a^2 - y^2/b^2 = 1的焦点在x轴上,且a=2,b=1,则该双曲线的离心率为()。

A. √3B. √5C. √6D. √79. 已知函数f(x)=|x|,求f(-2)的值为()。

A. 2B. -2C. 0D. 410. 已知圆的方程为(x-2)^2 + (y+1)^2 = 9,求该圆的半径为()。

A. 3B. 4C. 5D. 6二、填空题(每题4分,共20分)11. 已知函数f(x)=x^2-4x+3,求f(1)的值为______。

12. 若向量a=(2, 3),b=(-1, 2),则向量a·b的值为______。

13. 已知等比数列{bn}的首项b1=2,公比q=3,则b3的值为______。

14. 已知直线l的方程为y=2x+3,求该直线的斜率为______。

2021高一数学周末训练卷(解析版)

2021高一数学周末训练卷(解析版)

2021高一数学周末训练卷(解析版)1. 如图,U 为全集,M 、P 、S 是U 的三个子集,则阴影部分所表示的集合是( )A .()M P S ⋂⋂B .()M P S ⋂⋃C .)()S C P M U ⋂⋂( D .)()S C P M U ⋃⋂( 【答案】C 【详解】图中的阴影部分是: M∩P 的子集,不属于集合S ,属于集合S 的补集,即是C U S 的子集则阴影部分所表示的集合是(M∩P )∩(∁U S). 故选C .2.对于集合A ,B ,定义{|,}A B x x A x B -=∈∉,()()⊕=--A B A B B A .设{}1,2,3,4,5,6M =,{}4,5,6,7,8,9,10N =,则M N ⊕中元素的个数为( ).A .5B .6C .7D .8【答案】C 【详解】由已知{}{}1,2,3,7,8,9,10M N N M -=-=, ∴()(){1,2,3,7,8,9,10}MN M N N M ⊕=-⋃-=.故选:C.3.设甲是乙的必要条件;丙是乙的充分但不必要条件,那么( ) A .丙是甲的充分条件,但不是甲的必要条件 B .丙是甲的必要条件,但不是甲的充分条件 C .丙是甲的充要条件D .丙不是甲的充分条件,也不是甲的必要条件 【答案】A【详解】甲是乙的必要条件,所以乙是甲的充分条件,即乙⇒甲; 丙是乙的充分但不必要条件,则丙⇒乙,乙⇒丙,显然丙⇒甲,甲⇒丙,即丙是甲的充分条件,但不是甲的必要条件,故选A4.设集合{}260A x x x =+-=,{}10B x mx =+=,则B 是A 的真子集的一个充分不...必要..的条件是 A .11,23m ⎧⎫∈-⎨⎬⎩⎭B .0m ≠C .110,,23m ⎧⎫∈-⎨⎬⎩⎭D .10,3m ⎧⎫∈⎨⎬⎩⎭【答案】D 【详解】{}{}26023A x x x =+-==-,,若0m =,则B φ= ,B A,若12m =-,则{}2B =A, 若13m =,则{}3B =-A,B ∴A 的一个充分不必要条件是10,3m ⎧⎫∈⎨⎬⎩⎭.5.在下列三个结论中,正确的有( ) ①x 2>4是x 3<-8的必要不充分条件;②在ABC 中,AB 2+AC 2=BC 2是ABC 为直角三角形的充要条件; ③若a ,b ∈R ,则“a 2+b 2≠0”是“a ,b 不全为0”的充要条件. A .①② B .②③ C .①③ D .①②③【答案】C 【详解】①,x 2>4即2x >或2x <-,x 3<-8即2x <-,因为2x >或2x <-成立时,2x <-不一定成立,所以x 2>4是x 3<-8的不充分条件;因为2x <-成立时,2x >或2x <-一定成立,所以x 2>4是x 3<-8的必要条件.即x 2>4是x 3<-8的必要不充分条件.所以该命题正确.②, AB 2+BC 2=AC 2成立时,ABC 为直角三角形一定成立;当ABC 为直角三角形成立时,AB 2+BC 2=AC 2不一定成立,所以在ABC 中,AB 2+AC 2=BC 2是ABC 为直角三角形的充分不必要条件,所以该命题错误.③,即判断“0,0a b ==”是“a 2+b 2=0”的什么条件,由于a 2+b 2=0即0,0a b ==,所以“0,0a b ==”是“a 2+b 2=0”的充要条件,所以“a 2+b 2≠0”是“a ,b 不全为0”的充要条件,所以该命题正确. 故选:C.6. 下列结论错误的是( )A .命题“若x 2-3x -4=0,则x =4”的逆否命题为“若x ≠4,则x 2-3x -4≠0”B .“x =4”是“x 2-3x -4=0”的充分条件C .命题“若m >0,则方程x 2+x -m =0有实根”的逆命题为真命题D .命题“若m 2+n 2=0,则m =0且n =0”的否命题是“若m 2+n 2≠0,则m ≠0或n ≠0” 【答案】C 【详解】解:命题“若2340x x --=,则4x =”的逆否命题为“若4x ≠,则2340x x --≠”,故A 正确; “2340x x --=” ⇔ “4x =或1x =”,故“4x =”是“2340x x --=”的充分不必要条件,故B 正确;对于C ,命题“若0m >,则方程20x x m +-=有实根”的逆命题为命题“若方程20x x m +-=有实根,则0m >,方程20x x m +-=有实根时,1144m m ∆=+⇒-,故C 错误. 命题“若220m n +=,则0m =且0n =”的否命题是“若220m n +≠.则0m ≠或0n ≠”,故正确;故选:C .7.已知a ,b ∈R ,则“0≤a ≤1且0≤b ≤1”是“0≤ab ≤1”的 A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A 【详解】若“0≤a ≤1且0≤b ≤1”,则“0≤ab ≤1”.当a =-1,b =-1时,满足0≤ab ≤1,但不满足0≤a ≤1且0≤b ≤1, ∴“0≤a ≤1且0≤b ≤1”是“0≤ab ≤1”成立的充分不必要条件.故选A.8.如果对于任意实数[],x x 表示不超过x 的最大整数,那么“[][]=x y ”是“1x y -<成立”的( ). A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A 【解析】若“[][]x y =”,设[][]x a y a x a b y a c ===+=+,,, 其中[01b c ∈,,) 1x y b c x y ∴-=-∴-< 即“[][]x y =”成立能推出“[]1x y -<”成立反之,例如 1.2 2.1x y ==, 满足[]1x y -<但[][]12x y ==,,即[]1x y -<成立,推不出[][]x y =故“[][]x y =”是“|x-y|<1”成立的充分不必要条件 故选A9.若“2340x x -->”是“223100x ax a -->”的必要不充分条件,则实数a 的取值范围是( ) A .635⎡⎤-⎢⎥⎣⎦,B .425⎡⎤-⎢⎥⎣⎦,C .(][)635-∞-+∞,, D .][425⎛⎫-∞-+∞ ⎪⎝⎭,, 【答案】D将2340x x -->的解集记为A ,223100x ax a -->的解集记为B .由题意2340x x -->是223100x ax a -->的必要不充分条件可知B 是A 的真子集.2340x x -->,解得{|4A x x =>或1}x <-,223100x ax a -->,则()()520x a x a -+>,(1)当0a ≥时,{|2B x x a =<-或5}x a >,则5421a a ≥⎧⎨-≤-⎩(等号不能同时成立),解得45a ≥.(2)当0a <时,{|5B x x a =<或2}x a >- ,则2451a a -≥⎧⎨≤-⎩(等号不能同时成立),解得2a ≤-.由(1)(2)可得45a ≥或2a ≤-. 故选:D .10.若实数a ,b 满足a≥0,b≥0,且ab=0,则称a 与b 互补,记φ(a ,b )=﹣a﹣b 那么φ(a ,b )=0是a 与b 互补的( ) A .必要不充分条件 B .充分不必要的条件 C .充要条件 D .既不充分也不必要条件【答案】C 【解析】试题分析:由φ(a ,b )=0得22a b +-a -b =0且0,0a b ≥≥;所以φ(a ,b )=0是a 与b 互补的充分条件;再由a 与b 互补得到:0,0a b ≥≥,且ab =0;从而有,所以φ(a ,b )=0是a 与b 互补的必要条件;故得φ(a ,b )=0是a 与b 互补的充要条件;故选C.11.已知不等式()()120a x x x x -->的解集为A ,不等式()()120b x x x x --≥的解集为B ,其中a 、b 是非零常数,则“0ab <”是“A B R =”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既非充分也非必要条件【答案】A 【详解】(1)若0a >,0b >.①若12x x =,不等式()()120a x x x x -->即为()210x x ->,则{}1A x x x =≠,不等式()()120b x x x x --≥即为()210x x -≥,得B R =,A B ⊆,AB B R ==;②若12x x ≠,不妨设12x x <,不等式()()120a x x x x -->即为()()120x x x x -->,则()()12,,A x x =-∞+∞,不等式()()120b x x x x --≥即为()()120x x x x --≥,得(][)12,,B x x =-∞+∞,A B ⊆,则AB B R =≠;(2)同理可知,当0a <,0b <时,A B ⊆,A B B ⋃=不一定为R ; (3)若0a >,0b <.