线性代数(同济大学第五版)矩阵的特征值与特征向量讲义、例题

合集下载

(完整版)线性代数第五章特征值、特征向量试题及答案

(完整版)线性代数第五章特征值、特征向量试题及答案

第五章 特征值和特征向量一、特征值与特征向量定义1:设A 是n 阶矩阵,λ为一个数,若存在非零向量α,使λαα=A ,则称数λ为矩阵A 的特征值,非零向量α为矩阵A 的对应于特征值λ的特征向量。

定义2:()E A f λλ-=,称为矩阵A 的特征多项式,)(λf =0E A λ-=,称为矩阵A 的特征方程,特征方程的根称为矩阵A 的特征根 矩阵E A λ-称为矩阵A 的特征矩阵齐次方程组(0)=-X E A λ称为矩阵A 的特征方程组。

性质1:对等式λαα=A 作恒等变形,得(0)=-αλE A ,于是特征向量α是齐次方程组(0)=-X E A λ的非零解向量,由齐次线性方程组有非零解的充要条件知其系数行列式为零,即0=-E A λ,说明A 的特征值λ为0E A λ-=的根。

由此得到对特征向量和特征值的另一种认识:(1)λ是A 的特征值⇔0=-E A λ,即(λE -A )不可逆.(2)α是属于λ的特征向量⇔α是齐次方程组(0)=-X E A λ的非零解.计算特征值和特征向量的具体步骤为: (1)计算A 的特征多项式,()E A f λλ-=(2)求特征方程)(λf =0E A λ-=的全部根,他们就是A 的全部特征值;(3)然后对每个特征值λ,求齐次方程组(0)=-X E A λ的非零解,即属于λ的特征向量.性质2:n 阶矩阵A 的相异特征值m λλλ 21,所对应的特征向量21,ξξ……ξ线性无关性质3:设λ1,λ2,…,λn 是A 的全体特征值,则从特征多项式的结构可得到:(1)λ1+λ2+…+λ n =tr(A )( A 的迹数,即主对角线上元素之和). (2)λ1λ2…λn =|A |.性质4:如果λ是A 的特征值,则(1)f(λ)是A 的多项式f(A )的特征值.(2)如果A 可逆,则1/λ是A -1的特征值; |A |/λ是A *的特征值. 即: 如果A 的特征值是λ1,λ2,…,λn ,则 (1)f(A )的特征值是f(λ1),f(λ2),…,f(λn ).(2)如果A 可逆,则A -1的特征值是1/λ1,1/λ2,…,1/λn ; 因为A AA =*,A *的特征值是|A |/λ1,|A |/λ2,…,|A |/λn .性质5:如果α是A 的特征向量,特征值为λ,即λαα=A 则(1)α也是A 的任何多项式f(A )的特征向量,特征值为f(λ);(2)如果A 可逆,则α也是A -1的特征向量,特征值为1/λ;α也是A *的特征向量,特征值为|A |/λ 。

