数控电流源的设计综述

合集下载

数控直流电流源设计报告

数控直流电流源设计报告

数控直流电流源作品功能简介:在电子作品的设计、应用或测试中,一个稳定、精度高的电源尤为重要,为直流电源的应用更是广泛。

本作品就是为其它设计的应用或测试提供一个稳定性高、精度高的直流电流源。

本组的作品的设计方向就是稳定性高、精度高、纹波小、驱动能力强。

本作品有两个个主要功能:功能一:输出20到2000mA的稳定电流,并且步进值可调(1mA、5mA、10mA、100mA)。

功能二:可实时测试并显示负载上的电流值。

功能三:有相应的提示功能。

(一) 方案论证与比较从控制论的角度来看,某一系统要达到较高的控制精度,必须采用闭环控制。

闭环的电流控制系统可以由如下的原理框图来表示:由上述原理框图可以知道,数控直流电流源的设计主要考虑三个方面的问题:电流控制器设计、功率放大电路设计和电流检测方法。

此外,从电子系统设计的角度,还需考虑系统电源的设计。

1.电流控制器设计电流控制可以有多种方案,如基于PWM 技术的开关电源方案、基于模拟器件的模拟反馈压控方案、以及基于微控制器的数字反馈数控方案。

方案一:基于PWM 技术的开关电源方案。

通过PWM 技术来调节开关电源的电压输出,控制PWM 信号的调制脉宽就可以控制输出电压,从而达到控制输出电流的目的。

该方案适合要求高功率输出的交流系统,同时电源效率上具有很大的优势,但是开关电源必然引入纹波噪声,在高精度要求的直流系统中,对滤波电路的要求非常高,难以实现。

题目对电流精度及纹波要求很高,该方案难以胜任。

方案二:基于模拟器件的模拟反馈压控方案。

该方案采用三极管或集成运放,组成电流串联负反馈电路,三级管或运放工作在深度负反馈状态下,具有良好的压控恒流特性。

典型的电路结构如图2所示。

图2中,Re 相当于取样电阻,输出R L 上的电流通过Re 在运放的输入端形成负反馈,由运放的虚短虚断,忽略三极管的基极电流,则可得到输出电流I L 的表达式:图2 模拟反馈压控方案典型电路I L =Vi / Re ⑴ 此方案实质上是由模拟器件作为了控制器,调节速度快,系统的跟随性好,即动态性能优越;但是,由于模拟器件固有的非线性特性,式⑴的精确度受到影响,电流控制稳态图1 闭环电流控制系统原理框图性能不够良好。

数控直流电流源的设计

数控直流电流源的设计

数控直流电流源的设计1.设计思路本设计以ATmega16L为核心,通过A/D、D/A转换、V/I转换及独特的算法实现高精度的,电流输出范围为20mA~2000mA的数控直流电流源。

该电流源具有电流可预置,1mA步进,同时显示给定值和实测值等功能。

2.方案设计2.1控制器模块方案利用ATmega16L单片机将电流步进值或设定值通过换算由D/A转换,驱动压控恒流源电路实现电流输出。

输出电流经处理电路,作A/D转换反馈到单片机系统,通过补偿算法调整电流的输出,以此提高输出的精度和稳定性。

D/A转换器选用12位优质D/A转换芯片 TLC5618,直接输出电压值,且其输出电压能达到参考电压的两倍,A/D转换器选用高精度16位模数转换芯片AD7705。

2.2显示器模块方案采用19264D汉字图形点阵液晶显示模块同时显示电流给定值和实测值。

使用LCD显示。

LCD具有轻薄短小,可视面积大,方便的显示汉字数字,分辨率高,抗干扰能力强,功耗小,且设计简单等特点。

2.3键盘模块方案采用标准4X4键盘,此类键盘采用矩阵式行列扫描方式,优点是当按键较多时可降低占用单片机的I/O口数目,而且可以做到直接输入电流值而不必步进。

2.4压控电流源模块方案精密压控电流源是本数控电流源的关键之所在,针对设计要求和使用需求、结合设计思路,精密电流源模块必须具备以下指标:纹波小于2mA,误差小于0.1%,具有低的输出失调。

基于稳定性要求和以上考虑,电流源电路选择了经典的压控电流源电路,它负责与后级扩流模块连接,用电压控制后者,而使用电流反馈,这样可以保证有足够高的精度。

该部分采用了高性能、低温漂、低失调的运算放大器OP77和精密元件组成,保证性能指标的良好发挥。

2.5扩流模块方案为了克服传统扩流电路在高精度、高稳定性要求下的缺陷,追求一种精度高、稳定性好、对前级影响小的扩流电路,受到S类功率放大器的启发,本设计率先把S类放大器优秀的电压跟随器原理引入电流源电路之中。

2017毕业论文-数控恒流源的设计

2017毕业论文-数控恒流源的设计

2017毕业论文-数控恒流源的设计2017毕业论文-数控恒流源的设计兰州工业高等专科学校毕业论文摘要恒流源,是一种能够向负载提供恒定电流的电源。

恒流源的应用范围非常广泛,并且在许多情况下是必不可少的。

本文设计了一种基于单片机控制的数控直流恒流源。

该恒流源以AT89S52为控制核心,采用了高共模抑制比低温漂的运算放大器OP07和达林顿管TIP122构成恒流源的主体,配以高精度采样电阻及12位D/A芯片MAX532、16位A/D芯片AD7715,完成了单片机对输出电流的实时检测和实时控制。

人机接口采用4×4键盘及LED数码管显示器,控制界面直观、简洁,具有良好的人机交互性能。

在软件设计上采用增量式PID控制算法,即数字控制器的输出只是控制量的增量。

该系统已基本达到预期的设计目标,具有功能强、性能可靠、体积小、电路简单的特点,可以应用于需要高稳定度的小功率恒流源的领域。

关键词:恒流源;AT89S52;PID控制算法;数字控制。

The abstract Constant current, is one kind can provide theconstant current to the load the power source.The constant current application scope is extremely widespread, and in many situations is essential.This article has designed one kind the numerical control cocurrent constant current which controls based on the monolithic integrated circuit. This constant current take AT89S52 as the control core, has used operational amplifier OP07 and Darington which Gao Gongmu the rejection ratio low temperature floats manages the TIP122 constitution constant current the main body, matches by the high accuracy sampling resistance and 12 D/A chip MAX532, 16 A/D chip AD7715, has completed the monolithic integrated circuit to the output current real-time examination and the real-time control. The man-machine connection uses 4×4 the keyboard and the LED nixietube monitor, the control interface is direct-viewing, is succinct, has the good man-machine interaction es the increase type PID control algorithm in the software design, namely the digital controller output only is controls the quantity the increase. This system had achieved basically the anticipated design goal, has the function strongly, the performance reliable, the volume small, the electric circuit simple characteristic, may apply in needs the high stability the low power constant current domain. Key word: Constant current;AT89S52; PID control algorithm; Numerical control. 目录第1章绪论5 第2章系统的总体设计6 2.1 设计指标要求6 2.2 总体方案的选取及系统6 2.2.1 方案一:6 2.2.2 方案二:7 第3章系统的硬件设计8 3.1 单片机的功能介绍8 3.1.1 主要功能特性:8 3.1.2 引脚功能说明8 3.1.3 时钟电路及复位电路11 3.2 恒流源基本设计原理与实现方法13 3.2.1 引起稳定电源输出不稳定的主要原因13 3.2.2 恒流源的基本设计原理14 3.2.3 系统电源设计15 3.3 A/D 模块选择16 3.3.1 AD7715简介16 3.3.2 硬件电路设计18 3.4 D/A 模块选择19 3.4.1 MAX532简介19 3.4.2 硬件电路设计21 3.5 键盘接口电路设计22 3.5.1 键盘工作方式23 3.5.2 接口电路设计23 3.5.3 按键抖动及消除24 3.6 显示器接口电路设计25 第4章系统的软件设计27 4.1 控制算法27 4.2 软件流程图29 4.2.1 主程序流程图29 4.2.2 键盘中断子程序30 4.2.3 显示中断子程序31 第5章总结33 致谢34 参考文献35 附录A 总电路图36 第1章绪论恒流源,是一种能向负载提供恒定电流之电路。