①若12x x =,不等式()()120a x x x x -->即为()210x x ->,则{}1A x x x =≠,不等式()()120b x x x x --≥即为()210x x -≤,则{}1B x =,此时,AB R =;②若12x x ≠,不妨设12x x <,不等式()()120a x x x x -->即为()()120x x x x -->,则()()12,,A x x =-∞+∞,不等式()()120b x x x x --≥即为()()120x x x x --≤,则[]12,B x x =,此时,A B R =;(4)同理,当0a <,0b >时,A B R =.综上所述,“0ab <”是“A B R =”的充分不必要条件.故选A.13.设p :|x ﹣1|≤1,q :x 2﹣(2m +1)x +(m ﹣1)(m +2)≤0.若p 是q 的充分不必要条件,则实数m 的取值范围是_____. 【答案】[0,1]由11x -≤得111x -≤-≤,得02x ≤≤.由2(21)(1)(2)0x m x m m -++-+≤,得[(1)][(2)]0x m x m ---+≤, 得12m x m -≤≤+, 若p 是q 的充分不必要条件,则1022m m -≤⎧⎨+≥⎩,得10m m ≤⎧⎨≥⎩,得01m ≤≤,即实数m 的取值范围是[0,1]. 故答案为:[0,1]14.已知:40p k -<<,:q 函数21y kx kx =--的值恒为负,则p 是q 的______条件. 【答案】充分不必要当40k -<<时,k 0<且24(4)0k k k k ∆=+=+<, 所以函数21y kx kx =--的值恒为负;反过来,函数21y kx kx =--的值恒为负不一定有40k -<<,如当0k =时,函数21y kx kx =--的值恒为负.所以p 是q 的充分不必要条件 故答案为:充分不必要15.设集合{}1,2,3,4,5I =,若非空集合A 同时满足①A I ⊆,②()min A A ≤(其中A 表示A 中元素的个数,()min A 表示集合A 中最小元素),称集合A 为I 的一个好子集,I 的所有好子集的个数为______. 【答案】12 【详解】由题意可知,()min A 的取值为1、2、3、4、5. (1)当()min 1A =时,1A ≤,则{}1A =;(2)当()min 2A =时,2A ≤,则符合条件的集合A 有:{}2、{}2,3、{}2,4、{}2,5,共4个;(3)当()min 3A =时,3A ≤,则符合条件的集合A 有:{}3、{}3,4、{}3,5、{}3,4,5,共4个;(4)当()min 4A =时,4A ≤,则符合条件的集合A 有:{}4、{}4,5,共2个;(5)当()min 5A =时,5A ≤,则符合条件的集合A 为{}5. 综上所述,I 的所有好子集的个数为1442112++++=. 故答案为12.16.Q 是有理数集,集合{},,,0M x x a a b Q x ==∈≠,在下列集合中:①}x M ∈;②1x M x ⎧⎫∈⎨⎬⎩⎭;③{}1212,x x x M x M +∈∈;④{}1212,x x x M x M ∈∈.与集合M 相等的集合序号是______. 【答案】①②④ 【解析】 【分析】利用集合的定义以及集合相等的定义进行验证,即可得出结论. 【详解】对于①中的集合,x M ∈,设x a =,a Q ∈,b Q ,)2a b ==+,则2b Q ∈,①中的集合与集合M 相等;对于②中的集合,x M ∈,设x a =,a Q ∈,b Q ,且a 、b 不同时为零.则2212a x a b ===-222a Q a b∈-,222bQ a b-∈-,②中的集合与集合M 相等;对于③中的集合,取1x a =,2x a =-,a Q ∈,bQ ,则120x x M +=∉,③中的集合与集合M 不相等;对于④中的集合,设111x a =,222x a =,其中1a 、2a 、1b 、2b Q ∈,则()()()(121122*********x x a a a a b b a b a b =+=+++12122a a b b Q +∈,1221a b a b Q +∈,④中的集合与集合M 相等.因此,集合M 相等的集合序号是①②④. 故答案为:①②④.17.设集合{|01}A x x a =≤+≤,{|10}B x a x =-≤≤,其中a ∈R ,求A B .【答案】0a <或1a >时,AB =∅;0a =或1a =时,{0}A B =102a <<时,{|0}A B x a x =-≤≤112a ≤<时,{|10}A B x a x =-≤≤ 【详解】当10a ->即1a >时,B =∅时,AB =∅;当10a -=即1a =时,{|10}A x x =-≤≤,{0}B =,则{0}A B =当10a -<即1a <时,10a -> 若0a ->即0a <时,如下图所示,AB =∅.若0a -=即0a =时,如下图所示,{|01}A x x =≤≤,{|10}B x x =-≤≤,则{0}A B =若10a a -<-<即102a <<时,如下图所示,{|0}A B x a x =-≤≤.若1a a -≤-即112a ≤<时,如下图所示,{|10}A B x a x =-≤≤.综上所述:0a <或1a >时,AB =∅;0a =或1a =时,{0}A B =102a <<时,{|0}A B x a x =-≤≤112a ≤<时,{|10}A B x a x =-≤≤ 18.已知下列三个方程:24430x ax a +-+=,()2210x a x a +-+=,2220x ax a +-=至少有一个方程有实根,求实数a 的取值范围.【答案】32a ≤-或1a >- 【详解】先求使三个方程都没有实根的实数a 的取值范围:由()()()()()21222234443014024120a a a a a a ⎧∆=--+<⎪⎪∆=--<⎨⎪∆=-⨯⨯-<⎪⎩得2224430321020a a a a a a ⎧+-<⎪+->⎨⎪+<⎩解得:312a -<<- ∴至少有一个方程有实根,求实数a 的取值范围:32a ≤-或1a >-19.已知函数f(x)=x 2−2x,g(x)=ax −1,若∀x 1∈[−1,2],∃x 2∈[−1,2],使得f(x 1)=g(x 2),求a 的取值范围. 【答案】详见解析 【解析】若∀x 1∈[−1,2],∃x 2∈[−1,2],使得f(x 1)=g(x 2),即g(x)在[−1,2]上的值域要包含f(x)在[−1,2]上的值域,又在[−1,2]上f(x)∈[−1,3].①当a <0时,g(x)=ax −1单调递减,此时{g(−1)≥3g(2)≤−1, 解得a ≤−4;②当a =0时,g(x)=−1,显然不满足题设;③当a >0时,g(x)=ax −1单调递增,此时{g(2)≥3g(−1)≤−1, 解得a ≥2.综上,∀x 1∈[−1,2],∃x 2∈[−1,2],使得f(x 1)=g(x 2),a 的取值范围为(−∞,−4]∪[2,+∞).20.已知命题:“{}11x x x ∀∈-≤≤,都有不等式2x x m --<0成立”是真命题. (1)求实数m 的取值集合B ;(2)设不等式(3)(2)0x a x a ---<的解集为A ,若x A ∈是x B ∈的充分不必要条件,求实数a 的取值范围.【答案】(1)(2,)+∞;(2)2[,)3+∞.【详解】(1)命题:“{}11x x x ∀∈-≤≤,都有不等式2x x m --<0成立”是真命题, 得2x x m --<0在11x -≤≤时恒成立,∴2max ()m x x >-,得2m >,即{}2(2,)B m m =>=+∞. (2)不等式(3)(2)0x a x a ---<,①当32a a >+,即1a >时,解集{}23A x a x a =+<<,若x A ∈是x B ∈的充分不必要条件,则A 是B 的真子集,∴22a +≥,此时1a >;②当32a a =+,即1a =时,解集A φ=,满足题设条件;③当32a a <+,即1a <时,解集{}32A x a x a =<<+,若x A ∈是x B ∈的充分不必要条件,则A 是B 的真子集, 32a ∴≥,此时213a ≤<. 综上①②③可得2[,)3a ∈+∞ 21.设命题p :对任意[]0,1x ∈,不等式2223x m m -≥-恒成立;命题q :存在[]1,1x ∈-,使得不等式210x x m --+≤成立.(1)若p 为真命题,求实数m 的取值范围;(2)若命题p 、q 有且只有一个是真命题,求实数m 的取值范围.【答案】(1)12m ≤≤(2)1m <或524m <≤ 【详解】(1)对于命题p :对任意[]0,1x ∈,不等式2223x m m -≥-恒成立, 而[]0,1x ∈,有()min 222x -=-,223m m ∴-≥-,12m ∴≤≤, 所以p 为真时,实数m 的取值范围是12m ≤≤;(2)命题q :存在[]1,1x ∈-,使得不等式210x x m -+-≤成立, 只需()2min 10x x m -+-≤,而22151()24x x m x m -+-=-+-,2min 5(1)4x x m m ∴-+-=-+,504m ∴-+≤,54m ≤, 即命题q 为真时,实数m 的取值范围是54m ≤, 依题意命题,p q 一真一假, 若p 为假命题, q 为真命题,则1254m m m ⎧⎪⎨≤⎪⎩或,得1m <; 若q 为假命题, p 为真命题,则1254m m ≤≤⎧⎪⎨>⎪⎩,得524m <≤, 综上,1m <或524m <≤.。

