专题:以二次函数为背景的特殊四边形的存在性问题

合集下载

二次函数背景下的特殊四边形存在性判定(解析版)

二次函数背景下的特殊四边形存在性判定(解析版)

备战2020年中考数学压轴题之二次函数专题06 二次函数背景下的特殊四边形存在性判定【方法综述】知识准备:特殊四边形包括平行四边形、菱形、矩形和正方形。

它们的判定方法如下:平行四边形的判定方法:两组对边分别平行的四边形是平行四边形;两组对角分别相等的四边形是平行四边形两组对边分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形两条对角线互相平分的四边形是平行四边形;矩形判的定方法有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形有三个角是直角的四边形是矩形菱形判定方法有一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形四条边相等的四边形是矩形正方形的判定方法平行四边形+矩形的特性;平行四边形+菱形的特性解答时常用的技巧:(1).根据平行四边形的对角线互相平分这条性质,应用中点坐标公式,可以采用如下方法:已知点A、B、C三点坐标已知,点P在某函数图像上,是否存在以点A、B、C、P为顶点的四边形为平行四边形,求点P的坐标。

如,当AP、BC为平行四边形对角线时,由中点坐标公式,可得a+m=c+e,n+b=d+f则m= c+e-a;n= d+f-b,点P坐标可知,将其带入到函数关系式进行验证,如果满足函数关系式,即为所求P点,同理,根据分类讨论可以得到其它情况的解答方法。

(2).菱形在折叠的情况下,可以看成是等腰三角形以底边所在直线折叠所得,因此,菱形的存在性讨论,亦可以看做等腰三角形的存在性讨论。

(3).矩形中的直角证明出来常规直角的探究外,还有主要是否由隐形圆的直径所对圆周角得到。

【典例示范】类型一平行四边形的存在性探究例1:如图,在平面直角坐标系中,已知抛物线经过A(-4,0),B(0,-4),C(2,0)三点.(1)求抛物线的解析式;(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S,求S关于m的函数关系式,并求出S的最大值;(3)若点P是抛物线上的动点,点Q是直线y=-x上的动点,判断有几个位置能使以点P,Q,B,O为顶点的四边形为平行四边形(要求PQ∥OB),直接写出相应的点Q的坐标.【答案】(1)y=12x2+x-4;(2)当m=-2时,S有最大值,S最大=4;(3)满足题意的Q点的坐标有三个,分别是(-2+2-,(-2-2+,(-4,4).【思路引导】(1)已知抛物线与x轴的两个交点的横坐标,一般选用两点式,利用待定系数法求解即可;(2)利用抛物线的解析式表示出点M 的纵坐标,从而得到点M 到x 轴的距离,然后根据三角形面积公式表示并整理即可得解,根据抛物线的性质求出第三象限内二次函数的最值,然后即可得解;(3)利用直线与抛物线的解析式表示出点P 、Q 的坐标,然后求出PQ 的长度,再根据平行四边形的对边相等列出算式,然后解关于x 的一元二次方程即可得解.【解析】(1)设抛物线的解析式为y=a (x+4)(x -2),把B (0,-4)代入得,-4=a×(0+4)(0-2),解得a=12, ∴抛物线的解析式为:y=12(x+4)(x -2),即y=12x 2+x -4; (2)过点M 作MD ⊥x 轴于点D ,设M 点的坐标为(m ,n ), 则AD=m+4,MD=-n ,n=12m 2+m -4, ∴S=S △AMD +S 梯形DMBO -S △ABO =111(4)()(4)()44222m n n m +-+-+--⨯⨯= -2n -2m -8=-2×(12m 2+m -4)-2m -8=-m 2-4m =-(m+2)2+4(-4<m <0);∴S 最大值=4.(3)设P (x ,12x 2+x -4). ①如图1,当OB 为边时,根据平行四边形的性质知PQ ∥OB ,∴Q 的横坐标等于P 的横坐标,又∵直线的解析式为y=-x ,则Q (x ,-x ).由PQ=OB ,得|-x -(12x 2+x -4)|=4,解得x=0,-4,-x=0不合题意,舍去.由此可得Q (-4,4)或(-2--2-;②如图2,当BO 为对角线时,知A 与P 应该重合,OP=4.四边形PBQO 为平行四边形则BQ=OP=4,Q 横坐标为4,代入y=-x 得出Q 为(4,-4).故满足题意的Q 点的坐标有四个,分别是(-4,4),(4,-4),(-,2-,(-2-.【方法总结】本题是二次函数综合题,交点式求解析式,二次函数与三角形面积最值问题的公共底的辅助线的做法要注意,二次函数中存在平行四边形的方法,要分别对已知边的分别为平行四边形的边或是对角线进行分类讨论.针对训练1.如图,二次函数的图象与x 轴交于A 、B 两点,与y 轴交于点C ,已知点A (﹣4,0).(1)求抛物线与直线AC 的函数解析式;(2)若点D (m ,n )是抛物线在第二象限的部分上的一动点,四边形OCDA 的面积为S ,求S 关于m 的函数关系式;(3)若点E 为抛物线上任意一点,点F 为x 轴上任意一点,当以A 、C 、E 、F 为顶点的四边形是平行四边形时,请求出满足条件的所有点E 的坐标.【答案】(1)(2)S=﹣m 2﹣4m+4(﹣4<m <0)(3)(﹣3,2)、(,﹣2)、(,﹣2)【解析】 (1)∵A (﹣4,0)在二次函数y=ax 2﹣x+2(a≠0)的图象上, ∴0=16a+6+2,解得a=﹣, ∴抛物线的函数解析式为y=﹣x 2﹣x+2; ∴点C 的坐标为(0,2),设直线AC 的解析式为y=kx+b ,则, 232(0)2y ax x a =-+≠122y x =+32--32-3212123204{2k b b=-+=解得,∴直线AC 的函数解析式为:;(2)∵点D (m ,n )是抛物线在第二象限的部分上的一动点,∴D (m ,﹣m 2﹣m+2),过点D 作DH ⊥x 轴于点H ,则DH=﹣m 2﹣m+2,AH=m+4,HO=﹣m ,∵四边形OCDA 的面积=△ADH 的面积+四边形OCDH 的面积,∴S=(m+4)×(﹣m 2﹣m+2)+(﹣m 2﹣m+2+2)×(﹣m ),化简,得S=﹣m 2﹣4m+4(﹣4<m <0);(3)①若AC 为平行四边形的一边,则C 、E 到AF 的距离相等,∴|y E |=|y C |=2,∴y E =±2.当y E =2时,解方程﹣x 2﹣x+2=2得,x 1=0,x 2=﹣3,∴点E 的坐标为(﹣3,2);当y E =﹣2时,解方程﹣x 2﹣x+2=﹣2得,x 1=,x 2=,∴点E 的坐标为(,﹣2)或(,﹣2);②若AC 为平行四边形的一条对角线,则CE ∥AF ,∴y E =y C =2,∴点E 的坐标为(﹣3,2).综上所述,满足条件的点E 的坐标为(﹣3,2)、(,﹣2)、(,﹣2).1{22k b ==122y x =+123212321212321212321232123232-32-+32-32-32--32-+2.(云南省弥勒市2019届九年级上学期期末考试数学试题)如图,抛物线y =x 2−2x −3与x 轴交A 、B 两点(A 点在B 点左侧),直线l 与抛物线交于A 、C 两点,其中C 点的横坐标为2.(1)求A 、B 两点的坐标及直线AC 的函数表达式;(2)P 是线段AC 上的一个动点,过P 点作y 轴的平行线交抛物线于E 点,求线段PE 长度的最大值;(3)点G 是抛物线上的动点,在x 轴上是否存在点F ,使A 、C 、F 、G 四个点为顶点的四边形是平行四边形?如果存在,写出所有满足条件的F 点坐标(请直接写出点的坐标,不要求写过程);如果不存在,请说明理由.【答案】(1)A(−1,0),B(3,0),y =−x −1。

二次函数专题提优》。特殊四边形存在性问题

二次函数专题提优》。特殊四边形存在性问题

二次函数专题提优》。

特殊四边形存在性问题二次函数专题提优:特殊四边形存在性问题一、平行四边形存在性原理:1.实验与探究:给出平行四边形ABCD的顶点A、B、C、D的坐标,并归纳发现:无论平行四边形ABCD处于直角坐标系中哪个位置,当其顶点坐标为A(a,b),B(c,d),C(m,n),D(e,f)时,则四个顶点的横坐标a,c,m,e之间的等量关系为;纵坐标b,d,n,f之间的等量关系为(不必证明)。

2.运用与推广:在同一直角坐标系中有抛物线和三个点G,S,H,且c>0.求当c为何值时,该抛物线上存在点P,使得以G,S,H,P为顶点的四边形是平行四边形,并求出所有符合条件的P点坐标。

二、平行四边形的存在性问题:1.已知抛物线y=ax²+bx+c的对称轴是x=1,经过(-2,-5)和(5,-12)两点。

1)求此抛物线的解析式。

2)设此抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于C点,D是线段BC上一点(不与点B、C 重合)。

若以B、O、D为顶点的三角形与△BAC相似,求点D的坐标。

3)点P在y轴上,点M在此抛物线上,若要使以点P、M、A、B为顶点的四边形是平行四边形,请直接写出点M的坐标。

2.如图,抛物线y=ax²+bx+c交x轴于点A(-3,0)、点B(1,0),交y轴于点E(0,-3),点C是点A关于点B的对称点,点F是线段BC的中点,直线l过点F且与y轴平行,直线y=-x+m过点C,交y轴于点D。

1)求抛物线的函数表达式。

2)点K为线段AB上一动点,过点K作x轴的垂线与直线CD交于点H,与抛物线交于点G,求线段HG长度的最大值。

3、在直线l上取点M,在抛物线上取点N,使得以点A、C、M、N为顶点的四边形是平行四边形。

求点N的坐标。

解析:根据题意,可以得到以下条件:1.点A在抛物线上,坐标为(0,c);2.点C在直线l上,坐标为(0,b);3.点M在直线l上,坐标为(x,kx+b);4.点N在抛物线上,坐标为(y,ay^2+by+c)。

二次函数背景下特殊四边形的存在性问题8.20定稿.doc

二次函数背景下特殊四边形的存在性问题8.20定稿.doc

∴N(5﹣ , ),
③以BD为边, 过M作MH⊥x轴于H, ∴在RT△BHM中MH2+BH2=BM2

1 (n 2)2 (n 4)2 12 2

n1

4

25 5
n2
42 5 4
(不合题意舍去)
∴N(5+ , )
菱形的存在性问题
• 题目背景:此类题目考查的是二次函数的 综合应用,主要涉及了待定系数法求一次 函数、二次函数的解析式、勾股定理(解 直角三角形)以及菱形的性质。
①若以PQ为菱形对角线, 此时BQ=t,菱形的边长=t
因为BQ=CQ=t
t5 2
点Q为BC的中点,
Q( 3, 2) 2
∵ D2与点Q的横坐标相差t个单位 D2 (1, 2)
②若以CQ为菱形对角线,
此时BQ t菱形的边长 t CE 1 CQ 1 (5 t)
2
2
在R T △CE P中 c os
X
A
2
XC
,
YA
2
YC
)
又∵点E为BD的中点
∴E点的坐标为
(XB
2
XD
, YB
YD 2
)
∴ XA XC XB XD,,YA YC YB YD
即:平行四边形对角线两端点的横坐标、纵坐标 之和分别相等
类型一:三点一动的平行四边形
(3)在抛物线 y x2 2x a(a<0)上是否存在一点P,使 得以P、A、C、N为顶点的四边形是平行四边形?
(∴综公∴1)P上由式m3=,(已得42满,,知-:足1∴条)-条.件1P+2件可0(的=4得3点+,抛mP物,53为线)P1∴;的(-表m4=,达-74)式,、yP∴=2(P41(,-54,7))、;

《二次函数专题提优》 :特殊四边形存在性问题

《二次函数专题提优》 :特殊四边形存在性问题

《二次函数专题提优》:特殊四边形存在性问题(一)、平行四边形存在性原理:1、实验与探究:(1)、在图1,2,3中,给出平行四边形ABCD的顶点A B D,,的坐标(如图所示),写出图1,2,3中的顶点C的坐标,它们分别是(52),,,;(2)、在图4中,给出平行四边形ABCD的顶点A B D,,的坐标(如图所示),求出顶点C的坐标(C点坐标用含a b c d e f,,,,,的代数式表示);归纳与发现:(3)、通过对图1,2,3,4的观察和顶点C的坐标的探究,你会发现:无论平行四边形ABCD处于直角坐标系中哪个位置,当其顶点坐标为()()()()A a bB c dC m nD e f,,,,,,,(如图4)时,则四个顶点的横坐标a c m e,,,之间的等量关系为;纵坐标b d n f,,,之间的等量关系为(不必证明);运用与推广:(4)、在同一直角坐标系中有抛物线2(53)y x c x c=---和三个点15192222G c c S c c⎛⎫⎛⎫-⎪ ⎪⎝⎭⎝⎭,,,,(20)H c,(其中0c>).问当c为何值时,该抛物线上存在点P,使得以G S H P,,,为顶点的四边形是平行四边形?并求出所有符合条件的P点坐标.图1图2图3图4(二)、平行四边形的存在性问题:2、在平面直角坐标系xOy 中,已知抛物线cbxaxy ++=2的对称轴是x=1,并且经过(−2,−5)和(5,−12)两点。

(1)、求此抛物线的解析式;(2)、设此抛物线与x轴交于A. B 两点(点A 在点B的左侧),与y轴交于C 点,D是线段BC上一点(不与点B. C重合),若以B. O、D为顶点的三角形与△BAC相似,求点D的坐标;(3)、点P在y轴上,点M在此抛物线上,若要使以点P、M、A. B为顶点的四边形是平行四边形,请你直接写出点M的坐标3、如图,抛物线y=ax2+bx+c交x轴于点A(-3,0),点B(1,0),交y轴于点E(0,-3),点C是点A关于点B的对称点,点F是线段BC的中点,直线l过点F且与y轴平行,直线y=-x+m过点C,交y轴于点D. (1)、求抛物线的函数表达式;(2)、点K为线段AB上一动点,过点K作x轴的垂线与直线CD交于点H,与抛物线交于点G,求线段HG长度的最大值;(3)、在直线l上取点M,在抛物线上取点N,使以点A,C,M,N为顶点的四边形是平行四边形,求点N的坐标.A xB CDHEFGKO xylA B CDHEFGKOyl备用图图①4、如图,抛物线c bx ax y ++=2与直线y=21x −3交于A. B 两点,其中点A 在y 轴上,点B 坐标为(−4,−5),点P 为y 轴左侧的抛物线上一动点,过点P 作PC ⊥x 轴于点C ,交AB 于点D. (1)、求抛物线的解析式;(2)、以O ,A ,P ,D 为顶点的平行四边形是否存在?如存在,求点P 的坐标;若不存在,说明理由。

专题:以二次函数为背景的特殊四边形的存在性问题

专题:以二次函数为背景的特殊四边形的存在性问题

专题:以二次函数为背景的特殊四边形的存在性问题特殊四边形指:平行四边形、矩形、菱形、正方形预备知识:(一)、平行四边形的性质和判定定义:两组对边分别平行的四边形叫做平行四边形性质:①平行四边形两组对边分别;②平行四边形的两组对角分别;邻角③平行四边形的对角线:判定:①两组对边分别的四边形是平行四边形;②两组对边分别的四边形是平行四边形:③一组对边的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;提醒:虽然两组对角分别相等的四边形是平行四边形,但不能直接使用,还是要进行证明的(二)矩形的性质和判定定义:有一个角是直角的平行四边形是矩形(矩形是特殊的平行四边形)。

性质:具有平行四边形的所有性质,还具有自己独特的性质:①四个角都是直角;②对角线相等;③是轴对称图形,也是中心对称图形判定:①有一个角是直角的平行四边形:②对角线相等的平行四边形:③有三个角是直角的四边形:④对角线相等且互相平分的四边形(三)、菱形的性质和判定:定义:有一组邻边相等的平行四边形叫做菱形.性质:具有平行四边形的所有性质,还具有自己独特的性质:①四边相等:② 对角线互相垂直平分且每条对角线平分一组对角:③是轴对称图形,也是中心对春的形判定:①一组邻边相等的平行四边形是菱形;② 对角线互相垂直的平行四边形是菱形.③四边相等的四边形是菱形.提醒:菱形的面积等于底乘以高,也等于对角线乘积的一半。

其实只要四边形的对角线互相垂直,其面积就等于对角线乘积的一半。

(四)、正方形的性质和判定定义:一组邻边相等,并且有一个角是直角的平行四边形叫做正方形。

性质:(1)它具有平行四边形的一切性质:两组对边分别平行且相等;两组对角相等、邻角互补:对角线互相平分(2)具有矩形的一切性质:四个角都是直角;对角线相等(3)具有菱形的一切性质:四条边相等:对角线互相垂直:每条对角线平分一组对角判定:(1)有一个角是直角的菱形是正方形;(2)一组邻边相等的矩形是正方形:(3)对角线互相垂直的矩形是正方形:(4)一组邻边相等且有一个角是直角的平行四边形是正方形(先证菱形);(5)对角线相等的菱形是正方形主要题型:(1)三定点一动点(容易题型,基本不考):(2)两定点两动点;(3)一定点三动点金华真题:无题型一、两定点,两动点(方法:两圆一中垂)1 3例1、(2015/5/2 FI/ZZNWG)如图,抛物线广一—x?+二x+2与x轴正半轴交于点A,与y轴交于点C,过点C作x轴的平行线交抛物线于点B,点D在线段OA上,且BD=BA,点P的坐标是(0, 3),点Q从点D出发,沿D-B-C-O方向运动,点Q在线段DB上以每秒个单位的速度运动,当点Q在线段BC, CO上时,则以每秒1个单位的速度运动,到点0停止。

专题 二次函数与特殊四边形存在性问题(学生版)

专题  二次函数与特殊四边形存在性问题(学生版)