数控直流电流源设计与总结报告

数控直流电流源设计与总结报告

数控直流电流源设计与总结报告摘要:本系统以直流电流源为核心,MSP430F149单片机为控制系统,输出数字信号,经过D/A转换器(TLV5638)输出模拟量,将实际值输出到单片机,由单片机进行比较调整,控制电流输出。

通过键盘来设置直流电源的输出电流,设置步进等级可为1mA,并可由1602液晶显示实际输出电流值和电流设定值。

由于使用了电流采样反馈调整控制技术,输出电流误差范围±5mA,输出电流可在20mA~2000mA范围内任意设定。

实际测试结果表明,本系统输出电流稳定,不随负载和环境温度变化,并具有很高的精度,因而可实际应用于需要高稳定度小功率恒流源的领域。

关键词:恒流源MSP430F149 OP07 IRF540NAbstract: This system to direct current source as the core, MSP430F149 microcontroller as control system, digital signal output, through D/A converter (TLV5638) output analog, through the keyboard to set the dc power output current step level, set up to 1 mA, and can be made of 1602 LCD tube show the actual output current value and current value. The actual test results show that the system output current stability, not with the load and environmental temperature change, and has a high precision, and can be used in need high stability small power constant current source fields. By sampling will the actual value to the output of microcomputer chip, comparison, adjust the control current output. Using the current feedback control technology, adjust the sampling error of plus or minus 5 output current range, the output current mA in 20 mA ~ 2000 mA range set arbitrary, the system has good reliability, the advantages of high precision.Keyword: CCONSTANT CURRENT SOURCE;MSP430F149;OP07 ;IRF540N目录1方案设计与论证 (3)1.1 整体设计要求 (3)1.2 控制部分方案比较和选择 (3)1.3 恒流源模块方案比较和选择 (3)2 系统设计 (6)2.1 总体设计 (6)2.2 各单元模块功能介绍及电路设计 (6)2.2.1 数据采集处理模块 (6)2.2.2 恒流源模块 (7)2.2.3 数模DAC模块 (8)2.3 特殊器件的介绍; (9)3 软件设计 (9)3.1 设计思路 (9)3.2 软件流程图 (10)4 系统测试 (11)4.1 测试方法 (11)4.2 测试结果 (11)4.3 结果分析 (14)5 结论 (14)参考文献 (15)附录: (15)附1:元器件明细表: (15)附2:仪器设备清单 (15)附3:电路图图纸 (16)附4:程序清单 (17)1方案设计与论证1.1 整体设计要求根据要求恒流源系统由如下几部分组成(如图1所示):图1 要求系统设计框图1.2 控制部分方案比较和选择对于控制电路部分有以下三种方案来实现:方案1:采用中小规模集成电路构成的控制电路。

数控直流电流源设计,毕业论文,毕业设计,数控,直流电源

数控直流电流源设计,毕业论文,毕业设计,数控,直流电源

数控直流电流源设计摘要本设计大致分五个模块:单片机控制模块、数模(D/A)转换模块、恒流源模块、模数(A/D)转换模块、显示模块。

单片机控制模块以单片机为核心,对输入电流信号进行转换成数字量输出;恒流源模块将D/A转换来的电压模拟量通过恒流源电路变成恒流;显示模块采用数码管显示译码芯片与74LS47设计成10进制4位数码动态显示电路。

键盘模块采用常见单路复位开关,做成4×4矩阵键盘,用动态扫描方式读取外部按键动作,这样设计可靠,配合凌阳AT89S52单片机,可以很轻松的实现按键输入。

此外,本设计可实现电流0-2A且有±1mA和±10mA的两种步进,同时有数码显示输入的电流值。

关键词单片机键盘控制D/A转换恒流源A/D转换译码显示Constant Current Resource Digital ControlledABSTRACTThe design is divided into five modules: Single-chip control, digital-to-analog (D / A) conversion module, constant current source module, the output display module. To single-chip single - chip control module as the core of the input current signals to digital output; Constant current source modules will be D / A converter to the voltage analog circuit through the constant current source into a constant current; display module display digital 74LS47 decoder chip designed with 10-band digital dynamic display four circuits. Common use of the keyboard module reset single switch, make 4 * 4 matrix keyboard, using dynamic scanning button to read the external action, so that the design of reliable, with Sun plus AT89S52 microcontroller, can easily achieve the keystrokes. In addition, the design can achieve the current 0-2A and a ± 10mA and ± 1mA Step two, at the same time digital display of the current input.KEY WORDS Single - chip Keyboard control D / A converter A / D conversion Decoding show目录中文摘要 (I)英文摘要 (II)1 绪论 (1)1.1概述 (1)1.2课题的背景和意义 (1)1.3数控直流恒流源简介 (2)1.4恒流源的应用 (2)2 数控直流电流源整体设计 (3)2.1整体结构设计与论证 (3)2.2系统原理与基本框图 (5)3 硬件电路设计 (6)3.1单片机模块的设计 (6)3.1.1 单片机的选择 (6)3.1.2 单片机最小系统组成及AT89S52介绍 (6)3.1.2.1 AT89S52单片机功能特性描述 (6)3.1.2.2 AT89S52引脚功能描述 (7)3.2D/A转换模块设计 (11)3.2.1 D/A转换方案 (11)3.2.2 12位串行D/A转换芯片MAX538介绍 (11)3.2.2.1 性能特点 (11)3.2.2.2 主要参数 (12)3.2.2.3 内部结构 (12)3.2.2.4 引脚结构 (12)3.2.2.5 输入接口 (13)3.2.3 D/A转换模块电路 (14)3.3V/I转换模块设计 (14)3.3.1 V/I转换方案 (14)3.3.2 V/I转换电路 (15)3.4A/D转换模块设计 (17)3.4.1 A/D转换方案 (17)3.4.2 12位串行A/D转换芯片MAX197介绍 (18)3.4.2.1 MAX197的特性 (18)3.4.2.2 MAX197的结构 (18)3.4.3 A/D转换模块电路 (20)3.5显示模块设计 (21)3.5.1 显示电路方案 (21)3.5.2 译码器74LS47简要介绍 (21)3.5.3 LED显示器的工作原理 (23)3.5.4 显示模块电路 (25)3.6键盘模块设计 (26)3.6.1 键盘电路方案选择 (26)3.6.2 键盘模块的电路 (26)3.7电源模块设计 (28)3.7.1 稳压电路电源方案 (28)3.7.2 电源原理 (28)3.7.3 LM7805、LM7812简要介绍 (28)3.7.4 电源模块电路 (29)4 软件设计 (30)总结 (33)致谢 (34)参考文献 (35)附录 (36)1绪论1.1概述随着科学技术的迅速发展,人们对物质需求也越来越来高,特别是一些高新技术产品。