高一上学期数学周练17答案

高一上学期数学周练17答案

高一上学期数学周练17一、选择题.请把答案直接填涂在答题卡相应位置上......... 1.在①160°;②480°;③–960°;④1530°这四个角中,属于第二象限角的是 ( C ) A.① B.①② C.①②③ D.①②③④ 2. 与7π-终边相同的角是( D ) A .137π-B.67π C.237πD.277π3.已知扇形的周长为,圆心角为,则扇形的面积为 ( C )A. B. C. D.4.已知扇形周长为2,则扇形面积最大时扇形的圆心角为 ( D )A.o360π⎛⎫ ⎪⎝⎭B.60° C.1 D.25. 已知角α的终边经过点()2,P -4,则函数sin cos αα-的值等于( A )A.5B.5-C.15 D.3-6.已知集合{}11,cos ,0,1,2A B θ⎧⎫==⎨⎬⎩⎭,若A B ⊆,则锐角θ的值为 ( A ) A .32ππ和B .6πC .62ππ和D .3π7.已知角α的终边经过点(36,1)P a a -+,且sin 0,cos 0,αα>≤则实数a 的取值范围是 ( C )A .[1,2]- B . [1,2] C .(-1,2] D .(1,2) 8.已知圆O 与直线l 相切于点A ,点P ,Q 同时从A 点出发,P 沿着直线l 向右、Q 沿着圆周按逆时针以相同的速度运动,当Q 运动到点A 时,点P 也停止运动,连接OQ ,OP (如图),则阴影部分面积S 1,S 2的大小关系是 ( A ) A .S 1=S 2B .S 1≤S 2C .S 1≥S 2D .先S 1<S 2,再S 1=S 2,最后S 1>S 2二、多选题:(每小题给出的四个选项中,不止一项是符合题目要求的,请把正确的所有选项填涂在答题卡相应的位置上)9.下列结论中正确的是(ABD )春雨教育A. 终边经过点的角的集合是B. 将表的分针拨慢10分钟,则分针转过的角的弧度数是 C. 若α是第三象限角,则2α是第二象限角,为第一或第二象限角D.,,则10.已知|,2k x x x k Z π⎧⎫∈≠∈⎨⎬⎩⎭,则函数sin cos tan |sin ||cos ||tan |x x x y x x x =+-的值可能为( BC )A .3B .-3C .1D .1- 11.设函数12()log f x x=,下列四个命题正确的是( ABC )A .函数()f x 为偶函数B .若f (a )=|f (b )|其中a >0,b >0,a ≠1,则ab =1C .函数f (-x 2+2x )在(1,2)上为单调递增函数D .若0<a <1,则|f (1+a )|<|f (1-a )|12.给出以下四个结论,其中所有正确结论的序号是 ( ABD ) A.若函数()2xf 的定义域为[]1,2,则函数()f x 的定义域是[]2,4;B.函数()()1log 211x a f x ax -=+--(其中0a >,且1a ≠)的图象过定点()1,0;C.当0α=时,幂函数y x α=的图象是一条直线; D.若1log 12a>,则a 的取值范围是1,12⎛⎫ ⎪⎝⎭.三、填空题.请把答案直接填写在答题卡相应位置上......... 13.设cos660a ︒=,函数,0()log ,0x a a x f x x x ⎧<=⎨≥⎩,则21(8)log 5f f ⎛⎫+= ⎪⎝⎭ 214.已知1sin cos 5θθ+=,则cos tan sin θθθ+的值是 2512- .15.已知[)πθ20,∈,而θθcos ,sin 是方程012=++-k kx x 的两个实数根,则k 的值为 1- ,θ的值为 32ππ或16.已知关于x 的方程1202xt ⎛⎫--= ⎪⎝⎭有两个不等的实数根1x 和2x ,且12x x <.①实数t 的取值范围是___()0,2____;②212x x -的取值范围是__()1,-+∞_____.四、解答题.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.17.已知α角的终边经过点P ()m,且满足sin 4m α=,(1)若α为第二象限角,求sin α值;(2)求cos tan αα+的值.17.解:(1)sin (0)sin 43OP m m m αα===>⇒==Q (2)在sin 4m α==中, 春雨教育①若0,cos 1,tan 0,cos tan 1m OP αααα===-=∴+=-时②若2110,,3mm m ===+时,cos ,tan ,cos tan 4343,cos ,tan ,cos tan .4343m m αααααααα==-=-∴+=--==-=+∴+=-+18.已知()πααα<<0cos ,sin 是方程052=+-m x x 的两根. (1)求实数m 的值(2)求αtan 的值(3)求ααα2cos 2cos sin 1+的值18.解:(1)由题意得,1sin cos 1254sin cos 5m mαααα⎧+=⎪⎪⇒=-⎨⎪⋅=⎪⎩; (2)由(1)知4sin 45tan 33cos 5ααα⎧=⎪⎪⇒=-⎨⎪=-⎪⎩; (3)222221sin cos tan 125.sin cos 2cos sin cos 2cos tan 26αααααααααα++===+++Q19.已知不等式()()22log 1log 72x x +≤-.(1)求不等式的解集A ;(2)若当x A ∈时,不等式 1114242x xm -⎛⎫⎛⎫-+≥ ⎪ ⎪⎝⎭⎝⎭总成立,求m 的取值范围. 19.解:(1)由已知可得:1012172x x x x+>⎧⇒-<≤⎨+≤-⎩, 因此,原不等式的解集为(]1,2-;(2)令()1114242x xf x -⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭,则原问题等价()min f x m ≥,且()1144242xxf x ⎛⎫⎛⎫=⋅-⋅+ ⎪ ⎪⎝⎭⎝⎭, 令11,224xt ⎛⎫⎡⎫=∈ ⎪⎪⎢⎝⎭⎣⎭,可得()221442412f x t t t ⎛⎫=-+=-+ ⎪⎝⎭,当12t =时,即当1x =时,函数()y f x =取得最小值,春雨教育即()()min 11f x f ==,1m ∴≤.因此, 实数m 的取值范围是(],1-∞.20.已知函数)11(log )(2++=ax x f 是奇函数,R a ∈. (1)求a 的值;(2)对任意的()0,∞-∈x ,不等式)2(log )12(2x x m f ->+恒成立,求实数m 的取值范围.20.解:(1)方法一 令1x+a +1>0,则x+a+1x+a >0.∴x<-a-1或x>-a.∵f(x)是奇函数,∴其定义域关于原点对称,∴-a-1-a=0,∴a=-12.验证a=-12时,f(x)=log 2x+12x-12.则f(-x)=log 2-x+12-x-12=log 2x-12x+12=-f(x),∴f(x)是奇函数,综上,a=-12 ;方法二 f(x)=log 2⎝ ⎛⎭⎪⎫1x+a +1=log 2x+a+1x+a ,则x+a+1x+a ⇔A={}x| x<-a-1或x>-a , 因为f(x)是奇函数,故∀x∈A,f(-x)=-f(x),即log 2-x+a+1-x+a =-log 2x+a+1x+a =log 2x+ax+a+1,所以-x+a+1-x+a =x+a x+a+1,即(1+a)2-x 2=a 2-x 2,解得a=-12.(2)f(2x +1)>log 2(m-2x )⇒log 2⎝ ⎛⎭⎪⎪⎫12x +12+1>log 2(m-2x )⇒m<2x+12+12x +12+12, 令u=2x +12,x∈(-∞,0),所以u∈⎝ ⎛⎭⎪⎫12,32,令g(u)=u+1u +12.易知g(u)≥52,当u=1时取等号,所以m<52,又由m-2x >0⇒m>2x,故m≥1,所以实数m 的取值范围是5[1,)2.21.某公司设计一个扇环形状的花坛(如图所示),该扇环是由以点O 为圆心的两个同心圆环和延长后通过点O 的两条线段,AD BC 围成,设圆弧AB 和圆弧CD 所在圆的半径分别为12,r r 米,圆心角为θ(弧度).(1)若12,3,63r r πθ===,求花坛的面积;(2)设计时需要考虑花坛边缘(实线部分)的装饰问题,已知直线部分的装饰费用为60元/春雨教育米,弧线部分的装饰费用为90元/米,费用总计1200元,问线段的长度为多少时,花坛的面积最大?21.解(1)设花坛的面积为S 平方米22.已知函数()21()log 4122x x f x k k k ⎡⎤=⋅--++⎢⎥⎣⎦.(1)当0k =时,求函数()y f x =的值域; (2)若函数()y f x =的最大值是1-,求实数k 的值;(3)已知01k <<,若存在两个不同的正数a ,b ,当函数()y f x =的定义域为[],a b 时,函数()y f x =的值域为[]1,1a b ++,求实数k 的取值范围.22.解:(1)当0k =时,21()log 22x f x ⎛⎫=+ ⎪⎝⎭,∵20x >,∴11222x +>,2211()log 2log 122x f x ⎛⎫=+>=- ⎪⎝⎭,即()y f x =值域为()1,-+∞.(2)由题意得:()1141222x x k k k ⋅--++≤(且满足取等条件), 即()4120x x k k k ⋅--+≤.令20x m =>,则()()2()41210x x g m k k k km k m k =⋅--+=--+≤,且满足取等条件. 解法一:显然0k =,()0g m m =≤不成立,不满足条件,且()g m 有最大值,故0k <.因此,()g m 的判别式()22140k k ∆=--=,解得1k =-(103k =>舍去). 检验:当1k =-时,()2()10g m m =--≤,且当21x m ==,即0x =时取得“=”,满足题意.解法二:()()22101km k m k k m m m --+⇒-+-≤≤,春雨教育∵22131024m m m ⎛⎫-+=-+> ⎪⎝⎭,∴21m k m m --+≤且满足取等条件,即2min1m k m m ⎧⎫=-⎨⎬-+⎩⎭,其中0m >.事实上,211111211m m m m m-=--=--+-+-,当且仅当1m =时,2min 11m m m ⎧⎫-=-⎨⎬-+⎩⎭, 故满足条件的1k =-.(3)同(2)设2x m =,并记()()211()412122x x h m k k k km k m k =⋅--++=--++,∵01k <<,∴()h m 的对称轴方程11102222b k m a k k-=-==-<. 又∵0a b <<,∴11222a b k k-<<<,故()h m 在区间2,2a b⎡⎤⎣⎦上单调递增. 由复合函数单调性可知:函数()f x 在区间[],a b 上单调递增,故()1()1f a a f b b =+⎧⎨=+⎩即()()()()121211log 41214122222211412222log 412122a a a a a a b b b bb b k k k a k k k k k k k k k b ++⎧⎡⎤⎧⋅--++=+⋅--++==⨯⎪⎢⎥⎪⎪⎣⎦⎪⇒⎨⎨⎡⎤⎪⎪⋅--++==⨯⋅--++=+⎢⎥⎪⎪⎩⎣⎦⎩即两不等正数a ,b 均满足方程()141202x x k k k ⋅-+++=,∵122a b <<,∴方程()21102kx k x k -+++=在区间()1,+∞有两不等实根.故只需()()()22010111402331011211111022k k k k k k k k k k k k k <<⎧<<⎧⎪⎛⎫⎪⎪∆=+-+> ⎪⎪⎪-<<⎝⎭⎪⎪⇒⎨⎨-+<<->⎪⎪⎪⎪⎪⎪>⋅-+⋅++>⎩⎪⎩,即123k <<. 春雨教育。