专题30二次函数与特殊四边形存在性问题题型一二次函数与平行四边形存在性问题考虑到求证平行四边形存在,必先了解平行四边形性质:(1)对应边平行且相等;(2)对角线互相平分.这是图形的性质,我们现在需要的是将其性质运用在在坐标系中:(1)对边平行且相等可转化为:A B D C AB DC x x x x y y y y ⎧⎨⎩-=--=-,可以理解为点B 移动到点A ,点C 移动到点D ,移动路径完全相同.(2)对角线互相平分转化为:2222A C B D A C B D x x x x y y y y ⎪++⎧⎪⎪⎨+==⎪⎩+,可以理解为AC 的中点也是BD的中点.【小结】虽然由两个性质推得的式子并不一样,但其实可以化为统一:A B D C A C D B A B D C A C D B x x x x x x x x y y y y y y y y ⎧⎧⎨⎨⎩⎩-=-+=+⇒-=-+=+2222A C B D A C D B A C D B A C BD x x x x x x x x y y y y y y y y ⎧⎪⎧⎪⎩++=+=++=+++=⇒⎨⎨⎪⎪⎩当AC 和BD 为对角线时,结果可简记为:A C B D +=+(各个点对应的横纵坐标相加)以上是对于平行四边形性质的分析,而我们要求证的是平行四边形存在性问题,此处当有一问:若坐标系中的4个点A 、B 、C 、D 满足“A+C=B+D”,则四边形ABCD 是否一定为平行四边形?反例如下:之所以存在反例是因为“四边形ABCD是平行四边形”与“AC、BD中点是同一个点”并不是完全等价的转化,故存在反例.虽有反例,但并不影响运用此结论解题,另外,还需注意对对角线的讨论:(1)四边形ABCD是平行四边形:AC、BD一定是对角线.(2)以A、B、C、D四个点为顶点是四边形是平行四边形:对角线不确定需要分类讨论.1.如图,抛物线2(0)y ax bx c a =++≠与x 轴交于A 、B 两点,与y 轴交于C 点,AC =,3OB OC OA ==.(1)求抛物线的解析式;(2)在第二象限内的抛物线上确定一点P ,使四边形PBAC 的面积最大,求出点P 的坐标;(3)在(2)的结论下,点M 为x 轴上一动点,抛物线上是否存在一点Q ,使点P 、B 、M 、Q 为顶点的四边形是平行四边形,若存在,请直接写出Q 点的坐标;若不存在,请说明理由.2.如图,已知抛物线24y ax bx =++经过(1,0)A -,(4,0)B 两点,交y 轴于点C .(1)求抛物线的解析式;(2)连接BC ,求直线BC 的解析式;(3)点M 为x 轴上一动点,在抛物线上是否存在一点N ,使得以A 、C 、M 、N 四点为顶点的四边形是平行四边形?若存在,求出点N 的坐标;若不存在,请说明理由.3.将抛物线2(0)y ax a =≠向左平移1个单位,再向上平移4个单位后,得到抛物线2:()H y a x h k =-+.抛物线H 与x 轴交于点A ,B ,与y 轴交于点C .已知(3,0)A -,点P 是抛物线H 上的一个动点.(1)求抛物线H 的表达式;(2)如图,点Q 是抛物线H 的对称轴l 上的一个动点,在抛物线H 上,是否存在点P ,使得以点A ,P ,C ,Q 为顶点的四边形是平行四边形?若存在,求出所有符合条件的点P 的坐标;若不存在,说明理由.4.如图,抛物线2(0)y ax bx c a =++≠的图象与x 轴交于(3,0)A -与(1,0)B ,与直线(0)y kx k =≠交于点(2,3)C --.(1)求抛物线的解析式;(2)如图1,点E 是抛物线上(x 轴下方)的一个动点,过点E 作x 轴的平行线与直线OC 交于点F ,试判断在点E 运动过程中,以点O ,B ,E ,F 为顶点的四边形能否构成平行四边形,若能,请求出点E 的坐标;若不能,请说明理由.5.如图,抛物线2y ax x c =++与x 轴交于点(6,0)A ,(2,0)C -,与y 轴交于点B ,抛物线的顶点为D ,对称轴交AB 于点E ,交x 轴于点F .(1)求抛物线的解析式;(2)M 是直线CD 上一点,N 是抛物线上一点,试判断是否存在这样的点N ,使得以点B ,E ,M ,N 为顶点的四边形是平行四边形,若存在,请直接写出点N 的坐标,若不存在,请说明理由.6.如图,在平面直角坐标系中,直线314y x =+分别与x 轴、y 轴交于点A ,C ,经过点C 的抛物线214y x bx c =++与直线314y x =+的另一个交点为点D ,点D 的横坐标为6.(1)求抛物线的表达式.(2)M 为抛物线上的动点,N 为x 轴上一点,当四边形CDMN 为平行四边形时,求点M 的坐标;题型二二次函数与菱形存在性问题7.在平面直角坐标系中,二次函数2y x bx c =++的图象与x 轴交于A 、B 两点,A 点在原点的左侧,B 点的坐标为(3,0),与y 轴交于(0,3)C -点.(1)求这个二次函数的表达式.(2)点P 是直线BC 下方的抛物线上一动点,连接PO ,PC ,并把POC ∆沿CO 翻折,得到四边形POP C ',那么是否存在点P ,使四边形POP C '为菱形?若存在,请求出此时点P 的坐标;若不存在,请说明理由.8.如图,一次函数3y x =-图象与坐标轴交于点A 、B ,二次函数23y x bx c =++图象过A 、B 两点.(1)求二次函数解析式;(2)点B 关于抛物线对称轴的对称点为点C ,点P 是对称轴上一动点,在抛物线上是否存在点Q ,使得以B 、C 、P 、Q 为顶点的四边形是菱形?若存在,求出Q 点坐标;若不存在,请说明理由.9.如图,抛物线228y x x =+-与x 轴交于A ,B 两点(点A 在点B 左侧),与y 轴交于点C .(1)求A ,B ,C 三点的坐标;(2)点M 在y 轴上,点N 在直线AC 上,点P 为抛物线对称轴上一点,是否存在点M ,使得以C 、M 、N 、P 为顶点的四边形是菱形?若存在,请直接写出点M 的坐标;若不存在,请说明理由.10.如图,抛物线23y ax bx =++交x 轴于(3,0)A ,(1,0)B -两点,交y 轴于点C ,动点P 在抛物线的对称轴上.(1)求抛物线的解析式;(2)若点Q 是平面直角坐标系内的任意一点,是否存在点Q ,使得以A ,C ,P ,Q 为顶点的四边形是菱形?若存在,请直接写出所有符合条件的点Q 的坐标;若不存在,请说明理由.11.如图,在直角坐标系中,二次函数2y x bx c =++的图象与x 轴相交于点(1,0)A -和点(3,0)B ,与y 轴交于点C .(1)求b 、c 的值;(2)点(,)P m n 为抛物线上的动点,过P 作x 轴的垂线交直线:l y x =于点Q .①当03m <<时,求当P 点到直线:l y x =的距离最大时m 的值;②是否存在m ,使得以点O 、C 、P 、Q 为顶点的四边形是菱形,若不存在,请说明理由;若存在,请求出m 的值.12.如图,在平面直角坐标系xOy 中,抛物线2(1)3y a x =+-与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点8(0,3C -,顶点为D ,对称轴与x 轴交于点H ,过点H 的直线l 交抛物线于P ,Q 两点,点Q 在y 轴的右侧.(1)求a 的值及点A ,B 的坐标;(2)当点P 位于第二象限时,设PQ 的中点为M ,点N 在抛物线上,则以DP 为对角线的四边形DMPN 能否为菱形?若能,求出点N 的坐标;若不能,请说明理由.题型三矩形存在性问题13.如图,在平面直角坐标系中,抛物线211(0)222m m y x x m -=-+⋅+>与x 轴交于(1,0)A -,(,0)B m 两点,与y 轴交于点C ,连接BC .(1)若2OC OA =,求抛物线对应的函数表达式;(2)设直线12y x b =+与抛物线交于B ,G 两点,问是否存在点E (在抛物线上),点F (在抛物线的对称轴上),使得以B ,G ,E ,F 为顶点的四边形成为矩形?若存在,求出点E ,F 的坐标;若不存在,说明理由.14.如图,在平面直角坐标系中,抛物线22(0)y ax x c a =++≠与x 轴交于点A 、B ,与y 轴交于点C ,连接BC ,1OA =,对称轴为直线2x =,点D 为此抛物线的顶点.(1)求抛物线的解析式;(2)点P 在抛物线对称轴上,平面内存在点Q ,使以点B 、C 、P 、Q 为顶点的四边形为矩形,请直接写出点Q 的坐标.15.如图,抛物线23(0)y ax bx a =++≠与x 轴,y 轴分别交于点(1,0)A -,(3,0)B ,点C 三点.(1)求抛物线的解析式;(2)连接BC ,设E 为线段BC 中点.若M 是抛物线上一动点,将点M 绕点E 旋转180︒得到点N ,当以B 、C 、M 、N 为顶点的四边形是矩形时,直接写出点N 的坐标.16.如图,在平面直角坐标系中,抛物线2y x bx c =-++交x 轴于点A 和(1,0)C ,交y 轴于点(0,3)B ,抛物线的对称轴交x 轴于点E ,交抛物线于点F .(1)求抛物线的解析式;(2)M 为平面直角坐标系中一点,在抛物线上是否存在一点N ,使得以A ,B ,M ,N 为顶点的四边形为矩形?若存在,请直接写出点N 的横坐标;若不存在,请说明理由.17.如图,在平面直角坐标系xOy 中,抛物线223(0)y ax ax a a =--<与x 轴交于A ,B 两点(点A 在点B 的左侧),经过点A 的直线:l y kx b =+与y 轴交于点C ,与抛物线的另一个交点为D ,且4CD AC =.(1)直接写出点A 的坐标,并求直线l 的函数表达式(其中k ,b 用含a 的式子表示);(2)设P 是抛物线对称轴上的一点,点Q 在抛物线上,以点A ,D ,P ,Q 为顶点的四边形能否成为矩形?若能,求出点P 的坐标;若不能,请说明理由.8.如图,在平面直角坐标系中,已知抛物线24y ax bx =+-交x 轴于(1,0)A -、(4,0)B 两点,交y 轴于点C .(1)求该抛物线的表达式;(2)点P 为第四象限内抛物线上一点,连接PB ,过点C 作//CQ BP 交x 轴于点Q ,连接PQ ,求PBQ ∆面积的最大值及此时点P 的坐标;(3)在(2)的条件下,将抛物线24y ax bx =+-向右平移经过点1(2,0)时,得到新抛物线2111y a x b x c =++,点E 在新抛物线的对称轴上,在坐标平面内是否存在一点F ,使得以A 、P 、E 、F 为顶点的四边形为矩形,若存在,请直接写出点F 的坐标;若不存在,请说明理由.题型四正方形存在性问题19.如图1.在平面直角坐标系xOy 中,抛物线2:C y ax bx c =++与x 轴相交于A ,B 两点,顶点为(0,4)D ,AB =,设点(,0)F m 是x 轴的正半轴上一点,将抛物线C 绕点F 旋转180︒,得到新的抛物线C '.(1)求抛物线C 的函数表达式;(2)若抛物线C '与抛物线C 在y 轴的右侧有两个不同的公共点,求m 的取值范围;(3)如图2,P 是第一象限内抛物线C 上一点,它到两坐标轴的距离相等,点P 在抛物线C '上的对应点P ',设M 是C 上的动点,N 是C '上的动点,试探究四边形PMP N '能否成为正方形?若能,求出m 的值;若不能,请说明理由.20.如图,在正方形OABC中,4OC=,点D为边AB的中点,分别以OC、OA所在直线为x轴、y轴,建立平面直角坐标系,DE CD⊥,交y轴与点E,连接CE.(1)求经过O、C、D三点的抛物线的表达式;(2)平移()l中的抛物线,使抛物线的顶点P始终在直线CD上,平移后的抛物线与直线CD的另一个交点为Q,点M在y轴,点N在平面直角坐标系中,当以P、Q、M、N四点为顶点的四边形是正方形时,求此时M点坐标.21.如图,已知抛物线2y x bx c =++的图象经过点(1,0)A ,(3,0)B -,与y 轴交于点C ,抛物线的顶点为D ,对称轴与x 轴相交于点E ,连接BD .(1)求抛物线的解析式.(2)若点P 在直线BD 上,当PE PC =时,求点P 的坐标.(3)在(2)的条件下,作PF x ⊥轴于F ,点M 为x 轴上一动点,N 为直线PF 上一动点,G 为抛物线上一动点,当以点F ,N ,G ,M 四点为顶点的四边形为正方形时,求点M 的坐标.22.在平面直角坐标系中,抛物线213y x bx c =-++交x 轴于(3,0)A -,(4,0)B 两点,交y 轴于点C .(1)求抛物线的表达式;(2)如图,直线3944y x =+与抛物线交于A ,D 两点,与直线BC 交于点E .若(,0)M m 是线段AB 上的动点,过点M 作x 轴的垂线,交抛物线于点F ,交直线AD 于点G ,交直线BC 于点H .在平面内是否存在点P ,使四边形EFHP 为正方形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.23.如图,抛物线顶点(1,4)P ,与y 轴交于点(0,3)C ,与x 轴交于点A ,B .(1)求抛物线的解析式.(2)若M ,N 为抛物线上两个动点,分别过点M ,N 作直线BC 的垂线段,垂足分别为D ,E .是否存在点M ,N 使四边形MNED 为正方形?如果存在,求正方形MNED 的边长;如果不存在,请说明理由.24.直线3y x =-+与x 轴相交于点A ,与y 轴相交于点B ,抛物线22y ax x c =++经过点A ,B ,与x 轴的另一个交点为C .(1)求抛物线的解析式;(2)如图2,在(2)的条件下,直线CD 与AB 相交于点M ,点H 在抛物线上,过H 作//HK y 轴,交直线CD 于点K .P 是平面内一点,当以点M ,H ,K ,P 为顶点的四边形是正方形时,请直接写出点P 的坐标.。

专题08 二次函数中特殊四边形存在性问题的四种考法(原卷版)-2024年常考压轴题攻略(9上人教版)

专题08 二次函数中特殊四边形存在性问题的四种考法(原卷版)-2024年常考压轴题攻略(9上人教版)

专题08二次函数中特殊四边形存在性问题的四种考法类型一、平行四边形存在性问题例.已知抛物线2y x bx c =-++与x 轴交于()1,0A -,()3,0B 两点,与轴交于C 点,点P 是抛物线上在第一象限内的一个动点,且点P 的横坐标为t .(1)求抛物线的表达式;(2)如图1,连接BC ,PB ,PC ,设PBC 的面积为S .①求S 关于t 的函数表达式;②求P 点到直线BC 的距离的最大值,并求出此时点P 的坐标.(3)如图2,设抛物线的对称轴为l ,l 与x 轴的交点为D ,在直线l 上是否存在点M ,使得四边形CDPM 是平行四边形?若存在,直接写出点M 的坐标;若不存在,请说明理由.【变式训练1】如图,在平面直角坐标系中,二次函数2=23y x x --与x 轴交于A 、B 两点(A 点在B 点的左侧),直线y x m =+与抛物线交于A 、C 两点.(1)求点C 的坐标;(2)点P 为直线AC 下方抛物线上一点,过点P 作y 轴平行线交AC 于E 点,当EP 最长时求此时点P 的坐标;(3)抛物线顶点为M ,在平面内是否存在点N ,使以,,,A B M N 为顶点的四边形为平行四边形?若存在请求出N 点坐标并在备用图中画出图形;若不存在,请说明理由.(1)求此拋物线的解析式;(2)在抛物线的对称轴上有一点P,使得PA PC+值最小,求最小值;(3)点M为x轴上一动点,在拋物线上是否存在一点N,使以边形为平行四边形?若存在,直接写出点N的坐标;若不存在,请说明理由.【变式训练3】综合与实践如图,抛物线23y ax x c=++与x轴交于A,B两点(点A在点(1)求抛物线的解析式:(2)在抛物线的对称轴上是否存在点P,使PCD是以CD为腰的等腰三角形?如果存在,求出点P的坐标;如果不存在,请说明理由;(3)点E在x轴上运动,点F在抛物线上运动,当以点B,C,E,F为顶点的四边形是平行四边形,直接写出点E的坐标.类型二、菱形存在性问题(1)求抛物线的表达式;(2)若点E 在第一象限内对称右侧的抛物线上,四边形ODEB 的面积为(3)在(2)的条件下,若点F 是对称轴上一点,点H 是坐标平面内一点,在对称轴右侧的抛物线上是否存在点G ,使以E ,F ,G ,H 为顶点的四边形是菱形,且存在,请直接写出点G 的坐标;如果不存在,请说明理由.【变式训练1】如图1,抛物线23y ax bx =++交x 轴于点()30A ,和点(1)求抛物线的表达式;(2)若点D 是直线AC 上方拋物线上一动点,连接BC ,AD ADM △的面积为1S ,BCM 的面积为2S ,当121S S -=时,求点(3)如图2,若点P 是抛物线上一动点,过点P 作PQ x ⊥轴交直线上是否存在点E ,使以P ,Q ,E ,C 为顶点的四边形是菱形,若存在,请直接写出点坐标;若不存在,请说明理由(1)求ABC 的面积;(2)点P 为直线AC 上方抛物线上的任意一点,过点P 作PD y ∥轴交直线22PD CD +的最大值及此时点P 的坐标;(3)如图2,将抛物线沿着水平方向向右平移2个单位长度得到新的抛物线,点与平移后的抛物线的交点,点M 为平移后的抛物线对称轴上的一动点,点的一点,直接写出所有使得以点B E M N 、、、为顶点的四边形是菱形的点求其中一个点N 的坐标的求解过程写出来.类型三、矩形存在性问题例.已知抛物线()240y ax bx a =+-≠交x 轴于点()4,0A 和点()2,0B -,交y 轴于点C .(1)求抛物线的解析式;(2)如图,点P 是抛物线上位于直线AC 下方的动点,过点P 分别作x 轴、y 轴的平行线,交直线AC 于点D ,交x 轴于点E ,当PD PE +取最大值时,求点P 的坐标及PD PE +最大值.(3)在抛物线上是否存在点M ,对于平面内任意点N ,使得以A 、C 、M 、N 为顶点且AC 为一条边的四边形为矩形,若存在,请直接写出M 、N 的坐标,不存在,请说明理由.(1)求点A、B、C的坐标;(2)将抛物线L向右平移1个单位,得到新抛物线对称轴l上是否存在点D,使得以点D的坐标;若不存在,请说明理由.(1)求抛物线的表达式;的面积为S,求S (2)若点P为第一象限内抛物线上的一点,设PBC坐标;(3)已知M是抛物线对称轴上一点,在平面内是否存在点N,使以B的四边形是矩形?若存在,直接写出N点坐标;若不存在,请说明理由.类型四、正方形存在性问题例.如图,在平面直角坐标系xOy 中,直线4y x =+与x 轴交于点A ,与y 轴交于点B ,抛物线2y x bx c =-++经过,A B 两点,P 是位于对称轴左侧的抛物线上的一个动点.(1)求抛物线的对称轴方程;(2)若点P 满足PAB PBA ∠=∠,求点P 的坐标;(3)设M 是抛物线的对称轴上一点,N 是坐标平面内一点,若四边形AMPN 是正方形,求此正方形的面积.【变式训练1】如图,二次函数223y x x =-++的图象与x 轴交于A ,B 两点(点A 在点B 左侧),与y 轴交于点C .连接BC .点P 是抛物线第一象限内的一个动点,设点P 的横坐标为m ,过点P 作直线PD x ⊥轴于点D .交BC 于点E .过点P 作BC 的平行线,交y 轴于点M .(1)求A ,B ,C 三点的坐标,并直接写出直线BC 的函数表达式;(2)在点P 的运动过程中,求使四边形CEPM 为菱形时,m 的值;(3)点N 为平面内任意一点,在(2)的条件下,直线PM 上是否存在点Q 使得以P ,E ,Q ,N 为顶点的四边形是正方形?若存在,请直接写出点Q 的坐标;若不存在,请说明理由.(1)求抛物线的解析式;(2)点E 在第一象限内,过点E 作EF y ∥轴,交BC 于点F ,作EH 点H 在点E 的左侧,以线段,EF EH 为邻边作矩形EFGH ,当矩形求线段EH 的长;(3)点M 在直线AC 上,点N 在平面内,当四边形OENM 是正方形时,请直接写出点标.课后训练1.如图1,抛物线()230y ax bx a =+-≠与x 轴交于()1,0A -,()3,0B ,与y 轴交于点C .(1)求抛物线的解析式;(2)如图2,点P 、Q 为直线BC 下方抛物线上的两点,点Q 的横坐标比点P 的横坐标大1,过点P 作PM y ∥轴交BC 于点M ,过点Q 作QN y ∥轴交BC 于点N ,求PM QN +的最大值及此时点Q 的坐标;(3)如图3,将抛物线()230y ax bx a =+-≠先向右平移1个单位长度,再向下平移1个单位长度得到新的抛物线y ',在y '的对称轴上有一点D ,坐标平面内有一点E ,使得以点B 、C 、D 、E 为顶点的四边形是矩形,请直接写出所有满足条件的点E 的坐标.(1)求该抛物线的函数表达式;(2)点D 为直线y x =上的动点,当点P 在第四象限时,求四边形PBDC 点P 的坐标;(3)已知点E 为x 轴上一动点,点Q 为平面内任意一点,是否存在以点P 的四边形是以PC 为对角线的正方形,若存在,请直接写出点Q 的坐标,若不存在,请说明理由.3.如图,抛物线212y x bx c =++与x 轴交于()4,0A ,()1,0B -两点,直线物线交于A 、D 两点,与y 轴交于点E .(1)求出抛物线与直线的解析式;(2)已知点K 为线段AD 上一动点,过点K 作y 轴的平行线交抛物线于点求AHD 的最大面积;(3)若点M 是x 轴上的一动点,点N 是抛物线上一动点,当以点E 、B 的四边形是平行四边形时,请你直接写出符合条件的点N 的坐标.4.在平面直角坐标系中,抛物线2y ax bx c =++(0a ≠)经过点(1,0)-,(3,0)和()0,3.(1)求抛物线的表达式;(2)若直线x m =与x 轴交于点N ,在第一象限内与抛物线交于点M ,当AN MN +有最大值时,求出抛物线上点M 的坐标;。