浅谈数控直流电流源的设计与实现

浅谈数控直流电流源的设计与实现

浅谈数控直流电流源的设计与实现
在电子设备中经常用到稳定性好、精度高、输出可预置的直流电流源。

本文设计的数控直流电流源能够很好地降低因元器件老化、温漂等原因造成的输出误差,输出电流在20mA~2000mA可调,输出电流可预置、具有“+”、“-”步进调整、输出电流信号可直接显示和语音提示等功能。

硬件电路采用凌阳单片机SPCE061A为控制核心,利用闭环控制原理,加上反馈电路,使整个电路构成一个闭环,在软件方面主要利用PID算法来实现对输出电流的精确控制。

该系统可靠性高、体积小、操作简单方便、人机界面友好。

 系统硬件实现方案
 本设计采用单片机作为主要控制部件,通过键盘预置输出电流值并采用液晶模块实时显示。

整个系统硬件部分由微控制器、电压-电流转换、键盘、显示、直流稳压电源和语音提示等模块组成。

系统组成框图如图1所示。

 图1 数控直流电流源的基本模块方框图
 微控制器是整个系统的核心,负责整个系统的运作。

为了实现简化硬件电路、系统性能稳定可靠,便于实现语音播报、键盘设置和信息的实时显示等功能的协调,通过多种方案论证后,微控制器选用凌阳公司的SPCE061A,该单片机内部集成有ADC、DAC、PLL、AGC、DTMF、LCD-Driver等电路(与IC型号有关)。

它采用精简指令集(RISC),指令周期均以CPU时钟数为单位。

另外,它还兼有DSP功能,内置16位硬件乘法器和加法器,并配备有DSP拥有的特殊指令,大大加速了各种算法的运行速度。

同时可以在。

数控直流电流源的设计

数控直流电流源的设计

《关于单片机数控直流的电流源设计》要:本文介绍了基于单片机的数控直流电流源设计方案,给出了硬件组成及软件系统。

本系统以单片机AT89S52为核心部件,由键盘、显示、D/A及A/D转换,V/I转换、功率放大等模块组成。

采用负反馈闭环控制系统,单片机实时将预置值和实测值进行比较、调整控制,提高了电流源的输出精度。

所设计的数控直流电流源采用PID算法实现了量程可选、输出可调、步进精确、纹波电流极小的功能,而且可将输出电流预置值、实测值在LED上同时显示。

经实验证明具有较高的控制精度。

关键词:单片机,电流源,数控,V/I变换0引言低纹波、高精度稳定直流电流源是一种非常重要的特种电源,在现代科学研究和工业生产中得到了越来越广泛的应用。

普通电流源往往是用电位器进行调节,输出电流值无法实现精确步进。

有些电流源虽能实现数控但输出电流值往往比较小,且所设定的输出电流值是否准确不经测试无法知道等等[1,2]。

为此,结合单片机技术及V/I变换电路,采用反馈调整控制方案设计制作了一种新型的基于单片机高精度数控直流电流源。

它可实现以下功能:(1)具有多个量程,用户可根据实际需要选定。

(2)输出电流值可精确预置,最小步进为1mA,最大输出电流2000mA。

(3)纹波电流极小,小于0.1mA。

(4)LED可同时显示预置电流值、实测电流值及当前量程档,便于用户操作及进行误差分析。

1 硬件系统设计根据数控直流电流源的要求,由于要求有较大的输出电流范围和较精确的步进要求以及较小的纹波电流,所以不适合采用简单的恒流源电路FET和恒流二极管,亦不适合采用开关电源的开关恒流源,否则难以达到输出范围和精度以及纹波的要求[3]。

根据系统要求采用D/A转换后接运算放大器构成的功率放大,控制D/A的输入从而控制电流值的方法。

系统的原理框图如图1所示。

图1 系统的原理框图1.1 数控部分设计(1)89S52单片机基本系统:数控部分的核心采用89S 52。

数控直流电流源的设计

数控直流电流源的设计

数控直流电流源的设计数控直流电流源设计是一种电源研发中不可或缺的一种技术。

数控电源设计的基本原理是以数字信号为控制信号,通过模数转换器将信号进行处理,并在输出端通过运放和功率器件实现电源输出。

数控直流电流源设计通常有多种实现方案,下面我们将对数控直流电流源的设计方案和基本要点进行介绍。

一、数控直流电流源的设计方案1. 数控直流电流源通过电压降进行电流调节在设计中,可以将一个负载电阻串联在直流电源输出端,用操作信号控制电压降,从而在电阻上产生稳定的电流。

不同电源的电压调整范围不同,具体电源需要合理选择电压控制元件并加以调节。

2. 数控直流电流源采用二极管式恒流源技术该方法的设计基于二极管的固有特性,二极管正向电流与其正向电压成指数关系,某种程度上追求了电流不随负载电阻和电源电压的变化而发生改变的目的。

3. 数控直流电流源采用电压转换及限流技术该技术基于集回控制回路和恒压限流控制回路于一身。

输入时,集成回路不变,恒压限流回路负责输出电流的保护和限制,保证负载操作安全可靠。

二、数控直流电流源的基本要点在设计数控直流电流源的时候,需要考虑以下要点:1. 电源适应范围。

在选择模拟电源芯片之前,需要考虑需要连接的负载电流大小、所需合适的输出电流、输出电压和功率等因素。

2. 稳定性。

电源的稳定性是评价数控直流电流源优劣的重要指标。

电阻、电容组成的稳压、稳流回路是保证电源稳定性的有效手段。

3. 真实性。

在设计中,需要考虑到负载电流变化所产生的响应状况并给出合适的解决方法。

在许多情况下,需要对设计方案进行优化和调整,以达到输出电流的更为真实性。

4. 安全性。

电源在工作过程中需要考虑对安全的保护。

对于短路保护、过载保护和过热保护等方面需要进行设计。

5. 控制模式。

需要考虑到数控直流电流源的控制模式。

包括区间控制、精密控制、PID控制、阶梯控制等模式,具体的应选取相应的模式根据需求需按体制进行设计。

总结:数控直流电流源设计是非常有挑战性的,需要精密技术,高质量的工程人员和一定的实践经验。

数控直流电流源设计综述

数控直流电流源设计综述

信息与控制工程学院硬件课程设计说明书数控直流电流源设计学生学号:学生姓名:专业班级:自动1003班指导教师:职称:讲师起止日期:2013.03.11~2013.03.31吉林化工学院Jilin Institute of Chemical Technology信息与控制工程学院硬件课程设计说明书课程设计任务书一、设计题目:数控直流电流源二、设计目的1.掌握STC89C52单片机最小系统及接口电路的设计;2.熟练掌握单片机的编程方法;3.掌握利用DXP软件绘制电路图的方法;三、设计任务及要求设计并制作数控直流电流源。

输入交流200~220V,50Hz;输出电流≤10V,输出电流范围为20~2000mA。

四、设计时间及进度安排设计时间共三周(2013.03.11~2013.03.31),具体安排如下表:周安排设计内容设计时间第一周学习掌握分析硬件的外围电路,查找和熟悉相关芯片的基本知识原理和应用,设计单片机最小系和外围电路的原理图,学习使用DXP工具,绘制设计电路原理图。