线性代数(同济大学第五版)二次型讲义、例题

线性代数(同济大学第五版)二次型讲义、例题

第六章 二次型本章主要包括二次型的矩阵及其矩阵,化二次型为标准型和规范形,二次型及实对称矩阵的正定性问题,学习本章内容需要结合矩阵的特征值与特征向量的相关知识.§1 二次型及其矩阵一、二次型及其矩阵定义1 关于n 个变量n x x x ,,,21 的二次齐次函数+++= 2222211121),,,(x a x a x x x f n n n n n n nn x x a x x a x x a x a 1,1313121122222--++++ (1)若取ji ij a a =,则i j ji j i ij j i ij x x a x x a x x a +=2于是(1)式可写成j i nj i ij n x x a x x x f ∑==1,21),,,( (2)称为n 元二次型,所有系数均为实数的二次型称为实二次型.记,212222111211⎪⎪⎪⎪⎪⎭⎫⎝⎛=nn n n n n a a a a a a a a a A ⎪⎪⎪⎪⎪⎭⎫⎝⎛=n x x x x21 则二次型),,,(21n x x x f 又表示为Ax x x x x f T n =),,,(21 ,其中A 为对称矩阵,叫做二次型 ),,,(21n x x x f 的矩阵,也把),,,(21n x x x f 叫做对称矩阵A 的二次型.对称矩阵A 的秩,叫做二次型Ax x x x x f T n =),,,(21 的秩. 例1 写出二次型32312123222132184422),,(x x x x x x x x x x x x f ++---=的矩阵,并求出二次型的秩.解 写出二次型所对应的对称矩阵为A ,⎪⎪⎪⎭⎫ ⎝⎛----=242422221A因为二次型的秩就是对称矩阵A 的秩.⎪⎪⎪⎭⎫ ⎝⎛---+⎪⎪⎪⎭⎫ ⎝⎛----+⎪⎪⎪⎭⎫ ⎝⎛----=14002202214~6808602212~224242222123321312r r r r r r r r A ∴二次型的秩为3.§2 化二次型为标准型一、二次型合同矩阵二次型),,,(21n x x x f 经过可逆的线性变换⎪⎩⎪⎨⎧+++=+++=+++=nnn n n n nn n n y c y c y c x y c y c y c x y c y c y c x 22112222121212121111 (3) 即用(3)代入(1),还是变成二次型. 那么新二次型的矩阵与原二次型的矩阵A 的关系是什么?可逆线性变换 (3),记作Cy x =,其中矩阵)(ij c C =,把可逆的线性变换Cy x =代入二次型Ax x x x x f T n =),,,(21 ,得二次型ACy C y Cy A Cy Ax x x x x f T T T T n ===)()(),,,(21定义 1 两个同阶方阵A B 、,若存在可逆矩阵C ,使B AC C T=,则称矩阵A B 、合同.若A 为对称矩阵,C 为可逆矩阵,且B AC C T=.则B 亦为对称矩阵,且).()(A r B r =证 因为A 是对称矩阵, 即A A T=,所以B AC C C A C AC C B T T T T T T T T ====)()(即B 为对称矩阵. 因为AC C B T =,所以)()()(A r AC r B r ≤≤.因为11)(--=BC C A T ,所以)()()(1B r BC r A r ≤≤-, 故得).()(B r A r = 主要问题:求可逆的线性变换⎪⎩⎪⎨⎧+++=+++=+++=nnn n n n nn n n y c y c y c x y c y c y c x y c y c y c x 22112222121212121111 (3) 将二次型(1)化为只含平方项,即用(3)代入(1),能使222221121),,,(nn n y k y k y k x x x f +++= (4) 称(4)为二次型的标准形.也就是说,已知对称矩阵A ,求一个可逆矩阵C 使Λ=AC C T为对角矩阵.定理2 任意二次型j inj i ij x x af ∑==1,)(ji ij a a =,总有正交变换Py x =,使f 化为标准形2222211nn y y y f λλλ+++= ,其中n λλλ,,,21 是f 的矩阵)(ij a A =的特征值.推论 任给n 元二次型Ax x x f T=)(,总有可逆变换Cz x =使)(Cz f 为规范形.二、二次型的合同标准形1、拉格朗日配方法化二次型成标准型(1) 对有完全平方的二次型,每一次配方都应将某个变量的平方项以及涉及这一变量的所有混合项配成完全平方,而使得这个完全平方式的外面不再出现这个变量.然后对剩下的不是完全平方的部分再按照此处理,直到全部配成完全平方为止,这样做,是为了保证所得的线性变换是非异的.如果不这样做,最后就需要检验所得的线性变换是否非异.例2 用配方法化二此型32312123222132182292),,(x x x x x x x x x x x x f +++++=为标准形.解 由于f 中含变量型1x 的平方项,故把含1x 的项归并起来,配方可得32312123222182292x x x x x x x x x f +++++=322322232168)(x x x x x x x +++++=上式右端除第一项外已不再含1x .继续配方,可得232322321)3()(x x x x x x f -++++= 令⎪⎩⎪⎨⎧=+=++=3332232113x y x x y x x x y 即⎪⎩⎪⎨⎧=-=+-=33322321132y x y y x y y y x 就把f 化成标准形(规范形),232221y y y f -+=所用的变换矩阵为).0(100310211≠⎪⎪⎪⎭⎫⎝⎛--=C C(2) 如果所给的二次型全由混合项组成,而没有平方项,例如133221321),,(x x x x x x x x x f ++=,则需要先做类似于⎪⎩⎪⎨⎧=-=+=33212211y x y y x y y x 之类的非异线性变换,使变换后的二次型由平方项,再按(1)处理.二次型经非异线性变换化为标准型后,还可以再作非异线性变换,化为标准形.例3化二次型3231212x x x x x x f -+=成标准型,并求所用的变换矩阵.解 由于所给二次型中无平方项,所以令 ⎪⎩⎪⎨⎧=+=-=33212211yx y y x y y x 即⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛321321100011011y y y x x x 代入3231212x x x x x x f -+=得323122213y y y y y y f ++-=在配方,得.2)23()21(23232231y y y y y f +--+= 令⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=-=⇒⎪⎪⎪⎩⎪⎪⎪⎨⎧=-=+=333223113332231123212321z y z z y z z y y z y y z y y z即.10023102101321321⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛z z z y y y得2322212z z z f +-= 所用变换矩阵为.10011121110023102101100011011⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛-=C )02(≠=C2、正交变换化二次型成标准型寻求正交变换,化二次型为标准型,其步骤如下: (1) 写出二次型的矩阵A ,求0-=A E λ的所有相异的根n λλλ,,,21 (n s ≤,n 为A 的阶数);(2) 对每个i λ(s ,,2,1 =i )求齐次线性方程组0)(=-x A E i λ的基础解系.如果i λ,基础解系只含1个解向量,则单位化.如果i λ,基础解系含有多于1个的解向量,则规范化,这样,总共得到n 个两两正交的单位向量.(3) 以所得的n 个两两正交的列向量得到矩阵P ,则P 为正交矩阵,正交变换Py x =化二次型Ax x T为标准形y y TΛ为对角阵,主对角线上第i ),,2,1(n i =个元素是P 的第i 个列向量所对应的特征值(k 重特征值出现k 次).经正交变换得到的标准形后,还可以再作非异的线性变换将标准后,还可以再作非异的线性变换将标准形化为规范形.但这一变换已不再是正交变换了.换言之,经正交变换,二次型一定可以化为标准型,但未必能化规范形.例4求一个正交变换Py x =,化二次型32312123222132184422),,(x x x x x x x x x x x x f ++---=为标准形.