专题21二次函数与特殊四边形存在型问题(解析版)【苏科版】

专题21二次函数与特殊四边形存在型问题(解析版)【苏科版】

2020年中考数学必考经典题讲练案【苏科版】专题21二次函数与特殊四边形存在型问题【方法指导】【题型剖析】【类型1】二次函数与平行四边形存在型问题已知抛物线28(0)y ax bx a =++≠经过点(3,7)A --,(3,5)B ,顶点为点E ,抛物线的对称轴与直线AB 交于点C .(1)求直线AB 的解析式和抛物线的解析式.(2)在抛物线上A ,E 两点之间的部分(不包含A ,E 两点),是否存在点D ,使得2DAC DCE S S ∆∆=?若存在,求出点D 的坐标;若不存在,请说明理由.(3)若点P 在抛物线上,点Q 在x 轴上,当以点A ,E ,P ,Q 为顶点的四边形是平行四边形时,直接写出满足条件的点P 的坐标.【分析】(1)把点(3,7)A --,(3,5)B 的坐标分别代入一次函数表达式和二次函数表达式,即可得出直线AB 的解析式和抛物线的解析式;(2)设点2(,28)D m m m -++,分别用m 的代数式表示出DAC S ∆和DCE S ∆,再根据2DAC DCE S S ∆∆=列出方程,解方程即可得出点D 的坐标;(3)设点(,)P x y ,分三种情形讨论:①当AE 为对角线时;②当AP 为对角线时;③当PE 为对角线时,根据中点坐标公式求得点Q 的坐标,再根据点Q 在x 轴上,即可得出点P 的坐标. 【解答】解:(1)设直线AB 的解析式为y kx m =+, 把点(3,7)A --,(3,5)B 代入,得7353k m k m -=-+⎧⎨=+⎩,解得:21k m =⎧⎨=-⎩,∴直线AB 的解析式为21y x =-,把点(3,7)A --,(3,5)B 代入抛物线28(0)y ax bx a =++≠, 得79385938a b a b -=-+⎧⎨=++⎩,解得12a b =-⎧⎨=⎩, ∴抛物线的解析式为228y x x =-++.(2)2228(1)9y x x x =-++=--+,∴顶点(1,9)E ,设点2(,28)D m m m -++,(1,1)C ,过点D 作y 轴的平行线交直线AB 于点M ,则(,21)M m m -, 221(2821)42182DAC S m m m m ∆=⨯-++-+⨯=-+,18(1)442DCE S m m ∆=⨯⨯-=-,2DAC DCE S S ∆∆=22182(44)m m ∴-+=-, 解得1m =-或5m =(舍去),∴存在点(1,5)D -,使得2DAC DCE S S ∆∆=(3)(3,7)A --,(1,9)E , 设点(,)P x y ,当以点A ,E ,P ,Q 为顶点的四边形是平行四边形时,分三种情况讨论: ①当AE 为对角线时,根据中点坐标公式可得点Q 坐标为(2,2)x y ---, 点Q 在x 轴上, 2y ∴=,当2y =时,2282x x -++=,解得1x =+1x =∴点P 坐标为(1+2)或(1-,2),②当AP 为对角线时,根据中点坐标公式可得点Q 坐标为(4,16)x y --, 点Q 在x 轴上, 16y ∴=,当16y =时,22816x x -++=, 方程无解,舍去③当PE 为对角线时,根据中点坐标公式可得点Q 坐标为(4,16)x y ++, 点Q 在x 轴上, 16y ∴=-,当16y =-时,22816x x -++=-,解得6x =或4x =-∴点P 坐标为(6,16)-或(4,16)--,综上所述,点P 的坐标为(17+,2)或(17-,2)或(6,16)-或(4,16)--.【点评】此题考查了用待定系数法求二次函数和一次函数表达式,还考查了坐标系中三角形的面积计算,平行四边形性质以及分类讨论思想.合理的分类讨论来表示出点D 的坐标是解决(3)问的关键. 【变式训练】如图,抛物线25(0)y ax bx a =+-≠经过x 轴上的点(1,0)A 和点B 及y 轴上的点C ,经过B 、C 两点的直线为y x n =+. ①求抛物线的解析式.②点P 从A 出发,在线段AB 上以每秒1个单位的速度向B 运动,同时点E 从B 出发,在线段BC 上以每秒2个单位的速度向C 运动.当其中一个点到达终点时,另一点也停止运动.设运动时间为t 秒,求t 为何值时,PBE ∆的面积最大并求出最大值.③过点A 作AM BC ⊥于点M ,过抛物线上一动点N (不与点B 、C 重合)作直线AM 的平行线交直线BC 于点Q .若点A 、M 、N 、Q 为顶点的四边形是平行四边形,求点N 的横坐标.【分析】①点B 、C 在直线为y x n =+上,则(,0)B n -、(0,)C n ,点(1,0)A 在抛物线上,所以250505a b an bn n +-=⎧⎪--=⎨⎪=-⎩,解得1a =-,6b =,因此抛物线解析式:265y x x =-+-; ②先求出点P 到BC 的高h为sin 45)BP t ︒=-,于是2112)22)2222PBE S BE h t t t ∆==⨯-⨯=-+2t =时,PBE ∆的面积最大,最大值为 ③由①知,BC 所在直线为:5y x =-,所以点A 到直线BC 的距离d =过点N 作x 轴的垂线交直线BC 于点P ,交x 轴于点H .设2(,65)N m m m -+-,则(,0)H m 、(,5)P m m -,易证PQN ∆为等腰直角三角形,即NQ PQ ==4PN =,Ⅰ.4NH HP +=,所以265(5)4m m m -+---=解得11m =(舍去),24m=,Ⅱ.14N H HP +=,25(65)4m m m ---+-=解得1m =2m =,Ⅲ.24N H HP -=,2(65)[(5)]4mm m --+----=,解得1m =,2m . 【解答】解:①点B 、C 在直线为y x n =+上, (,0)B n ∴-、(0,)C n ,点(1,0)A 在抛物线上, ∴250505a b an bn n +-=⎧⎪--=⎨⎪=-⎩, 1a ∴=-,6b =,∴抛物线解析式:265y x x =-+-;②由题意,得, 4PB t=-,2BE t =,由①知,45OBC ∠=︒,∴点P 到BC 的高h为sin 45)2BP t ︒=-, 2112)22)22PBE S BEh t t t ∆∴==⨯-⨯=-+, 当2t =时,PBE ∆的面积最大,最大值为 ③由①知,BC 所在直线为:5y x =-,∴点A 到直线BC 的距离d =过点N 作x 轴的垂线交直线BC 于点P ,交x 轴于点H , 设2(,65)N m m m -+-,则(,0)H m 、(,5)P m m -,易证PQN ∆为等腰直角三角形,即NQ PQ == 4PN ∴=,Ⅰ.4NH HP +=,265(5)4m m m ∴-+---= 解得11m =,24m =,点A 、M 、N 、Q 为顶点的四边形是平行四边形, 4m ∴=;Ⅱ.14N H HP +=,25(65)4m m m ∴---+-=解得1m =2m =, 点A 、M 、1N 、1Q 为顶点的四边形是平行四边形, 5m >,m ∴=, Ⅲ.24N H HP -=,2(65)[(5)]4m m m ∴--+----=,解得1m =2m =, 点A 、M 、2N 、2Q 为顶点的四边形是平行四边形, 0m <,52m ∴=,综上所述,若点A 、M 、N 、Q 为顶点的四边形是平行四边形,点N 的横坐标为:4.【点评】本题考查了二次函数,熟练掌握二次函数的性质、平行四边形的判定与性质是解题的关键. 【类型2】二次函数与矩形存在型问题3.如图,抛物线2y ax bx c =++与x 轴交于点(1,0)A -,点(3,0)B -,且OB OC =. (1)求抛物线的解析式;(2)点P 在抛物线上,且POB ACB ∠=∠,求点P 的坐标;(3)抛物线上两点M ,N ,点M 的横坐标为m ,点N 的横坐标为4m +.点D 是抛物线上M ,N 之间的动点,过点D 作y 轴的平行线交MN 于点E . ①求DE 的最大值;②点D 关于点E 的对称点为F ,当m 为何值时,四边形MDNF 为矩形.【分析】(1)已知抛物线与x 轴两交点坐标,可设交点式(1)(3)y a x x =++;由3OC OB ==得(0,3)C -,代入交点式即求得1a =-.(2)由POB ACB ∠=∠联想到构造相似三角形,因为求点P 坐标一般会作x 轴垂线PH 得Rt POH ∆,故可过点A 在BC 边上作垂线AG ,构造ACG POH ∆∆∽.利用点A 、B 、C 坐标求得AG 、CG 的长,由相似三角形对应边成比例推出12PH AG OH CG ==.设点P 横坐标为p ,则OH 与PH 都能用p 表示,但需按P 横纵坐标的正负性进行分类讨论.得到用p 表示OH 与PH 并代入2OH PH =计算即求得p 的值,进而求点P 坐标.(3)①用m 表示M 、N 横纵坐标,把m 当常数求直线MN 的解析式.设D 横坐标为d ,把x d =代入直线MN 解析式得点E 纵坐标,D 与E 纵坐标相减即得到用m 、d 表示的DE 的长,把m 当常数,对未知数d 进行配方,即得到当2d m =+时,DE 取得最大值.②由矩形MDNF 得MN DF =且MN 与DF 互相平分,所以E 为MN 中点,得到点D 、E 横坐标为2m +.由①得2d m =+时,4DE =,所以8MN =.用两点间距离公式用m 表示MN 的长,即列得方程求m 的值. 【解答】解:(1)抛物线与x 轴交于点(1,0)A -,点(3,0)B -∴设交点式(1)(3)y a x x =++3OC OB ==,点C 在y 轴负半轴(0,3)C ∴-把点C 代入抛物线解析式得:33a =- 1a ∴=-∴抛物线解析式为2(1)(3)43y x x x x =-++=---(2)如图1,过点A 作AG BC ⊥于点G ,过点P 作PH x ⊥轴于点H 90AGB AGC PHO ∴∠=∠=∠=︒ ACB POB ∠=∠ ACG POH ∴∆∆∽∴AG CGPH OH =∴AG PHCG OH=3OB OC ==,90BOC ∠=︒45ABC ∴∠=︒,BC ==ABG ∴∆是等腰直角三角形2AG BG AB ∴==CG BC BG ∴=-=∴12PH AG OH CG == 2OH PH ∴=设2(,43)P p p p ---①当3p <-或10p -<<时,点P 在点B 左侧或在AC 之间,横纵坐标均为负数 OH p ∴=-,22(43)43PH p p p p =----=++22(43)p p p ∴-=++解得:1p =2p =P ∴或 ②当31p -<<-或0p >时,点P 在AB 之间或在点C 右侧,横纵坐标异号22(43)p p p ∴=++ 解得:12p =-,232p =-(2,1)P ∴-或3(2-,3)4综上所述,点P 的坐标为、、(2,1)-或3(2-,3)4.(3)①如图2,4x m =+时,22(4)4(4)31235y m m m m =-+-+-=---2(,43)M m m m ∴---,2(4,1235)N m m m +--- 设直线MN 解析式为y kx n =+∴2243(4)1235km n m m k m n m m ⎧+=---⎨++=---⎩解得:22843k m n m m =--⎧⎨=+-⎩ ∴直线2:(28)43MN y m x m m =--++-设(D d ,243)(4)d d m d m ---<<+ //DE y 轴E D x x d ∴==,(E d ,2(28)43)m d m m --++-2222243[(28)43](24)4[(2)]4DE d d m d m m d m d m m d m ∴=------++-=-++--=--++∴当2d m =+时,DE 的最大值为4.②如图3,D 、F 关于点E 对称DE EF ∴=四边形MDNF 是矩形MN DF ∴=,且MN 与DF 互相平分12DE MN ∴=,E 为MN 中点422D E m m x x m ++∴===+ 由①得当2d m =+时,4DE = 28MN DE ∴==22222(4)[1235(43)]8m m m m m m ∴+-+-------= 解得:134m =--,234m =-+ m ∴的值为34--或34-+时,四边形MDNF 为矩形.【点评】本题考查了求二次函数解析式,求二次函数最大值,等腰三角形的性质,相似三角形的判定和性质,一元二次方程的解法,二元一次方程组的解法,矩形的性质.第(3)题没有图要先根据题意画草图帮助思考,设计较多字母运算时抓住其中的常量和变量来分析和计算.【变式训练】如图,抛物线223y x x =--+的图象与x 轴交于A 、B 两点(点A 在点B 的左边),与y 轴交于点C ,点D 为抛物线的顶点. (1)求点A 、B 、C 的坐标;(2)点(,0)M m 为线段AB 上一点(点M 不与点A 、B 重合),过点M 作x 轴的垂线,与直线AC 交于点E ,与抛物线交于点P ,过点P 作//PQ AB 交抛物线于点Q ,过点Q 作QN x ⊥轴于点N ,可得矩形PQNM .如图,点P 在点Q 左边,试用含m 的式子表示矩形PQNM 的周长;(3)当矩形PQNM 的周长最大时,m 的值是多少?并求出此时的AEM ∆的面积;(4)在(3)的条件下,当矩形PMNQ 的周长最大时,连接DQ ,过抛物线上一点F 作y 轴的平行线,与直线AC 交于点G (点G 在点F 的上方).若22FG DQ =,求点F 的坐标.【分析】(1)利用函数图象与坐标轴的交点的求法,求出点A ,B ,C 的坐标; (2)先确定出抛物线对称轴,用m 表示出PM ,MN 即可;(3)由(2)得到的结论判断出矩形周长最大时,确定出m ,进而求出直线AC 解析式,即可;(4)在(3)的基础上,判断出N 应与原点重合,Q 点与C 点重合,求出2DQ DC ==2(3)(23)4n n n +---+=即可. 【解答】解:(1)由抛物线223y x x =--+可知,(0,3)C . 令0y =,则2023x x =--+, 解得,3x =-或x l =, (3,0)A ∴-,(1,0)B .(2)由抛物线223y x x =--+可知,对称轴为1x =-.(,0)M m ,223PM m m ∴=--+,(1)222MN m m =--⨯=--,∴矩形PMNQ 的周长222()(2322)2282PM MN m m m m m =+=--+--⨯=--+.(3)222822(2)10m m m --+=-++,∴矩形的周长最大时,2m =-.(3,0)A -,(0,3)C ,设直线AC 的解析式y kx b =+, ∴303k b b -+=⎧⎨=⎩解得k l =,3b =,∴解析式3y x =+,令2x =-,则1y =, (2,1)E ∴-,1EM ∴=,1AM =,1122S AM EM ∴=⨯=. (4)(2,0)M -,抛物线的对称轴为x l =-, N ∴应与原点重合,Q 点与C 点重合,DQ DC ∴=,把1x =-代入223y x x =--+,解得4y =, (1,4)D ∴-,DQ DC ∴== 2FG =,4FG ∴=.设2(,23)F n n n --+,则(,3)G n n +, 点G 在点F 的上方且4FG =,2(3)(23)4n n n ∴+---+=.解得4n =-或1n =, (4,5)F ∴--或(1,0).【类型3】二次函数与菱形存在型问题【例3】如图,在平面直角坐标系中,Rt ABC ∆的边BC 在x 轴上,90ABC ∠=︒,以A 为顶点的抛物线2y x bx c =-++经过点(3,0)C ,交y 轴于点(0,3)E ,动点P 在对称轴上. (1)求抛物线解析式;(2)若点P 从A 点出发,沿A B →方向以1个单位/秒的速度匀速运动到点B 停止,设运动时间为t 秒,过点P 作PD AB ⊥交AC 于点D ,过点D 平行于y 轴的直线l 交抛物线于点Q ,连接AQ ,CQ ,当t 为何值时,ACQ ∆的面积最大?最大值是多少?(3)若点M 是平面内的任意一点,在x 轴上方是否存在点P ,使得以点P ,M ,E ,C 为顶点的四边形是菱形,若存在,请直接写出符合条件的M 点坐标;若不存在,请说明理由.【分析】(1)将点C 、E 的坐标代入二次函数表达式,即可求解; (2)12ACQ S DQ BC ∆=⨯⨯,即可求解;(3)分EC 是菱形一条边、EC 是菱形一对角线两种情况,分别求解即可.【解答】解:(1)将点C 、E 的坐标代入二次函数表达式得:9303b c c -++=⎧⎨=⎩,解得:23b c =⎧⎨=⎩,故抛物线的解析式为:223y x x =-++, 则点(1,4)A ;(2)将点A 、C 的坐标代入一次函数表达式并解得: 直线AC 的表达式为:26y x =-+,点(1,4)P t -,则点2(2t D +,4)t -,设点2(2t Q +,24)4t -,21124ACQ S DQ BC t t ∆=⨯⨯=-+,104-<,故ACQ S ∆有最大值,当2t =时,其最大值为1; (3)设点(1,)P m ,点(,)M x y , ①当EC 是菱形一条边时, 当点M 在点P 右方时,点E 向右平移3个单位、向下平移3个单位得到C , 则点P 向右平移3个单位、向下平移3个单位得到M , 则13x +=,3m y -=,而M P EP =得:2221(3)(1)()m x y m +-=-+-,解得:3y m =-=,故点M ; 当点M 在点P 左方时,同理可得:点(2,3M -+; ②当EC 是菱形一对角线时, 则EC 中点即为PM 中点, 则13x +=,3y m +=,而PE PC =,即221(3)4m m +-=+, 解得:1m =,故2x =,3312y m =-=-=, 故点(2,2)M ;综上,点M 或(2,3-+或(2,2)M .【点评】本题考查的是二次函数综合运用,涉及到菱形的性质、图形的平移、面积的计算等,其中(3),要注意分类求解,避免遗漏. 【变式训练】综合与探究如图,抛物线2y x bx c =++与x 轴交于A 、B 两点,与y 轴交于C 点,2OA =,6OC =,连接AC 和BC . (1)求抛物线的解析式;(2)点D 在抛物线的对称轴上,当ACD ∆的周长最小时,点D 的坐标为 1(2,5)- .(3)点E 是第四象限内抛物线上的动点,连接CE 和BE .求BCE ∆面积的最大值及此时点E 的坐标; (4)若点M 是y 轴上的动点,在坐标平面内是否存在点N ,使以点A 、C 、M 、N 为顶点的四边形是菱形?若存在,请直接写出点N 的坐标;若不存在,请说明理由.【分析】(1)由2OA =,6OC =得到(2,0)A -,(0,6)C -,用待定系数法即求得抛物线解析式.(2)由点D 在抛物线对称轴上运动且A 、B 关于对称轴对称可得,AD BD =,所以当点C 、D 、B 在同一直线上时,ACD ∆周长最小.求直线BC 解析式,把对称轴的横坐标代入即求得点D 纵坐标.(3)过点E 作EG x ⊥轴于点G ,交直线BC 与点F ,设点E 横坐标为t ,则能用t 表示EF 的长.BCE ∆面积拆分为BEF ∆与CEF ∆的和,以EF 为公共底计算可得12BCE S EF OB ∆=,把含t 的式子代入计算即得到BCE S ∆关于t 的二次函数,配方即求得最大值和t 的值,进而求得点E 坐标.(4)以AC 为菱形的边和菱形的对角线进行分类画图,根据菱形邻边相等、对边平行的性质确定点N 在坐标.【解答】解:(1)2OA =,6OC = (2,0)A ∴-,(0,6)C -抛物线2y x bx c =++过点A 、C ∴420006b c c -+=⎧⎨++=-⎩ 解得:16b c =-⎧⎨=-⎩∴抛物线解析式为26y x x =--(2)当0y =时,260x x --=,解得:12x =-,23x = (3,0)B ∴,抛物线对称轴为直线23122x -+==点D 在直线12x =上,点A 、B 关于直线12x =对称 12D x ∴=,AD BD = ∴当点B 、D 、C 在同一直线上时,ACD C AC AD CD AC BD CD AC BC ∆=++=++=+最小设直线BC 解析式为6y kx =- 360k ∴-=,解得:2k =∴直线:26BC y x =-12652D y ∴=⨯-=-1(2D ∴,5)-故答案为:1(2,5)-(3)过点E 作EG x ⊥轴于点G ,交直线BC 与点F 设(E t ,26)(03)t t t --<<,则(,26)F t t -2226(6)3EF t t t t t ∴=----=-+22111113327()3(3)()22222228BCE BEF CEF S S S EF BG EF OG EF BG OG EF OB t t t ∆∆∆∴=+=+=+==⨯-+=--+∴当32t =时,BCE ∆面积最大 23321()6224E y ∴=--=-∴点E 坐标为3(2,21)4-时,BCE ∆面积最大,最大值为278. (4)存在点N ,使以点A 、C 、M 、N 为顶点的四边形是菱形. (2,0)A -,(0,6)C -AC ∴=①若AC 为菱形的边长,如图3,则//MN AC 且,MN AC ==1(2N ∴-,,2(2,N --,3(2,0)N②若AC 为菱形的对角线,如图4,则44//AN CM ,44AN CN = 设4(2,)N n -n ∴-解得:103n =- 410(2,)3N ∴--综上所述,点N 坐标为(2-,210),(2,210)--,(2,0),10(2,)3--.【点评】本题考查了二次函数的图象与性质,轴对称求最短路径,一次函数的图象与性质,一次方程(组)的解法,菱形的性质,勾股定理.第(4)题对菱形顶点存在性的判断,以确定的边AC 进行分类,再画图讨论计算.【类型4】二次函数与正方形存在型问题【例4】如图,已知抛物线2y x bx c =++的图象经过点(1,0)A ,(3,0)B -,与y 轴交于点C ,抛物线的顶点为D ,对称轴与x 轴相交于点E ,连接BD . (1)求抛物线的解析式.(2)若点P 在直线BD 上,当PE PC =时,求点P 的坐标.(3)在(2)的条件下,作PF x ⊥轴于F ,点M 为x 轴上一动点,N 为直线PF 上一动点,G 为抛物线上一动点,当以点F ,N ,G ,M 四点为顶点的四边形为正方形时,求点M 的坐标.【分析】(1)利用待定系数法即可得出结论;(2)先确定出点E 的坐标,利用待定系数法得出直线BD 的解析式,利用PC PE =建立方程即可求出a 即可得出结论;(3)设出点M 的坐标,进而得出点G ,N 的坐标,利用FM MG =建立方程求解即可得出结论. 【解答】解:(1)抛物线2y x bx c =++的图象经过点(1,0)A ,(3,0)B -, ∴10930b c b c ++=⎧⎨-+=⎩,∴23b c =⎧⎨=-⎩,∴抛物线的解析式为223y x x =+-;(2)由(1)知,抛物线的解析式为223y x x =+-; (0,3)C ∴-,抛物线的顶点(1,4)D --, (1,0)E ∴-,设直线BD 的解析式为y mx n =+, ∴304m n m n -+=⎧⎨-+=-⎩,∴26m n =-⎧⎨=-⎩, ∴直线BD 的解析式为26y x =--,设点(,26)P a a --, (0,3)C -,(1,0)E -,根据勾股定理得,222(1)(26)PE a a =++--,222(263)PC a a =+--+, PC PE =,2222(1)(26)(263)a a a a ∴++--=+--+, 2a ∴=-,2(2)62y ∴=-⨯--=-, (2,2)P ∴--,(3)如图,作PF x ⊥轴于F , (2,0)F ∴-,设(,0)M d ,2(,23)G d d d ∴+-,2(2,23)N d d -+-,以点F ,N ,G ,M 四点为顶点的四边形为正方形,必有FM MG =,2|2||23|d d d ∴+=+-, 121d -±∴=或313d -±=, ∴点M 的坐标为121(2-+,0),121(2--,0),313(-+,0),313(--,0).【点评】此题是二次函数综合题,主要考查了待定系数法,抛物线的顶点坐标,勾股定理,正方形的性质,解(2)的关键是用PC PE =建立方程求解,解(3)的关键是解绝对值方程,是一道中等难度的中考常考题.【变式训练】已知抛物线2(1)3(0)y a x a =-+≠与y 轴交于点(0,2)A ,顶点为B ,且对称轴1l 与x 轴交于点M (1)求a 的值,并写出点B 的坐标;(2)有一个动点P 从原点O 出发,沿x 轴正方向以每秒2个单位的速度运动,设运动时间为t 秒,求t 为何值时PA PB +最短;(3)将此抛物线向右平移所得新的抛物线与原抛物线交于点C ,且新抛物线的对称轴2l 与x 轴交于点N ,过点C 作//DE x 轴,分别交1l ,2l 于点D 、E ,若四边形MDEN 是正方形,求平移后抛物线的解析式.【分析】(1)利用待定系数法即可解决问题;(2)如图1中,作点A 关于x 轴的对称点A ',连接BA '交x 轴于P ,点P 即为所求.(3)如图2中,设抛物线向右平移后的解析式为2()3y x m =--+.想办法用m 表示点C 的坐标,分两种情形,利用待定系数法即可解决问题;【解答】解:(1)把(0,2)A 代入抛物线的解析式可得,23a =+, 1a ∴=-,∴抛物线的解析式为2(1)3y x =--+, ∴抛物线的顶点B 坐标为(1,3).(2)如图1中,作点A 关于x 轴的对称点A ',连接BA '交x 轴于P ,点P 即为所求. (0,2)A '-,(1,3)B ,∴直线A B '的解析式为52y x =-,2(5P ∴,0),21525t ∴==时,PA PB +最短(3)如图2中,设抛物线向右平移后的解析式为2()3y x m =--+.由22(1)3()3y x y x m ⎧=--+⎨=--+⎩,解得12m x +=, ∴点C 的横坐标12m +, 1MN m =-,四边形MDEN 是正方形,1(2m C +∴,1)m -, 把点C 的坐标代入2(1)3y x =--+, 得到2(1)134m m --=-+, 解得3m =或5-(舍弃),∴移后抛物线的解析式为2(3)3y x =--+.当点C 在x 轴下方时,1(2m C +,1)m -, 把点C 的坐标代入2(1)3y x =--+, 得到2(1)134m m --=-+, 解得7m =或1-(舍弃),∴移后抛物线的解析式为2(7)3y x =--+.【达标检测】1.如图,抛物线y =a (x +1)2+4(a ≠0)与x 轴交于A ,C 两点,与直线y =x ﹣1交于A ,B 两点,直线AB 与抛物线的对称轴交于点E .(1)求抛物线的解析式;(2)若点P在直线AB上方的抛物线上运动.①点P在什么位置时,△ABP的面积最大,求出此时点P的坐标;②当点P与点C重合时,连接PE,将△PEB补成矩形,使△PEB上的两个顶点成为矩形一边的两个顶点,第三个顶点落在矩形这一边的对边上,求出矩形未知顶点的坐标.【分析】(1)先确定出点A的坐标,进而用待定系数法求出抛物线解析式;(2)先确定出点B的坐标,①设点P(m,﹣m2﹣2m+3),得出PG=﹣m2﹣3m+4,利用三角形的面积公式建立函数关系式即可得出结论;②先确定出点E的坐标,进而判断出△BPE是直角三角形,即可作出图形,利用两直线的交点坐标的求法即可得出结论.【解答】解:(1)∵点A是直线y=x﹣1与x轴的交点,∴A(1,0),∵过点A(1,0)在y=a(x+1)2+4,∴a(1+1)2+4=0,∴a=﹣1,∴抛物线的解析式为y=﹣(x+1)2+4=﹣x2﹣2x+3(2)由题意知,,∴(是点A的纵横坐标)或,∴B(﹣4,﹣5),①如图,设点P(m,﹣m2﹣2m+3),过点P作PG∥y轴交AB于G,∴G(m,m﹣1),∴PG=﹣m2﹣2m+3﹣(m﹣1)=﹣m2﹣3m+4,∴S△ABP=S△PBG+S△P AG PG×(x A﹣x B|(﹣m2﹣3m+4)(1+4)(m)2,当m时,S△ABP最大,为,此时点P(,);②方法1、由(1)知,抛物线的解析式为y=﹣x2﹣2x+3,∴C(﹣3,0)抛物线的对称轴为直线x=﹣1,∵点E在直线y=x﹣1上,∴E(﹣1,﹣2),∵点P与点C重合,∴P(﹣3,0),∵B(﹣4,﹣5),∴PE2=8,BE2=18,BP2=26,∴PE2+BE2=BP2,∴△BPE是直角三角形,且∠BEP=90°,∵C(﹣3,0),E(﹣1,﹣2),∴直线CE的解析式为y=﹣x﹣3,∵△PEB上的两个顶点成为矩形一边的两个顶点,第三个顶点落在矩形这一边的对边上,∴Ⅰ、作出如图1所示的矩形BECD(以BE为矩形的一边),∴AB∥CD,BD∥CE,∵B(﹣4,﹣5),∴直线BD的解析式为y=﹣x﹣9①,∵直线AB的解析式为y=x﹣1,且AB∥CD,∴直线CD的解析式为y=x+3②,联立①②解得,,∴D(﹣6,﹣3),即:矩形未知顶点的坐标(﹣6,﹣3).Ⅱ、以BP为矩形的一边,如图1所示的矩形BD'F'P,∵P(﹣3,0),B(﹣4,﹣5),∴直线BP的解析式为y=5x+15,∵D'F'∥BP,E(﹣1,﹣2),∴D'F'的解析式为y=5x+3③,∵PF'⊥D'F',且P(﹣3,0),∴PF'的解析式为y x④,联立③④解得,,∴F'(,),同理:D'(,);方法2、Ⅰ、由(1)知,抛物线的解析式为y=﹣x2﹣2x+3,∴C(﹣3,0)抛物线的对称轴为直线x=﹣1,∵点E在直线y=x﹣1上,∴E(﹣1,﹣2),∵四边形BDCE是矩形,∵C(﹣3,0),∴点C看作点E平移得到,向左平移2个单位,再向上平移2个单位,∴点D也是向左平移2个单位,再向上平移2个单位,且B(﹣4,﹣5),∴D(﹣6,﹣3),Ⅱ、以BP为矩形的一边,如图1所示的矩形BD'F'P,∵P(﹣3,0),B(﹣4,﹣5),∴直线BP的解析式为y=5x+15,∵D'F'∥BP,E(﹣1,﹣2),∴D'F'的解析式为y=5x+3③,∵PF'⊥D'F',且P(﹣3,0),∴PF'的解析式为y x④,联立③④解得,,∴F'(,),同理:D'(,);2.如图,抛物线y=﹣x2+bx+c交x轴于点A,B,交y轴于点C.点B的坐标为(3,0)点C的坐标为(0,3),点C与点D关于抛物线的对称轴对称.(1)求抛物线的解析式;(2)若点P为抛物线对称轴上一点,连接BD,以PD,PB为边作平行四边形PDNB,是否存在这样的点P,使得▱PDNB是矩形?若存在,请求出tan∠BDN的值;若不存在,请说明理由;(3)点Q在y轴右侧抛物线上运动,当△ACQ的面积与△ABQ的面积相等时,请直接写出点Q的坐标.【分析】(1)把B点坐标、点C点坐标为代入抛物线y=﹣x2+bx+c方程,即可求解;(2)存在.设点P(1,m),由k1k2=﹣1,即可求解;(3)设点Q坐标为(t,﹣t2+2t+3),则:AQ所在的直线方程为:y=(3﹣t)x+(3﹣t),△ACQ的面积与△ABQ的面积相等时,即:S四边形ACQB=2S△ABQ,即可求解.【解答】解:(1)把B点坐标、点C点坐标为代入抛物线y=﹣x2+bx+c方程,解得,抛物线方程为:y=﹣x2+2x+3;点A坐标为(﹣1,0),点D坐标为(2,3),函数的对称轴为x=1;(2)存在.设点P(1,m),设函数对称轴交x轴于点N,过点D作DM⊥PN于点M,则∠MDP=∠BPN,则tan∠MDP=tan∠BPN,即:,解得:m=1或m=2;则点P(1,1)或(1,2),则:PD或,则PB=2或,tan∠BDN1或;(3)设点Q坐标为(t,﹣t2+2t+3),则:AQ所在的直线方程为:y=(3﹣t)x+(3﹣t),如图所示,连接CA、QB,过点Q作x轴的垂线QN交x轴于N点,当△ACQ的面积与△ABQ的面积相等时,即:S四边形ACQB=2S△ABQ,S四边形ACQB=S梯形CONQ+S△AOC+S△BQN(﹣t2+2t+3+3)×t1×3(3﹣t)(﹣t2+2t+3),(﹣t2+3t+4),S△ABQ(3+1)(﹣t2+2t+3),∵S四边形ACQB=2S△ABQ,化简得:5t2﹣7t﹣12=0,解得:t=﹣1或(舍去负值),当Q在x轴下方时,由△ACQ的面积与△ABQ的面积相等,可得:点Q坐标为(4,﹣5),则点Q坐标为(,)或(4,﹣5).3.如图,已知二次函数y=ax2+2x+c的图象经过点C(0,3),与x轴分别交于点A,点B(3,0).点P 是直线BC上方的抛物线上一动点.(1)求二次函数y=ax2+2x+c的表达式;(2)连接PO,PC,并把△POC沿y轴翻折,得到四边形POP′C.若四边形POP′C为菱形,请求出此时点P的坐标;(3)当点P运动到什么位置时,四边形ACPB的面积最大?求出此时P点的坐标和四边形ACPB的最大面积.【分析】(1)根据待定系数法,可得函数解析式;(2)根据菱形的对角线互相垂直且平分,可得P点的纵坐标,根据自变量与函数值的对应关系,可得P 点坐标;(3)根据平行于y轴的直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得PQ的长,根据面积的和差,可得二次函数,根据二次函数的性质,可得答案.【解答】解:(1)将点B和点C的坐标代入函数解析式,得,解得,二次函数的解析式为y=﹣x2+2x+3;(2)若四边形POP′C为菱形,则点P在线段CO的垂直平分线上,如图1,连接PP′,则PE⊥CO,垂足为E,∵C(0,3),∴E(0,),∴点P的纵坐标,当y时,即﹣x2+2x+3,解得x1,x2(不合题意,舍),∴点P的坐标为(,);(3)如图2,P在抛物线上,设P(m,﹣m2+2m+3),设直线BC的解析式为y=kx+b,将点B和点C的坐标代入函数解析式,得,解得.直线BC的解析为y=﹣x+3,设点Q的坐标为(m,﹣m+3),PQ=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m.当y=0时,﹣x2+2x+3=0,解得x1=﹣1,x2=3,OA=1,AB=3﹣(﹣1)=4,S四边形ABPC=S△ABC+S△PCQ+S△PBQAB•OC PQ•OF PQ•FB4×3(﹣m2+3m)×3(m)2,当m时,四边形ABPC的面积最大.当m时,﹣m2+2m+3,即P点的坐标为(,).当点P的坐标为(,)时,四边形ACPB的最大面积值为.4.如图,抛物线y=﹣x2+bx+c和直线y=x+1交于A,B两点,点A在x轴上,点B在直线x=3上,直线x=3与x轴交于点C.(1)求抛物线的解析式;(2)点P从点A出发,以每秒个单位长度的速度沿线段AB向点B运动,点Q从点C出发,以每秒2个单位长度的速度沿线段CA向点A运动,点P,Q同时出发,当其中一点到达终点时,另一个点也随之停止运动,设运动时间为t秒(t>0).以PQ为边作矩形PQNM,使点N在直线x=3上.①当t为何值时,矩形PQNM的面积最小?并求出最小面积;②直接写出当t为何值时,恰好有矩形PQNM的顶点落在抛物线上.【分析】(1)利用待定系数法即可;(2)①分别用t表示PE、PQ、EQ,用△PQE∽△QNC表示NC及QN,列出矩形PQNM面积与t的函数关系式问题可解;②由①利用线段中点坐标分别等于两个端点横纵坐标平均分的数量关系,表示点M坐标,分别讨论M、N、Q在抛物线上时的情况,并分别求出t值.【解答】解:(1)由已知,B点横坐标为3∵A、B在y=x+1上∴A(﹣1,0),B(3,4)把A(﹣1,0),B(3,4)代入y=﹣x2+bx+c得解得∴抛物线解析式为y=﹣x2+3x+4;(2)①过点P作PE⊥x轴于点E.∵直线y=x+1与x轴夹角为45°,P点速度为每秒个单位长度∴t秒时点E坐标为(﹣1+t,0),Q点坐标为(3﹣2t,0)∴EQ=4﹣3t,PE=t∵∠PQE+∠NQC=90°∠PQE+∠EPQ=90°∴∠EPQ=∠NQC∴△PQE∽△QNC∴∴矩形PQNM的面积S=PQ•NQ=2PQ2∵PQ2=PE2+EQ2∴S=2()2=20t2﹣48t+32当t时,S最小=20×()2﹣4832②由①点Q坐标为(3﹣2t,0),P坐标为(﹣1+t,t)∴△PQE∽△QNC,可得NC=2EQ=8﹣6t∴N点坐标为(3,8﹣6t)由矩形对角线互相平分∴点M坐标为(3t﹣1,8﹣5t)当M在抛物线上时8﹣5t=﹣(3t﹣1)2+3(3t﹣1)+4解得t或当点Q到A时,Q在抛物线上,此时t=2当N在抛物线上时,8﹣6t=4∴t综上所述当t或或或2时,矩形PQNM的顶点落在抛物线上.5.如图,在平面直角坐标系xOy中,已知抛物线y=ax2﹣2x+c与直线y=kx+b都经过A(0,﹣3)、B(3,0)两点,该抛物线的顶点为C.(1)求此抛物线和直线AB的解析式;(2)设直线AB与该抛物线的对称轴交于点E,在射线EB上是否存在一点M,过M作x轴的垂线交抛物线于点N,使点M、N、C、E是平行四边形的四个顶点?若存在,求点M的坐标;若不存在,请说明理由;(3)设点P是直线AB下方抛物线上的一动点,当△P AB面积最大时,求点P的坐标,并求△P AB面积的最大值.【分析】(1)将A(0,﹣3)、B(3,0)两点坐标分别代入二次函数的解析式和一次函数解析式即可求解;(2)先求出C点坐标和E点坐标,则CE=2,分两种情况讨论:①若点M在x轴下方,四边形CEMN 为平行四边形,则CE=MN,②若点M在x轴上方,四边形CENM为平行四边形,则CE=MN,设M (a,a﹣3),则N(a,a2﹣2a﹣3),可分别得到方程求出点M的坐标;(3)如图,作PG∥y轴交直线AB于点G,设P(m,m2﹣2m﹣3),则G(m,m﹣3),可由,得到m的表达式,利用二次函数求最值问题配方即可.【解答】解:(1)∵抛物线y=ax2﹣2x+c经过A(0,﹣3)、B(3,0)两点,∴,∴,∴抛物线的解析式为y=x2﹣2x﹣3,∵直线y=kx+b经过A(0,﹣3)、B(3,0)两点,∴,解得:,∴直线AB的解析式为y=x﹣3,(2)∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线的顶点C的坐标为(1,﹣4),∵CE∥y轴,∴E(1,﹣2),∴CE=2,①如图,若点M在x轴下方,四边形CEMN为平行四边形,则CE=MN,设M(a,a﹣3),则N(a,a2﹣2a﹣3),∴MN=a﹣3﹣(a2﹣2a﹣3)=﹣a2+3a,∴﹣a2+3a=2,解得:a=2,a=1(舍去),∴M(2,﹣1),②如图,若点M在x轴上方,四边形CENM为平行四边形,则CE=MN,设M(a,a﹣3),则N(a,a2﹣2a﹣3),∴MN=a2﹣2a﹣3﹣(a﹣3)=a2﹣3a,∴a2﹣3a=2,解得:a,a(舍去),∴M(,),综合可得M点的坐标为(2,﹣1)或().(3)如图,作PG∥y轴交直线AB于点G,设P(m,m2﹣2m﹣3),则G(m,m﹣3),∴PG=m﹣3﹣(m2﹣2m﹣3)=﹣m2+3m,∴S△P AB=S△PGA+S△PGB,∴当m时,△P AB面积的最大值是,此时P点坐标为().6.如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点(A在B的左侧),与y轴交于点N,过A点的直线l:y=kx+n与y轴交于点C,与抛物线y=﹣x2+bx+c的另一个交点为D,已知A(﹣1,0),D(5,﹣6),P点为抛物线y=﹣x2+bx+c上一动点(不与A、D重合).(1)求抛物线和直线l的解析式;(2)当点P在直线l上方的抛物线上时,过P点作PE∥x轴交直线l于点E,作PF∥y轴交直线l于点F,求PE+PF的最大值;(3)设M为直线l上的点,探究是否存在点M,使得以点N、C,M、P为顶点的四边形为平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.【分析】(1)将点A、D的坐标分别代入直线表达式、抛物线的表达式,即可求解;(2)PE+PF=2PF=2(﹣x2+3x+4+x+1)=﹣2(x﹣2)2+18,即可求解;(3)分NC是平行四边形的一条边、NC是平行四边形的对角线,两种情况分别求解即可.【解答】解:(1)将点A、D的坐标代入直线表达式得:,解得:,故直线l的表达式为:y=﹣x﹣1,将点A、D的坐标代入抛物线表达式,同理可得抛物线的表达式为:y=﹣x2+3x+4;(2)直线l的表达式为:y=﹣x﹣1,则直线l与x轴的夹角为45°,即:则PE=PF,设点P坐标为(x,﹣x2+3x+4)、则点F(x,﹣x﹣1),PE+PF=2PF=2(﹣x2+3x+4+x+1)=﹣2(x﹣2)2+18,∵﹣2<0,故PE+PF有最大值,当x=2时,其最大值为18;(3)NC=5,①当NC是平行四边形的一条边时,设点P坐标为(x,﹣x2+3x+4)、则点M(x,﹣x﹣1),由题意得:|y M﹣y P|=5,即:|﹣x2+3x+4+x+1|=5,解得:x=2或0或4(舍去0),则点M坐标为(2,﹣3)或(2,﹣3)或(4,﹣5);②当NC是平行四边形的对角线时,则NC的中点坐标为(0,),设点P坐标为(m,﹣m2+3m+4)、则点M(n,﹣n﹣1),N、C,M、P为顶点的四边形为平行四边形,则NC的中点即为PM中点,即:0,,解得:n=0或﹣4(舍去0),故点M(﹣4,3);故点M的坐标为:(2,﹣3)或(2,﹣3)或(4,﹣5)或(﹣4,3).7.如图,在平面直角坐标系xOy中,抛物线L1:y=x2+bx+c过点C(0,﹣3),与抛物线L2:y x2x+2的一个交点为A,且点A的横坐标为2,点P、Q分别是抛物线L1、L2上的动点.(1)求抛物线L1对应的函数表达式;(2)若以点A、C、P、Q为顶点的四边形恰为平行四边形,求出点P的坐标;(3)设点R为抛物线L1上另一个动点,且CA平分∠PCR.若OQ∥PR,求出点Q的坐标.【分析】(1)先求出A点的坐标,再用待定系数法求出函数解析式便可;(2)设点P的坐标为(x,x2﹣2x﹣3),分两种情况讨论:AC为平行四边形的一条边,AC为平行四边形的一条对角线,用x表示出Q点坐标,再把Q点坐标代入抛物线L2:y x2x+2中,列出方程求得解便可;(3)当点P在y轴左侧时,抛物线L1不存在点R使得CA平分∠PCR,当点P在y轴右侧时,不妨设点P在CA的上方,点R在CA的下方,过点P、R分别作y轴的垂线,垂足分别为S、T,过点P作PH ⊥TR于点H,设点P坐标为(x1,),点R坐标为(x2,),证明△PSC∽△RTC,由相似比得到x1+x2=4,进而得tan∠PRH的值,过点Q作QK⊥x轴于点K,设点Q坐标为(m,),由tan∠QOK=tan∠PRH,移出m的方程,求得m便可.【解答】解:(1)将x=2代入y x2x+2,得y=﹣3,故点A的坐标为(2,﹣3),将A(2,﹣3),C(0,﹣3)代入y=x2+bx+c,得,解得,∴抛物线L1:y=x2﹣2x﹣3;(2)如图,设点P的坐标为(x,x2﹣2x﹣3),第一种情况:AC为平行四边形的一条边,①当点Q在点P右侧时,则点Q的坐标为(x+2,x2﹣2x﹣3),将Q(x+2,x2﹣2x﹣3)代入y x2x+2,得x2﹣2x﹣3(x+2)2(x+2)+2,解得x=0或x=﹣1,因为x=0时,点P与C重合,不符合题意,所以舍去,此时点P的坐标为(﹣1,0);②当点Q在点P左侧时,则点Q的坐标为(x﹣2,x2﹣2x﹣3),将Q(x﹣2,x2﹣2x﹣3)代入y x2x+2,得y x2x+2,得x2﹣2x﹣3(x﹣2)2(x﹣2)+2,解得,x=3,或x,此时点P的坐标为(3,0)或(,);第二种情况:当AC为平行四边形的一条对角线时,由AC的中点坐标为(1,﹣3),得PQ的中点坐标为(1,﹣3),故点Q的坐标为(2﹣x,﹣x2+2x﹣3),将Q(2﹣x,﹣x2+2x﹣3)代入y x2x+2,得﹣x2+2x﹣3═(2﹣x)2(2﹣x)+2,。