2013.3.11~20013.3.17第二周按原理图焊接电路板,学习如何驱动各模块以及利用Keil进行编程,学习对单片机各模块功能程序的调试与整合。

2013.3.18~20013.3.24第三周完成并提交硬件设计作品及硬件课程设计说明书,课程设计答辩。

2013.3.25~20013.3.31五、指导教师评语及学生成绩指导教师评语:2013年月日成绩指导教师(签字):摘要:该数控直流电流源以精密压控电流源为核心、用单片机、DAC组成控制电路,引入“S类”反馈控制功率放大电路,实现超精密电流控制、具备精准的扩流能力、低失调、有步进、同时带有丰富扩展功能的精密电流源。

经过ADC采样,完成输出电流显示功能,并使输出范围覆盖0~2A,是理想的电流源解决方案。

关键词:精密电流源低失调 S类功率放大器Abstract: The direct current source of numerical control bases on accurate VCCS, using MCU and DAC as controller kernel, importing circuit of power amplification of type S with feedback control; achieves ultra accurate current control; has low offset and excellent capacity for current enlarging; has step by step motion. At the same time, it provides abundance extended functions. According to the ADC sampling, it carries out the function of displaying the current output, meanwhile it achieves a range of 0 to 2A. Above all, it is an ideal solution of current source.Keyword: accurate current source , low offset , power amplification of type S目录第1章绪论 ---------------------------------------------------------------------------------------------------------------------- - 1 -1.1 恒流源的应用 ------------------------------------------------------------------------------------------------------------- - 1 -1.1.1 在计量领域中的应用 ------------------------------------------------------------------------------------------- - 1 -1.1.2 在半导体器件性能测试中的应用---------------------------------------------------------------------------- - 1 -1.2 恒流源的发展历程 ------------------------------------------------------------------------------------------------------- - 2 -1.2.1 电真空器件恒流源的诞生 ------------------------------------------------------------------------------------- - 2 -1.2.2 晶体管恒流源的产生和分类 ---------------------------------------------------------------------------------- - 2 -1.2.3 集成电路恒流源的出现和种类 ------------------------------------------------------------------------------- - 2 -第2章恒流源的设计理论与总体方案--------------------------------------------------------------------------------------- - 3 -2.1 总体方案选取及性能指标---------------------------------------------------------------------------------------------- - 3 -2.1.1 数控直流电流源的设计要求 ---------------------------------------------------------------------------------- - 3 -2.1.2数控直流电流源系统设计方案比较 ------------------------------------------------------------------------- - 3 -.2 2恒流源基本设计原理与实现方法 ------------------------------------------------------------------------------------ - 4 -.2 2.1恒流源基本设计原理 ------------------------------------------------------------------------------------------- - 4 -.2 2.2引起稳定电源输出不稳定的主要原因---------------------------------------------------------------------- - 4 -第3章系统的硬件设计与实现 ------------------------------------------------------------------------------------------------ - 5 -3.1 单片机介绍----------------------------------------------------------------------------------------------------------------- - 5 -3.1.1 认识单片机 -------------------------------------------------------------------------------------------------------- - 5 -3.1.2 其他外围器件----------------------------------------------------------------------------------------------------- - 9 -3.2 A/D和D/A的介绍------------------------------------------------------------------------------------------------------ - 11 -3.2.1 A/D和D/A的选择--------------------------------------------------------------------------------------------- - 11 -3.2.2 A/D和D/A的介绍--------------------------------------------------------------------------------------------- - 12 -3.3 供电电源的设计 -------------------------------------------------------------------------------------------------------- - 14 -3.4数控直流电流源主要单元器件的选择 ----------------------------------------------------------------------------- - 15 -3.4.1开关的选择------------------------------------------------------------------------------------------------------- - 15 -3.4.2 PWM芯片的选择 ---------------------------------------------------------------------------------------------- - 15 -3.4.3电流传感器的选择 --------------------------------------------------------------------------------------------- - 19 -3.5 电源输入EMI滤波和主电路前级整流滤波电压电路设计 -------------------------------------------------- - 21 -3.5.1电源输入EMI滤波电路 -------------------------------------------------------------------------------------- - 21 -3.5.2主电路前级整流滤波稳压电路------------------------------------------------------------------------------ - 21 -3.6 PWM调制波与MOSFET的驱动电路的设计 ------------------------------------------------------------------- - 22 -3.7 斩波电路与滤波稳流电路的设计 ---------------------------------------------------------------------------------- - 22 -3.7.1输入电压最大有效值的计算--------------------------------------------------------------------------------- - 22 -3.7.2斩波与滤波稳流电路原理图--------------------------------------------------------------------------------- - 22 -3.8 电流检测电路的设计 -------------------------------------------------------------------------------------------------- - 23 -3.8.1电流/电压转换电路 -------------------------------------------------------------------------------------------- - 23 -3.8.2隔离型电流检测电路 ------------------------------------------------------------------------------------------ - 23 -4.1 软件流程------------------------------------------------------------------------------------------------------------------ - 24 -4.1.1主程序与A/D采集程序流程图 ----------------------------------------------------------------------------- - 24 -程序初始化 -------------------------------------------------------------------------------------------------------------------------- - 24 -5.1 测试方法------------------------------------------------------------------------------------------------------------------ - 25 -5.2 总结 ------------------------------------------------------------------------------------------------------------------- - 25 -附录------------------------------------------------------------------------------------------------------------------------------------ - 27 -附1:原件清单 -------------------------------------------------------------------------------------------------------- - 27 -附2:总电路图 -------------------------------------------------------------------------------------------------------- - 28 -附3:部分程序 -------------------------------------------------------------------------------------------------------- - 29 -参考文献 ----------------------------------------------------------------------------------------------------------------------------- - 31 -第1章绪论在实际生活中,很多电子系统都要求有稳定的直流电流源供电,特别是在厂矿企业和实验室中,直流稳压电流源作为一种必备的电子设备得到了广泛的应用。

单片机数控电流源设计说明

单片机数控电流源设计说明

1绪论1.1电流源简介所谓恒流源就是输出电流极其稳定不随负载变化。

为了保证电流不变,输出电压必须始终符合V=I*R。

即负载需要多大电压,恒流源就必须输出多大电压,“无条件”予以满足。

从外部看,就是Ro=∞。

如果R→∞,那么V→∞。

所以理想恒流源都不允许输出开路。

对于实际电路,当R大到一定程度,电压输出能力就会不够,输出电流必然下降,不再恒定。

在一般恒流电路多采用电流负反馈来恒定电流负反馈的作用就是“使之稳定”。

通过时刻“检查”控制对象的状态,并进行调整。

发现小了,就设法使之增大,发现大了,就设法使之减小。

形象地说,电流负反馈电路则是采样输出电流,计算误差,据此调节自身状态,使输出电流稳定,因而,输出特性接近恒流源。

衡量“接近”程度的指标就是输出电阻R远大于零。

一般希望Ro→∞。

(只能接近,不可能完全达到)1.2数控电流源的必要性作为常用的电子仪器在学校和研发和检测部门都有着相当广泛的应用,特别在电路原理实验和电子元件老化测试中都离不开电流源。

随着电子技术的不断进步对电子仪器的要求不断提高,电源作为电路的动力源泉更是扮演着越来越重要的角色,不论是学校实验室还是维修中心都离不开实验电源,然而传统的电源不论是在控制精度还是输出特性上都无法满足要求。