解 (1)写出二次型f 矩阵⎪⎪⎪⎭⎫ ⎝⎛----=242422221A (2) 求矩阵A 的特征值,写出特征多项式λλλλλλλλλλ------=-------=-------204622412204222212424222212)2)(7(6241)2(λλλλλ-+-=------=故特征值为2,7321==-=λλλ(3) 求矩阵A 的特征值所对应的特征向量 ①当71-=λ时, 解方程0)7(=+x E A ,由⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--=+0001102101~5424522287r E A 得基础解系⎪⎪⎪⎭⎫ ⎝⎛-=2211ξ.②当232==λλ时, 解方程0)2(=-x E A ,由⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛-----=-000000221~4424422212r E A得基础解系⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-=102,01232ξξ.(4) 将32,ξξ正交化:取22ξη=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛=-=5425101254102],[],[2223233ηηηξηξη(5) 将321,,ηηξ单位化,得,22131111⎪⎪⎪⎭⎫ ⎝⎛-==ξξp ,01251222⎪⎪⎪⎭⎫ ⎝⎛-==ηηp .542531333⎪⎪⎪⎭⎫ ⎝⎛==ηηp(5) 可得正交矩阵P.53503253451325325231),,(321⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--==p p p P 若令Py x =则Ax x x x x x x x x x x x x x f T =++---=32312123222132184422),,(233222211y y y APy P y T T λλλ++== 2322212271y y y ++-= 注 用正交变换法化二次型成标准型后,其平方项的系数就是矩阵A的特征值.而变换矩阵的各列,分别是这些特征值对应的规范正交的特征向量.例 5 已知,1001110101⎪⎪⎪⎭⎫⎝⎛--=a a A 二次型x A A x x x x f T T )(),,(321=的秩为2.(1) 求实数a 的值.(2) 求正交变换Qy x =将f 化为标准型. 解(1),3111101021001110101111010010122⎪⎪⎪⎭⎫⎝⎛+---+-=⎪⎪⎪⎪⎪⎭⎫⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛--=a a a a a a a a a a A A T x A A x T T )( 秩为22)()(==∴A r A A r T可得 1-=a .(2) 令⎪⎪⎪⎭⎫⎝⎛==422220202B A A T由0)6)(2(422220202=--=-------=-λλλλλλλE B解之得.6,2,0321===λλλ① 当01=λ时,由0)0(=⋅-x E B ,可解得特征值为⎪⎪⎭⎫⎝⎛=11-1-1ξ.②当22=λ时,由0)2(=⋅-x E B ,可解得特征值为⎪⎪⎭⎫⎝⎛=011-2ξ.③当63=λ时,由0)6(=⋅-x E B ,可解得特征值为⎪⎪⎭⎫⎝⎛=2113ξ.将321,,ξξξ单位化,得⎪⎪⎭⎫ ⎝⎛==⎪⎪⎭⎫ ⎝⎛==⎪⎪⎭⎫ ⎝⎛==211613,011-212,11-1-313322111ξξξξξξr r r令⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--==6203161210612131),,(321r r r Q . 则Qy x =时,可得标准型232262y y Bx x f T +==. 例6 设二次型2221231231323(,,)(1)22f x x x ax ax a x x x x x =++-+-,若二次型f 的规范形为2212y y +,求a 的值. 解 若二次型f 的规范形为2212y y +,说明f 两个特征值为正,一个为0.当2=a 时,三个特征值为 0,2,3,这时,二次型的规范形为2212y y +.§3 二次型及实对称矩阵的正定性二次型的标准形不是唯一的.标准形中所含项数是确定的(即是二次型的秩).限定变换为实变换时,标准形中正系数的个数是不变的.一、惯性定理定理3(惯性定理) 设有实二次型Ax x f T =它的秩是r ,有两个实的可逆变换Cy x =与Pz x =.使)0(,2222211≠+++i r r k y k y k y k 及,2222211r r y z z z +++ λλ)0(≠i λ则r k k k ,,,21 中正数的个数与r λλλ,,,21 中正数的个数相等. 正数的个数称为正惯性指数,负数的个数称为负惯性指数.例7 二次型,2223),,(323121232221321x x x x x x x x x x x x f +++++=求f 的正惯性指数.解:方法一:3231212322213212223),,(x x x x x x x x x x x x f +++++= 2223212)(x x x x +++= 令⎪⎩⎪⎨⎧==++=33223211xy x y x x x y , 则22212y y f +=.故f 的正惯性指数为2.方法二:f 的正惯性指数为所对应矩阵特征值正数的个数,由于二次型f 对应矩阵.111131111⎪⎪⎪⎭⎫ ⎝⎛=A所以λλλλλλλλλλλ---=---=---=-211231001111310111131111E A λλλ---=2112310)4)(1(2123---=---=λλλλλλ=0 故4,1,0321===λλλ.故f 的正惯性指数为2. 二、正定性的判别定义10 设有实二次型Ax x f T=如果对于任何0≠x ,都有0)(>x f ,(显然0)0(=f ),则称f 为正定二次型,并称对称阵A 是正定的.记作0>A ;如果对任何0≠x ,都有0)(<x f ,则称f 为负定二次型,并称对称阵A 是负定的,记作0<A .定理4 实二次型Ax x f T=为正定的充分必要条件是:它的标准形的n 个系数全为正,即f 的正惯性指数为n .证 设可逆变换Cy x =使21)()(ini i yk Cy f x f ∑===.先证充分性:设0>i k ),,2,1(n i =,任给0≠x ,故.0)(21>=∑=i ni i y k x f再证必要性: 用反证法,假设有0≤s k ,则当s e y =(单位坐标向量)时,0)(≤=s s k Ce f ,显然0≠s Ce 这与假设f 正定矛盾,故.0>i k推论 对称阵A 为正定的充分必要条件是: A 的特征值全为正.定理5 对称阵A 为正定的充分必要条件是:A 的各阶主子式都为正.即011>a ,022211211>a a a a,01111>nnn na a a a ; 对称阵A 为负定的充分必要条件是:奇数阶主子式为负,而偶数阶主子式为正.即,0)1(1111>-nrn rra a a a ),,2,1(n r =.这个定理称为霍尔维兹定理.注:对于二次型,除了有正定和负定以外,还有半正定和半负定及不定二次型等概念.例8设实二次型312322212x cx ax bx ax f +++=,当该二次型为正定二次型,c b a ,,应满足的条件?解 写出f 的矩阵 ⎪⎪⎪⎭⎫⎝⎛=a c b c a A 0000因为该二次型为正定二次型,所以0)(,0,022>-=>>∴b c a A ab ac b a ,,∴应满足0,>>b c a .定理6实二次型Ax x f T =为正定的充分必要条件是:存在可逆矩阵C ,使C C A T =,即矩阵A 与单位矩阵合同.证明 先证充分性:若存在可逆矩阵C ,使C C A T=,任取非零向量x ,则0≠Cx (如果0=Cx ,由C 可逆,则0=x 矛盾),对任取的0≠x ,有0)()()(T >====Cx Cx Cx Cx C x Ax x x f T T T,从而矩阵A 正定.再证必要性:设对称矩阵A 为正定矩阵,因为A 为对称矩阵,则存在正交矩阵Q ,使A 对角化,即),,,(21n T diag AQ Q λλλ =Λ=,其中n λλλ,,,21 为A 的特征值,而A 是正定矩阵,所以0>i λ,记),,,(211n diag λλλ =Λ.则Λ=Λ21,从而T T T Q Q Q Q Q Q A ))((1111ΛΛ=ΛΛ=Λ=令T Q C )(1Λ=,则C 可逆,而且得到C C A T=. 所以可得EC C A T=,故矩阵A 与单位矩阵合同.定理7实二次型Ax x f T =为正定的充分必要条件是:存在正定矩阵B ,使2B A =.证明 因为A 是正定矩阵,所以矩阵A 可以正交相似对角化。