专题05二次函数中特殊平行四边形存在性问题(原卷版)

专题05二次函数中特殊平行四边形存在性问题(原卷版)

挑战2023年中考数学解答题压轴真题汇编专题05 二次函数中特殊平行四边形存在性问题一.平行四边形的存在性1.(2022•重庆)如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴交于点A(4,0),与y轴交于点B(0,3).(1)求抛物线的函数表达式;(2)点P为直线AB上方抛物线上一动点,过点P作PQ⊥x轴于点Q,交AB于点M,求PM+AM的最大值及此时点P的坐标;(3)在(2)的条件下,点P′与点P关于抛物线y=﹣x2+bx+c的对称轴对称.将抛物线y=﹣x2+bx+c向右平移,使新抛物线的对称轴l经过点A.点C在新抛物线上,点D在l上,直接写出所有使得以点A、P′、C、D为顶点的四边形是平行四边形的点D的坐标,并把求其中一个点D的坐标的过程写出来.2.(2022•郴州)已知抛物线y=x2+bx+c与x轴相交于点A(﹣1,0),B(3,0),与y轴相交于点C.(1)求抛物线的表达式;(2)如图1,将直线BC向上平移,得到过原点O的直线MN.点D是直线MN上任意一点.①当点D在抛物线的对称轴l上时,连接CD,与x轴相交于点E,求线段OE的长;②如图2,在抛物线的对称轴l上是否存在点F,使得以B,C,D,F为顶点的四边形是平行四边形?若存在,求出点F与点D的坐标;若不存在,请说明理由.3.(2022•攀枝花)如图,二次函数y=ax2+bx+c的图象与x轴交于O(O为坐标原点),A两点,且二次函数的最小值为﹣1,点M(1,m)是其对称轴上一点,y轴上一点B(0,1).(1)求二次函数的表达式;(2)二次函数在第四象限的图象上有一点P,连结P A,PB,设点P的横坐标为t,△P AB的面积为S,求S与t的函数关系式;(3)在二次函数图象上是否存在点N,使得以A、B、M、N为顶点的四边形是平行四边形?若存在,直接写出所有符合条件的点N的坐标,若不存在,请说明理由.4.(2022•内蒙古)如图,抛物线y=ax2+x+c经过B(3,0),D(﹣2,﹣)两点,与x轴的另一个交点为A,与y轴相交于点C.(1)求抛物线的解析式和点C的坐标;(2)若点M在直线BC上方的抛物线上运动(与点B,C不重合),求使△MBC面积最大时M点的坐标,并求最大面积;(请在图1中探索)(3)设点Q在y轴上,点P在抛物线上,要使以点A,B,P,Q为顶点的四边形是平行四边形,求所有满足条件的点P的坐标.(请在图2中探索)5.(2022•资阳)已知二次函数图象的顶点坐标为A(1,4),且与x轴交于点B (﹣1,0).(1)求二次函数的表达式;(2)如图,将二次函数图象绕x轴的正半轴上一点P(m,0)旋转180°,此时点A、B的对应点分别为点C、D.①连结AB、BC、CD、DA,当四边形ABCD为矩形时,求m的值;②在①的条件下,若点M是直线x=m上一点,原二次函数图象上是否存在一点Q,使得以点B、C、M、Q为顶点的四边形为平行四边形,若存在,求出点Q的坐标;若不存在,请说明理由.二.矩形的存在性6.(2022•泸州)如图,在平面直角坐标系xOy中,已知抛物线y=ax2+x+c经过A(﹣2,0),B(0,4)两点,直线x=3与x轴交于点C.(1)求a,c的值;(2)经过点O的直线分别与线段AB,直线x=3交于点D,E,且△BDO与△OCE的面积相等,求直线DE的解析式;(3)P是抛物线上位于第一象限的一个动点,在线段OC和直线x=3上是否分别存在点F,G,使B,F,G,P为顶点的四边形是以BF为一边的矩形?若存在,求出点F的坐标;若不存在,请说明理由.8.(2021•齐齐哈尔)综合与探究如图,在平面直角坐标系中,抛物线y=ax2+2x+c(a≠0)与x轴交于点A、B,与y轴交于点C,连接BC,OA=1,对称轴为直线x=2,点D为此抛物线的顶点.(1)求抛物线的解析式;(2)抛物线上C、D两点之间的距离是2;(3)点E是第一象限内抛物线上的动点,连接BE和CE,求△BCE面积的最大值;(4)点P在抛物线对称轴上,平面内存在点Q,使以点B、C、P、Q为顶点的四边形为矩形,请直接写出点Q的坐标.9.(2022•随州)如图1,平面直角坐标系xOy中,抛物线y=ax2+bx+c(a<0)与x轴分别交于点A和点B(1,0),与y轴交于点C,对称轴为直线x=﹣1,且OA=OC,P为抛物线上一动点.(1)直接写出抛物线的解析式;(2)如图2,连接AC,当点P在直线AC上方时,求四边形P ABC面积的最大值,并求出此时P点的坐标;(3)设M为抛物线对称轴上一动点,当P,M运动时,在坐标轴上是否存在点N,使四边形PMCN为矩形?若存在,直接写出点P及其对应点N的坐标;若不存在,请说明理由.10.(2023•秦都区校级二模)如图,抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0)、B两点(点B在点A的右侧),与y轴交于点C,且OC=3OA,点D为抛物线的对称轴与x轴的交点,连接CD.(1)求抛物线的函数表达式;(2)点F为坐标平面内一点,在第一象限的抛物线上是否存在点E,使得以点C、D、E、F为顶点的四边形是以CD为边的矩形?若存在,请求出符合条件的点E的横坐标;若不存在,请说明理由.7.(2022•元宝区校级二模)如图,在平面直角坐标系中,抛物线y=ax2+bx+3(a≠0)与x轴交于点A、B,与y轴交于点C,连接BC,OA=1,对称轴为直线x=2,点D为此抛物线的顶点.(1)求抛物线的解析式;(2)抛物线上C、D两点之间的距离是11;(3)点E是第一象限内抛物线上的动点,连接BE和CE,求△BCE面积的最大值;(4)点P在抛物线对称轴上,平面内存在点Q,使以点B、C、P、Q为顶点的四边形为矩形,请直接写出点Q的坐标.8.(2022•鱼峰区模拟)如图,在平面直角坐标系中,抛物线y=x2+bx+c与坐标轴交于A(0,﹣2),B(4,0)两点,直线BC:y=﹣2x+8交y轴于点C.(1)求该抛物线的解析式;(2)在第二象限内是否存在一点M,使得四边形ABCM为矩形?如果存在,求出点M的坐标;如果不存在,请说明理由.三.菱形的存在性9.(2022•朝阳)如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴分别交于点A(1,0)和点B,与y轴交于点C(0,﹣3),连接BC.(1)求抛物线的解析式及点B的坐标.(2)如图,点P为线段BC上的一个动点(点P不与点B,C重合),过点P 作y轴的平行线交抛物线于点Q,求线段PQ长度的最大值.(3)动点P以每秒个单位长度的速度在线段BC上由点C向点B运动,同时动点M以每秒1个单位长度的速度在线段BO上由点B向点O运动,在平面内是否存在点N,使得以点P,M,B,N为顶点的四边形是菱形?若存在,请直接写出符合条件的点N的坐标;若不存在,请说明理由.10.(2021•湘潭)如图,一次函数y=x﹣图象与坐标轴交于点A、B,二次函数y=x2+bx+c图象过A、B两点.(1)求二次函数解析式;(2)点B关于抛物线对称轴的对称点为点C,点P是对称轴上一动点,在抛物线上是否存在点Q,使得以B、C、P、Q为顶点的四边形是菱形?若存在,求出Q点坐标;若不存在,请说明理由.11.(2021•鄂尔多斯)如图,抛物线y=x2+2x﹣8与x轴交于A,B两点(点A 在点B左侧),与y轴交于点C.(1)求A,B,C三点的坐标;(2)连接AC,直线x=m(﹣4<m<0)与该抛物线交于点E,与AC交于点D,连接OD.当OD⊥AC时,求线段DE的长;(3)点M在y轴上,点N在直线AC上,点P为抛物线对称轴上一点,是否存在点M,使得以C、M、N、P为顶点的四边形是菱形?若存在,请直接写出点M的坐标;若不存在,请说明理由.12.(2021•通辽)如图,抛物线y=ax2+bx+3交x轴于A(3,0),B(﹣1,0)两点,交y轴于点C,动点P在抛物线的对称轴上.(1)求抛物线的解析式;(2)当以P,B,C为顶点的三角形周长最小时,求点P的坐标及△PBC的周长;(3)若点Q是平面直角坐标系内的任意一点,是否存在点Q,使得以A,C,P,Q为顶点的四边形是菱形?若存在,请直接写出所有符合条件的点Q的坐标;若不存在,请说明理由.13.(2021•娄底)如图,在直角坐标系中,二次函数y=x2+bx+c的图象与x轴相交于点A(﹣1,0)和点B(3,0),与y轴交于点C.(1)求b、c的值;(2)点P(m,n)为抛物线上的动点,过P作x轴的垂线交直线l:y=x于点Q.①当0<m<3时,求当P点到直线l:y=x的距离最大时m的值;②是否存在m,使得以点O、C、P、Q为顶点的四边形是菱形,若不存在,请说明理由;若存在,请求出m的值.14.(2021•山西)综合与探究如图,抛物线y=x2+2x﹣6与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,连接AC,BC.(1)求A、B,C三点的坐标并直接写出直线AC,BC的函数表达式.(2)点P是直线AC下方抛物线上的一个动点,过点P作BC的平行线l,交线段AC于点D.①试探究:在直线l上是否存在点E,使得以点D,C,B,E为顶点的四边形为菱形,若存在,求出点E的坐标,若不存在,请说明理由;②设抛物线的对称轴与直线l交于点M,与直线AC交于点N.当S△DMN =S△AOC时,请直接写出DM的长.15.(2020•阜新)如图,二次函数y=x2+bx+c的图象交x轴于点A(﹣3,0),B(1,0),交y轴于点C.点P(m,0)是x轴上的一动点,PM⊥x轴,交直线AC于点M,交抛物线于点N.(1)求这个二次函数的表达式;(2)①若点P仅在线段AO上运动,如图,求线段MN的最大值;②若点P在x轴上运动,则在y轴上是否存在点Q,使以M,N,C,Q为顶点的四边形为菱形.若存在,请直接写出所有满足条件的点Q的坐标;若不存在,请说明理由.。