【数学周练】高一下数学周练及答案

【数学周练】高一下数学周练及答案

高一下数学周练一、选择题(每小题5分,共35分)1、若一个正三棱柱的三视图如下图所示,则这个正三棱柱的体积为()A.8B.C.D.2、棱锥的三视图如下图,则该棱锥的全面积(单位:)为( )A.48+12B.48+24C.36+12D.36+243、如下图是无盖正方体纸盒的平面展开图,则直线在原正方体中的位置关系是()A.平行B.相交且垂直C.异面D.相交成角4、正四棱锥的顶点都在同一球面上,若该棱锥的高为,底面边长为,则该球的表面积为()A. B. C.D.5、长方体的一个顶点上三条棱长分别是,且它的个顶点都在同一球面上,则这个球的表面积是 ( )A. B. C. D.都不对6、如图,在三棱锥中,,且分别是棱的中点,则和所成的角等于()A. B. C. D.7、下列命题中,正确命题的个数是( )①如果是两条平行直线,那么平行于经过的任何一个平面;②如果直线和平面满足,那么与平面内的任何一条直线平行;③如果直线满足,那么;④如果直线和平面满足,那么;⑤如果平面的同侧有两点到平面的距离相等,那么.A.0B.1C.2D.3二、填空(每小题5分,共15分)8、如右图是一个棱长为的无盖正方体盒子的平面展开图,为其上四个点,则以为顶点的三棱锥的体积为__________.9、如右图所示,分别是正方体的面、面的中心,则四边形在该正方体的面上的正投影可能是下列图中的__________(要求把可能的序号填上).10、已知四棱锥S—ABCD的底面为正方形且侧棱长相等,底面上的四个顶点A、B、C、D在球心为O的半球底面圆周上,顶点S在半球面上,则半球O的体积和正四棱锥S—ABCD的体积之比为__________.三、解答题(每小题12分,共24分)11、四面体及其三视图如图所示,平行于棱,的平面分别交四面体的棱于点.(1)求四面体的体积;(2)证明:四边形是矩形.12、如图,四棱锥P﹣ABCD的底面是正方形,PA⊥底面ABCD,PA=2,∠PDA=45°,点E、F分别为棱AB、PD的中点.(1)求证:AF∥平面PCE;(2)求证:平面PCE⊥平面PCD;(3)求三棱锥C﹣BEP的体积.周练10答案解析第1题答案C第1题解析由三视图知正三棱柱的底面边长为4,高为2,第2题答案A第2题解析棱锥的直观图如图所示:是的等腰直角三角形,底面,,为中点,由底面是边长为6的等腰直角三角形知其底面积是.又直角三角形斜边的中点到两直角边的距离都是3,棱锥高为4,所以三个侧面中与底面垂直的侧面三角形高是4,底面边长为,其余两个侧面的斜高为.故三个侧面中与底面垂直的三角形的面积为,另两个侧面三角形的面积都是,故此几何体的全面积是,故选A第3题答案D第3题解析如图,连接,得正三角形,∴在原正方体中相交成角.第4题答案A第4题解析利用球心到各顶点距离相等列式求解.如图,设球心为,半径为,则中,,解得,该球的表面积为.第5题答案B第5题解析如图所示,设球的半径为R,则球的直径,所以球的表面积,故选B.第6题答案B第6题解析如图所示,取的中点,连接.∵分别为的中点,∴,且.∴为与所成的角,∵,∴,∵,∴,∴,∴是等腰直角三角形,∴,即与所成的角为.第7题答案C第7题解析如图,在正方体中,,在过的平面内,故命题①不正确;平面平面,但不平行于,故命题②不正确;平面平面但与相交,所以③不正确;④中,假设与相交,因为,所以与相交,这与矛盾,故,即④正确;⑤显然正确.第8题答案第8题解析根据题意,可画出图形为:∴.第9题答案(2)(3)第9题解析其中(2)可以是四边形在正方体的面或面上的正投影;(3)可以是四边形在正方体的面上的正投影;四边形在正方体任何一个面上的正投影都不是(1)(4).第10题答案.第10题解析设球O的半径为R,则四棱锥的高为R,底面边长为,体积是,半球体积是,故体积之比是.第11题答案(1)(2)略第11题解析(1)由该四面体的三视图可知,,,平面,四面体体积.(2)证明:平面,平面平面,平面平面,,同理,四边形是平行四边形,又平面,.四边形是矩形.第12题答案(1)略;(2)略;(3).第12题解析(1)取PC的中点G,连接FG、EG,∴FG∴,形ABCD为矩形,E为AB的中点,∴,∴,∴四边形AEGF是平行四边形,∴,又EG⊂平面PCE,AF ⊄平面PCE,∴AF∥平面PCE;(2)∵PA⊥底面ABCD,∴PA⊥AD,PA⊥CD,又AD⊥CD,PA∩AD=A,∴CD⊥平面ADP,又AF⊂平面ADP,∴CD⊥AF,在Rt△PAD中,∠PDA=45°,∴△PAD为等腰直角三角形,∴PA=AD=2,∵F是PD的中点,∴AF⊥PD,又CD∩PD=D,∴AF⊥平面PCD,∵AF∥EG,∴EG⊥平面PCD,又EG⊂平面PCE,∴平面PCE⊥平面PCD;(3)PA⊥底面ABCD在Rt△BCE中,BE=1,BC=2,∴三棱锥C﹣BEP的体积.。