首先从精度上来看传统电流源的调整大多采用旋转电位器的方式,在调整时电流值主要从电位器的刻度读出,容易产生读数误差。

从可操作性来看传统电流原电位器上的刻度有限,不可能非常精细,仅仅靠电位器的几个刻度对操作者的技巧要求比较高,同时误差也比较大。

传统的实验电源急待改进电源。

1.3数控电流源的可行性由于单片机技术的不断发展和D/A,A/D元件的普及使得数控电源成为可能,数控电源不论是在控制精度还是在可操作性上都有传统电源无法比拟的优势,由于单片机的平民化,使得数控电源与传统电源的成本日益接近。

另外,SMT技术也是飞速发展,使得数控电源体积和重量都大大减小,为其在特殊领域的应用奠定了基础。

数控直流电流源设计报告

数控直流电流源设计报告

数控直流电流源一、设计任务和技术要求1. 设计一个数控直流电流源。

2. 输出电流0~99mA,手动步进1mA增、减可调,误差不大于0.01mA。

3. 具有输出电流大小的数码显示。

4. 负载供电电压+12V,负载等效阻值100Ω。

5. 电路应具有对负载驱动电流较好的线性控制特性。

6. 设计电路工作的直流供电电源电路。

二、系统原理概述本设计要求设计出一个数控的直流电源,并且输出电流为0~99mA ,可以手动控制增减。

在此采用数模转换的原理,只要产生与0~99mA 电流相对应的数字量(我们取数字量为0~99),再使用D/A转换器转换为模拟电压量,最后再用V/I 转换器将电压量转换为与电压量相对应的电流量即可。

为控制输出电流手动步进为1mA 增、减可调,我们只要保证数字量(0~99)——电压量(0~9.9V)——电流量(0~99mA)相对应,通过控制数字量手动增减步进为 1 可调即可。

综上,整个系统的原理框图如图一所示:图一系统原理框图三、方案论证1. 直流稳压电源电路单元小功率稳压电源由电源变压器、整流电路、滤 波电路和稳压电路四 个部分组成。

如图二所示:图二 稳压电源组成示意图方案一: 输出可调的开关电 源开关电源的功能元件工作在开关状态,因 而效率高,输 出功率大;且 容 易实现短路保护与过流保护,但 是电路比较复杂,设计繁琐,在低输出电压 时开关频率低,纹波大,稳定度极差,因此在本设计中不适合此方案。

方案由固定式三端稳压器组成由固定式三端稳压器(7805、7812、7912)输出脚 V 0、输入脚 V i 和接地 脚 GND 组成,它 们的输入端接电 容可以进一步滤波,输出端接 电容可以改善 负载的瞬间影响,并且此电路也比较稳定,实现简单。

因此在此采用方案二,电路原理图如图三所示:2.手动增减数字量产生单元图三 固定三端式直流稳压电源电路方案一:74LS163为可预置的 4 位二进制同步加法计数器。

高效数控恒流源设计报告

高效数控恒流源设计报告

高效数控恒流源设计报告一、引言数控恒流源(Numerical Control Constant Current Source)是一种广泛应用于电子设备和工业生产中的电源设备,主要用于稳定输出恒定的电流信号。

在很多应用场景中,对电流的精确控制和稳定性要求较高。

本文将介绍一种高效数控恒流源的设计方案,并详细讨论其工作原理、电路结构和性能指标。

二、设计方案2.1 工作原理数控恒流源的工作原理基于负反馈机制,通过对输出电流进行监测并与设定值进行比较,调整反馈回路中的控制信号,使输出电流保持在设定值附近。

典型的数控恒流源由四个主要部分组成:直流电源、电流检测电路、比较器和功率调节器。

2.2 电路结构本设计方案采用基本的电流控制回路,电路结构如下:电路示意图电路示意图主要组成部分包括:•直流电源:提供基准电压以供电路工作。

•电流检测电路:通过高精度电流传感器对输出电流进行实时监测,并输出检测信号。

•参考电流源:提供设定值参考电流作为比较器的输入。

•比较器:将检测信号与设定值参考电流进行比较,并产生误差信号。

•误差放大器:对比较器输出的误差信号进行放大,以提供足够的调节信号给功率调节器。

•功率调节器:根据误差信号的大小和方向,控制输出电流的大小和稳定性。

2.3 性能指标为了评估数控恒流源的性能,我们需要考虑以下指标:•稳定性:输出电流的稳定性是衡量数控恒流源性能的重要指标,要求输出电流在设定值附近波动幅度小。

•精度:指数控恒流源输出的电流与设定值之间的偏差程度,要求尽可能小。

•响应速度:数控恒流源对于设定值的改变能够快速响应并调整输出电流,要求响应速度较快。

•效率:数控恒流源的电能转换效率,要求尽可能高。

三、实验步骤3.1 集成电路选择和布局设计为了实现高效的数控恒流源设计,我们首先需要选择适合的集成电路并进行布局设计。

考虑到稳定性和性能需求,我们选择了XXX型号的集成电路,并根据电路结构进行布局设计。

3.2 元器件选型和连接根据设计方案,选择适合的元器件,并根据电路结构进行连接。

高效数控恒流源设计报告最终版

高效数控恒流源设计报告最终版

高效数控恒流源设计报告最终版本报告主要介绍了一种高效数控恒流源的设计方案,该方案采用了一种基于集成电路控制的恒流源电路,其具有响应速度快、精度高、稳定性好等优点,可以用于正负载电压变化大的场合,能够有效地提高恒流源的输出精度和稳定性。

本报告结合具体设计实例,详细介绍了该恒流源电路的设计原理、电路结构、参数选择等关键技术,以及在实验验证中的性能表现。

本文旨在为电子工程师和研究人员提供参考,供其在设计和应用过程中参考。

一、方案设计原理在电子设备中,恒流源作为一种重要的电源单元,通常用于需要稳定电流输出的场合,例如电池充电、LED 灯驱动、电流测量等等。

传统的恒流源通常采用电阻调节电流大小,但这种方式存在电流漂移大、电阻热耗大、温度漂移大等缺陷。

为解决这些缺陷,本设计方案采用了一种基于集成电路控制的电路方案。

该电路的基本原理是利用采样电阻将负载电流转化为一个电压信号,然后经过运算放大器等电路进行放大,再利用控制器对输出电压进行控制,以保证输出电流的大小。

其中,控制器可以选用数字型或模拟型,数字型采用微处理器或FPGA芯片,更能提高设备的灵活性和精度;而模拟型则采用集成运算放大器,实时控制输出电流。

这种电路方案具有响应速度快、精度高、稳定性好等优点,能够满足大部分恒流源的应用需求。

二、方案设计细节1. 采样电阻的选取采样电阻是恒流源电路中的重要元器件之一,它起到将负载电流转化为电压信号的作用。

为保证其响应速度和精度,需要选用阻值尽可能小、精度尽可能高的采样电阻。

同时,为避免采样电阻过小导致的功耗过大和温度漂移过大,还需根据负载电流和制程工艺等因素进行合理的选择。

2. 运算放大器的设计由于采样电阻的阻值较小,其输出电压也相应很小,需要经过放大才能得到较大的量级。

因此,在电路中采用高精度的运算放大器进行放大,并对其负载容量、增益稳定等因素进行严格控制,以保证输出电压与输入电流之间的比值达到恒定。

3. 控制器的选取恒流源的控制器可以选择数字型或模拟型,其中数字型采用微处理器或FPGA 芯片,更能提高设备的灵活性和精度;而模拟型则采用集成运算放大器,实时控制输出电流。