二次函数中考压轴题四边形的存在性问题解析

二次函数中考压轴题四边形的存在性问题解析

二次函数中考精品压轴题(四边形与存在性问题)解析精选【例1】综合与实践:如图,在平面直角坐标系中,抛物线y=﹣x 2+2x+3与x 轴交于A .B 两点,与y 轴交于点C ,点D 是该抛物线的顶点.(1)求直线AC 的解析式及B .D 两点的坐标;(2)点P 是x 轴上一个动点,过P 作直线l ∥AC 交抛物线于点Q ,试探究:随着P 点的运动,在抛物线上是否存在点Q ,使以点A .P 、Q 、C 为顶点的四边形是平行四边形?若存在,请直接写出符合条件的点Q 的坐标;若不存在,请说明理由.(3)请在直线AC 上找一点M ,使△BDM 的周长最小,求出M 点的坐标.【答案】解:(1)当y=0时,﹣x 2+2x+3=0,解得x 1=﹣1,x 2=3。

∵点A 在点B 的左侧,∴A .B 的坐标分别为(﹣1,0),(3,0)。

当x=0时,y=3。

∴C 点的坐标为(0,3)。

设直线AC 的解析式为y=k 1x+b 1(k 1≠0),则111b =3k +b =0⎧⎨-⎩,解得11k =3b =3⎧⎨⎩。

∴直线AC 的解析式为y=3x+3。

∵y=﹣x 2+2x+3=﹣(x ﹣1)2+4,∴顶点D 的坐标为(1,4)。

(2)抛物线上有三个这样的点Q 。

如图,①当点Q 在Q 1位置时,Q 1的纵坐标为3,代入抛物线可得点Q 1的坐标为(2,3);②当点Q 在点Q 2位置时,点Q 2的纵坐标为﹣3,代入抛物线可得点Q 2坐标为(1+7,﹣3);③当点Q 在Q 3位置时,点Q 3的纵坐标为﹣3,代入抛物线解析式可得,点Q 3的坐标为(1﹣7,﹣3)。

综上可得满足题意的点Q 有三个,分别为:Q 1(2,3),Q 2(1+7,﹣3),Q 3(1﹣7,﹣3)。

(3)点B 作BB′⊥AC 于点F ,使B′F=BF ,则B′为点B 关于直线AC 的对称点.连接B′D 交直线AC 与点M ,则点M 为所求。

过点B′作B′E ⊥x 轴于点E 。

二次函数背景下特殊四边形的存在性问题探究

二次函数背景下特殊四边形的存在性问题探究

二次函数背景下特殊四边形的存在性问题探究黄㊀芳(广西南宁市第十四中学ꎬ广西南宁530028)摘㊀要:二次函数与四边形都是初中数学的核心内容ꎬ二次函数背景下特殊四边形的存在性问题是中考的重点考查内容ꎬ常出现在压轴题中.这类问题难度较大ꎬ即使部分优秀学生对此类问题有所掌握ꎬ但在解题中也容易出现漏解ꎬ特别是用几何方法时存在作图准确性不够的缺陷.笔者另辟蹊径ꎬ在教学实践中将几何问题代数化ꎬ合理分类ꎬ有序组合ꎬ利用方程等模型ꎬ归纳出解决问题的基本思路和一般方法ꎬ取得了较好的效果.关键词:二次函数ꎻ特殊四边形ꎻ存在性问题ꎻ探究中图分类号:G632㊀㊀㊀文献标识码:A㊀㊀㊀文章编号:1008-0333(2024)08-0016-03收稿日期:2023-12-15作者简介:黄芳(1985 )ꎬ女ꎬ湖南省衡阳人ꎬ本科ꎬ中学一级教师ꎬ从事初中数学教学研究.㊀㊀在初中阶段ꎬ平行四边形㊁矩形㊁菱形㊁正方形等都是特殊的四边形ꎬ其与二次函数相结合的中考试题屡见不鲜ꎬ这类问题具有一定的选拔功能ꎬ对学生而言具有一定的难度.1知识引入问题1㊀已知线段AB平行于y轴ꎬA(-2ꎬ2)ꎬB(-2ꎬ-1)ꎬ线段AB的长度是多少?问题2㊀如图1ꎬ将线段AB平移到线段A1B1的位置ꎬ则点A1的坐标是.学生运用平面直角坐标系中点的平移规律进行解答ꎬ有多种解法.下面展示其中一种解法.如图2ꎬ连接AA1ꎬBB1ꎬ分别过点A作x轴的垂线ꎬ过点A1作y轴的垂线相交于点Eꎬ过点B作y轴的垂线ꎬ过点B1作x轴的垂线相交于点F.易得әAA1EɸәB1BF.设A1的坐标是(xꎬy)ꎬ则A1E=BFꎬx-(-2)=3-(-3)ꎬ求得x=4ꎬ同理可得y=4.所以点A1的坐标为(4ꎬ4).设计意图:学生回顾平移的有关性质ꎬ可得ABʊA1B1ꎬAA1ʊBB1ꎬ且AB=A1B1ꎬAA1=BB1ꎬ四边形ABB1A1是平行四边形ꎬ为后面的问题作铺垫[1].图1㊀线段平移示意图图2㊀线段平移的解法示意图2规律探究问题3㊀如果有一个任意的平行四边形ABCDꎬ顶点坐标分别A(xAꎬyA)ꎬB(xBꎬyB)ꎬC(xCꎬyC)ꎬD(xDꎬyD)ꎬ这四个顶点的横纵坐标之间分别有什么样的数量关系?解析㊀过点A㊁D分别作x㊁y轴的垂线交于点Eꎬ过点B㊁C分别作x㊁y轴的垂线交于点Fꎬ易得61әAEDɸәCFBꎬ所以DE=BFꎬAE=CFꎬ即xD-xA=xC-xBꎬyD-yA=yC-yB.{同理可得әAMBɸәDNCꎬ所以AM=DNꎬBM=CNꎬ即xA-xB=xD-xCꎬyA-yB=yD-yC{.追问1㊀反过来ꎬ如果有一个四边形ABCDꎬ它的四个顶点的坐标满足上面的数量关系ꎬ这个四边形ABCD是平行四边形吗?解析㊀由xD-xA=xC-xBꎬyD-yA=yC-yBꎬ{得DE=BFꎬAE=CF.由xA-xB=xD-xCꎬyA-yB=yD-yC{ꎬ得AM=DNꎬBM=CN.根据两组对边分别相等的四边形是平行四边形得证.追问2㊀通过证明发现它们是一个等价于的关系.大家再仔细观察ꎬ上述两个方程组有什么共同特征?解析㊀本质上是相同的ꎬ即xA+xC=xB+xDꎬyA+yC=yB+yD.{追问3㊀同学们能用文字语言总结此结论吗?性质:平面直角坐标系中ꎬ平行四边形两组相对顶点的横坐标之和相等ꎬ纵坐标之和也相等.判定:平面直角坐标系中ꎬ两组相对顶点的横坐标之和相等ꎬ纵坐标之和也相等的四边形是平行四边形ꎬ不妨称之为 对点法 .设计意图:从平移线段开始引导学生观察平行四边形坐标间的关系ꎬ借助问题2的探究方法和思路ꎬ开展问题3的探究ꎬ归纳出一般结论ꎬ渗透化归ꎬ从特殊到一般等思想方法ꎬ得到的方程组简洁㊁对称性好ꎬ为结论的灵活应用创造了良好条件[2].3结论应用3.1类型1: 三定一动 型例1㊀如图3ꎬ已知抛物线y=x2-x-2与x轴的交点为A㊁Bꎬ与y轴的交点为Cꎬ点P是平面内一点ꎬ判断有几个位置能使以点P㊁A㊁B㊁C为顶点的四边形是平行四边形ꎬ请写出相应的坐标.解析㊀根据题意求出A(-1ꎬ0)ꎬB(2ꎬ0)ꎬC(0ꎬ-2)ꎬ设点P的坐标为(xꎬy)ꎬ分三种情况讨论.当点P与点A相对ꎬ点B与点C相对时ꎬ得x+(-1)=2+0ꎬy+0=0+(-2)ꎬ{解得x=3ꎬy=-2.{当点P与点B相对ꎬ点A与点C相对时ꎬ得x+2=(-1)+0ꎬy+0=0+(-2)ꎬ{解得x=-3ꎬy=-2.{当点P与点C相对ꎬ点A与点B相对时ꎬ得x+0=(-1)+2ꎬy+(-2)=0+0ꎬ{解得x=1ꎬy=2.{所以满足条件的点P有三个ꎬ分别为(3ꎬ-2)ꎬ(-3ꎬ-2)ꎬ(1ꎬ2).图3㊀点的分布示意图思路小结:第一步ꎬ求出定点ꎬ根据条件用含字母的式子表示动点的坐标ꎬ即设点ꎻ第二步ꎬ根据对应顶点分类ꎬ利用对点法列方程组求解ꎬ即求点ꎻ第三步ꎬ画出几何图形ꎬ检验结果的正确性ꎬ即验点.设计意图:通过应用 对点法 ꎬ学生体验到从代数角度解决几何问题的优点ꎬ思路清晰ꎬ分类明确ꎬ不用借助图形ꎬ直接利用顶点间的关系列出方程组求出结果.第三步验点ꎬ让学生感受几何图形的直观ꎬ整个过程生动体现了华罗庚先生所说的 数缺形时少直观ꎬ形少数时难入微. 3.2类型2: 两定两动 型例2㊀(2022年攀枝花中考试题改编)如图4ꎬ二次函数y=x2-2x的图象与x轴交于O㊁A两点ꎬ且二次函数的最小值为-1ꎬ点M(1ꎬm)是其对称轴上一点ꎬy轴上一点B(0ꎬ1).在二次函数图象上是否存在点Nꎬ使以A㊁B㊁M㊁N为顶点的四边形是平行四边形?若存在ꎬ直接写出所有符合条件的点N的坐标ꎬ若不存在ꎬ请说明理由.解析㊀根据条件易得A(2ꎬ0)ꎬB(0ꎬ1)ꎬ设M(1ꎬm)ꎬN(nꎬn2-2n).分三种情况讨论.当点N与点A相对ꎬ点B与点M相对时ꎬ得n+2=0+1ꎬn=-1ꎬn2-2n=3所以N(-1ꎬ3)ꎻ当点N与点B71相对ꎬ点A与点M相对时ꎬ得n+0=1+2ꎬn=3ꎬn2-2n=3ꎬ所以N(3ꎬ3)ꎻ(3)当点N与点M相对ꎬ点A与点B相对时ꎬ得n+1=0+2ꎬn=1ꎬn2-2n=-1ꎬ所以N(1ꎬ-1).综上所述ꎬ满足条件的点N有三个ꎬ分别为(-1ꎬ3)ꎬ(3ꎬ3)ꎬ(1ꎬ-1).设计意图:进一步熟练对点法的应用ꎬ不用画出图形ꎬ直接根据例1的思路小结分类求解ꎬ并且此题求点N的坐标ꎬ只要求出n的值即可.根据条件不需要列出方程组ꎬ只需利用对点法中相对顶点的横坐标之和相等列出第一个方程就能得出结果.图4㊀例2题图3.3类型3: 四动 型练习平面直角坐标中ꎬy=0.5x2+x-4与y轴相交于点B(0ꎬ-4)ꎬ点P是抛物线上的动点ꎬ点Q是直线y=-x上的动点ꎬ判断有几个位置能使以点P㊁Q㊁B㊁O为顶点的四边形为平行四边形ꎬ写出相应的点Q的坐标.设计意图:在应用结论环节ꎬ设计了 三定一动 和 两定两动 型问题ꎬ常规方法对学生而言是有一定困难的.利用对点法ꎬ直接设点列方程组求解点的坐标更加直接ꎬ通过两个例题总结了设点㊁求点的解题思路ꎬ最后拓展到四个动点的情况仍可用这样的方法解决.4拓展延伸例3㊀(2022年随州中考试题改编)如图5ꎬ在平面直角坐标系xOy中ꎬ抛物线y=-x2-2x+3与x轴分别交于点A(-3ꎬ0)和点B(1ꎬ0)ꎬ与y轴交于点Cꎬ对称轴为直线x=-1ꎬ且OA=OCꎬP为抛物线上一动点.设M为抛物线对称轴上一动点ꎬ当PꎬM运动时ꎬ在坐标轴上是否存在点Nꎬ使四边形PMCN为矩形?若存在ꎬ直接写出点P及其对应点N的坐标ꎻ若不存在ꎬ请说明理由.图5㊀例3题图解法从略ꎬ请读者自行探究.设计意图:矩形的存在性问题有一定的难度ꎬ此题在对点法求平行四边形存在性的基础上再根据对角线相等的平行四边形是矩形的性质ꎬ利用勾股定理列方程ꎬ解出方程组即可.5教学思考5.1建构知识ꎬ理清脉络二次函数背景下特殊四边形的存在性问题具有一定的挑战性ꎬ为了突破这一难点ꎬ我们归纳出 对点法 的解题策略.平行四边形的存在性问题中由 一动 两动 到 四动 三个问题层层推进ꎬ让学生体会到方法的一致性和思维的连贯性.从平行四边形到矩形的例题设计注重层次性㊁阶梯性ꎬ始终有意识地挖掘学生的最近发展区ꎬ让难度螺旋式递进ꎬ遵循 高立意ꎬ低起点ꎬ深研究 的设计原则ꎬ让不同学习水平的学生都能从中获得进步和发展.5.2思想立意ꎬ提升思维在中考复习中ꎬ数学思想方法的渗透也是教学的重任ꎬ本专题中运用了转化ꎬ化归㊁从特殊到一般㊁分类讨论㊁数形结合等思想对问题展开研究.比如ꎬ借助问题2的探究方法和思路开展问题3的探究ꎬ归纳出一般结论㊁渗透化归㊁从特殊到一般㊁数学建模等数学思想.参考文献:[1]中华人民共和国教育部.义务教育数学课程标准(2022年版)[M].北京:北京师范大学出版社ꎬ2022.[2]杨少辉.二次函数中构造平行四边形的解题策略[J].新课程(中)ꎬ2019(02):94.[责任编辑:李㊀璟]81。

二次函数中特殊四边形存在性问题专题训练

二次函数中特殊四边形存在性问题专题训练

二次函数中特殊四边形存在性问题专题训练1、如图,已知抛物线243y x x =++交x 轴于A 、B 两点,交y 轴于点C ,•抛物线的对称轴交x 轴于点E ,点B 的坐标为(1-,0).(1)、求抛物线的对称轴及点A 的坐标;(2)、在平面直角坐标系xoy 中是否存在点P ,与A 、B 、C 三点构成一个平行四边形?若存在,请写出点P 的坐标;若不存在,请说明理由;2、如图,抛物线c bx ax y ++=2的顶点为D(−1,−4),与y 轴交于点C(0,−3),与x 轴交于A,B 两点(点A 在点B 的左侧)。

(1)、求抛物线的解析式;(2)、连接AC ,CD ,AD ,试证明△ACD 为直角三角形;(3)、若点E 在抛物线的对称轴上,抛物线上是否存在点F ,使以A ,B ,E ,F 为顶点的四边形为平行四边形?若存在,求出所有满足条件的点F 的坐标;若不存在,请说明理由。

3、如图1,已知抛物线y=﹣x2+2x+3与x轴交于A、B两点,与y轴交于点C,顶点为D,连接BC(1)、点G是直线BC上方抛物线上一动点(不与B、C重合),过点G作y轴的平行线交直线BC于点E,作GF⊥BC于点F,点M、N是线段BC上两个动点,且MN=EF,连接DM、GN.当△GEF的周长最大时,求DM+MN+NG的最小值;(2)、如图2,连接BD,点P是线段BD的中点,点Q是线段BC上一动点,连接DQ,将△DPQ沿PQ翻折,且线段D′P的中点恰好落在线段BQ上,将△AOC绕点O逆时针旋转60°得到△A′OC′,点T为坐标平面内一点,当以点Q、A′、C′、T为顶点的四边形是平行四边形时,求点T的坐标.4、如图,抛物线y=ax2+bx+c(a≠0)的图象与x轴交于A(﹣3,0)与B(1,0),与直线y=kx(k≠0)交于点C(﹣2,﹣3).(1)、求抛物线的解析式;(2)、如图1,点E是抛物线上(x轴下方)的一个动点,过点E作x轴的平行线与直线OC交于点F,试判断在点E运动过程中,以点O,B,E,F为顶点的四边形能否构成平行四边形,若能,请求出点E的坐标;若不能,请说明理由.(3)、如图2,点D是抛物线的顶点,抛物线的对称轴DM交x轴于点M,当点E在抛物线上B,D之间运动时,连接EA交DM于点N,连接BE并延长交DM于点P,猜想在点E的运动过程中,MN+MP的和是否为定值?若是,试求出该定值;若不是,请说明理由.5、如图,抛物线223y x x =--与x 轴交A 、B 两点(A 点在B 点左侧),直线l 与抛物线交于A 、C 两点,其中C 点的横坐标为2.(1)、求A 、B 两点的坐标及直线AC 的函数表达式;(2)、P 是线段AC 上的一个动点,过P 点作y 轴的平行线交抛物线于E 点,求线段PE 长度的最大值;(3)、点G 是抛物线上的动点,在x 轴上是否存在点F ,使A 、C 、F 、G 这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F 点坐标;如果不存在,请说明理由.6、如图,在平面直角坐标系中,已知抛物线经过A(-4,0)、B(0,-4)、C(2,0)三点.(1)、求抛物线的解析式;(2)、若点M 为第三象限内抛物线上一动点,点M 的横坐标为m ,△MAB 的面积为S ,求S 关于m 的函数关系式,并求出S 的最大值;(3)、若点P 是抛物线上的动点,点Q 是直线y =-x 上的动点,判断有几个位置能使以点P 、Q 、B 、O 为顶点的四边形为平行四边形,直接写出相应的点Q 的坐标.7、如图,抛物线与x 轴相交于A 、B 两点(点A 在点B 的左侧),与y 轴相交于点C ,顶点为D .(1)直接写出A 、B 、C 三点的坐标和抛物线的对称轴;(2)连结BC ,与抛物线的对称轴交于点E ,点P 为线段BC 上的一个动点,过点P 作PF//DE 交抛物线于点F ,设点P 的横坐标为m .①用含m 的代数式表示线段PF 的长,并求出当m 为何值时,四边形PEDF 为平行四边形?②设△BCF 的面积为S ,求S 与m 的函数关系.322++-=x x y8、如图,已知二次函数y =-x 2+bx +c 的图象交x 轴于点A (-4,0)和点B ,交y 轴于点C (0,4).(1)、求这个二次函数的表达式;(2)、若点P 在第二象限内的抛物线上,求四边形AOCP 面积的最大值和此时点P 的坐标;(3)、在平面直角坐标系内,是否存在点Q ,使A ,B ,C ,Q 四点构成平行四边形?若存在,直接写出点Q 的坐标;若不存在,说明理由.9、在平面直角坐标系中,抛物线2+3y ax bx =+与x 轴交于点A (-3,0)、B (1,0)两点,D 是抛物线顶点,E 是对称轴与x 轴的交点.(1)求抛物线的解析式;(2)若点F 和点D 关于x 轴对称,点P 是x 轴上的一个动点,过点P 作PQ ∥OF 交抛物线于点Q ,是否存在以点O ,F ,P ,Q 为顶点的平行四边形?若存在,求出点P 坐标;若不存在,请说明理由.10、如图,对称轴为直线72x =的抛物线经过点A (6,0)和B (0,4).(1)、求抛物线解析式及顶点坐标;(2)、设点E (x ,y )是抛物线上一动点,且位于第四象限,四边形OEAF 是以OA 为对角线的平行四边形.求平行四边形OEAF 的面积S 与x 之间的函数关系式,并写出自变量x 的取值范围;①、当平行四边形OEAF 的面积为24时,请判断平行四边形OEAF 是否为菱形?②、是否存在点E ,使平行四边形OEAF 为正方形?若存在,求出点E 的坐标;若不存在,请说明理由.()0≠a11、如图,在平面直角坐标系xOy中.抛物线y=mx2﹣2mx﹣3m(m<0)与x轴交于A、B两点(点A在点B的左侧).(1)、点A的坐标为抛物线的对称轴为(2)、经过点A的直线l:y=kx+b与y轴负半轴交于点C,与抛物线的另一个交点为D.且AD=5AC.①、求直线l的函数表达式(其中k、b用含m的式子表示);②、设P是抛物线的对称轴上的一点.点Q在抛物线上.以点A、D、P、Q为顶点的四边形能否成为矩形?若能,求出点p的坐标,若不能,请说明理由.12、如图,已知抛物线l1:y=x2-4的图象与x轴相交于A、C两点,B是抛物线l1上的动点(B不与A、C重合),抛物线l2与l1关于x轴对称,以AC为对角线的平行四边形ABCD的第四个顶点为D.(1)、求l2的解析式;(2) 、求证:点D一定在l2上;(3) 、□ABCD能否为矩形?如果能为矩形,求这些矩形公共部分的面积(若只有一个矩形符合条件,则求此矩形的面积);如果不能为矩形,请说明理由. 注:计算结果不取近似值13、将抛物线c1:2y=+x轴翻折,得到抛物线c2,如图所示.(1)、请直接写出抛物线c2的表达式;(2)、现将抛物线c1向左平移m个单位长度,平移后得到新抛物线的顶点为M,与x轴的交点从左到右依次为A、B;将抛物线c2向右也平移m个单位长度,平移后得到新抛物线的顶点为N,与x轴的交点从左到右依次为D、E.①、当B、D是线段AE的三等分点时,求m的值;②、在平移过程中,是否存在以点A、N、E、M为顶点的四边形是矩形的情形?若存在,请求出此时m的值;若不存在,请说明理由.14、已知:二次函数y = x 2 + bx + 8的图象与x轴交于点A(– 2,0).(1)、求二次函数y = x 2 + bx + 8的图象与x轴的另一个交点B及顶点M的坐标;(2)、点P从点B出发,以每秒1个单位的速度沿水平方向向右运动,同时点Q从点M出发,以每秒2个单位的速度沿竖直方向向下运动,当点P运动到原点O时,P、Q同时停止运动. 点C、点D分别为点P、点Q关于原点的对称点,设四边形PQCD的面积为S,运动时间为t,求S与t的函数关系表达式(不必写出t的取值范围);(3)、在(2)的运动过程中,四边形PQCD能否形成矩形?若能,求出此时t的值;若不能,请说明理由.15、已知:抛物线1C:622-+-=bxxy与抛物线2C关于原点对称,抛物线1C与x轴分别交于A(1,0),B(m,0),顶点为M,抛物线2C与x轴分别交于C,D两点(点C在点D的左侧),顶点为N.(1)、求m的值;(2)、求抛物线2C的解析式;(3)、若抛物线1C与抛物线2C同时以每秒1个单位的速度沿x轴方向分别向左、向右运动,此时记A,B,C,D,M,N在某一时刻的新位置分别为'''''',,,,,NMDCBA,当点'A与点'D重合时运动停止.在运动过程中,四边形''''NCMB能否形成矩形?若能,求出此时运动时间t(秒)的值,若不能,说明理由.。