同济大学数学系《工程数学—线性代数》(第5版)【教材精讲+考研真题解析】讲义与视频课程-线性空间与线

同济大学数学系《工程数学—线性代数》(第5版)【教材精讲+考研真题解析】讲义与视频课程-线性空间与线

第6章线性空间与线性变换6.1本章要点详解本章要点■线性空间的定义与性质■维数、基与坐标■基变换与坐标变换■线性变换■线性变换的矩阵表示式重难点导学一、线性空间的定义与性质1.两种运算(1)加法运算设V是一个非空集合,R为实数域.如果在V中定义了一个加法,即对于任意两个元素α,β∈V,总有唯一的一个元素γ∈V与之对应,称为α与β的和,记作γ=α+β.(2)数乘运算在V中又定义了一个数与元素的乘法(简称数乘),即对于任一数λ∈R与任一元素α∈V,总有唯一的一个元素δ∈V与之对应,称为λ与α的数量乘积,记作δ=λα.2.线性空间定义设V是一个非空集合,R为实数域.如果在V中取任意两个元素α,β∈V,加法运算和乘法运算满足以下八条运算规律(设α、β、γ∈V,λ、μ∈R):(1)α+β=β+α;(2)(α+β)+γ=α+(β+γ);(3)在V中存在零元素0,对任何α∈V,都有α+0=α;(4)对任何α∈V,都有α的负元素β∈V,使α+β=0;(5)1α=α;(6)λ(μα)=(λμ)α;(7)(λ+μ)α=λα+μα;(8)λ(α+β)=λα+λβ,则V称为线性空间,又称向量空间.3.线性空间的性质(1)零向量是唯一的;(2)任一向量的负向量是唯一的,α的负向量记作-α;(3)0α=0,(-1)α=-α,λ0=0;(4)如果λα=0,则λ=0或α=0.4.子空间(1)定义设V是一个线性空间,L是V的一个非空子集,如果L对于V中所定义的加法和数乘两种运算也构成一个线性空间,则L称为V的子空间.(2)定理线性空间V的非空子集L构成子空间的充分必要条件是:L对于V中的线性运算封闭.二、维数、基与坐标1.维数与基在线性空间V中,如果存在n个向量,满足:(1)线性无关;(2)V中任一向量α总可由线性表示,则就称为线性空间V的一个基,n称为线性空间V的维数.注:维数为n的线性空间称为n维线性空间,记作V n.2.坐标设是线性空间V n的一个基.对于任一向量α∈V n,总有且仅有一组有序数,使这组有序数就称为向量α在这个基中的坐标,并记作3.同构设V与U是两个线性空间,如果在它们的向量之间有一一对应关系,且这个对应关系保持线性组合的对应,则线性空间V与U同构.三、基变换与坐标变换1.基变换定义设α1,…,αn及β1,…,βn是线性空间V n中的两个基,有(6-1)把α1,…,αn这n个有序向量记作(α1,…,αn),记n阶矩阵P=(p ij),利用向量和矩阵的形式,式(6-1)可表示为(6-2)式(6-2)称为基变换公式,矩阵P称为由基α1,…,αn到基β1,β2,…,βn的过渡矩阵.又β1,β2,…,βn线性无关,故过渡矩阵P可逆.2.坐标变换公式设V n中的向量α在基α1,…,αn中的坐标为(x1,x2,…,x n)T,在基β1,β2,…,βn 中的坐标为.若两个基满足关系式(6-2),则有坐标变换公式四、线性变换1.定义设V n,U m分别是n维和m维线性空间,T是一个从V n到U m的映射,若映射T满足:(1)任给α1、α2∈V n(从而α1+α2∈V n),有T(α1+α2)=T(α1)+T(α2);(2)任给α∈V n,λ∈R(从而λα∈V n),有T(λα)=λT(α).则T称为从V n到U m的线性映射,又称线性变换.2.线性变换基本性质(1)T0=0,T(-α)=-Tα;(2)若则;(3)若α1,α2,…,αm线性相关,则Tα1,Tα2,…,Tαm亦线性相关,反之不成立;(4)线性变换T的像集T(V n)是一个线性空间,称为线性变换T的像空间;(5)使Tα=0的α的全体N T={α|α∈V n,Tα=0}也是一个线性空间,且N T称为线性变换T的核.五、线性变换的矩阵表示式1.定义设T是线性空间V n中的线性变换,在V n中取定一个基α1,α2,…,αn,如果这个基在变换T下的像为记,上式可表示为其中则A就称为线性变换T在基α1,α2,…,αn下的矩阵.2.定理设线性空间V n中取定两个基α1,α2,…,αn;β1,β2,…,βn,由基α1,α2,…,αn到基β1,β2,…,βn的过渡矩阵为P,V n中的线性变换T在这两个基下的矩阵依次为A和B,则B=P-1AP.6.2配套考研真题解析本章为非重点,暂未编选考研真题,若有最新真题会及时更新.。