高一数学周末测试(含答案)

高一数学周末测试(含答案)

解三角形本卷共100分,考试时间90分钟一、选择题 (每小题4分,共40分)1. 若ABC ∆的三个内角满足sin :sin :sin 5:11:13A B C =,则ABC ∆是 ( )A.锐角三角形B.钝角三角形C.直角三角形D.可能是锐角三角形,也可能是钝角三角形.2. 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若2=a ,b=2,sinB+cosB=2,则角A 的大小为 ( )A .2πB .3πC .4πD .6π3、已知锐角三角形的边长分别为1,3,a ,则a 的范围是( )A .()10,8B .()10,8C . ()10,8D .()8,104、在△ABC 中,已知C B A sin cos sin 2=,那么△ABC 一定是 ( )A .直角三角形B .等腰三角形C .等腰直角三角形D .正三角形5. 已知ABC ∆中,︒=∠==60,3,4BAC AC AB ,则=BC ( ) A. 13 B. 13 C.5 D.106. 在锐角ABC ∆中,若2C B =,则cb 的范围( )A .B . )2C . ()0,2D . )27. 在ABC △中, 已知,2,4,3===c b a 则=⋅+⋅C b B c cos cos ( )A 2B 3C 4D 58. 在ABC ∆中,已知060=B 且3=b ,则ABC ∆外接圆的面积是( ) A 2π B 43πC πD π29. 在ABC ∆中,A 、B 、C 所对的边分别是a 、b 、c ,已知222a b c +=,则C =( ) A.2π B.4π C.23π D.34π10. 在ABC ∆中,若2cos cos sin 2CA B =,则ABC ∆是 ( )A .等边三角形B .等腰三角形C .锐角三角形D .直角三角形二、填空题 (每小题4分,共16分)11. 已知ABC ∆中,4,45AB BAC =∠=︒,AC =ABC ∆的面积为_______12. 在ABC ∆中,c b a ,,分别是角C B A ,,的对边,且ca b C B +-=2cos cos ,则角B 的大小 为 13. 在△ABC 中,()()()6:5:4::=+++b a a c c b ,则△ABC 的最大内角的度数是14. 在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,若a 2b =,sin cos B B +则角A 的大小为 .三、解答题 (共44分,写出必要的步骤)15. (本小题满分10分)在ABC ∆中,角,,A B C 所对的边分别为,,a b c 且满足sin cos .c A a C = (I )求角C 的大小;(II )求)cos(sin 3C B A +-的最大值,并求取得最大值时角,A B 的大小.16. (本小题满分10分)在ABC ∆中,c b a ,,分别为内角C B A ,,的对边,且2sin (2)sin (2)sin .a A b c B c b C =+++(Ⅰ)求A 的大小;(Ⅱ)求sin sin B C +的最大值.17. (本小题满分l2分) 已知函数2()cos(2)cos23f x x x π=--(x R ∈). (Ⅰ)求函数()f x 的最小正周期及单调递增区间;(Ⅱ) ∆ABC 内角A B C 、、的对边长分别为a b c 、、,若()1,2B f b == c =且,a b >试求角B 和角C 。

高一数学第17周周练答案

高一数学第17周周练答案

高一数学第17周周练参考答案:1. A2. D3. B4.[答案] C[解析] 设球的半径为R ,则圆柱的底面半径为R ,高为2R ,∴V 圆柱=πR 2×2R =2πR 3,V 球=43πR 3.∴V 圆柱V 球=2πR 343πR 3=32, S 圆柱=2πR ×2R +2×πR 2=6πR 2,S 球=4πR 2.∴S 圆柱S 球=6πR 24πR 2=32.5.[答案] B [解析] 画出该几何体的正视图为,其上层有两个立方体,下层中间有三个立方体,两侧各一个立方体,故B 项满足条件.6.[答案] A7.[答案] B[解析] 对于选项A ,当a 与b 是异面直线时,A 错误;对于选项B ,若a ,b 不相交,则a 与b 平行或异面,都存在α,使a ⊂α,b ∥α,B 正确;对于选项C ,a ⊥α,b ⊥α,一定有a ∥b ,C 错误;对于选项D ,a ⊂α,b ⊥α,一定有a ⊥b ,D 错误8.[答案] C9.[答案] D[解析] 如图所示.由于AA 1⊥平面A 1B 1C 1D 1,EF ⊂平面A 1B 1C 1D 1,则EF ⊥AA 1,所以①正确;当E ,F 分别是线段A 1B 1,B 1C 1的中点时,EF ∥A 1C 1,又AC ∥A 1C 1,则EF ∥AC ,所以③不正确;当E ,F 分别不是线段A 1B 1,B 1C 1的中点时,EF 与AC 异面,所以②不正确;由于平面A 1B 1C 1D 1∥平面ABCD ,EF ⊂平面A 1B 1C 1D 1,所以EF ∥平面ABCD ,所以④正确.10.[答案] C[解析] 取BC中点E,连AE、DE,可证BC⊥AE,BC⊥DE,∴∠AED为二面角A-BC-D的平面角,又AE=ED=2,AD=2,∴∠AED=90°,故选C12. 10Q/9 13. 2:1 14. b⊂α或b∥α三.解答题15.[解析]由题意知,所成几何体的表面积等于圆台下底面积+圆台的侧面积+半球面面积.16.(1)证明:连接AE,∵ADEB为正方形,∴AE∩BD=F,且F是AE的中点,又G是EC的中点,∴GF∥AC,又AC⊂平面ABC,GF⊄平面ABC,∴GF∥平面ABC.(2)证明:∵ADEB为正方形,∴EB⊥AB,又∵平面ABED⊥平面ABC,平面ABED∩平面ABC=AB,EB⊂平面ABED,∴BE⊥平面ABC,∴BE⊥AC.又∵AC=BC=22AB,∴CA2+CB2=AB2,∴AC⊥BC.又∵BC∩BE=B,∴AC⊥平面BCE.(3)取AB的中点H,连C H,∵BC=AC=22AB=22,∴CH⊥AB,且CH=12,又平面ABED⊥平面ABC∴C H⊥平面ABCD,∴V=13×1×12=16.17.[证明](1)在正三棱柱ABC-A1B1C1中,∵F、F1分别是AC、A1C1的中点,∴B1F1∥BF,AF1∥C1F.又∵B1F1∩AF1=F1,C1F∩BF=F,∴平面AB1F1∥平面C1BF.(2)在三棱柱ABC-A1B1C1中,AA1⊥平面A1B1C1,∴B1F1⊥AA1. 又B1F1⊥A1C1,A1C1∩AA1=A1,∴B1F1⊥平面ACC1A1,而B1F1⊂平面AB1F1,∴平面AB1F1⊥平面ACC1A1.18.(1)证明:如图所示,取CD的中点E,连接PE,EM,EA,∵△PCD为正三角形,∴PE⊥CD,PE=PD sin∠PDE=2sin60°= 3.∵平面PCD⊥平面ABCD,∴PE⊥平面ABCD,而AM⊂平面ABCD,∴PE⊥AM.∵四边形ABCD是矩形,∴△ADE,△ECM,△ABM均为直角三角形,由勾股定理可求得EM=3,AM=6,AE=3,∴EM2+AM2=AE2.∴AM⊥EM.又PE∩EM=E,∴AM⊥平面PEM,∴AM⊥PM.(2)解:由(1)可知EM⊥AM,PM⊥AM,∴∠PME是二面角P-AM-D的平面角.∴tan∠PME=PEEM=33=1,∴∠PME=45°.∴二面角P-AM-D的大小为45°.。