二次函数中特殊四边形的存在性问题

二次函数中特殊四边形的存在性问题

网课:二次函数中特殊四边形的存在性问题学习目标:1、通过二次函数中的特殊四边形存在性问题的探究、学习,获取解决这类问题的基本方法;经历解决二次函数中的特殊四边形存在性问题的探索过程,培养学生的理解能力,抽象能力,能正确认识问题的本质,提高知识迁移能力,积累解决问题的经验,感受数学知识对解决问题的价值;2、通过函数中的特殊四边形存在性问题的解决,渗透“转化”、“分类”、“方程”、“数形结合”等数学思想,并在问题解决中体验成功的快乐,感受数学的魅力.学习重点:利用“特殊四边形的性质”,或者“点在函数上”来建立等量关系,解决“点是否存在的问题”.学习难点:从复杂的函数背景中提炼问题的本质,利用“特殊四边形的性质”,或者“点在函数上”来建立等量关系,解决“点是否存在的问题”.背景问题:如图,抛物线中,点A在x轴的正半轴上,点C在y轴的正半轴上,OC=3,点D是直线AC与抛物线的交点。

问题一:在平面内是否存在一点B,使得以A、B、O、D为顶点的四边形是平行四边形?若存在,请直接写出B点的坐标;若不存在,请说明理由。

归纳:_________________________________________________问题二:若点M在抛物线上,点N在x轴上,是否存在以A、D、M、N为顶点的四边形是平行四边形?若存在,求出点N的坐标;若不存在,请说明理由;(备图1)(备图2)归纳:_____________________________________________________________________________问题三:若点E(2,3)在抛物线上,点F、P在直线AC上,当EF所在直线与x轴垂直时,平面内是否存在一点Q,使得以点E、F、P、Q为顶点的四边形是菱形?若存在,求出点Q 的坐标;若不存在,请说明理由;(备图1)(备图2)归纳:______________________________________________________________________________问题四:点是直线AC上一点,若点N是平面内一点,M是抛物线对称轴上的一点,是否存在一点M使得以点A,P,M,N为顶点的四边形是矩形?若能,求出点M的坐标;若不能,请说明理由.归纳:_______________________________________________________________________课后练习:如图1,抛物线y=﹣﹣x+2与x轴交于A,B两点,与y轴交于点C,点D为线段AC的中点,直线BD与抛物线交于另一点E,与y轴交于点F.(1)如图1,点P是直线BE上方抛物线上一动点,连接PD,PF,当△PDF的面积最大时,在线段BE上找一点G,使得PG﹣EG的值最小,求出PG﹣EG的最小值;(2)如图2,点M为抛物线上一点,点N在抛物线的对称轴上,点K为平面内一点,当以点A、M、N、K为顶点的四边形是正方形时,直接写出点N的坐标.。

压轴题06二次函数与特殊四边形存在性问题(四大类型)-2023年中考数学压轴题专项训练(全

压轴题06二次函数与特殊四边形存在性问题(四大类型)-2023年中考数学压轴题专项训练(全

2023年中考数学压轴题专项训练压轴题06二次函数与特殊四边形存在性问题(四大类型)题型一:二次函数与平行四边形存在性问题例1.(2023•泽州县一模)综合与探究.如图1,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A,B两点,与直线l交于B,C 两点,其中点A的坐标为(﹣2,0),点C的坐标为(﹣1,﹣4).(1)求二次函数的表达式和点B的坐标.(2)若P为直线l上一点,Q为抛物线上一点,当四边形OBPQ为平行四边形时,求点P的坐标.(3)如图2,若抛物线与y轴交于点D,连接AD,BD,在抛物线上是否存在点M,使∠MAB=∠ADB?若存在,请直接写出点M的坐标;若不存在,请说明理由.题型二:二次函数与矩形存在性问题例2.(2023•歙县校级模拟)如图,若二次函数y=ax2+bx+4的图象与x轴交于点A(﹣1,0)、B(4,0),与y轴交于点C,连接BC.(1)求该二次函数的解析式;(2)若点Q是抛物线上一动点,在平面内是否存在点K,使以点B、C、Q、K为顶点,BC为边的四边形是矩形?若存在请求出点K的坐标;若不存在,请说明理由.题型三: 二次函数与菱形存在性问题例3.(2023春•沙坪坝区校级月考)如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c经过A(0,1),B (4,﹣1).直线AB交x轴于点C,P是直线AB上方且在对称轴右侧的一个动点,过P作PD⊥AB,垂足为D,E为点P关于抛物线的对称轴的对应点.(1)求抛物线的函数表达式;(2)当√5PD+PE的最大值时,求此时点P的坐标和√5PD+PE的最大值;(3)将抛物线y关于直线x=3作对称后得新抛物线y',新抛物线与原抛物线相交于点F,M是新抛物线对称轴上一点,N是平面中任意一点,是否存在点N,使得以C,F,M,N为顶点的四边形是菱形,写出所有符合条件的点N的坐标,并写出求解点N的坐标的其中一种情况的过程.题型四: 二次函数与正方形存在性问题例4.(2023•前郭县一模)如图,在平面直角坐标系中,抛物线y=x2﹣4x+c与y轴相交于点A(0,2).(1)求c的值;(2)点B为y轴上一点,其纵坐标为m(m≠2),连接AB,以AB为边向右作正方形ABCD.①设抛物线的顶点为P,当点P在BC上时,求m的值;②当点C在抛物线上时,求m的值;③当抛物线与正方形ABCD有两个交点时,直接写出m的取值范围.一.解答题(共20小题)1.(2023春•兴化市月考)已知:二次函数y=ax2+2ax﹣8a(a为常数,且a>0)的图象与x轴交于点A、B(点A在点B的左侧),与y轴交于点C,顶点为点D.(1)分别求点A、B的坐标;(2)若△ABC是直角三角形,求该二次函数相应的表达式;(3)当a=12时,一次函数y=12x+b的图象过B点,与二次函数的对称轴交于Q点,N为一次函数图象上一点,过N点作y的平行线交二次函数图象于M点,当D、M、N、Q四点组成的四边形是平行四边形时,求N点的坐标.2.(2023春•沙坪坝区校级月考)如图1,在平面直角坐标系中,抛物线y=ax2+bx+8(a≠0)与x轴交于点B(﹣4,0),点C(8,0),与y轴交于点A.点D的坐标为(0,4).(1)求二次函数的解析式及点C的坐标.(2)如图1,点F为该抛物线在第一象限内的一动点,过E作FE∥CD,交CD于点F,求EF+√55DF的最大值及此时点E的坐标.(3)如图2,在(2)的情况下,将原抛物线绕点D旋转180°得到新抛物线y',点N是新抛物线y'上一点,在新抛物线上的对称轴上是否存在一点M,使得点D,E,M,N为顶点的四边形为平行四边形,若存在,请直接写出点M的坐标,并写出其中一个点M的求解过程.3.(2023•武清区校级模拟)在平面直角坐标系中,二次函数y=ax2+bx+3的图象与x轴交于A(﹣4,0),B(2,0)两点,与y轴交于点C.(1)求这个二次函数的解析式;(2)抛物线上是否存在点Q,且满足AB平分∠CAQ,若存在,求出Q点坐标;若不存在,说明理由;(3)点N为x轴上一动点,在抛物线上是否存在点M,使以B,C,M,N为顶点的四边形是平行四边形?若存在,直接写出点M的坐标;若不存在,说明理由.4.(2023春•承德县月考)已知二次函数y=14x2−32x−4与x数轴交于点A、B(A在B的左侧),与y轴交于点C,连接BC.发现:点A的坐标为,求出直线BC的解析式;拓展:如图1,点P是直线BC下方抛物线上一点,连接PB、PC,当△PBC面积最大时,求出P点的坐标;探究:如图2,抛物线顶点为D,抛物线对称轴交BC于点E,M是线段BC上一动点(M不与B、C两点重合),连接PM,设M点的横坐标为m(0<m<8),当m为何值时,四边形PMED为平行四边形?5.(2023春•梅江区校级月考)如图,在平面直角坐标系中,△AOC绕原点O逆时针旋转90°得到△DOB,其中OA=1,OC=3.(1)若二次函数经过A、B、C三点,求该二次函数的解析式;(2)在(1)条件下,在二次函数的对称轴l上是否存在一点P,使得P A+PC最小?若P点存在,求出P点坐标;若P点不存在,请说明理由.(3)在(1)条件下,若E为x轴上一个动点,F为抛物线上的一个动点,使得B、C、E、F构成平行四边形时,求E点坐标.6.(2022秋•云州区期末)综合与探究如图,二次函数y=ax2+bx+4的图象经过x轴上的点A(6,0)和y轴上的点B,且对称轴为直线x=7 2.(1)求二次函数的解析式.(2)点E位于抛物线第四象限内的图象上,以OE,AE为边作平行四边形OEAF,当平行四边形OEAF 为菱形时,求点F的坐标与菱形OEAF的面积.(3)连接AB,在直线AB上是否存在一点P,使得△AOP与△AOB相似,若存在,请直接写出点P坐标,若不存在,请说明理由.7.(2023春•开福区校级月考)【定义】对于函数图象上的任意一点P(x,y),我们把x+y称为该点的“雅和”,把函数图象上所有点的“雅和”的最小值称为该函数的“礼值”.根据定义回答问题:(1)①点P(9,10)的“雅和”为;(直接写出答案)②一次函数y=3x+2(﹣1≤x≤3)的“礼值”为;(直接写出答案)(2)二次函数y=x2﹣bx+c(bc≠0)(3≤x≤5)交x轴于点A,交y轴于点B,点A与点B的“雅和”相等,若此二次函数的“礼值”为1﹣b,求b,c的值;(3)如图所示,二次函数y=x2﹣px+q的图象顶点在“雅和”为0的一次函数的图象上,四边形OABC 是矩形,点B的坐标为(5,﹣3),点O为坐标原点,点C在x轴上,当二次函数y=x2﹣px+q的图象与矩形的边有四个交点时,求p的取值范围.8.(2023春•无锡月考)在平面直角坐标系中,O为坐标原点,二次函数y=ax2﹣2ax﹣3a(a>0)的图象分别与x轴交于A、B两点(点A在点B左侧),与y轴交于点C,过点B作BC的垂线交对称轴于点M,以BM、BC为邻边作矩形BMNC.(1)求A、B的坐标;(2)当点N恰好落在函数图象上时,求二次函数的表达式;(3)作点N关于MC的对称点N',则点N'能否落在函数图象的对称轴上,若能,请求出二次函数的表达式;若不能,请说明理由.9.(2022秋•开福区校级期末)若凸四边形的两条对角线所夹锐角为60°,我们称这样的凸四边形为“美丽四边形”.(1)①在“平行四边形、矩形、菱形、正方形”中,一定不是“美丽四边形”的有;②若矩形ABCD是“美丽四边形”,且AB=1,则BC=;(2)如图1,“美丽四边形”ABCD内接于⊙O,AC与BD相交于点P,且对角线AC,为直径,AP=2,PC=8,求另一条对角线BD的长;(3)如图2,平面直角坐标系中,已知“美丽四边形”ABCD的四个顶点A(﹣2,0),C(1,0),B在第三象限,D在第一象限,AC与BD交于点O,且四边形ABCD的面积为6√3,若二次函数y=ax2+bx+c (a、b、c为常数,且a≠0)的图象同时经过这四个顶点,求a的值.10.(2022秋•南关区校级期末)在平面直角坐标系中,二次函数y=x2﹣2x+n(x>0)的图象记为G1,将G1绕坐标原点旋转180°得到图象G2,图象G1和G2合起来记为图象G.(1)若点P(﹣2,3)在图象G上,求n的值.(2)当n=﹣1时.①若O(t,1)在图象G上,求t的值.②当k≤x≤3(k<3)时,图象G对应函数的最大值为2,最小值为﹣2,直接写出k的取值范围.(3)当以A(﹣2,2),B(﹣2,﹣1),C(1,﹣1),D(1,2)为顶点的矩形ABCD的边与图象G有且只有3个公共点时,直接写出n的取值范围.11.(2022•株洲)已知二次函数y=ax2+bx+c(a>0).(1)若a=1,b=3,且该二次函数的图象过点(1,1),求c的值;(2)如图所示,在平面直角坐标系xOy中,该二次函数的图象与x轴相交于不同的两点A(x1,0)、B (x2,0),其中x1<0<x2、|x1|>|x2|,且该二次函数的图象的顶点在矩形ABFE的边EF上,其对称轴与x轴、BE分别交于点M、N,BE与y轴相交于点P,且满足tan∠ABE=3 4.①求关于x的一元二次方程ax2+bx+c=0的根的判别式的值;②若NP=2BP,令T=1a2+165c,求T的最小值.阅读材料:十六世纪的法国数学家弗朗索瓦•韦达发现了一元二次方程的根与系数之间的关系,可表述为“当判别式Δ≥0时,关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根x1、x2有如下关系:x1+x2=−b a,x1x2=ca”.此关系通常被称为“韦达定理”.12.(2023春•南关区月考)已知抛物线y=−12x2+bx+c(b、c是常数)的顶点B坐标为(﹣1,2),抛物线的对称轴为直线l,点A为抛物线与x轴的右交点,作直线AB.点P是抛物线上的任意一点,其横坐标为m,过点P作x轴的垂线交直线AB于点Q,过点P作PN⊥l于点N,以PQ、PN为边作矩形PQMN.(1)b=,c=.(2)当点Q在线段AB上(点Q不与A、B重合)时,求PQ的长度d与m的函数关系式,并直接写出d的最大值.(3)当抛物线被矩形PQMN截得的部分图象的最高点纵坐标与最低点纵坐标的距离为2时,求点P的坐标.13.(2023春•南关区校级月考)在平面直角坐标系中,抛物线y =﹣x 2+bx +c (b 、c 是常数)经过点A (﹣1,0)和点B (3,0).点P 在抛物线上,且点P 的横坐标为m . (1)求b 、c 的值;(2)当△P AB 的面积为8时,求m 的值;(3)当点P 在点A 的右侧时,抛物线在点P 与点A 之间的部分(包含端点)记为图象G ,设G 的最高点与最低点的纵坐标之差为h ,求h 与m 之间的函数关系式;(4)点Q 的横坐标为1﹣3m ,纵坐标为m +1,以PQ 为对角线构造矩形,且矩形的边与坐标轴平行.当抛物线在矩形内部的点的纵坐标y 随x 的增大而增大或y 随x 的增大而减小时,直接写出m 的取值范围.14.(2023•九台区校级一模)在平面直角坐标系中,已知抛物线y =x 2﹣2ax ﹣a (a 为常数). (1)若点(2,﹣1)在抛物线上. ①求抛物线的表达式;②当x 为何值时y 随x 的增大而减小?(2)若x ≤2a ,当抛物线的最低点到x 轴的距离恰好是1时,求a 的值;(3)已知A (﹣1,1)、B(−1,2a −12),连结AB .当抛物线与线段AB 有交点时,该交点为P (点P 不与A 、B 重合),将线段PB 绕点P 顺时针旋转90°得到线段PM ,以PM 、P A 为邻边构造矩形PMQA .当抛物线在矩形PMQA 内部(包含边界)图象所对应的函数的最大值与最小值的差为32时,直接写出a 的值.15.(2023•靖江市校级模拟)如图,在平面直角坐标系中,抛物线y=−12x2+bx+32与x轴正半轴交于点A,且点A的坐标为(3,0),过点A作垂直于x轴的直线l.P是该抛物线上的任意一点,其横坐标为m,过点P作PQ⊥l于点Q,M是直线l上的一点,其纵坐标为﹣m+32,以PQ、QM为边作矩形PQMN.(1)求b的值.(2)当点Q与点M重合时,求m的值.(3)当矩形PQMN是正方形,且抛物线的顶点在该正方形内部时,求m的值.(4)当抛物线在矩形PQMN内的部分所对应的函数值y随x的增大而减小时.直接写出m的取值范围.16.(2022秋•临朐县期末)如图,在平面直角坐标系中,O是坐标原点,菱形OABC的顶点A(3,4),C 在x轴的负半轴,抛物线y=ax2+bx+c的对称轴x=2,且过点O,A.(1)求抛物线y=ax2+bx+c的解析式;(2)若在线段OA上方的抛物线上有一点P,求△P AO面积的最大值,并求出此时P点的坐标;(3)若把抛物线y=ax2+bx+c沿x轴向左平移m个单位长度,使得平移后的抛物线经过菱形OABC的顶点B.直接写出平移后的抛物线解析式.17.(2023•道外区一模)如图,在平面直角坐标系中,点O为坐标原点,抛物线y=ax2﹣2ax+c经过点A (﹣4,0),点C(0,6),与x轴交于另一点B.(1)求抛物线的解析式;(2)点D为第一象限抛物线上一点,连接AD,BD,设点D的横坐标为t,△ABD的面积为S,求S关于t的函数解析式(不要求写出自变量t的取值范围);(3)在(2)的条件下,点P为第四象限抛物线上一点,连接P A交y轴于点E,点F在线段BC上,点G在直线AD上,若tan∠BAD=12,四边形BEFG为菱形,求点P的坐标.18.(2023春•九龙坡区校级月考)如图,在平面直角坐标系中,抛物线y=12x2+bx+c与x轴交于A(﹣1,0),B(4,0),与y轴于点C,连接BC,D为抛物线的顶点.(1)求该抛物线的解析式;(2)点P为直线BC下方抛物线上的一动点,过P作PE⊥BC于点E,过P作PF⊥x轴于点F,交直线BC于点G,求PE+PG的最大值,以及此时点P的坐标;(3)将抛物线y=12x2+bx+c沿射线CB方向平移,平移后的图象经过点H(2,﹣1),点M为D的对应点,平移后的抛物线与y轴交于点N,点Q为平移后的抛物线对称轴上的一点,且点Q在第一象限.在平面直角坐标系中确定点R,使得以点M,N,Q,R为顶点的四边形为菱形,请写出所有符合条件的点R的坐标,并写出求解点R的坐标的其中一种情况的过程.19.(2023•安徽一模)如图,在平面直角坐标系中,抛物线C 1:y =−14x 2+bx +c 的图象与坐标轴交于A 、B 、C 三点,其中点A 的坐标为(0,8),点B 的坐标为(﹣4,0),点D 的坐标为(0,4).(1)求该二次函数的表达式及点C 的坐标;(2)若点F 为该抛物线在第一象限内的一动点,求△FCD 面积的最大值;(3)如图2,将抛物线C 1向右平移2个单位,向下平移5个单位得到抛物线C 2,M 为抛物线C 2上一动点,N 为平面内一动点,问是否存在这样的点M 、N ,使得四边形DMCN 为菱形,若存在,请直接写出点N 的坐标;若不存在,请说明理由.20.(2023•九台区一模)在平面直角坐标系中,抛物线y =x 2+bx +c (b 、c 是常数)经过点(﹣2,﹣1),点(1,2).点A 在抛物线上,且点A 的横坐标为m (m ≠0).以点A 为中心,构造正方形POMN ,PQ =2|m |,且PQ ⊥x 轴.(1)求该抛物线对应的函数表达式;(2)若点B 是抛物线上一点,且在抛物线对称轴右侧.过点B 作x 轴的平行线交抛物线于另一点C ,连接BC .当BC =6时,求点B 的坐标;(3)若m <0,当抛物线在正方形内部的点的纵坐标y 随x 的增大而增大或y 随x 的增大而减小时,求m 的取值范围;(4)当抛物线与正方形PQMN 的边只有2个交点,且交点的纵坐标之差为34时,直接写出m 的值.。

二次函数与几何综合专题 特殊四边形存在性问题

二次函数与几何综合专题  特殊四边形存在性问题
(8)在对称轴上有一点Q,在抛物线上有一点P,若以C、D、P、Q为顶点的四边形是菱形,求点Q的坐标.
(9)在y轴上有一点M,在坐标平面内有一点N,若以A、C、M、N为顶点的四边形是正方形,求点N的坐标.
【答案】(1) ,对称轴为:直线x=-1,顶点坐标为:D(-1,-4);(2)N点坐标为:(-4,-3)或(-2,3)或(2,-3);(3)P点坐标为: , ;(4)N点坐标为:(-1,-4)或(3,12)或(-5,12);(5)P点坐标为:(-2,-3);或( ,3)或( ,3);(6)N点坐标为:(-2,-3)或(2,5)或(-4,5);(7)点M坐标为(2,-1)或(-4,-1)或 或 ;(8)以C、D、P、Q为顶点的四边形是菱形,点Q的坐标为(-1,-2);(9)点N坐标为(-3,-3)或(3,0)
(5)在x轴上有一点Q,在抛物线上有一点P,若以A、C、P、Q为顶点的四边形是平行四边形,求点P的坐标.
(6)在对称轴上有一点Q,在抛物线上有一点P,若以A、C、P、Q为顶点的四边形是平行四边形,求点P的坐标.
(7)在对称轴上有一点N,在平面内存在点M,若以A、C、M、N为顶点的四边形是矩形,求点M的坐标.
∴ ,
∵点C坐标为(0,-3),以O、C、P、Q为顶点的四边形是平行四边形,
∴ ,
即: ,
解得: , ,
当 时, 此时P点坐标为: , .
(4)解:设点Q的坐标为 ,P点坐标为 ,
∵点A坐标为(-3,0),点B坐标为(1,0),
以A、B、P、Q为顶点的四边形是平行四边形,
I、当AB、PQ为对角线时,
(1)求抛物线的解析式、对称轴及顶点D的坐标.
(2)在坐标平面内有一点N,若以A、B、C、N为顶点的四边形是平行四边形,求点N的坐标.