线性代数 同济第五版 课后习题答案详解

线性代数 同济第五版 课后习题答案详解

1
2
第一章 行列式
(3) 逆序数为 5: 3 2, 3 1, 4 2, 4 1, 2 1.
(4) 逆序数为 3: 2 1, 4 1, 4 3.
(5)
逆序数为
n(n−1) 2
:
3 2...........................................................................1 个 5 2, 5 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 个 7 2, 7 4, 7 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 个 .................................................................................. (2n − 1) 2, (2n − 1) 4, (2n − 1) 6, . . . , (2n − 1) (2n − 2). . . . . . . . . . . . . .(n − 1) 个
(2)
abc
b c a = acb + bac + cba − bbb − aaa − ccc = 3abc − a3 − b3 − c3.

线性代数(同济大学第五版)行列式讲义例题

线性代数(同济大学第五版)行列式讲义例题

线性代数(同济大学第五版)行列式讲义例题线性代数(同济大学第五版)行列式讲义、例题第一章行列式行列式就是研究线性方程组的一个有力工具,本章得出了行列式的定义、性质及其计算方法.§1全排列及其逆序数一、排序及其逆序数定义对于n个不同的元素,可以给它们规定一个次序,并称这规定的次序为标准次序.例如1,2,?,n这n个自然数,一般规定由小到大的次序为标准次序.定义1由n个自然数1,2,?,n共同组成的一个有序数组i1,i2,?,in,称作一个n元全排序,缩写为排序.例如由1,2,3这三个数组成的123,132,213,231,312,321都是3元(全)排列.定义2在一个排序里,如果某一个很大的数码排在在一个较小的数码前面,就说道这两个数码形成一个逆序(反序),在一个排序里发生的逆序总数叫作这个排序的逆序数,用?(i1,i2,?,in)则表示排序i1,i2,?,in的逆序数.根据定义2,可按如下方法计算排列的逆序数:设于一个n级排序i1i2?in中,比it(t?1,2,?,n)小的且位列it前第1页面的数共有ti个,则it的逆序的个数为ti,而该排列中所有数的逆序的个数之和就是这个排序的逆序数.即为n?(i1i2?in)?t1?t2tn??ti.i?1基准1排序排序45321的逆序数.解因为4排在首位,故其逆序数为0;比5大且位列5前面的数有0个,故其OMO序数为0;比3大且位列3前面的数有2个,故其OMO序数为2;比2大且位列2前面的数有3个,故其OMO序数为3;比1大且位列1前面的数有4个,故其OMO序数为4.可知所求排序的逆序数为(45321)002349.定义3逆序数为偶数的排序叫作偶排序,逆序数为奇数的排序叫作奇排序.(i1,i2,,in)=i2前面大于i2的元素个数+i3前面大于i3的元素的个数in前面大于in的元素的个数,比如:(2341)0033,逆序数为3,?(2341)为奇排列.?(4321)?1?2?3?6,逆序数为6,?(4321)为偶排列.定义4把一个排序中某两个数码i和j交换边线,而其余数码不颤抖,就第2页获得一个崭新排序.对一个排序所颁布的这样一个转换叫作一个重新排列.例如排列2341经过元素2,4对换变成排列4321,可记为2341??(2?,4)?4321定理1对换改变排列的奇偶性.证明先证相连重新排列设排列为a1?alabb1?bm对换a与b.a1?albab1?bm当a?b时,经对换后a的逆序数增加1,b的逆序数不变;当a?b时,经对换后a的逆序数不变,b的逆序数减少1.因此对换相邻两个元素,排列改变奇偶性.再证非相连重新排列,现设排序为a1?alab1?bmbc1?cn现来重新排列a与bam次相邻对换1?alab1?bmbc1?cna1?alabb1?bmc1?cnam?1次相邻对换1?alabb1?bmbc1?cna1?albb1?bmac1?cna2m1次相连重新排列1?alab1?bmbc1?cna1?albb1?bmac1?cn因此对换两个元素,排列改变奇偶性.也就是说,只要经过一次重新排列,奇排序变为偶排序,而也时排序变为奇排第3页列.推断奇排序变为标准排序的重新排列次数为奇数,偶排序变为标准排序的重新排列次数为偶数.二、排列及其逆序数性质与定理性质1设i1i2?in和j1j2?jn就是n个数码的任一两个排序,那么总可以通过一系列重新排列由i1i2?in得出结论j1j2?jn.引理1对换的可逆性――即对同一排列连续施行两次同一对换排列还原.所以任意n 元排列i1i2?in可经过一系列对换变为自然排列12?n.而自然排列12?n可经一系列对换变为任意一个n元排列j1j2?jn.事实上,由定理1所述:任一一个n元排序j1j2?jn可以经一系列重新排列变为自然排列12?n,由引理1对换的可逆性,故自然排列可经(同样的)一系列对换变为任一排列.定理2n?2时,n个数码的排序中,奇排序与也时排序的个数成正比,均为n!2个.证明:设n个数的排序中,奇排序存有p个,偶排序存有q个,则p?q?n!,对p个雷排序,颁布同一重新排列,则由定理1获得p个偶排序.(而且就是p个不同的偶排列)因为总共有q个偶排列,所以p?q.同理q?p.第4页所以p?q?n!2.§2行列式的定义开场白三阶行列式的形成规律为:a11a12a13a21a22a23?a11a22a33?a12a23a31?a13a21a32a31a32a33?a13a22a31?a12a21a33? a11a23a32a11a12a13其中:符号aa22a22123是由3个元素aij构成的三行、三列方表,a31a32a33纵排叫行,横排叫列;在上述形式下元素aij的第一个负号叫行负号,第二个负号叫列负号.从形式来看,三阶行列式就是上述特定符号则表示的一个数,这个数由一些项的和而得:1)项的构成:由取自不同的行又于不同的列上的元素的乘积;2)项数:三阶行列式就是3!=6项的代数和;3)项的符号:每项的一般形式可以写成a1j1a2j2a3j3时,即行标为自第5页然排序时,该项的符号为(?1)?(j1j2j3),即为由列标排序j1j2j3的奇偶性然定.一、n阶行列式的定义定义5n阶行列式定义为a11a12?a1na?a21a22?a2nj1j2?jn)??(i1i2?in)(?1)?(ai1j1ai2j2?ainjni1i2?inaj 1j2?jnn1an2?anna11a12?a1n用符号a21a22?a2n2表示由n个数aij所组成的n阶行列an1an2?ann式,直和为a或d,这就是一个数,其中i1i2?in和j1j2?jn都是n级排列,?表示对所有的n级排列于议和.由定义可以看出,n阶行列式的值等于所有取自不同的行、不同的列上的n个元素的乘积ai1j1ai2j2?ainjn的代数和,共有n!项,每一项前面的符号由排序i1i2?in和j1j2?jn的逆序数?(i1i2?in)+?(j1j2?jn)同意.第6页另外行列式的还可以定义为a11a12?a1na?a21a22?a2n(?1)?(j1j2?jn)a1j1a2j2?anjnan1an2?ann或a11a12?a1na?a21a22?a2n(?1)?(i1i2?in)ai11ai22?ainnan1an2?ann以上两个定义式分别以行列的排序为标准序列,其每一项前面的符号存有j1j2?jn和i1i2?in的逆序数同意.例2在四阶行列式中,a21a32a14a43应带什么符号?求解1)按行列式定义5排序,因为a21a32a14a43?a14a21a32a43,而4123的逆序数为?(4123)?0?1?1?1?3,所以a21a32a14a43的前面应当拎负号.2)按行列式定义5计算,因为a21a32a14a43行指标排序的逆序数为?(2314)?0?0?2?0?2,第7页列指标排列的逆序数为?(1243)?0?0?0?1?1.所以a21a32a14a43的前面应带负号.a11a1200基准3排序行列式a210a2300a.3200000a44分析按行列式定义,每一项都就是源自相同行相同列于的4个元素的乘积,共计4!项.但此行列式中存有很多零元素,因此有的项为零,故只需找到C99mg零元素的项,何不设立各个字母则表示的都不为零元素.于是在第一行中只有两个非零元素a11和a12.当第一行挑a11时,第二行就可以挑a23(a21与a11同列,故无法挑),第三行就可以挑a32,第四行就可以挑a44,即a11a23a32a44就是其中的一项.另外,当第一行挑a12时,第二行可以挑a21和a23,但当第二行取a23,第三行只能取零元素,故第二行只可以取a21,第三行取a33,第四Charlieua44,即为另一非零项为a12a21a33a44.解d?(?1)?(1324)a?(2134)11a23a32a44?(?1)a12a21a33a44??a11a23a32a44?a12a21a33a44第8页例4证明n行列式a110?0a11a12?a1n(1)a21a22?00a22?a2na11a22?ann,an1an2?ann00?anna1n(2)a2,n?1an(n?1)2n(?1)2a1na2,n?1?an1an1?an,n?1anna110?0a11a12?a1n证(1)记da22?0a22?a2n1?a21d02?an1an2?ann00?ann由于当j?i时,aij?0,故d1中可能不为0的元素aipi,其下标应有pi?i,即p1?1,p2?2,?,pn?n.在所有排列p1p2?pn中,能满足上述关系的排列只有一个自然排列12?n,所以d?1中可能将不为0的项只有一项(?1)a11a22?ann,此项的符号(?1)??(?1)0?1,所以第9页d1?a11a22?ann.由于当j?i时,aij?0,故d2中可能不为0的元素aipi,其下标应有pi?i,即p1?1,p2?2,?,pn?n.在所有排序p1p2?pn中,能够满足用户上述关系的排序只有一个自然排在列12?n,所以d?2中可能不为0的项只有一项(?1)a11a22?ann,此项的符号(?1)??(?1)0?1,所以d2?a11a22?ann得证.a1n(2)根据行列式定义a2,n?1a2nt(?1)a1na2,n?1?an1an1?an,n?1ann其中t为排序n(n?1)?21的逆序数,故t?0?1?2n?n(n?1)2证毕.二、子式、余子式与代数余子式第10页。