高一年级数学周考试卷含答案

高一年级数学周考试卷含答案

高一年级数学周考试卷一、选择题(每小题5分,共60分)1.已知集合A={α|2kπ≤α≤(2k+1)π,k∈Z},B={α|-4≤α≤4},则A∩B等于()A.∅B.{α|-4≤α≤π}C.{α|0≤α≤π}D.{α|-4≤α≤-π或0≤α≤π}2.已知sin=,则cos等于()A.B.-C.D.-3.已知函数y=f(x)的定义域为[-1,2],则函数y=f(log2x)的定义域是()A.[1,2] B.[0,4] C.(0,4] D.[,4]4.化简sin·cos·tan的结果是()A.1 B.sin2αC.-cos2αD.-15.函数y=+的值域是()A.{0,2} B.{-2,0} C.{-2,0,2} D.{-2,2}6.已知=-,那么的值是()A.B.-C.2 D.-27.已知定义在R上的奇函数f(x)和偶函数g(x)满足f(x)+g(x)=ax-a-x+2(a>0,且a≠1).若g(2)=a,则f(2)等于()A.2 B.C.D.a28.若sinθ=1-log2x,则实数x的取值范围是()A.[1,4] B.C.[2,4] D.9.已知函数f(x)=lg(ax2+2x+1)的值域为R,则实数a的取值范围是()A.a>1 B.a≥1C.0<a≤1D.0≤a≤110.对于函数y=2sin(2x+),则下列结论正确的是()A.函数的图象关于点(,0)对称B.函数在区间[-,]递增C.函数的图象关于直线x=-对称D.最小正周期是11.定义运算a※b为a※b=例如,1※2=1,则函数f(x)=sin x※cos x的值域为()A . [-1,1]B .C .D . 12.已知函数f (x )=若a ,b ,c 互不相等,且f (a )=f (b )=f (c ),则abc 的取值范围是( ) A .(3,10) B .(3,) C .(1,) D .(,10)二、填空(每小题5分,共20分)13.集合{x |ax 2+2x +1=0}与集合{x |x 2-1=0}的元素个数相同,则a 的取值集合为________. 14.如果圆心角为的扇形所对的弦长为2,则扇形的面积为________. 15.已知cos x =有实根,则m 的取值范围为________. 16.函数⎩⎨⎧<+≤≤=0,220,sin )(x x x x x f 则不等式f(x)>的解集是________. 三、解答题(共2小题,每小题10.0分,共20分) 17.已知函数f (x )=2cos(2x +)+1.(1)先列表,再用“五点法”画出该函数在一个周期内的简图;(2)写出该函数在[0,π]的单调递减区间.18.已知函数f (x )是定义在[-1,1]的奇函数,且f (1)=1,若m,n ∈[-1,1],m+n ≠0,有.0)()(>++nm n f m f (1)证明f (x )在[-1,1]上是增函数;(2)解不等式0)33()1(2<-+-x f x f ;(3)若12)(2+-≤at t x f 对[]1,1-∈∀x ,[]1,1-∈a 恒成立,求实数t 的取值范围.1.已知集合A={α|2kπ≤α≤(2k+1)π,k∈Z},B={α|-4≤α≤4},则A∩B等于()A.∅B.{α|-4≤α≤π}C.{α|0≤α≤π}D.{α|-4≤α≤-π或0≤α≤π}【解析】集合A限制了角α终边只能落在x轴上方或x轴上.2.已知sin=,则cos等于()A.B.-C.D.-【解析】cos=sin=sin=-sin=-.3.已知函数y=f(x)的定义域为[-1,2],则函数y=f(log2x)的定义域是()A.[1,2] B.[0,4] C.(0,4] D.[,4]【解析】依题意,得-1≤log2x≤2,即log22-1≤log2x≤log222,故≤x≤4.4.化简sin·cos·tan的结果是()A.1 B.sin2αC.-cos2αD.-1【解析】因为sin=cosα,cos=cos=-sinα,tan==,所以原式=cosα(-sinα)=-cos2α,故选C.5.函数y=+的值域是()A.{0,2} B.{-2,0} C.{-2,0,2} D.{-2,2}【解析】y=+.当x为第一象限角时,y=2;当x为第三象限角时,y=-2;当x为第二、四象限角时,y=0.6.已知=-,那么的值是()A.B.-C.2 D.-2【解析】因·==-1,故=.7.已知定义在R上的奇函数f(x)和偶函数g(x)满足f(x)+g(x)=ax-a-x+2(a>0,且a≠1).若g(2)=a,则f(2)等于()A.2 B.C.D.a2【解析】∵f(x)是奇函数,g(x)是偶函数,∴由f(x)+g(x)=ax-a-x+2,①得f(-x)+g(-x)=-f(x)+g(x)=a-x-ax+2,②①+②,得g(x)=2,①-②,得f(x)=ax-a-x.又g(2)=a,∴a=2,∴f(x)=2x-2-x,∴f(2)=22-2-2=.8.若sinθ=1-log2x,则实数x的取值范围是()A.[1,4] B.C.[2,4] D.【解析】由正弦函数的图象,可知-1≤sinθ≤1,所以-1≤1-log2x≤1,整理得0≤log2x≤2,解得1≤x≤4,故选A.9.已知函数f(x)=lg(ax2+2x+1)的值域为R,则实数a的取值范围是()A.a>1 B.a≥1C.0<a≤1D.0≤a≤1【解析】当a=0时符合条件,故a=0可取;当a>0时,Δ=4-4a≥0,解得a≤1,故0<a≤1,当a<0时,不满足题意.综上知实数a的取值范围是[0,1],故选D.10.对于函数y=2sin(2x+),则下列结论正确的是()A.函数的图象关于点(,0)对称B.函数在区间[-,]递增C.函数的图象关于直线x=-对称D.最小正周期是【解析】由于点(,0)不在函数y=2sin(2x+)的图象上,故函数图象不关于点(,0)对称,故排除A.令2kπ-≤2x+≤2kπ+,k∈Z,解得kπ-≤x≤kπ+,k∈Z,故函数的增区间为[-,],故B正确.当x=-时,函数值y=0,不是最值,故函数的图象不关于x=-对称,故排除C.由函数的解析式可得,最小正周期等于T==π,故D不正确.综上可得,只有B正确.11.定义运算a※b为a※b=例如,1※2=1,则函数f(x)=sin x※cos x的值域为() A.[-1,1] B.C.D.【解析】根据题设中的新定义,得f(x)=作出函数f(x)在一个周期内的图象,如图可知函数f (x )的值域为.12.已知函数f (x )=若a ,b ,c 互不相等,且f (a )=f (b )=f (c ),则abc 的取值范围是( ) A .(3,10) B .(3,) C .(1,) D .(,10)【解析】不妨设a <b <c ,画出函数f (x )图象,因为f (a )=f (b )=f (c ),即-log 3a =log 3b =-3c +10,所以ab =1,0<-3c +10<1,即3<c <,所以3<abc <,故选B.13.集合{x |ax 2+2x +1=0}与集合{x |x 2-1=0}的元素个数相同,则a 的取值集合为________.【解析】由x 2-1=0,得x =1或-1,∴{x |x 2-1=0}={-1,1},由题意得,集合{x |ax 2+2x +1=0}的元素个数为2,∴方程ax 2+2x +1=0由两个不同的根,则Δ=2×2-4a >0且a ≠0,解得a <1且a ≠0,则a 的取值集合是:(-∞,0)∪(0,1). 故答案为(-∞,0)∪(0,1).14.如果圆心角为的扇形所对的弦长为2,则扇形的面积为________. 【解析】如图,作BF ⊥AC .已知AC =2,∠ABC =,则AF =,∠ABF =.∴AB ==2,即R =2.∴弧长l =|α|R =,∴S =lR =.15.已知cos x =有实根,则m 的取值范围为________.【解析】∵-1≤cos x ≤1,∴-1≤≤1, 且2m +3≠0,解得m ≥-或m ≤-4.16.函数⎩⎨⎧<+≤≤=0,220,sin )(x x x x x f 则不等式f(x)>的解集是________. 【答案】{}26023<<<<-x x x π或三、解答题(共1小题,每小题12.0分,共12分) 17.已知函数f (x )=2cos(2x +)+1.(1)先列表,再用“五点法”画出该函数在一个周期内的简图;(2)写出该函数在[0,π]的单调递减区间.【答案】(1)列表如下:描点并画图,简图如图一个周期:(2)由2k π≤2x +≤2k π+π,k ∈Z ,解得k π-≤x ≤k π+,k ∈Z ,和[0,π]取交集可得原函数的递减区间[0,],[π,π].18.已知函数f (x )是定义在[-1,1]的奇函数,且f (1)=1,若m,n ∈[-1,1],m+n ≠0,有.0)()(>++nm n f m f (1)证明f (x )在[-1,1]上是增函数;(2)解不等式0)33()1(2<-+-x f x f ;(3)若12)(2+-≤at t x f 对[]1,1-∈∀x ,[]1,1-∈a 恒成立,求实数t 的取值范围.。