数控直流恒流源

数控直流恒流源

数控直流恒流源 Last updated on the afternoon of January 3, 2021数控恒流源设计与总结报告摘要:本设计以89C52为主控器件,采用了高共模抑制比低温漂的运算放大器OP07和大功率场效应管IRF640构成恒流源,通过12位A/D、D/A转换芯片,完成了单片机对输出电流的实时检测和实时控制,控制界面直观、简洁,具有良好的人机交互性能,人机接口采用4*4键盘及LCD液晶显示器。

该系统电流输出范围为20mA~2000mA的数控直流电流源。

该电流源具有电流可预置,1mA步进,同时显示给定值和实测值等功能。

关键词: 89C52 恒流源 AD DA1 系统设计设计并制作数控直流电流源。

输入交流200~240V,50Hz;输出直流电压≤10V。

其原理示意图如下所示。

图数控直流电流源原理示意图设计要求题目要求设计并制作数控直流电流源。

输入交流200~240V,50Hz;输出直流电压≤10V。

其要求如下:1.1.1 基本要求(1)输出电流范围:200mA~2000mA;(2)可设置并显示输出电流给定值,要求输出电流与给定值偏差的绝对值≤给定值的1%+10 mA;(3)具有“+”、“-”步进调整功能,步进≤10mA;(4)改变负载电阻,输出电压在10V以内变化时,要求输出电流变化的绝对值≤输出电流值的1%+10 mA;(5)纹波电流≤2mA;(6)自制电源。

1.1.2 发挥部分(1)输出电流范围为20mA~2000mA,步进1mA;(2)设计、制作测量并显示输出电流的装置 (可同时或交替显示电流的给定值和实测值),测量误差的绝对值≤测量值的%+3个字;(3)改变负载电阻,输出电压在10V以内变化时,要求输出电流变化的绝对值≤输出电流值的%+1 mA;(4)纹波电流≤;(5)其他。

总体设计方案本设计要设计的基于单片机控制的直流恒流源,以直流稳压电源和稳流电源为核心,结合单片机最小系统实现对输出电流的控制。

数控恒流源的设计与实现

数控恒流源的设计与实现

数控恒流源的设计与实现数控恒流源是一种电子设备,它可以在恒定的电流范围内自动调节输出电流。

这种设备被广泛应用于电子、机械、光学、医疗等领域。

它具有精度高、效率高、可靠性强等优点。

下面,我们将详细讨论数控恒流源的设计与实现。

一、设计方案1.数控恒流源的工作原理数控恒流源的工作原理是利用电阻、电感和开关管等元件组成一个功率电路,通过对开关管的控制,来调节输出电流。

具体过程如下:①从外部输入一个控制信号。

②控制信号由微控制器或其他控制元件解码。

③解码器将控制信号转换为PWM信号。

④PWM信号控制开关管,使其按照一定的频率开闭。

⑤开关管在闭合瞬间,会将电源的电能存储在电感中。

⑥当开关管打开时,存储在电感中的电能会被释放,形成一定的输出电流。

(注:开关管的频率一般在几十KHz以上,这样可以减小开关管的体积,并提高效率。

)2.电路设计数控恒流源的电路设计需要考虑到以下因素:(1)电路的精度:为保证电路输出的电流精度,需要选择高精度的元件。

(2)电路的效率:在能满足精度要求的前提下,应尽量提高电路的效率,以减小体积和降低成本。

(3)电路的稳定性:电路需要在多种不同的工作条件下稳定地输出电流,因此需要在设计中考虑到各种因素的影响。

(4)电路的控制:为了保证电路的稳定和精度,需要采用数字控制技术,实现对电流的精确控制。

基于以上考虑,我们可以设计出如下电路:(1)控制电路:采用单片机或FPGA等数字控制芯片,实现对电路的精确控制。

(2)功率电路:由电源、电感、开关管、稳压电路等部分组成。

(3)反馈电路:通过反馈电路,实现对输出电流的精确测量和控制。

二、实现方法1.电路的制作电路的制作需要根据电路设计方案进行,选择合适的元件进行制作。

在制作的过程中需要注意以下几点:(1)元件的选取需要严格参照设计方案,要保证元件的精度、效率和稳定性。

(2)焊接需要仔细,避免焊接不牢固或损坏元件。

(3)在调试电路时,需要注意安全,避免电路损坏或对人身安全造成影响。

数控直流电流源

数控直流电流源

数控直流电流源总体方案论证与比较方案一:采用各类数字电路来组成键盘控制系统,进行信号处理,如选用CPLD等可编程逻辑器件。

本方案电路复杂,灵活性不高,效率低,不利于系统的扩展,对信号处理比较困难。

方案二:采用AT89S52单片机作为整机的控制单元,通过改变AD7543的输入数字量来改变输出电压值,从而使输出功率管的基极电压发生变化,间接地改变输出电流的大小。

为了能够使系统具备检测实际输出电流值的大小,可以将电流转换成电压,并经过ADC0809进行模数转换,间接用单片机实时对电压进行采样,然后进行数据处理及显示。

此系统比较灵活,采用软件方法来解决数据的预置以及电流的步进控制,使系统硬件更加简洁,各类功能易于实现,能很好地满足题目的要求。

本方案的基本原理如图1-1-1所示。

图1-1-1 系统原理框图比较以上两种方案的优缺点,方案二简洁、灵活、可扩展性好,能达到题目的设计要求,因此采用方案二来实现。

模块电路设计与比较1.恒流源方案选择方案一:采用恒流二极管或者恒流三极管,精度比较高,但这种电路能实现的恒流范围很小,只能达到十几毫安,不能达到题目的要求。

方案二:采用四端可调恒流源,这种器件靠改变外围电阻元件参数,从而使电流达到可调的目的,这种器件能够达到1~2000毫安的输出电流。

改变输出电流,通常有两种方法:一是通过手动调节来改变输出电流,这种方法不能满足题目的数控调节要求;二是通过数字电位器来改变需要的电阻参数,虽然可以达到数控的目的,但数字电位器的每一级步进电阻比较大,所以很难调节输出电流。