同济大学数学系《工程数学—线性代数》(第5版)【教材精讲+考研真题解析】讲义与视频课程-矩阵的初等变

同济大学数学系《工程数学—线性代数》(第5版)【教材精讲+考研真题解析】讲义与视频课程-矩阵的初等变

第3章矩阵的初等变换与线性方程组[视频讲解]3.1本章要点详解本章要点■初等变换的概念与性质■矩阵之间的等价关系■初等变换与矩阵乘法的关系■初等变换的应用■矩阵的秩■线性方程组的解重难点导学一、矩阵的初等变换1.初等变换下面三种变换称为矩阵的初等行变换:(1)对调两行(对调i,j两行,记作r i↔r j);(2)以数k≠0乘某一行中的所有元(第i行乘k,记为r i×k);(3)把某一行所有元素的k倍加到另一行对应的元上去(第j行的k倍加到第i行上,记作r i+kr j).把定义中的“行”换成“列”,即得矩阵的初等列变换的定义,矩阵的初等行变换与初等列变换,统称为初等变换.2.矩阵等价(1)定义①若矩阵A经有限次初等行变换变成矩阵B,就称矩阵A与B行等价,记作;②若矩阵A经有限次初等列变换变成矩阵B,就称矩阵A与B列等价,记作;③若矩阵A经有限次初等变换变成矩阵B,则称矩阵A与B等价,记作A~B.(2)矩阵之间的等价关系的性质①反身性A~A;②对称性若A~B,则B~A;③传递性若A~B,B~C,则A~C.(3)矩阵的类型①两个矩阵,矩阵B4和B5都称为行阶梯形矩阵.行阶梯形矩阵B5又称为行最简形矩阵,其特点是:非零行的第一个非零元为1,且非零元所在的列的其他元素都为0.结论:对于任何非零矩阵A m×n总可经过有限次初等行变换把它变为行阶梯形矩阵和行最简形矩阵.②标准形矩阵F称为矩阵B的标准形,其特点是:F的左上角是一个单位矩阵,其余元素全为0.对于m×n矩阵A,总可经过初等变换(行变换和列变换)把它化为标准形此标准形由m,n,r三个数完全确定,其中r就是行阶梯形矩阵中非零行的行数.所有与A 等价的矩阵组成一个集合,标准形F 是这个集合中形状最简单的矩阵.3.初等变换与矩阵乘法的关系(1)定理设A 与B 为m ×n 矩阵,则:①的充分必要条件是存在m 阶可逆矩阵P ,使PA =B ;②的充分必要条件是存在n 阶可逆矩阵Q ,使AQ =B ;③A ~B 的充分必要条件是存在m 阶可逆矩阵P 及n 阶可逆矩阵Q ,使PAQ =B .(2)初等矩阵由单位矩阵E 经过一次初等变换得到的矩阵称为初等矩阵.(3)性质①设A 是一个m ×n 矩阵,对A 施行一次初等行变换,等价于在A 的左边乘以相应的m 阶初等矩阵;对A 施行一次初等列变换,等价于在A 的右边乘以相应的n 阶初等矩阵.②方阵A 可逆的充分必要条件是存在有限个初等矩阵P 1,P 2,…P l ,使A =P 1P 2…P l .③方阵A 可逆的充分必要条件是.4.初等变换的应用当||0A ≠时,由12l A PP P = ,有11111l l P P P A E ----= 及111111l l P P P E A -----= 所以()()()1111111111111111|||l l l l l l P P P A E P P P A P P P E E A -------------== 即对n ×2n 矩阵()|A E 施行初等行变换,当把A 变成E 时,原来的E 就变成A -1.二、矩阵的秩1.秩的定义(1)k阶子式在m×n矩阵A中,任取k行与k列(k≤m,k≤n),位于这些行列交叉处的k2个元素,不改变它们在A中所处的位置次序而得的k阶行列式,称为矩阵A的k阶子式.注:m×n矩阵A的k阶子式共有个.(2)矩阵的秩设在矩阵A中有一个不等于0的r阶子式D,且所有r+1阶子式(如果存在的话)全等于0,则D称为矩阵A的最高阶非零子式,数r称为矩阵A的秩,记作R(A).注:零矩阵的秩等于0.(3)最高阶非零子式由行列式的性质可知,在A中当所有r+1阶子式全等于0时,所有高于r+1阶的子式也全等于0,因此把r阶非零子式称为最高阶非零子式,而A的秩R(A)就是A的非零子式的最高阶数.(4)满秩矩阵与降秩矩阵可逆矩阵的秩等于矩阵的阶数,不可逆矩阵的秩小于矩阵的阶数.因此,可逆矩阵又称满秩矩阵,不可逆矩阵(奇异矩阵)又称降秩矩阵.(5)等价矩阵的秩①若A~B,则R(A)=R(B).②若可逆矩阵P,Q使PAQ=B,则R(A)=R(B).2.秩的性质(1)0≤R(A m×n)≤min{m,n}(2)R(A T)=R(A);(3)若A~B,则R(A)=R(B);(4)若P、Q可逆,则R(PAQ)=R(A);(5)max{R(A),R(B)}≤R(A,B)≤R(A)+R(B)特别地,当B=b为非零列向量时,有R(A)≤R(A,b)≤R(A)+1;(6)R(A+B)≤R(A)+R(B);(7)R(AB)≤min{R(A),R(B)};(8)若A m×n B n×l=0,则R(A)+R(B)≤n.3.满秩矩阵矩阵A的秩等于它的列数,称这样的矩阵为列满秩矩阵.当A为方阵时,列满秩矩阵就成为满秩矩阵.4.结论(1)设A为n阶矩阵,则R(A+E)+R(A-E)≥n.(2)若A m×n B n×l=C,且R(A)=n,则R(B)=R(C).。

第五章 特征值和特征向量、矩阵的对角化 扩展例题及求解

第五章 特征值和特征向量、矩阵的对角化 扩展例题及求解

的一个特征向量为


1
,求
a,
b,
c

的值。
1
[分析]当 A 是抽象的方阵时,求 A 的特征值、特征向量通常需要考虑特征值、特征向量的定
义或等价定义。本题主要考察 A* 和 A 的特征值之间的关系,以及它们有共同的特征向量。
[解]由于 A* , AA* A E E , 对 A* 两边同时左乘 A ,即有:
1 2 3 2 2 0 fA() | E A | 1 4 3 1 4 3
1 a 5 1 a 5
10 0 ( 2) 1 3 3 ( 2)(2 8 18 3a)
1 a 1 5
[例
9]设
A


1
4
3 的特征方程有一个二重根,求 a 的值,并讨论 A 是否可相似对角化。
1 a 5
[分析]本题主要考察可对角化的条件:n 阶方阵 A 可对角化的充要条件是 A 有 n 个线性无关
的特征向量,即 k 重特征值有 k 个线性无关的特征向量。
[解]先求特征方程。
(1)如果 2 是特征方程的二重根,则 2 满足方程 2 8 18 3a 0 ,故
a 2 .
1 2 3
当 a 2 时,
A
的特征值为
2,2,6,矩阵
2E

A