二次函数存在性问题(菱形、平行四边形、矩形)

二次函数存在性问题(菱形、平行四边形、矩形)

今天讲解二次函数背景下的四边形存在性问题.这里的四边形存在性问题,一般是以几种特殊的四边形为主,常考察的有平行四边形、菱形、 矩形、正方形.当然,三角形的存在性问题和四边形的存在性问题是一样, 如等腰三角形实际上和 菱形是一致的, 直角三角形和矩形是一样的, 等腰直角三角形和正方形是一致的.本文我们将重点讲解这类问题的求解逻辑以及注意事项,同时给大家理出一个比较通用的解题 模板.1如图,抛物线y = ax 2 + bx + 3 交x 轴于点A (−1, 0) 和点B (3, 0) ,与 y 轴交于点C ,连接BC , 交对称轴于点D .(1) 求抛物线的解析式;(2)点 P 是直线BC 上方的抛物线上点,连接PC ,PD .求 △PCD 的面积的最大值以及此时 点P 的坐标;(3)将抛物线y = ax 2 + bx + 3 向右平移 1 个单位得到新抛物线,新抛物线与原抛物线交于点E , 点F 是新抛物线的对称轴上的一点,点 G 是坐标平面内一点.当以D 、E 、F 、 G 四点为顶点的 四边形是菱形时,直接写出点F 的坐标,并写出求解其中一个点F 的坐标的过程.前两小问就不详说了,直接上结论, 抛物线解析式为y = −x 2 + 2x + 3 ;点 P | , | .( 3 15 )\2 4 )第 3 小问为菱形存在性问题, 以D 、E 、F 、 G 四点为顶点的四边形是菱形.四个点中, D , E 是定点,F 是平移后新抛物线对称轴上的动点,由于点F 的横坐标是确定的,只有纵坐标在变化, 我们可以称其为“G 如果只需要点F 的坐标,那么没有必要求解平移后抛物线的解析式.根据平移的性质,将原抛物线 向右平移 1 个单位长度, 那么原抛物线的对称轴也向右平移 1 个单位长度, 因此新抛物线的对称轴 为x = 2 ,几 F (2, m ) .但由于此时E 为量抛物线的交点,因此还是要把平移后的抛物线解析式求出 来,根据“左加右减”,平移后的抛物线解析式为y = − (x −1)2+ 2(x −1) + 3 = −x 2 + 4x ,联立两抛物(|y = −x 2 + 2x + 3 ( 3 15 ) 线〈|ly = −x 2 + 4x ,解得E |\2 , 4 )| .菱形的探究相对是比较简单的,对于这类探究性问题,一般都是先从确定的信息入手.菱形是 以D 、E 、F 、 G 为顶点, 其中DE 为定线段,那么存在的可能有DE 是一条边,也可能是一条对 对角线.前面提到,等腰三角形和菱形的分析是一致的,这里我们结合等腰三角形的存在性问题一 起分析.由于 G 是“自由点”,可以随机应变,因此讨论以D 、E 、F 为顶点的三角形是等腰三角 形.同样, 由于定线段DE 可能是等腰三角形的一条腰,也可能是底边.当DE 为一条腰时,第一种情形是点D 为顶点,即DE = DF ,也即半动点F 到D 的距离和E 到D 的距离相等,因此点F 在以点D 为圆心, DE 为半径的圆上,作出该圆,如图 1 所示,可知此时圆与新抛物线的对称轴有两个交点F 1 ,F 2 ,结合图象可以判断,此时两个点应该都是满足的.那么 再加上对应的“自由点” G ,就是以DE 为边菱形了.当DE 为一条腰时, 另一种情形是点E 为顶点, 即ED = EF ,也即半动点F 到E 的距离和D 到E 的距离相等,因此点F 在以点E 为圆心, ED 为半径的圆上,作出该圆,如图 2 所示,可知此时 圆与新抛物线的对称轴同样有两个交点F 1 ,F 2 ,结合图象, 此时的F 3 存在和DE 共线的风险,因此后续需要检验一下.根据坐标可以知道,x E =,通常像这类圆心可能为两个点中点的,一般都要留个心眼, 检验一下.此时再加上对应的“自由点” G ,也是以DE 为边菱形.当DE 为底边时,则F 为顶点, 即FD = FE ,即 F 到线段DE 的两端点的距离相等,可知此时F 在线段DE 的垂直平分线上,作出线段DE 的垂直平分线,如图 3 所示,可知此时有一个交点F 5 .加 上对应的“自由点” G ,此时便是以DE 为对角线的菱形.对于等腰三角形和菱形的存在性问题,如上图情形,我们称其为“两圆一线”法.由于这类题一般不需要书写完整过程,因此在解题过程中,把准备工作做好, 即对应的点坐标, 解析式等先求出来, 动点坐标假设好, 再把定线段DE ,半定线段DF 、EF 长度表示出来. 根据上 述分析,结合“两圆一线”分别使得三条线段两两相等建立方程,即DE = DF ,DE = EF ,DF = EF , 求解出动点坐标即可.(实际解题过程中, 一般使用线段平方的形式.此外, 只需关注下方解析中公 式计算部分即可,文字叙述部分可忽略)此题还是比较友善的,只需求出F 坐标.如果需要求解点G 的坐标,则还要加一个步骤.这里 以DEG 1F 1 为例,若要求 G 1 坐标,一般有两种比较常用的思路.一是利用菱形的对边平行且相等,即F 1G 1 可以看成是DE 平移得来的, 那么点D → F 1 的平移变化也即点E → G 1 的平移变化. 二是利用菱形的对角线相互平分,因此EF 1 的中点也即DG 1 的中点,利用中点坐标求解出 G 1 坐标.这两种处理 在平行四边形存在性问题中也是有力手段.(|y = −x 2 + 2x + 3 ( 3 15 ) 149 ( 149 )由题, y = −x 2 + 2x + 3 向右平移 1 个单位得到新抛物线y = − (x −1)2+ 2(x −1) + 3 = −x 2 + 4x ,联立〈|ly = −x 2 + 4x ,解得 E |\2 , 4 )| , 新抛物线的对称轴为x = 2 ,设 F (2, m ) ,由于 D (1, 2) ,则DE 2 =,EF 2 = + m −2= m 2 − m +,DF 2 = 1+ (m − 2)2= m 2 − 4m + 5 ,①当DE 、DF 为一组邻边时,则 DE 2 = DF 2 ,即 = m 2 − 4m + 5 ,37 ( ) ( )②当ED 、EF 为一组邻边时,则 ED 2 = EF 2 ,即 = m 2 − m + ,16 8 16 11 ( 11)③当EF 为对角线时,则FD = FE ,即 m 2 − m + = m 2 − 4m + 5 , 2 16解得m = ,此时 F 的坐标为|2, | ;( ) ( ) ( 149 )( 11) 当F |2, |时, y F + y D = 2y E ,x D + x F = 2x E ,即 E 为D 、F 中点, 不合题意, 舍去; 15 229 \ 2 )综上, F 点的坐标为||\2, 2 + 4 )|| 或||\2, 2 − 4 )|| 或(2, 2) 或|\2, 56 )| . 56 \ 56 )解得m = 2 或m = ,此时F 的坐标为(2, 2) 或|2, | ,2 \ 2 )解得m = 2 土 4 ,此时 F 的坐标为||\2, 2 + 4 )|| 或||\2, 2 − 4 )|| ;53 15 2291 .已知二次函数y = ax2 + bx − 2(a 丰 0)与x 轴交于A ( −, 0) ,B (4, 0) ,与 y 轴交于点C .(1) 求抛物线的解析式;(2) 连接AC ,BC ,点 P 是直线BC 下方抛物线上一点,过 P 作PD ∥AC 交直线BC 于点D ,PE ∥x 轴交直线BC 于点, E ,求△PDE 面积的最大值及此时点, P 的坐标;(3) 在(2)的条件下, 将原抛物线沿x 轴向左平移3个单位得到新抛物线,点 M 是新抛物线对称轴上一点, 点 N 是平面直角坐标系内一点, 当以点M 、 N 、P 、B 为顶点的四边形为菱形 时,请直接写出所有符合条件的N 点的坐标;并任选其中一个N 点,写出求解过程.立〈y= − 2 x 2 + 4x − 2 ,解得D 7 , 11 .1-1如图 1,抛物线y = ax 2 + bx + 4 交x 轴于A (−2, 0) ,B (4, 0) 两点,与y 轴交于点C ,连接 AC , BC .(1) 求抛物线的解析式;(2) P 是拋物线上位于直线BC 上方的一个动点,过点P 作PQ ∥y 轴交BC 于点Q , 过点P 作PE ⊥ BC 于点E ,过点 E 作EF ⊥ y 轴于点F ,求出2PQ + EF 的最大值及此时点P 的坐标;(3)如图 2,将抛物线y = ax 2 + bx + 4 沿着射线CB 的方向平移,使得新抛物线y ,过点(3,1) , 点D 为原抛物线y 与新抛物线y ,的交点,若点 G 为原抛物线的对称轴上一动点,点H 为新抛物线y , 上一动点,直接写出所有使得以 A ,D , G ,H 为顶点的四边形为平行四边形的点H 的坐标,并 把求其中一个点H 的坐标的过程写出来.抛物线解析式为y = − x 2 + x + 4 ;点 P | , | .相当于是沿着射线BC 方向平移,故舍去, 因此可得平移后抛物线的解析式为y = − x 2 + 4x − .联2 2 ( 1 13 y = − x 2 + x +4 \2 8 )这类平行四边的探究也并不难, 同样先从确定的信息入手.平行四边形是以A ,D ,G ,H 为 顶点,其中AD 是定线段, G 是半动点,H 在新的抛物线上.和菱形的讨论一样,我们要考虑AD 是 一条边的情形, 也要考虑AD 是对角线的情形.当 AD 是一条边时, 实际上此时也右两种情形,一是是平行四边形为ADHG ,也即AH ,DG 为 对角线;另一种则是平行四边形为ADGH ,也即 AG ,DH 为对角线.当然,不管是那种情形,由 于 AD 是一条边,根据平行四边形对边平行且相等的性质, GH 这条边可以看作是将AD 平移后得到1 (8 28 )2 \3 9 )第 3 小问中, 抛物线沿着射线CB 方向平移, 由于后续的点在新抛物线上, 因此还是要求出平移 后抛物线的解析式.这类沿着射线平移的,一般采用正交分解的形式平移,由点 C (0, 4) ,B (4, 0) 可 知,沿着射线 CB 平移,即向右平移t 个单位,则向下也平移t 个单位,因此假设平移后新抛物线的 解析式为y = − (x − t )2+ (x − t ) + 4 − t ,因为平移后经过点(3,1) ,代入可解得t = − 1 或t = 3 ,当 t = − 1 , 1 13的,由于半动点 G 在原抛物线对称轴x = 1 上,那么点 G 有可能是点 A 平移后得到的, 此时点H 就 是点D 平移后得到的,如图 1 所示;同理,当点 G 是点D 平移后得到的,那么此时点H 就是点A 平 移后得到的,如图 2 所示.设点 G (1, m ),根据平移的性质,结合点坐标的变化规律,当 A → G 时, 即(−2, 0) —(1, m ) ,则有D|2 , 8 )| —H | 2 , 8 + m )| ,由于点H 在新抛物线上, 且横坐标已知了,代入新抛物线即可 11 1 (13 213 13 13 (13 13 此外, 除了用平移性质得到H 点的坐标外,此时 AH 是一条对角线,也利用对角线相互平分, 则 A 、 H 的 中 点 和 D 、 G 的 中 点 是 同 一 个 , 利 用 中 点 坐 标 则 有 x A + x H = x D + x G ,故 13 13 13 (13 13 x H = x D + x G − x A = 2 ,将x = 2 代入新抛物线解析式,可求得H 点纵坐标y = − 8 ,故H | 2 , − 8 )|.当 AG 是一条对角线时, 则有x A + x G = x D + x H ,故 x H = x A + x G − x D = − ,代入新抛物线解析 277 ( 9 277式,可求得此时H 的纵坐标为 − ,故H |− , − | .8 2 8 ) 当 AD 是一条对角线时,则有x A + x D = x H + x G ,故 x H = x A + x D − x G = ,代入新抛物线解析式, 37 ( 1 37 可求得此时H 的纵坐标为 − ,故 H | , − | .8 2 8 )同样地,在解题过程中, 把准备工作做好,即对应的点坐标,解析式等先求出来,动点坐标假设好, 将点坐标表示列出来(通常都是横坐标),选定一个定点,如这里我们选定 x A ,将其与剩下 三点横坐标x D 、x G 、x H 两两组合,建立中点坐标关系式, 即x A + x D = x H + x G ,x A + x G = x D + x H 以 及x A + x H = x D + x G ,求解出点H 横坐标,再代入解析式中求出点H 纵坐标即可.求得纵坐标 8 + m = − 2 | 2 )| + 4 2 − 2 = − 8 ,此时H | 2 , − 8 )| . ( 7 11 (13 1113 (13 13)由题, 设平移后的抛物线解析式为y = − (x − t )2+ (x − t ) + 4− t ,因为平移后经过点(3,1),代入可解得t = − 1 (舍) 或t = 3 ,2 2联立〈y = − 2 x 2 + 4x − 2 ,解得 D 7 , 11 , y = − x 2 + x + 4 \2 8 )则x A =−2 ,x D = ,x G = 1,设 H 点横坐标为x H ,①当AH 为一条对角线时,x A + x H = x D + x G ,则 x H = ,代入可求得此时H | , − | ; 9 ( 9 277 )1 (1 37 )综上, H 的坐标为| , − |或|− , − |或| , − | .( 1 13 ③当AD 为一条对角线时,x A + x D = x H + x G ,则x H = ,代入可求得此时H | , − | ;(13 13) ( 9 277 ) (1 37 )2 \2 8 )\ 2 8 ) \ 2 8 ) \2 8 )②当AG 为一条对角线时,x A + x G = x D + x H ,则x H = − ,代入可求得此时H |− , − | ;2 \ 2 8 ) 2 \ 2 8 )故平移后抛物线的解析式为y = − x 2 + 4x − ,1 131.如图,在平面直角坐标系中,抛物线y= ax2 + bx+ 3(a 0) 与y轴交于点C,与x轴交于A,B两点(点A在点B的右侧),且点A的坐标为( 3, 0) ,连接BC,过点A作AD∥BC交y轴于点D,OB= 3OA.(1) 求抛物线的解析式;(2) 如图1,点E为射线AD上一点,点P为第二象限内抛物线上一点,求四边形PBEC面积的最大值及此时点P的坐标;(3) 如图2,将原抛物线沿x轴正方向平移得到新抛物线y,y经过点C,平移后点A的对应点为点A,点N为线段AD的中点,点Q为新抛物线y的对称轴上一点,在新抛物线y上存在一点M,使以点M,Q,A,N为顶点的四边形为平行四边形,请直接写出点M的坐标,并选择一个你喜欢的点写出求解过程.2.如图,抛物线y= x2 + bx+ c与x轴相交于点A(−1, 0) 和点B,交y轴于点C,tan 三ACO= .(1) 求抛物线的解析式;(2) 如图1 ,P点为一象限内抛物线上的一个动点,点D是BC中点,连接PD,BD,PB.求△BDP面积的最大值以及此时P点坐标;,M为新抛物线对称轴上(3) 如图2,将抛物线向左平移 1 个单位长度,得到新的抛物线y1一点,N为直线AC上一动点,在(2) 的条件下,是否存在点M,使得以点P、B、M、N为顶点的四边形为平行四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由.| 4 21如图,已知抛物线y = ax 2 + bx − 4 与x 轴交于A ,B 两点, 与y 轴交于点C ,且点A 的坐标 为(−2, 0) ,直线BC 的解析式为y = x − 4 .(1) 求抛物线的解析式;(2)如图 1,过点 A 作 AD ∥BC 交抛物线于点D (异于点 A ), P 是直线BC 下方抛物线上一 点,过点P 作PQ ∥y 轴, 交AD 于点Q ,过点 Q 作QR ⊥ BC 于点R ,连接PR .求△PQR 面积的最 大值及此时点P 的坐标;(3) 如图 2,点 C 关于x 轴的对称点为点C ,将抛物线沿射线 C A 的方向平移2个单位长度得到新的抛物线y ,新抛物线y 与原抛物线交于点M ,原抛物线的对称轴上有一动点 N ,平面直 角坐标系内是否存在一点K ,使得以 D ,M ,N ,K 为顶点的四边形是矩形?若存在,请直接写 出点K 的坐标;若不存在, 请说明理由.抛物线解析式为y = x 2 − x − 4 ;S △PQR 的最大值为 9,点P (4, −6) .第 3 小问中,抛物线沿着射线C A 方向平移, 由于点M 为两抛物线交点, 因此需求出平移后抛 物线的解析式.根据A (−2, 0) ,C (0, 4) ,可知Rt △AOC 中AO : OC : AC = 1: 2 : ,因此将抛物线沿着射线C A 方向平移2个单位长度,则相当于向下平移 4 个单位长度,向左平移 2 个单位长度,因此平移后的抛物线为y = 1 (x + 2)2− 3 (x + 2) − 4 − 4 = 1 x 2 − 1 x −10 ,联立〈y = x 2 − x −10,解4 2 4 2y = x 2 − x − 4( 1得M (6, −4) .又 BC : y = 1 x − 4 ,可知 AD : y = 1 x + 1,联立〈 y = 2 x + 1,解得D (10, 6) .2 2 |y = 1 x 2 − 3x − 4因为以D ,M ,N ,K 为顶点的四边形是矩形,此时定线段是DM ,半动点为N ,自由点为K .和 前面讨论菱形、平行四边形时的流程基本大同小异,定线段DM 可能是矩形的边,也可能是矩形的 对角线,因此要分两种情形讨论.矩形的存在性问题和直角三角形的存在性问题是一致的,如本题 中,探究以D ,M ,N 为顶点的三角形是直角三角形. 同样地,先以直角三角形为例,那么D ,M ,1 3 4 2在实际解题中设 K (x , y ) 即可), 利用中点关系〈 M K D N ,则〈 K,整理得N 均有可能为直角顶点.当M 为直角顶点时,过M 作DM 垂线与对称轴交点即为点N 所在位置,如图 1 所示.对于N 点 坐标的求解,一方面,由于MN ⊥ DM ,则 k MN . k DM = − 1,结合点M 坐标,由此可求得直线MN 解 析式,将其与对称轴方程联立即可求得点N 坐标.另一方面,可以构造如图所示的K 型相似,即构DH MH1 腰直角三角形, 或者四边形中的正方形, 那么可以构造此类的K 型全等求解.在此直角三角形的基础上,加上自由点K ,就变成矩形问题了.对于矩形问题,同样可以求出点N 坐标后,利用平移关系或者对角线的中点关系,求相应的点K 的坐标.当然,如果是探究矩形 的存在性问题,也可以直接利用中点关系求得点K 的坐标.由点N (3, n ),设K (x K , y K ) (熟练后,(x + x = x + x (6 + x = 10 + 3 l y M + y K = y D + y N l−4 + y K = 6 + n 〈,再由对角线相等,即MK = DN ,代入即有1+ (y + 4)2= 49 + (16 − y )2,解得 y =,( 36 )同样适用.当D 为直角顶点时,三角形如图2 所示.同样, 加上自由点K ,就变成矩形问题了. 这里我们5 2 2 ( 44 )l y M + y N = y D + y K |y K = − \ 5 )对于直角三角形或矩形问题, 如上图情形,我们可以称其为“两线一圆”.若只求点N 坐标,一 般利用斜率关系,求出解析式后进一步求解.如果是矩形问题要求自由点的坐标,可以用对角线平 分且相等, 建立方程求解.当然, 先求点N ,利用点N 作为台阶进一步求解也是没问题的, 大家选 用自己顺手的方法即可.造 △MN 1G ∽△DMH ,利用 = ,可求出长度,进而得到点 N 坐标.更特殊地,如果是等以垂线方式求解.由于k DM = 2 ,则 k DN = − 5 ,故此时DN : y = − 5 x + 10 ,令x = 3 ,可解得N |\3, 5 )| , 由中点可知,〈(x M + x N = x D + x K ,可解得〈(|x K = − 16 ,此时 K −1,− 6 .l 5当N 为直角顶点时,则有NM ⊥ ND ,因此点N 在以DM 为直径的圆上.此种情形若只是求点N 坐标,策略比较多, 一方面,可以利用斜率, 由k ND . k NM= − 1求出点N 坐标;另一方面,可以利用线段长度求解,设DM 中点为为R ,则此时圆心为R ,因此NR = RD = DM ,由此也可求得点N 坐 标, 此外, 还可以利用勾股定理ND 2 + NM 2 = DM 2 .当加入自由点K ,变成矩形问题后,除了先求 出点N 坐标, 利用平移或中点求解点K 坐标外,也可以利用前面的对角线平分且相等来求解. 故此时K |7, | .此法借助的是矩形的对角线平分且相等的性质,该处理对于DM 是对角线的情形 \ 5 ) GM N G式和长度关系式子,即〈 M K D N 且MK 2 = DN 2 ,〈 M N D K 且MN 2 = DK 2 以及(x M + x D = x N + x K 4 2 4 2|l 4 2(x M + x K = x D + x N (6 + x = 10 + 3 (x = 7由MK 2 = DN 2 ,代入即有1+ (y + 4)2= 49 + (16 − y )2,解得 y = 36,故此时K 7,36;由MN 2 = DK 2 ,代入即有9 + (y +14)2 = 121+ (y − 6)2,解得 y = − 6 ,故此时K −1,− 6 ;(x M + x D = x N + x K (6 + 10 = 3 + x (x = 13 同样地,在解题过程中, 把准备工作做好,即对应的点坐标安排到位,动点坐标假设好,选定 一个定点, 如这里我们选定M ,将其与剩下三点横坐标D 、 N 、K 两两组合, 建立中点坐标关系 (x + x = x + x (x + x = x + xl y M + y K = y D + y N l y M + y N = y D + y K〈 且MD 2 = NK 2,利用方程组求解出对应的点K 的坐标. l y M + y D = y N + y K附:坐标平面内点A (x 1 , y 1 ) ,B (x 2 , y 2 ) ,其中x 1 丰 x 2 ,则过A 、B 两点的直线的斜率k =由题, 将抛物线沿着射线 C ,A 方向平移2个单位长度, 即将其向下平移 4 个单位长度, 向左平移 2 个单位长度, 因此平移后的抛物线为y =1(x + 2)2 − 3 (x + 2) − 4 − 4 = 1 x 2 − 1 x −10 , 联立〈y = x 2− x −10,解得M (6, −4) ,y = x 2 − x − 4( 1又 BC : y = 1 x − 4 ,可知 AD : y = 1 x + 1,联立〈 y = 2 x + 1,解得D (10, 6) ,2 2 |y = 1 x 2 − 3x − 4由M (6, −4) ,D (10, 6) ,设 N (3, n ) ,K (x , y ) ,①当MK 为一条对角线时,〈,即〈 ,整理得〈 , l y M + y K = y D + y N l −4 + y = 6 + n l n = y −105 \ 5 )②当MN 为一条对角线时,〈(x M + x N = x D + x K,即〈(6 + 3 = 10 + x,整理得〈(x = − 1l y M + y N = y D + y K l −4 + n = 6 + y l n = 10 + y5 \ 5 )③当MD 为一条对角线时,〈 ,即〈 ,整理得〈l y M + y D = y N + y K l−4 + 6 = n + y l n = 2 − y由MD 2 = NK 2 ,代入即有116 = 100 + (2 − 2y )2,解得y =− 1 或y = 3 ,故此时K (13, −1) 或(13,3) ; ( 36 ) ( 6 )综上, 点K 的坐标为|7, |或|−1,− |或(13, −1) 或(13,3) .\ 5 ) \ 5 ) y 1 − y 2. x 1 − x 21.如图1,二次函数y= ax2 + bx+ c(a丰0)与x轴交于点A(−2, 0) 、点B(点A在点B左侧),与y轴交于点C(0,3) ,tan 三CBO= .(1) 求二次函数解析式;(2)如图2,点P是直线BC上方抛物线上一点,PD∥y轴交BC于D,PE∥BC交x轴于点E,求PD+ BE的最大值及此时点P的坐标;(3) 在(2) 的条件下,当PD+ BE取最大值时,连接PC,将△PCD绕原点O顺时针旋转90。

二次函数中考精品压轴题(四边形的存在性问题)解析精选

二次函数中考精品压轴题(四边形的存在性问题)解析精选

二次函数中考精品压轴题(四边形与存在性问题)解析精选【例1】综合与实践:如图,在平面直角坐标系中,抛物线y=﹣x 2+2x+3与x 轴交于A .B 两点,与y 轴交于点C ,点D 是该抛物线的顶点.(1)求直线AC 的解析式及B .D 两点的坐标;(2)点P 是x 轴上一个动点,过P 作直线l ∥AC 交抛物线于点Q ,试探究:随着P 点的运动,在抛物线上是否存在点Q ,使以点A .P 、Q 、C 为顶点的四边形是平行四边形?若存在,请直接写出符合条件的点Q 的坐标;若不存在,请说明理由.(3)请在直线AC 上找一点M ,使△BDM 的周长最小,求出M 点的坐标.【答案】解:(1)当y=0时,﹣x 2+2x+3=0,解得x 1=﹣1,x 2=3。

∵点A 在点B 的左侧,∴A .B 的坐标分别为(﹣1,0),(3,0)。

当x=0时,y=3。

∴C 点的坐标为(0,3)。

设直线AC 的解析式为y=k 1x+b 1(k 1≠0),则111b =3k +b =0⎧⎨-⎩,解得11k =3b =3⎧⎨⎩。

∴直线AC 的解析式为y=3x+3。

∵y=﹣x 2+2x+3=﹣(x ﹣1)2+4,∴顶点D 的坐标为(1,4)。

(2)抛物线上有三个这样的点Q 。

如图,①当点Q 在Q 1位置时,Q 1的纵坐标为3,代入抛物线可得点Q 1的坐标为(2,3);②当点Q 在点Q 2位置时,点Q 2的纵坐标为﹣3,代入抛物线可得点Q 2坐标为(1+7,﹣3);③当点Q 在Q 3位置时,点Q 3的纵坐标为﹣3,代入抛物线解析式可得,点Q 3的坐标为(1﹣7,﹣3)。