高一数学周练试题答案

高一数学周练试题答案

高一数学周练试题答案选择题.C .D.D.C.D BCDBB 填空题11{Φ, {1}}, 12. 3-, 13. 1或2, 14. 8, 15 21-或 ,三解答题:16. 已知全集{|06}U x N x =∈<≤,集合{|15}A x N x =∈<<,集合{|26B x N x =∈<<. 求(Ⅰ)B A C U )(; (Ⅱ))()(B C A C U U .解:(Ⅰ)}.651{432}654321{,,},,,{,,,,,,=∴==A C A U U.65431)(}543{},,,,{,,,又=∴=A A C B U(Ⅱ)}.61{)()(}621{}651{,,,,,,,=∴==B C A C B C A C U U U U17.已知集合{}1A x x a =-≤,{}2540B x x x =-+>,且AB φ=, 求实数a 的取值范围。

解:A=[a-1,a+1]B=(-∞,1)∪(4,+∞) ∵A B φ=,∴a-1≥1且a+1≤4,a ∈[2,3]18.设全集为,U R =集合{}{}(3)(6)0,0216A x x x B x x =+-≤=<+<.(1)求如图阴影部分表示的集合;(2)已知{}21C x x a x a =><+且,若C B ⊆,求实数a 的取值范围.解:(1)阴影部分为(2) ① ,即时,,成立;②,即时,得综上所述,的取值范围为. 19.已知集合{}⎭⎬⎫⎩⎨⎧≤<-=≤+<=221,510x x B ax x A (1)若B A ⊆,求实数a 的取值范围; (2)若A B ⊆,求实数a 的取值范围.19.解(1)若0=a 则B A A ⊆∴=φ若 224211041,0≥⇒⎪⎪⎪⎩⎪⎪⎪⎨⎧≤-≥->∴⎭⎬⎫⎩⎨⎧≤<-=>a aa a a x ax A a 若821214014,0-<⇒⎪⎪⎪⎩⎪⎪⎪⎨⎧<--><∴⎭⎬⎫⎩⎨⎧-<≤=<a aa a a x ax A a 实数a 的取值范围2≥a 或8-<a (2)20242110.<<⇒⎪⎪⎪⎩⎪⎪⎪⎨⎧≥-<->a a a a )2a 0(2121400<<∴⎪⎪⎪⎩⎪⎪⎪⎨⎧>--<<=舍)舍aa a a 20.已知集合{}27,A x x =≤<{}310,B x x =<<{}.C x x a =<(1)求,();R A B C A B ⋃⋂(2)若,A C φ⋂≠求实数a 的取值范围。

高一数学周考卷

高一数学周考卷

高一数学周考卷(考试时间:90分钟,满分:100分)一、选择题(每题2分,共30分)1. (2分)若a=3,b=2,则a+b的值为()A. 5B. 5C. 1D. 12. (2分)下列函数中,奇函数是()A. y=x^2B. y=|x|C. y=x^3D. y=x^2+x3. (2分)已知等差数列{an},a1=1,a3=3,则公差d为()A. 1B. 2C. 3D. 44. (2分)下列命题中,真命题是()A. 任意两个平行线之间的距离相等B. 任意两个平行四边形的面积相等C. 任意两个等腰三角形的底角相等D. 任意两个等边三角形的面积相等5. (2分)若函数f(x)=2x+1,则f(1)的值为()A. 1B. 0C. 1D. 26. (2分)直线y=2x+1与x轴的交点坐标为()A. (0,1)B. (1,0)C. (1,0)D. (0,1)7. (2分)若三角形的三边长分别为3、4、5,则该三角形是()A. 等边三角形B. 等腰三角形C. 直角三角形D. 钝角三角形二、判断题(每题1分,共20分)8. (1分)若a>b,则ab一定大于0。

()9. (1分)等差数列的任意两项之差等于公差。

()10. (1分)平行线的斜率相等。

()11. (1分)函数y=2x+1的图像是一条直线。

()12. (1分)若两个角的和为180度,则这两个角互为补角。

()13. (1分)圆的面积与半径成正比。

()14. (1分)三角形的三条高线交于一点。

()三、填空题(每空1分,共10分)15. (1分)若a=5,b=3,则ab=______。

16. (1分)函数f(x)=x^2的图像是一个______。

17. (1分)等差数列的通项公式为an=a1+(n1)d,其中d表示______。

18. (1分)若一个等腰三角形的底角为45度,则顶角为______度。

19. (1分)直线y=kx+b中,k表示______。

高一数学周练(含答案)

高一数学周练(含答案)