1
2
3

的秩为
1,故


2
对应有两
1 2 3
个线性无关的特征向量,从而 A 可以相似对角化。
[证]设 是 AmnBnm 对应于特征值 的特征向量,则

线性代数(同济大学第五版)线性方程组讲义、例题

线性代数(同济大学第五版)线性方程组讲义、例题

第四章 线性方程组本章以矩阵的理论作为工具,研究线性方程组有解的条件及其解法.§1 线性方程组的几种表示一、一般形式n m ⨯的齐次线性方程组的一般形式为⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++mn mn m m n n n n b x a x a x a b x a x a x a b x a x a x a 22112222212********* (1) 二、向量形式n m ⨯的齐次线性方程组的向量形式为βααα=+++n n x x x 2211,其中⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=mi i i i a a a 21α,⎪⎪⎪⎪⎪⎭⎫⎝⎛=m b b b 21β.三、矩阵形式n m ⨯的齐次线性方程组的矩阵形式为β=Ax其中n m ⨯矩阵][ij a A =是方程组的系数矩阵,T n x x x x ],,,[21 =是n 维未知数向量,特别地,当0=β时,0=Ax 称为齐次线性方程组,而当0≠β时,β=Ax 称为非齐次线性方程组,并称0=Ax 为β=Ax 的导出组.§2 齐次线性方程组的解任何一个齐次线性方程组一定有解,因为当021====n x x x 就是它的一个解,通常称为零解或平凡解.一、齐次线性方程组有非零解的充分(或必要)条件(1) 0=Ax 有非零解的充分必要条件是A 的列向量组相性相关 (2) 若方程个数小于未知向量个数,则0=Ax 必有非零解.(3) 当n m =,即A 为方阵时,则0=Ax 有非零解的充分必有条件是.0=A二、齐次线性方程组解的性质性质 1 如果 1ξ=x ,2ξ=x 是方程组0=Ax 的解,那么21ξξ+=x 也是方程组0=Ax 的解.性质 2 如果是1ξ=x 方程组0=Ax 的解,k 为实数,那么也1ξk x =是方程组0=Ax 的解.推论:如果m ξξξ,,,21 都是方程组0=Ax 的解,m k k k ,,,21 是常数,那么m ξξξ,,,21 的线性组合m m k k k ξξξ+++ 2211也是方程组0=Ax 的解.性质3 n 维向量ξ是n 齐次线性方程组0=Ax 的解,ξ一定与A 的每一个行向量均正交.由于0=ξ必是0=Ax 解向量,所以有性质1、2可知0=Ax 全体解向量的集合对于通常意义上的向量加法和数乘运算可构成向量空间,称为解空间.三、齐次线性方程组解的结构设s ξξξ,,,21 是0=Ax 的一组线性无关解向量,如果0=Ax 的任一解向量均可由s ξξξ,,,21 线性表示出,则称s ξξξ,,,21 为0=Ax 的解空间的一个基.亦即是0=Ax 的一个基础解系.对于0=Ax ,若n r A R <=)(,则下面将证明0=Ax 的基础解系,并给出了求基础解系的方法:不妨设A 的前r 个列向量线性无关,则A 经若干初等变换可得行最简形矩阵⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=--000000001001,1,111r n r r r n b b b b B0=Bx 与0=Ax 同解,而0=Bx ,即 ⎪⎪⎩⎪⎪⎨⎧---=---=---=-+-+-+nr n r r r n n r n r n r n r x b x b x x b x b x x b x b x ,11,21212,11111其中n r r x x x ,,,21 ++称为自由未知数,显然任给自由未知数的一组值,由上即可唯一确定r x x x ,,,21 的值,于是就得0=Bx 的一个解,也就是0=Ax 的一个解,现在分别取.100,,010,00121⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛++ n r r x x x (n r r x x x ,,,21 ++的r n -组取值形式线性无关的向量组)可得0=Ax 的r n -个线性无关的解向量.,0011111⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--= r b b ξ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=0012122 r b b ξ,, ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=-100212 r r n b b ξ下面证明0=Ax 的任一解向量()T n r r ,,1,21,,,,λλλλλξ +=均可由r n -ξξξ,,,21 线性表示.作向量r n n r r -+++++=ξλξλξλη 2211则由于r n -ξξξ,,,21 是0=Ax 的解,所以η也是0=Ax 的解,而η的后面r n -个分量与ξ的刚好对应相等,于是知η与ξ的前r 个分量也对应相等,所以ξη=,即r n n r r -+++++=ξλξλξλξ,2,211所以,r n -ξξξ,,,21 是0=Ax 的一个基础解系,亦即是解空间的一个基,从而知解空间的维数是r n -,此时,0=Ax 的解向量可表示为r n n k k k x -+++=ξξξ 2211,其中r n k k k -,,,21 为任意常数,此式称为=Ax 的通解,而解空间可表示为|{2211r n n k k k x -+++=ξξξ },,,21R k k k r n ∈- .例1 求齐次线性方程组⎪⎩⎪⎨⎧=++=-+=++,0,0,0543321521x x x x x x x x x 的基础解系.解:设系数矩阵为A⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-=010001010010011~111000*********A25125545322521,0c x c x x x x x x x x x x x ==⎪⎪⎪⎩⎪⎪⎪⎨⎧==-==--=∴令∴基础解系为:。