方案三:压控恒流源,通过改变恒流源的外围电压,利用电压的大小来控制输出电流的大小。

电压控制电路采用数控的方式,利用单片机送出数字量,经过D/A 转换转变成模拟信号,再送到大功率三极管进行放大。

单片机系统实时对输出电流进行监控,采用数字方式作为反馈调整环节,由程序控制调节功率管的输出电流恒定。

当改变负载大小时,基本上不影响电流的输出,采用这样一个闭路环节使得系统一直在设定值维持电流恒定。

数控恒流源系统设计

数控恒流源系统设计

数控恒流源系统设计数控恒流源系统是一种集数字控制和恒流源技术于一体的电子控制系统。

它主要应用于自动化生产线上的电子设备,能够实现对电子设备的稳定供电,从而保证设备的正常运转。

本文将详细介绍数控恒流源系统的设计方案、工作原理等内容。

一、设计方案1.系统组成数控恒流源系统由功率负载、分流器、电流检测器、控制器、电源及散热系统组成。

2.系统技术方案(1)分流器技术:分流器是指将输入电流分成不同的等份,以便控制其输出。

在数控恒流源系统中,分流器被用于分配电流。

分流器可以采用电阻、晶体管等器件构成,其中采用现代的导电聚合物技术制作的微型分流器更具有优势。

(2)电流检测技术:电流检测器可以实现对电流的精确检测和稳定输出。

它可以监测电子设备的电流信息,并纠正输出电流,确保恒流源输出恒定的电流。

(3)控制器技术:控制器是整个系统的核心部件。

采用先进的数字信号处理器(DSP)技术,可以实现对电压、电流的精确控制,确保系统稳定性。

控制器还提供了人机界面,可通过屏幕显示数字信息和交互指令。

3.系统特点(1)数控恒流源系统采用数字控制技术,具有稳定性好、响应速度快、精度高等特点。

(2)系统采用恒流源技术,能够实现输出固定的电流,从而保证电子设备正常工作。

(3)系统具有反馈控制功能,可以实时监测电流变化,从而自动调整电流输出。

二、工作原理数控恒流源系统的工作原理可以简单概括为三个过程:采样、比较和控制。

1.采样过程该过程是指通过电流检测器对电流进行采样。

检测器可以检测来自负载的电流信息,并将其转换成数值信号,提供给控制器进行处理。

采样周期一般越短,监测到的电流变化越精细。

2.比较过程该过程是指将采样到的电流值和系统设置的目标电流进行比较。

如果采样到的电流值与目标电流值相等,则直接通过恒流源源测出固定电流给负载;如果不相等,则控制器发出控制信号,调整恒流源输出的电流。

3.控制过程该过程是指控制器根据电流检测器采样到的实际电流值进行比较,对恒流源输出的电流进行调整。

数控恒流源设计

数控恒流源设计

数控恒流源设计数控恒流源是一种常见的电子设备,其主要功能是对电流进行精确的控制和稳定。

在许多工业和科学领域中,数控恒流源被广泛应用,提供了有效、可靠的电流输出。

以下是关于数控恒流源设计的详细介绍。

一、数控恒流源的定义和优势数控恒流源通常包括电路、控制系统、开关电源和显示屏等组件。

通常,该设备的输出电流可通过特定的控制方式进行设置和调整,实现对电流的精确控制,从而实现恒定电流的输出。

这种电流输出的优点是输出稳定、可靠,从而可以满足工业、科学和医学领域的人员需求。

数控恒流源的优点在于其控制方式灵活多样,可以根据需求进行精确控制。

此外,该设备具有高效、可靠、稳定的特点,可以满足长时间连续工作的需要。

数控恒流源的应用范围非常广泛,其主要应用于自动化设备、实验室、医学仪器等领域中。

二、数控恒流源的设计数控恒流源设计可以分为电路设计、控制系统设计、开关电源设计以及显示和用户界面设计等步骤。

首先是电路设计。

电路设计包括电路板的设计和电源系统的设计,其中电源系统可以选择电池、直流电源或交流电源等。

通常,为了保障设备的输出稳定,电路板部分会使用高精度的电子元件。

其次是控制系统设计。

控制系统设计主要包括数据采集系统、控制算法和控制器的选取等内容。

数控恒流源的控制系统需要使用高精度的传感器进行电流的采集,并需要借助特定的控制算法进行电流控制。

开关电源设计是设计中的关键部分。

开关电源可以通过目标的各种控制方式,如模拟控制和数字控制来实现输出的电流和电压的精确调节,具有较小的尺寸和体积,高效的功率转换,使用寿命长,能够应对各种复杂的工作环境等好处。

最后是显示和用户界面设计。

数控恒流源的显示可以使用LED数字显示、点阵显示等技术,用于显示输出的电流大小、电压、状态和故障等信息。

由于该设备需要接受用户控制,因此需要设计友好的用户界面,以便用户能够轻松掌握其使用方法。

三、数控恒流源的使用方法数控恒流源的使用步骤非常简单。

首先,需要将设备连接到所需的载体上,然后设置所需的电流和电压,最后启动设备即可完成任务。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

测控电路课程设计课程设计名称:数控电流源设计专业班级:学生姓名:学号:指导教师:刘建娟同组人姓名:课程设计时间:2013.12.25—2014.01.03测控电路课程设计任务书引言数控电源是从80年代才真正的发展起来的,期间系统的电力电子理论开始建立。

这些理论为其后来的发展提供了一个良好的基础。

在以后的一段时间里,数控电源技术有了长足的发展。

但其产品存在数控程度达不到要求、分辨率不高、功率密度比较低、可靠性较差的缺点。

因此数控电源主要的发展方向,是针对上述缺点不断加以改善。

单片机技术及电压转换模块的出现为精确数控电源的发展提供了有利的条件。

新的变换技术和控制理论的不断发展,各种类型专用集成电路、数字信号处理器件的研制应用,到90年代,已出现了数控精度达到0.05V 的数控电源,功率密度达到每立方英寸50W的数控电源。

从90年代末起,随着对系统更高效率和更低功耗的需求,电信与数据通讯设备的技术更新推动电源行业中直流/直流电源转换器向更高灵活性和智能化方向发展。

在80年代的第一代分布式供电系统开始转向到20世纪末更为先进的第四代分布式供电结构以及中间母线结构,直流/直流电源行业正面临着新的挑战,即如何在现有系统加入嵌入式电源智能系统和数字控制。

早在90年代中,半导体生产商们就开发出了数控电源管理技术,而在当时,这种方案的性价比与当时广泛使用的模拟控制方案相比处于劣势,因而无法被广泛采用。

由于板载电源管理的更广泛应用和行业能源节约和运行最优化的关注,电源行业和半导体生产商们便开始共同开发这种名为“数控电源”的新产品。

现今随着直流电源技术的飞跃发展, 整流系统由以前的分立元件和集成电路控制发展为微机控制, 从而使直流电源智能化, 具有遥测、遥信、遥控的三遥功能, 基本实现了直流电源的无人值守。

从组成上,数控电源可分成器件、主电路与控制等三部分。

目前在电力电子器件方面,几乎都为旋纽开关调节电压,调节精度不高,而且经常跳变,使用麻烦。

数字化智能电源模块是针对传统智能电源模块的不足提出的,数字化能够减少生产过程中的不确定因素和人为参与的环节数,有效地解决电源模块中诸如可靠性、智能化和产品一致性等工程问题,极大地提高生产效率和产品的可维护性。

数控直流电流源作为稳定电源的分支,在工程技术和测量领域中有着重要的实用价值,其涉及的应用由稳定电磁场、校正电流表等扩展至激光、超导、现代通信和传感技术等领域。

基于模拟电路的电流源虽然可以实现高精度、宽电流范围输出,但其结构复杂, 调整困难,指示不直观。

随着单片机技术的发展,数字控制电流源开始出现,其以控制灵活、调节方便等特点展示了良好的应用前景。

一般的恒流电流源往往是电流值固定,或是有限数值档的电流值输出,不便于通用。

数字控制的电流源则通过单片机作为核心控制器,通过键盘设置所需的电流值,电流值取值范围大,使用方便灵活。

数控电流源课程设计一:设计总任务:设计一个8档数字控制电流源,要求在控制按键的作用下,电流源输出电流依次为0、10mA、20mA、30mA、40mA、50mA、60mA、70mA,同时用LED数码管显示这8个电流档位。

二:设计总目的:通过本次设计,熟悉运算放大器,计数器,D/A转换器,译码/显示电路的应用,并熟悉负反馈的应用。

三:设计内容:第一部分控制电路与D/A转换电路的设计:控制电路和D/A转换电路主要有芯片74LS161和DAC0832两个芯片构成,74LS161的210Q Q Q依次循环输出000,001,010,011,100,101,110,111。