高一数学周练一、单选题(共40分)1.若集合{4},{31}M x N x x =<=≥∣,则M N ⋂=( ) A .{}02x x ≤< B .123x x ⎧⎫≤<⎨⎬⎩⎭C .{}316x x ≤<D .1163x x ⎧⎫≤<⎨⎬⎩⎭2.函数 y = ) A .3,2⎛⎫-∞- ⎪⎝⎭B .3,2⎡⎫-+∞⎪⎢⎣⎭C .[)0,+∞D .(],3∞--][)0,+∞.3.“角α,β的终边关于y x =轴对称”是“22sin sin 1αβ+=”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】A【分析】根据三角函数的性质的即可判断求解.【详解】若角α,β的终边关于y x =轴对称,则sin α=cos β,则2222sin sin cos sin =1αβββ+=+;若22sin sin 1αβ+=,则22sin =cos αβ,则sin α=±cos β,则角α,β的终边关于y x =或y =-x 轴对称;综上,“角α,β的终边关于y x =轴对称”是“22sin sin 1αβ+=”的充分不必要条件. 故选:A.4.已知方程ln 112x x =-的实数解为0x ,且()0,1x k k ∈+,*k ∈N ,则k =( ) A .1 B .2 C .3 D .4【答案】D【解析】先转化为两个简单函数判断交点所在区间的大致范围,再由零点判定定理确定即可.【详解】解:112lnx x =-,令()g x lnx =,()112h x x =-在同一坐标系画出图象可得 由图可知01x >,令()211f x lnx x =+-,()()129(27)0f f ln =-->,()()23(27)(35)0f f ln ln =-->, ()()34(35)(43)0f f ln ln =-->, ()()45(43)(51)0f f ln ln =--<,()04,5x ∴∈4k ∴=,故选:D .【点睛】本题主要考查函数零点所在区间的求法,图象法和零点判定定理.将函数的零点问题转化为两个函数交点的问题是常用的手段,属于基础题.5.如图是下列四个函数中的某个函数在区间[3,3]-的大致图像,则该函数是( )A .3231x xy x -+=+B .321x xy x -=+C .22cos 1x xy x =+ D .22sin 1xy x =+6.将函数()sin (0)3f x x ωω⎛⎫=+> ⎪⎝⎭的图像向左平移π2个单位长度后得到曲线C ,若C关于y 轴对称,则ω的最小值是( ) A .16B .14C .13D .127.记函数()sin (0)4f x x b ωω⎛⎫=++> ⎪⎝⎭的最小正周期为T .若23T ππ<<,且()y f x =的图象关于点3,22π⎛⎫ ⎪⎝⎭中心对称,则2f π⎛⎫= ⎪⎝⎭( )A .1B .32C .52 D .38.已知函数()131,0ln ,0x x f x x x +⎧-⎪=⎨>⎪⎩若函数()()g x f x a =-有3个零点,则a 的取值范围是( ) A .()0,1 B .(]0,2C .()2,+∞D .()1,+∞【答案】A【分析】要使函数()()g x f x a =-有三个零点,则()f x a =有三个不相等的实根,即()f x 与y a =的图象有三个交点,结合函数的性质及图象即可得出.【详解】要使函数()()g x f x a =-有三个零点,则()f x a =有三个不相等的实根,即()f x 与y a =的图象有三个交点, 当1x ≤-时,113x f x在(],1-∞-上单调递减,()0,1f x ; 当10-<≤x 时,()131x f x +=-在(]1,0-上单调递增,()0,2f x ;当0x >时,()ln f x x =在()0,∞+上单调递增,()f x ∈R ; 由()f x 与y a =的图象有三个交点,结合函数图象可得()0,1a ∈, 故选:A.二、多选题(共20分)9.已知函数f (x )=2sin (2x ﹣6π),则如下结论:其中正确的是( ) A .函数f (x )的最小正周期为π; B .函数f (x )在[6π,512π]上的值域为[1; C .函数f (x )在7(,)312ππ上是减函数;D .函数y =f (x )的图象向左平移6π个单位得到函数y =2sin2x 的图象,10.下列结论正确的是( )A .若α,β的终边相同,则αβ-的终边在x 的非负半轴上B .函数()log 1a f x x =+(0a >且1a ≠)恒过定点(),2aC .函数()22x f x x =-只有两个零点D .己知一扇形的圆心角60α=︒,且其所在圆的半径3R =,则扇形的弧长为π11.如图,摩天轮的半径为40m ,其中心O 点距离地面的高度为50m ,摩天轮按逆时针方向匀速转动,且20min 转一圈,若摩天轮上点P 的起始位置在最高点处,则摩天轮转动过程中( )A .转动10min 后点P 距离地面10mB .若摩天轮转速减半,则转动一圈所需的时间变为原来的12C .第17min 和第43min 点P 距离地面的高度相同D .摩天轮转动一圈,点P 距离地面的高度不低于70m 的时间为5min 【详解】解:摩天轮2010t t ππ=,(02)ϕπ是以轴正半轴为始边,轴正半轴为始边,为终边的角为P 的纵坐标为又由题知,P 点起始位置在最高点处,2π5070,1102t,020t , 0210t ππ,103t ππ或52310tπππ,解得1003t 或50203t , 20min 3,故D 错误. 故选:AC .12.给出下面四个结论,其中正确的是( ) A .函数()()ln sin f x x =的定义域是()0,π. B .()sin sin 122x xf x =+的值域为52,2⎡⎤⎢⎥⎣⎦.C .函数()sin 2f x x x =-+在区间()2,4上有唯一一个零点.D .角πα6=是1cos 22α=-的必要不充分条件.三、填空题(共20分)13.已知sin π3a ⎛⎫- ⎪⎝⎭=13,则cos 5π()6a -=________.【详解】sin 14.定义在R 上的偶函数()f x ,当],(0x ∈-∞时,()f x 单调递减,则()()231f x f x +<-的解集为______.15.已知α为第二象限角,cos 2sin()24απα⎛⎫--+= ⎪⎝⎭,则cos α=___________.16.函数sin(2)4y x π=+的图像与直线y =a 在(0,98π)上有三个交点,其横坐标分别为1x ,2x ,3x ,则123x x x ++的取值范围为_______.8442⎝⎭πππ利用对称性求出答案四、解答题(共70分)17.已知全集U =R ,集合{}2|2150A x x x =--<,集合()(){}2|210B x x a x a =-+-<. (1)若1a =,求UA 和B ;(2)若A B A ⋃=,求实数a 的取值范围. )UA ={x ∴x {|3U A x x ∴=-或5}x ,若1a =,则集合{|(2B x x =-(2)因为A B A ⋃=,所以当B =∅时,221a a =-,解当B ≠∅时,即1a ≠时,)可知集合{|A x =-22135a a --,解得15a,且综上所求,实数a 的取值范围为:15a-.【点睛】本题主要考查了集合的基本运算,考查了一元二次不等式的解法,是基础题.18.已知函数()()()sin 20f x x ϕϕ=+<<π的图象关于点,012⎛⎫- ⎪⎝⎭对称.(1)求ϕ的值;(2)将函数()y f x =的图象向右平移6π个单位,然后将所得的图象上各点的横坐标缩小到原来的12倍(纵坐标不变),得到函数()y g x =的图象.当0,4x π⎡⎤∈⎢⎥⎣⎦时,求函数()g x 的值域.19.已知函数2()2sin 1f x x x θ=+-,1[]2x ∈. (1)当6πθ=时,求()f x 的最大值和最小值;(2)若()f x 在1[]2x ∈上是单调函数,且[0,2)θπ∈,求θ的取值范围.443366【详解】试题分析:(1)当时,在上单调递减,在上单调递增当时,函数有最小值当时,函数有最小值(2)要使在31[,]22x ∈-上是单调函数,则或即或,又解得:20.已知函数()sin()0,||2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭的部分图象如图所示.(1)写出函数f (x )的最小正周期T 及ω、φ的值;(2)求函数f (x )在区间,44ππ⎡⎤-⎢⎥⎣⎦上的最大值与最小值.,44ππ⎡⎤-⎢⎥⎣⎦当23x π+=21.已知二次函数2()21(0)g x mx mx n m =-++>在区间[0,3]上有最大值4,最小值0. (1)求函数()g x 的解析式; (2)设()2()g x x f x x-=.若()220x xf k -⋅在[3,3]x ∈-时恒成立,求k 的取值范围.22.已知函数()21log 1x f x x -=+. (1)若()1f a =,求a 的值;(2)判断函数()f x 的奇偶性,并证明你的结论;(3)若()f x m ≥对于[)3,x ∈+∞恒成立,求实数m 的范围. 【答案】(1)3- (2)奇函数,证明见解析f a=,)()1-3为奇函数,证明如下:,解得:x。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

智才艺州攀枝花市创界学校涟水县第一高一数学周周练〔二十〕
班级_____________________成绩____________
一、填空题:
1、以下现象:
①早晨,太阳从升起;
②某交换台在单位时间是内收到用户呼唤的次数;
③检查流水线上一件产品,是合格品还是不合格品
④一个盒子中有十个完全一样的白球,搅匀后从中任意摸取一个是白球。

其中是随机现象的有___________________〔填序号〕;
2、古典概型的两个特点是:①___________________________________________________; ②_________________________________________________________;
3、从甲、乙、丙中任选两名代表,甲被选中的概率为________________________________;
4、从数字1,2,3,4,5中任取两个不同的数字构成一个两位数,那么这个两位数大于40的概率是_______________________________________;
5、在一次口试中,要从10道题中人抽3题进展答复,答对其中2题就能及格,某考生会答复这10题中的8道题,那么该考生及格的概率为_____________________;
6、假设以连续掷两次骰子分别得到点数m ,n 作为点P 的坐标,那么点P 落在圆2216x y +=内的概率
为________________________________;
7、今有一批球票,按票价分类如下:10元票5张,20元票3张,5元票2张,从这10张票中随机抽取两张,票价和为40元的概率是__________________________________。

二、解答题:
8、某篮球运发动在最近几场比赛中罚球投篮的结果如下表:
〔1〕计算表中进球的频率;
〔2〕这为运发动投篮一次,进球的概率约是多少?
9、先后投掷两枚均匀硬币。

〔1〕一一共出现多少种可能的结果?
〔2〕出现“一枚正面,一枚反面〞的结果有多少种?
〔3〕出现“一枚正面,一枚反面〞的概率是多少?
〔4〕有人说一一共出现“两枚正面〞、“两枚反面〞、“一枚正面,一枚反面〞三种情况,因此出现“一枚
正面,一枚反面〞的概率为1
3
,这种说法正确吗?请说明理由。

10、现有一批产品一共10件,其中8件为正品,两件为次品。

〔1〕假设从中取出一件,然后放回,再取出一件,求连续3次取出的都是正品的概率。

〔2〕假设从中一次取3件,求3件都是正品的概率。

相关文档
最新文档