综上可得满足题意的点Q 有三个,分别为:Q 1(2,3),Q 2(1+7,﹣3),Q 3(1﹣7,﹣3)。

(3)点B 作BB′⊥AC 于点F ,使B′F=BF ,则B′为点B 关于直线AC 的对称点.连接B′D 交直线AC 与点M ,则点M 为所求。

过点B′作B′E ⊥x 轴于点E 。

二次函数中的平行四边形、正方形存在性问题 学生版

二次函数中的平行四边形、正方形存在性问题 学生版

二次函数中的平行四边形、正方形存在性问题学生版引言本文将探讨二次函数中平行四边形和正方形的存在性问题,为学生提供相关的解答和思路。

平行四边形存在性问题在二次函数中,平行四边形的存在性问题是一个常见的课题。

要确定二次函数是否能形成平行四边形,我们需要考虑以下几个因素:- 二次函数的系数- 二次函数图像的形状具体来说,对于一个一般形式的二次函数 y = ax^2 + bx + c,以下条件成立时,二次函数可能形成平行四边形:1. 二次项系数 a 不等于 0,保证函数为二次函数。

2. 一次项系数 b 为 0,使得函数的图像为水平的抛物线。

3. 常数项 c 不等于 0,确保抛物线与 x 轴有交点。

通过以上条件的判断,我们可以得出结论:当二次函数满足 a ≠ 0,b = 0,c ≠ 0 时,二次函数能够形成平行四边形。

正方形存在性问题在二次函数中,正方形的存在性问题是另一个有趣的话题。

要确定二次函数是否能形成正方形,我们需要考虑以下因素:- 二次函数的系数- 二次函数图像的形状具体来说,对于一个一般形式的二次函数 y = ax^2 + bx + c,以下条件成立时,二次函数可能形成正方形:1. 二次项系数 a 不等于 0,保证函数为二次函数。

2. 一次项系数 b 为 0,使得函数的图像为水平的抛物线。

3. 常数项 c 等于 0,确保抛物线与 x 轴相切于原点。

通过以上条件的判断,我们可以得出结论:当二次函数满足 a ≠ 0,b = 0,c = 0 时,二次函数能够形成正方形。

结论在二次函数中,平行四边形和正方形的存在性问题可以通过对二次函数的系数和图像形状进行判断来解答。

合理选择 a、b、c 的取值可以使二次函数满足平行四边形和正方形的特点。

希望本文可以为学生提供对二次函数中平行四边形和正方形存在性问题的理解和解答。

读者在研究和应用二次函数时,可以根据上述条件进行分析和判断,深入理解二次函数的特性。

请注意,本文所提供的结论基于常规的二次函数形式,并不涉及所有的二次函数变体。

中考数学二次函数复习类型五特殊四边形存在性问题课件

中考数学二次函数复习类型五特殊四边形存在性问题课件

类型五 特殊四边形存在性问题
(3)存在.
①当点 P 在 x 轴上方时,要使以 A、C、P、N 为顶点的四边形为平行四
边形,如解图,过点 C 作 CP1∥x 轴,交对称轴于点 P1,对称轴与 x 轴交
于点 D,
∵点 P1 在对称轴直线 x=-3 上,点 C 的坐标为(0,5),
∴点 P1(-3,5),
由勾股定理得 OG2=OD2+DG2=9+g2,AG2=AD2+GD2=4+g2,
∵GK∥AO,
①当 OG=AO=5,且 GK=AO 时,四边形 OGKA 是菱形,
此时有 9+g2=25,
解得 g1=4,g2=-4, ∴点 G 的坐标为(-3,4)或(-3,-4),
则相对应的点 K 的坐标为(-8,4)或(-8,-4);
解得 g1=6,g2=-1, 此时点 G 的坐标为(-3,6)或(-3,-1);
例题图⑦
综上所述,存在满足题意的点 G,点 G 的坐标为(-3,8)或(-3,-2)或
(-3,6)或(-3,-1);
类型五 特殊四边形存在性问题 (8)设 P 是抛物线上一点,Q 是 x 轴上一点,R 为坐标平面内一点,若以 A、 P、Q、R 为顶点的四边形是正方形,求出点 Q 的坐标.
∴x1=0,x2=-6, ∴CP1=AN1=6, ∴ON1=6+5=11, 此时 N1(-11,0). 若点 P 在 x 轴下方,不存在;
例题解图
类型五 特殊四边形存在性问题
②当 AC 为平行四边形的对角线时,如解图,
满足 AN2=P2C=6,
∴ON2=6-5=1,
此时 N2(1,0).
例题解图
综上所述,存在满足题意的点 N,点 N 的坐标为(-11,0)或(1,0);

初中数学中考复习 第12关 以二次函数与特殊四边形问题为背景的解答题(解析版)

初中数学中考复习 第12关 以二次函数与特殊四边形问题为背景的解答题(解析版)

第十二关以二次函数与特殊四边形问题为背景的解答题【总体点评】二次函数在全国中考数学中常常作为压轴题,同时在省级,国家级数学竞赛中也有二次函数大题,很多学生在有限的时间内都不能很好完成。

由于在高中和大学中很多数学知识都与函数知识或函数的思想有关,学生在初中阶段函数知识和函数思维方法学得好否,直接关系到未来数学的学习。

二次函数与特殊平行四边形的综合问题属于初中阶段的主要内容,其主要涉及:二次函数的表达式、二次函数动点问题的讨论、特殊平行四边形的性质(主要包括线段之间的关系、角度的大小等等)。

在中考中,往往作为压轴题的形式出现,也给很多中学生造成了很大的压力。

【解题思路】以二次函数为载体的平行四边形存在性问题是近年来中考的热点,其图形复杂,知识覆盖面广,综合性较强,对学生分析问题和解决问题的能力要求高.对这类题,常规解法是先画出平行四边形,再依据“平行四边形的一组对边平行且相等”或“平行四边形的对角线互相平分”来解决.【典型例题】【例1】(2019·山东中考真题)如图,抛物线y=ax2+bx+c的图象经过点A(﹣2,0),点B(4,0),点D (2,4),与y轴交于点C,作直线BC,连接AC,CD.(1)求抛物线的函数表达式;(2)E是抛物线上的点,求满足∠ECD=∠ACO的点E的坐标;(3)点M在y轴上且位于点C上方,点N在直线BC上,点P为第一象限内抛物线上一点,若以点C,M,N,P为顶点的四边形是菱形,求菱形的边长.【答案】(1)y=﹣x2+x+4;(2)点E的坐标为(1,),(3,);(3)菱形的边长为4﹣4.【解析】试题分析:(1)把点A(﹣2,0),点B(4,0),点D(2,4)代入y=ax2+bx+c,用待定系数法求出抛物线解析式即可.(2)分点E在直线CD上方的抛物线上和点E在直线CD下方的抛物线上两种情况,用三角函数求解即可;(3)分CM为菱形的边和CM为菱形的对角线两种情况,用菱形的性质进行计算即可.试题解析:(1)∵抛物线y=ax2+bx+c的图象经过点A(﹣2,0),点B(4,0),点D(2,4),∴设抛物线解析式为y=a(x+2)(x﹣4),∴﹣8a=4,∴a=﹣,∴抛物线解析式为y=﹣(x+2)(x﹣4)=﹣x2+x+4;(2)如图1,①点E在直线CD上方的抛物线上,记E′,连接CE′,过E′作E′F′⊥CD,垂足为F′,由(1)知,OC=4,∵∠ACO=∠E′CF′,∴tan∠ACO=tan∠E′CF′,∴=,设线段E′F′=h,则CF′=2h,∴点E′(2h,h+4)∵点E′在抛物线上,∴﹣(2h)2+2h+4=h+4,∴h=0(舍)h=∴E′(1,),②点E在直线CD下方的抛物线上,记E,同①的方法得,E(3,),点E的坐标为(1,),(3,)(3)①CM为菱形的边,如图2,在第一象限内取点P′,过点P′作P′N′∥y轴,交BC于N′,过点P′作P′M′∥BC,交y轴于M′,∴四边形CM′P′N′是平行四边形,∵四边形CM′P′N′是菱形,∴P′M′=P′N′,过点P′作P′Q′⊥y轴,垂足为Q′,∵OC=OB,∠BOC=90°,∴∠OCB=45°,∴∠P′M′C=45°,设点P′(m,﹣m2+m+4),在Rt△P′M′Q′中,P′Q′=m,P′M′=m,∵B(4,0),C(0,4),∴直线BC的解析式为y=﹣x+4,∵P′N′∥y轴,∴N′(m,﹣m+4),∴P′N′=﹣m2+m+4﹣(﹣m+4)=﹣m2+2m,∴m=﹣m2+2m,∴m=0(舍)或m=4﹣2,菱形CM′P′N′的边长为(4﹣2)=4﹣4.②CM为菱形的对角线,如图3,在第一象限内抛物线上取点P,过点P作PM∥BC,交y轴于点M,连接CP,过点M作MN∥CP,交BC于N,∴四边形CPMN是平行四边形,连接PN交CM于点Q,∵四边形CPMN是菱形,∴PQ⊥CM,∠PCQ=∠NCQ,∵∠OCB=45°,∴∠NCQ=45°,∴∠PCQ=45°,∴∠CPQ=∠PCQ=45°,∴PQ=CQ,设点P(n,﹣n2+n+4),∴CQ=n,OQ=n+2,∴n+4=﹣n2+n+4,∴n=0(舍),∴此种情况不存在.∴菱形的边长为4﹣4.【例2】(2018·辽宁中考真题)如图,抛物线y=﹣x2+bx+c和直线y=x+1交于A,B两点,点A在x轴上,点B在直线x=3上,直线x=3与x轴交于点C(1)求抛物线的解析式;(2)点P 从点A 个单位长度的速度沿线段AB 向点B 运动,点Q 从点C 出发,以每秒2个单位长度的速度沿线段CA 向点A 运动,点P ,Q 同时出发,当其中一点到达终点时,另一个点也随之停止运动,设运动时间为t 秒(t >0).以PQ 为边作矩形PQNM ,使点N 在直线x=3上. ①当t 为何值时,矩形PQNM 的面积最小?并求出最小面积; ②直接写出当t 为何值时,恰好有矩形PQNM 的顶点落在抛物线上.【答案】(1)抛物线解析式为y=﹣x 2+3x+4;(2)①当t=65时,面积最小是165;②t=23 2. 【解析】 【分析】(1)利用待定系数法进行求解即可;(2)①分别用t 表示PE 、PQ 、EQ ,用△PQE ∽△QNC 表示NC 及QN ,列出矩形PQNM 面积与t 的函数关系式问题可解;②由①利用线段中点坐标分别等于两个端点横纵坐标平均分的数量关系,表示点M 坐标,分别讨论M 、N 、Q 在抛物线上时的情况,并分别求出t 值. 【详解】(1)由已知,B 点横坐标为3, ∵A 、B 在y=x+1上, ∴A (﹣1,0),B (3,4),把A (﹣1,0),B (3,4)代入y=﹣x 2+bx+c 得,10934b c b c --+=⎧⎨-++=⎩,解得:34b c =⎧⎨=⎩, ∴抛物线解析式为y=﹣x 2+3x+4; (2)①如图,过点P 作PE ⊥x 轴于点E ,∵直线y=x+1与x 轴夹角为45°,P 个单位长度, ∴t 秒时点E 坐标为(﹣1+t ,0),Q 点坐标为(3﹣2t ,0), ∴EQ=4﹣3t ,PE=t , ∵∠PQE+∠NQC=90°, ∠PQE+∠EPQ=90°, ∴∠EPQ=∠NQC , ∴△PQE ∽△QNC , ∴12PQ PE NQ QC ==, ∴矩形PQNM 的面积S=PQ•NQ=2PQ 2, ∵PQ 2=PE 2+EQ 2,∴S=22=20t 2﹣48t+32,当t=625b a -=时, S 最小=20×(65)2﹣48×65+32=165;②由①点Q 坐标为(3﹣2t ,0),P (﹣1+t ,t ),C (3,0), ∴△PQE ∽△QNC ,可得NC=2QE=8﹣6t , ∴N 点坐标为(3,8﹣6t ),由矩形对边平行且相等,P (﹣1+t ,t ),Q (3﹣2t ,0),∴点M 坐标为(3t ﹣1,8﹣5t ) 当M 在抛物线上时,则有8﹣5t=﹣(3t ﹣1)2+3(3t ﹣1)+4,解得t=109±, 当点Q 到A 时,Q 在抛物线上,此时t=2, 当N 在抛物线上时,8﹣6t=4, ∴t=23,综上所述当t=23、109±或2时,矩形PQNM 的顶点落在抛物线上. 【名师点睛】本题是代数几何综合题,考查了二次函数、一次函数、三角形相似和矩形的有关性质,熟练掌握相关知识以及应用数形结合和分类讨论的数学思想是解题的关键. 【例3】(2019·山西中考真题)综合与探究如图,抛物线26y ax bx =++经过点A(-2,0),B(4,0)两点,与y 轴交于点C ,点D 是抛物线上一个动点,设点D 的横坐标为(14)m m <<.连接AC ,BC ,DB ,DC , (1)求抛物线的函数表达式; (2)△BCD 的面积等于△AOC 的面积的34时,求m 的值; (3)在(2)的条件下,若点M 是x 轴上的一个动点,点N 是抛物线上一动点,试判断是否存在这样的点M,使得以点B ,D ,M ,N 为顶点的四边形是平行四边形,若存在,请直接写出点M 的坐标;若不存在,请说明理由.【答案】(1)233642y x x =-++;(2)3;(3)1234(8,0),(0,0),(M M M M .【解析】 【分析】(1)利用待定系数法进行求解即可;(2)作直线DE ⊥x 轴于点E ,交BC 于点G ,作CF ⊥DE ,垂足为F ,先求出S △OAC =6,再根据S △BCD =34S △AOC ,得到S △BCD =92,然后求出BC 的解析式为362y x =-+,则可得点G 的坐标为3(,6)2m m -+,由此可得2334DG m m =-+,再根据S △BCD =S △CDG +S △BDG =12DG BO ⋅⋅,可得关于m 的方程,解方程即可求得答案;(3)存在,如下图所示,以BD 为边或者以BD 为对角线进行平行四边形的构图,以BD 为边时,有3种情况,由点D 的坐标可得点N 点纵坐标为±154,然后分点N 的纵坐标为154和点N 的纵坐标为154-两种情况分别求解;以BD 为对角线时,有1种情况,此时N 1点与N 2点重合,根据平行四边形的对边平行且相等可求得BM 1=N 1D=4,继而求得OM 1= 8,由此即可求得答案. 【详解】(1)抛物线2y ax bx c =++经过点A(-2,0),B(4,0),∴426016460a b a b -+=⎧⎨++=⎩,解得3432a b ⎧=-⎪⎪⎨⎪=⎪⎩,∴抛物线的函数表达式为233642y x x =-++; (2)作直线DE ⊥x 轴于点E ,交BC 于点G ,作CF ⊥DE ,垂足为F , ∵点A 的坐标为(-2,0),∴OA=2,由0x =,得6y =,∴点C 的坐标为(0,6),∴OC=6,∴S △OAC =1126622OA OC ⋅⋅=⨯⨯=, ∵S △BCD =34S △AOC ,∴S △BCD =39642⨯=,设直线BC 的函数表达式为y kx n =+,由B ,C 两点的坐标得406k n n +=⎧⎨=⎩,解得326k n ⎧=-⎪⎨⎪=⎩,∴直线BC 的函数表达式为362y x =-+, ∴点G 的坐标为3(,6)2m m -+, ∴2233336(6)34224DG m m m m m =-++--+=-+,∵点B 的坐标为(4,0),∴OB=4,∵S △BCD =S △CDG +S △BDG =1111()2222DG CF DG BE DG CF BE DG BO ⋅⋅+⋅⋅=⋅+=⋅⋅, ∴S △BCD =22133346242m m m m -+⨯=-+(), ∴239622m m -+=,解得11m =(舍),23m =, ∴m 的值为3;(3)存在,如下图所示,以BD 为边或者以BD 为对角线进行平行四边形的构图, 以BD 为边时,有3种情况, ∵D 点坐标为15(3,)4,∴点N 点纵坐标为±154,当点N 的纵坐标为154时,如点N 2, 此时233156424x x -++=,解得:121,3x x =-=(舍), ∴215(1,)4N -,∴2(0,0)M ;当点N 的纵坐标为154-时,如点N 3,N 4,此时233156424x x -++=-,解得:1211x x ==∴315(1)4N +-,415(1)4N -,∴3M ,4(M ;以BD 为对角线时,有1种情况,此时N 1点与N 2点重合, ∵115(1,)4N -,D(3,154),∴N 1D=4, ∴BM 1=N 1D=4, ∴OM 1=OB+BM 1=8, ∴M 1(8,0),综上,点M 的坐标为:1234(80)(00)(M M M M ,,,,.【名师点睛】本题考查的是二次函数的综合题,涉及了待定系数法、三角形的面积、解一元二次方程、平行四边形的性质等知识,运用了数形结合思想、分类讨论思想等数学思想,熟练掌握和灵活运用相关知识是解题的关键.【方法归纳】这类问题,在题中的四个点中,至少有两个定点,用动点坐标“用字母表示”分别设出余下所有动点的坐标(若有两个动点,显然每个动点应各选用一个参数字母来“用字母表示”出动点坐标),任选一个已知点作为对角线的起点,列出所有可能的对角线(显然最多有3条),此时与之对应的另一条对角线也就确定了,然后运用中点坐标公式,求出每一种情况两条对角线的中点坐标,由平行四边形的判定定理可知,两中点重合,其坐标对应相等,列出两个方程,求解即可。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题:以二次函数为背景的特殊四边形的存在性问题
特殊四边形指:平行四边形、矩形、菱形、正方形
预备知识:
(一)、平行四边形的性质和判定
定义:两组对边分别平行的四边形叫做平行四边形
性质:①平行四边形两组对边分别;
②平行四边形的两组对角分别;邻角
③平行四边形的对角线;
判定:①两组对边分别的四边形是平行四边形;
②两组对边分别的四边形是平行四边形;
③一组对边的四边形是平行四边形;
④对角线互相平分的四边形是平行四边形;
提醒:虽然两组对角分别相等的四边形是平行四边形,但不能直接使用,还是要进行证明的
(二)矩形的性质和判定
定义:有一个角是直角的平行四边形是矩形(矩形是特殊的平行四边形)。

性质:具有平行四边形的所有性质,还具有自己独特的性质:
①四个角都是直角;②对角线相等;③是轴对称图形,也是中心对称图形
判定:①有一个角是直角的平行四边形;②对角线相等的平行四边形;③有三个角是直角的四边形;
④对角线相等且互相平分的四边形
(三)、菱形的性质和判定:
定义:有一组邻边相等的平行四边形叫做菱形.
性质:具有平行四边形的所有性质,•还具有自己独特的性质:
①四边相等;②对角线互相垂直平分且每条对角线平分一组对角;
③是轴对称图形,也是中心对称图形
判定:①一组邻边相等的平行四边形是菱形;②对角线互相垂直的平行四边形是菱形.
③四边相等的四边形是菱形.
提醒:菱形的面积等于底乘以高,也等于对角线乘积的一半。

其实只要四边形的对角线互相垂直,其面积就等于对角线乘积的一半。

(四)、正方形的性质和判定
定义:一组邻边相等,并且有一个角是直角的平行四边形叫做正方形。

性质:(1)它具有平行四边形的一切性质:两组对边分别平行且相等;两组对角相等、邻角互补;对角线互相平分
(2)具有矩形的一切性质:四个角都是直角;对角线相等
(3)具有菱形的一切性质:四条边相等;对角线互相垂直;每条对角线平分一组对角
判定:(1)有一个角是直角的菱形是正方形;(2)一组邻边相等的矩形是正方形;(3)对角线互相垂直的矩形是正方形;(4)一组邻边相等且有一个角是直角的平行四边形是正方形(先证菱形);(5)对角线相等的菱形是正方形
主要题型:(1)三定点一动点(容易题型,基本不考);(2)两定点两动点;(3)一定点三动点
金华真题:无
题型一、两定点,两动点(方法:两圆一中垂) 例1、(2015/5/2日/ZZNWG )如图,抛物线y =-
15x 2+3
5
x+2与x 轴正半轴交于点A ,与y 轴交于点C ,过点C 作x 轴的平行线交抛物线于点B ,点D 在线段OA 上,且BD=BA ,点P 的坐标是(0,3),点Q 从点
D 出发,沿D →B →C →O 方向运动,点Q 在线段DB 个单位的速度运动,当点Q 在线段BC ,CO 上时,则以每秒1个单位的速度运动,到点O 停止。

设点Q 的运动时间为t 秒
(1)求D 的坐标; key :D (1,0)
(2)当点Q 线段BD 上运动时,△ACQ 的面积为S ,请求出S 与t 之间的函数关系式,并写出t 的取值范围; (3)在点Q 的运动过程中,在平面直角坐标系上是否存在点G ,使以点Q ,G ,B ,P 为顶点的四边形为菱形?若存在,请求出相应的t 的值和点G 的坐标;若不存在,请说明理由。

【分析】(1)首先求出A、B两点的坐标,然后过点B作BE⊥AD,根据等腰三角形的三线合一的性质,即可求出点D的坐标。

(2)在坐标系中求各边都不在坐标轴上或不与坐标轴平行的三角形的面积,常用的方法有割补法、铅垂高水平宽法
(3)以定线段为分类讨论的依据。

当PB为边时,以点P为圆心,PB为半径画圆,看圆与DB、BC、CO哪条线段相交,然后根据相应的长度及对应的速度算出时间;以点B为圆心,PB为半径画圆,看圆与DB、BC、CO哪条线段相交,然后根据相应的长度及对应的速度算出时间;以PB为对角线,作PB的中垂线,看中垂线与DB、BC、CO哪条线段相交,然后根据相应的长度及对应的速度算出时间。

简言之,就是两圆一中垂。

题型二、一定点,三动点
例2、如图,已知抛物线y=ax2+bx-3经过点A(-1,0),B(3,0),与y轴的交点为C,线段BC与抛物线的对称轴交于点P
(1)求抛物线的函数解析式;key:y= x2-2x-3
(2)在y轴上取点M,连接MP,将射线PM绕点P顺时针旋转90°,与抛物线的交点为Q,以PM、PQ为一组邻边作矩形PMNQ:
①如图2,当四边形MNQP是正方形时,求该正方形的边长;
②是否存在点M,使矩形PMNQ的两边的比为1:2,如果存在,求点M的坐标;如果不存在,试说明理由。

类题演练
1、已知在平面直角坐标系xOy中,点A(4,0),点B在x轴上且在A的右侧,点P是反比例函数
x
>0)图象上的一个动点,Q是坐标平面内一点,以A,B,P,Q为顶点的四边形是一个含有60度角的菱形,则
[
图3y x D A B O 图3y x D A B O 图3y x D A B O 2、如图1,以一块等腰直角三角板的两条直角边为坐标轴建立直角坐标系,OA=OB=3,过点A ,B 的抛物线对称轴为直线x=1,抛物线与x 轴的另一交点为点D . (1)求该抛物线的解析式;
(2)如图2,如果将三角板的直角顶点C 在x 轴上滑动,一直角所在的直线过点B ,另一条直角边与抛物线交点为E ,其横坐标为4,试求点C 的坐标;
(3)如图3,点P 为抛物线对称轴上一动点,M 为抛物线在P 、M 、N ,使得以A 、P 、M 、N 为顶点的四边形为正方形?若存在,求出M 的坐标;若不存在,说明理由.
图3y
x
D A B O 图1 图2 图3
3、(2004•金华)如图在平面直角坐标系内,点A与C的坐标分别为(4,8),(0,5),过点A作AB⊥x轴于点B,过OB上的动点D作直线y=kx+b平行于AC,与AB相交于点E,连结CD,过点E作直线EF∥CD,交AC 于点F。

(1)求经过点A,C两点的直线解析式;
(2)点D在OB上移动时,能否使四边形CDEF成为矩形?若能,求出此时k、b的值;若不能,请说明理由;(3)如果将直线AC向下平移,交y轴于点C′,交AB于点A′,连结DC′,过点E作EF′∥DC′,交A′C′于点F′,那么能否使四边形C′DEF′成为正方形?若能,请求出此时正方形的面积;若不能,请说明理由。

相关文档
最新文档