采用8位D/A转换器DAC0832完成D/A转换。

当74LS161的210Q Q Q在000-111之间变化时,D/A转换器的理论输出电压U1在11205= 2.1875256V V-⨯-之间变化。

第二部分U/I转换部分图一电压放大器U/I转换电路如下:图二 U/I转换电路第三部分设计任务:为数控电流源设计档位显示电路。

设计目的:通过本实验,熟悉数字译码器的使用,熟悉CC4511七段锁存译码驱动器的使用。

设计原因:总的实验目的是要设计一个电流大小可以用数字方式控制的电流源,并可以在控制按键的作用下,电流源输出电流依次为0、10mA、20mA、30mA、40mA、50mA、60mA、70mA,同时用LED数码管显示这8个电流档位,因此要设计一个档位电视电路。

设计电路:显示电路部分:图三档位显示电路显示电路可采用图三所示电路,其中Q2、Q1、Q0为计数器输出信号分别接图中C、B、A处,即芯片CC4511的2引脚,1引脚和7引脚。

工作原理:一:数字显示译码器a.七段发光二极管(LED)数码管LED数码管是目前最常用的数字显示器,图(a)(b)为共阴管和共阳管的电路,(c)为两种不同出线形式的引出脚功能图。

一个LED数码管可用来显示一位0-9十进制和一个小数点。

小型数码管(0.5寸和0.36寸)每段发光二极管的正向压降,随显示光(通常为红、绿、黄、橙色)的颜色不同略有差别,通常约为2-2.5V,每个发光二极管的点亮电流在5-10mA。

LED数码管要显示BCD码所表示的十进制数字就需要一个专门的译码器,该译码器不但要完成译码功能,还要有相当的驱动能力。

(c)符号及引脚功能图三 LED数码管b. BCD码七段译码驱动器此类译码器型号有74LS47(共阳),74LS48(共阴),CC4511(共阴)等,本电路采用CC4511码锁存七段译码驱动器。

驱动共阴极LED数码管。

CC4511是BCD-7段锁存译码驱动器,在同一单片结构上由COS/MOS逻辑器件和n-p-n双极性晶体管构成。

这些器件的组合,使CC4511具有低静态耗散和高抗干扰及源电流高达25mA的性能。

由此可直接驱动LED及其他器件。

输出端分别检测显示、亮度调节、存储或选通一BCD码等功能。

当使用外部多路转换电路时,可多路转换和显示几种不同的信号。

图四为CC4511引脚排列:图四 CC4511引脚排列其中A.B.C.D为BCD码输入端a.b.c.d.e.f.g为译码输入端,输出“1”有效,用来驱动共阴极LED数码管。

为测试输入端。

=“0”时,译码输出全为“1”。

为消隐输入端。

=“0”时,译码输出全为“0”。

LE为锁定端。

LE=“1”时,译码器处于锁定(保持)状态,译码输出保持在=0时的数值,=0为正常译码。

表一为CC4511功能表,内接有上拉电阻,故只需在输出端与数码管笔段串入限流电阻即可工作。

译码器还有拒伪码功能,当输入码超过1001时,输出全为“0”,数码管熄灭。

表一:实验室只要接通+5V电源和将十进制数的BCD码接至译码器的相应输入端A.B.C.D即可以数字0-9的形式显示出相应要调节的档位。

二 .工作特性:三.逻辑图:图五逻辑图第四部分总体方案设计:本设计要求一个电流大小可以用数字方式控制的电流源。

一般情况下,对电流直接控制会比较困难,而对电压的控制则要求简单得多,而且容易实现,因此工程上常设计一个电压/电流转换电路,即U/I转换电路,U/I转换电路的输出信号为电流I,输入信号为控制信号电压U,U、I之间的关系为I=KU式子中的K为一个不为0的系数。

而后通过对电压的控制实现对电流的控制,其中K由U/I转换电路的结构和元件参数确定。

控制电压U可以通过数字控制方式得到,本设计中的电压U由计数器和按键构成的控制电路控制D/A转换器产生。

本设计中要求产生的电流共有8档,由此可以由8进制计数器控制D/A转换器产生8种不同数值的控制电压。

本次方案的原理框图如下图所示:图六数控电流源原理框图本次方案的电路原理图如下图所示图七总体电路原理图设计总结:这次课程设计历时两周,从最开始的选题,查阅与题目相关的技术资料,到后来的分析电路,每一步都有很大的收获,通过做这次课程设计,将电路中一些知识系统地综合起来,将理论知识与实际的项目相结合,可以更好地理解测控电路。

通过对数控电流源电路的分析,得出了数控电流源电路的优点,即:(1)原理简单,使用方便(2)适应性强等。

作为在工业控制中最常用的控制方式,数控电流源电路具有强大的生命力,已经可以满足工业控制的需要。

但是,对于一些特殊的行业,例如军事工业、航天工业等,则需要一些复杂的数控电流源电路才能满足控制的需要。

设计心得:这次单片机课程设计我们历时两个星期,在我们班里算是倒数几组完成的吧,但经过这两个星期的实践和体验下来,我们又怎么会去在乎那个先后问题呢,因为对我来说学到的不仅是那些知识,更多的是团队和合作。

现在想来,也许学校安排的课程设计有着它更深层的意义吧,它不仅仅让我们综合那些理论知识来运用到设计和创新,还让我们知道了一个团队凝聚在一起时所能发挥出的巨大潜能。

在这次课程设计中,我们运用到了以前所学的专业课知识,如:preteus制图、模拟和数字电路知识等。

虽然过去从未独立应用过它们,但在学习的过程中带着问题去学我发现效率很高,这是我做这次课程设计的又一收获。

短短两周的课程设计已经结束了,通过这次的课程设计锻炼了我们的实践能力,也是对我们以后的实际工作能力的具体训练和考察过程。

现在是一个高科技的时代,单片机已经成为当今计算机应用中空前活跃的领域,在生活中可以说是无处不在的。

因此对于我们这一专业的同学来说,学好单片机,并正确应用单片机是非常重要的。

在整个设计中我懂得了许多东西,也培养了我独立工作的能力,树立了对自己工作能力的信心,相信会对今后的学习工作生活有非常重要的影响。

而且大大提高了动手的能力,使我充分体会到了在创造过程中探索的艰难和成功时的喜悦。

虽然这个设计做的也不太好,但是在设计过程中所学到的东西是这次课程设计的最大收获和财富。

参考文献[1] 张国雄. 测控电路. 北京:机械工业出版社.,2011.[2] 邓北川.浅谈模拟PID电路的学习与辨识.西安:西安航空技术高等专科学校学报,2007.[3]胡寿松.自动控制原理.北京:科学出版社,2002.[4] 康华光.电子技术基础.北京:高等教育出版社,1988.数码管显示原理:数码管按段数分为七段数码管和八段数码管,八段数码管比七段数码管多一个发光二极管单元(多一个小数点显示);按能显示多少个“8”可分为1位、2位、4位等等数码管;按发光二极管单元连接方式分为共阳极数码管和共阴极数码管。

共阳数码管是指将所有发光二极管的阳极接到一起形成公共阳极(COM)的数码管。

共阳数码管在应用时应将公共极COM接到+5V,当某一字段发光二极管的阴极为低电平时,相应字段就点亮。

当某一字段的阴极为高电平时,相应字段就不亮。

共阴数码管是指将所有发光二极管的阴极接到一起形成公共阴极(COM)的数码管。

共阴数码管在应用时应将公共极COM接到地线GND上,当某一字段发光二极管的阳极为高电平时,相应字段就点亮。

相关文档
最新文档