线性代数知识点归纳(同济_第五版)

线性代数知识点归纳(同济_第五版)

线性代数复习要点第一部分 行列式1. 排列的逆序数2. 行列式按行(列)展开法则3. 行列式的性质及行列式的计算1. 行列式的计算:① (定义法)1212121112121222()1212()n n nn n j j j n j j nj j j jn n nna a a a a a D a a a a a a τ==-∑1②(降阶法)行列式按行(列)展开定理:行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和.推论:行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零.1122,,0,.i j i j in jn A i j a A a A a A i j ⎧=⎪++=⎨≠⎪⎩③ (化为三角型行列式)上三角、下三角、主对角行列式等于主对角线上元素的乘积.11221122***0**0*0nnnnb b A b b b b ==④ 若A B 与都是方阵(不必同阶),则==()mn A O A A OA B O B O B B OA A A BB OB O*==**=-1例 计算2-100-13000011-25解2-100-130000110-25=2-1115735-13-25⋅=⨯= ⑤ 关于副对角线:(1)211212112111()n n nnn n n n n n n a Oa a a a a a a O a O ---*==-1⑥ 范德蒙德行列式:()1222212111112nijnj i nn n n nx x x x x x x x x x x ≤<≤---=-∏111例 计算行列式⑦ a b -型公式:1[(1)]()n a b bbb a bban b a b b b ab b b ba-=+-- ⑧ (升阶法)在原行列式中增加一行一列,保持原行列式不变的方法.⑨ (递推公式法) 对n 阶行列式n D 找出n D 与1n D -或1n D -,2n D -之间的一种关系——称为递推公式,其中 n D ,1nD -,2n D -等结构相同,再由递推公式求出n D 的方法称为递推公式法.(拆分法) 把某一行(或列)的元素写成两数和的形式,再利用行列式的性质将原行列式写成两行列式之和, 使问题简化以例计算.⑩(数学归纳法)2. 对于n 阶行列式A ,恒有:1(1)nnk n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式;3. 证明0A =的方法:①、A A =-; ②、反证法;③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值.4. 代数余子式和余子式的关系:(1)(1)i j i j ij ijij ij M A A M ++=-=-第二部分 矩阵1. 矩阵的运算性质2. 矩阵求逆3. 矩阵的秩的性质4. 矩阵方程的求解1. 矩阵的定义 由m n ⨯个数排成的m 行n 列的表111212122212n n m m mn a a a a a a A a a a ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭称为m n ⨯矩阵. 记作:()ijm nA a ⨯=或m n A ⨯① 同型矩阵:两个矩阵的行数相等、列数也相等. ② 矩阵相等: 两个矩阵同型,且对应元素相等. ③ 矩阵运算a. 矩阵加(减)法:两个同型矩阵,对应元素相加(减).b. 数与矩阵相乘:数λ与矩阵A 的乘积记作A λ 或A λ,规定为()ij A a λλ=.c. 矩阵与矩阵相乘:设()ij m s A a ⨯=, ()ij s n B b ⨯=,则()ij m n C AB c ⨯==, 其中12121122(,,,)j j ij i i is i j i j is sj sj b b c a a a a b a b a b b ⎛⎫ ⎪ ⎪==+++ ⎪ ⎪ ⎪⎝⎭注:矩阵乘法不满足:交换律、消去律, 即公式00AB BAAB A ==⇒=或B=0不成立.a. 分块对角阵相乘:11112222,A B A B A B ⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭⇒11112222A B AB A B ⎛⎫= ⎪⎝⎭,1122nn n A A A ⎛⎫= ⎪⎝⎭b. 用对角矩阵Λ○左乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的○行向量;1111211111121122122222122222121200000n n n n m m m mn m m m m m mn a b b b a b a b a b a b b b a b a b a b B a b b b a b a b a b ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥Λ==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦c. 用对角矩阵Λ○右乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的○列向量.1112111112121212222121222212112200000n m n n m n m m mn m m m m mn b b b a a b a b a b b b b a a b a b a b B b b b a a b a b a b ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥Λ==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦d. 两个同阶对角矩阵相乘只用把对角线上的对应元素相乘. ④ 方阵的幂的性质:mnm nA A A+=, ()()m n mn A A =⑤ 矩阵的转置:把矩阵A 的行换成同序数的列得到的新矩阵,叫做A 的转置矩阵,记作TA .a. 对称矩阵和反对称矩阵: A 是对称矩阵TA A =.A 是反对称矩阵T A A =-.b. 分块矩阵的转置矩阵:TTT TT A B A C C D BD ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭⑥ 伴随矩阵: ()1121112222*12n Tn ijnnnn A A A A A A A A A A A ⎛⎫ ⎪ ⎪== ⎪ ⎪⎝⎭,ij A 为A 中各个元素的代数余子式. **AA A A A E ==,1*n A A-=, 11AA --=.分块对角阵的伴随矩阵:***A BA B AB ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭ *(1)(1)mn mn A A B B B A**⎛⎫-⎛⎫= ⎪ ⎪⎪-⎝⎭⎝⎭2. 逆矩阵的求法 方阵A 可逆0A ≠.①伴随矩阵法 1A A A *-= ○注: 1a b d b c d c a ad bc --⎛⎫⎛⎫= ⎪ ⎪--⎝⎭⎝⎭1 主换位副变号 ② 初等变换法 1()()A E E A -−−−−→初等行变换例 求122212221⎡⎤⎢⎥-⎢⎥⎢⎥-⎣⎦的逆矩阵. 解32322121232313213219221210203312210012210021212010036210012033221001033011009221122100999212010999221001999r r r r r r r r r r r r r r ------+⎡⎤--⎢⎥⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-→---→-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦-⎢⎥⎢⎥⎣⎦⎡⎤⎢⎥⎢⎥⎢⎥→-⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦1122999122212,212999221221999-⎡⎤⎢⎥⎡⎤⎢⎥⎢⎥⎢⎥-=-⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎢⎥-⎢⎥⎣⎦所以③ 分块矩阵的逆矩阵:111A A B B ---⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭ 111A B B A---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭1111A C A A CB O B OB ----⎛⎫-⎛⎫=⎪ ⎪⎝⎭⎝⎭ 1111A O A O CB B CA B ----⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭④ 1231111213a a a a a a -⎛⎫⎛⎫⎪ ⎪=⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭, 3211111213a a a a a a -⎛⎫⎛⎫⎪⎪=⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⑤ 配方法或者待定系数法 (逆矩阵的定义1A B B A E A B -==⇒=)例 设方阵A 满足矩阵方程220E --=A A , 证明A 及2E +A 都可逆, 并求1-A 及()12E -+A . 解 由220E --=A A 得()12E E -=A A , 故A 可逆, 且()112E -=-A A . 由220E --=A A 也可得(2)(3)4E E E +-=-A A 或1(2)(3)4E E E ⎡⎤+--=⎢⎥⎣⎦A A , 故2E +A 可逆, 且()12E -+A 1(3)4E =--A . 3.可画出一条阶梯线,线的下方全为0;每个台阶只有一行,台阶数即是非零行的行数,阶梯线的竖 线后面的第一个元素非零. 当非零行的第一个非零元为1,且这些非零元所在列的其他元素都是0时, 4. 初等变换与初等矩阵 对换变换、倍乘变换、倍加(或消法)变换☻矩阵的初等变换和初等矩阵的关系:① 对A 施行一次初等○行变换得到的矩阵,等于用相应的初等矩阵○左乘A ; ② 对A 施行一次初等○列变换得到的矩阵,等于用相应的初等矩阵○右乘A .注意: 初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵.5.关于A矩阵秩的描述:①、()=r A r,A中有r阶子式不为0,1+r阶子式(存在的话) 全部为0;②、()<r A r,A的r阶子式全部为0;③、()≥r A r,A中存在r阶子式不为0;☻矩阵的秩的性质:①()A O r A≠⇔≥1; ()0A O r A=⇔=;0≤()m nr A⨯≤min(,)m n②()()()T Tr A r A r A A==③()()r kA r A k=≠其中0④()(),,()m n n sr A r B nA B r ABB Ax⨯⨯+≤⎧=⇒⎨=⎩若若0的列向量全部是的解⑤()r AB≤{}min(),()r A r B⑥若P、Q可逆,则()()()()r A r PA r AQ r PAQ===;即:可逆矩阵不影响矩阵的秩.⑦若()()()m nAxr AB r Br A nAB O B OAAB AC B Cο⨯⇔=⎧⎪=⎧⎪=⎨⎪⇒=⇒=⎧⎨⎪⎨⎪⎪=⇒=⎩⎩⎩只有零解在矩阵乘法中有左消去律;若()()()n sr AB r Br B nB⨯=⎧=⇒⎨⎩在矩阵乘法中有右消去律.⑧()r rE O E Or A r A AO O O O⎛⎫⎛⎫=⇒ ⎪ ⎪⎝⎭⎝⎭若与唯一的等价,称为矩阵的等价标准型.⑨()r A B±≤()()r A r B+, {}max(),()r A r B≤(,)r A B≤()()r A r B+⑩()()A O O Ar r A r BO B B O⎛⎫⎛⎫==+⎪ ⎪⎝⎭⎝⎭, ()()A Cr r A r BO B⎛⎫≠+⎪⎝⎭☻求矩阵的秩:定义法和行阶梯形阵方法6 矩阵方程的解法(0A ≠):设法化成AX B XA B ==(I) 或 (II)A B E X −−−−→初等行变换(I)的解法:构造()() A E B X ⎛⎫⎛⎫ ⎪ ⎪−−−−→ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭初等列变换(II)的解法:构造T T T TA XB X X(II)的解法:将等式两边转置化为, 用(I)的方法求出,再转置得第三部分 线性方程组1. 向量组的线性表示2. 向量组的线性相关性3. 向量组的秩4. 向量空间5.线性方程组的解的判定6. 线性方程组的解的结构(通解)(1)齐次线性方程组的解的结构(基础解系与通解的关系) (2)非齐次线性方程组的解的结构(通解) 1.线性表示:对于给定向量组12,,,,n βααα,若存在一组数12,,,n k k k 使得1122n n k k k βααα=+++,则称β是12,,,n ααα的线性组合,或称称β可由12,,,n ααα的线性表示.线性表示的判别定理:β可由12,,,n ααα的线性表示由n 个未知数m 个方程的方程组构成n 元线性方程:①、11112211211222221122n n n n m m nm n na x a x a xb a x a x a x b a x a x a x b +++= ⎧⎪+++= ⎪⎨⎪⎪+++=⎩有解②、1112111212222212⎛⎫⎛⎫⎛⎫⎪⎪ ⎪ ⎪⎪ ⎪=⇔= ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭n n m m mn m m a a a x b a a a x b Ax a a a x b β③、()1212n n x x aa a x β⎛⎫⎪ ⎪= ⎪⎪⎝⎭(全部按列分块,其中12n b b b β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭); ④、1122n n a x a x a x β+++=(线性表出)⑤、有解的充要条件:()(,)r A r A n β=≤(n 为未知数的个数或维数)2. 设,,m n n s A B ⨯⨯A 的列向量为12,,,n ααα⋅⋅⋅,B 的列向量为12,,,s βββ⋅⋅⋅,则m sAB C ⨯=⇔()()1112121222121212,,,,,,s s n s n n ns b b b b b b c c c b b b ααα⎛⎫⎪ ⎪⋅⋅⋅= ⎪⎪⎝⎭⇔i i A c β= ,(,,)i s =1,2⇔i β为i Ax c =的解⇔()()()121212,,,,,,,,,s s s A A A A c c c ββββββ⋅⋅⋅=⋅⋅⋅=⇔12,,,s c c c 可由12,,,n ααα⋅⋅⋅线性表示.即:C 的列向量能由A 的列向量线性表示,B 为系数矩阵. 同理:C 的行向量能由B 的行向量线性表示,A 为系数矩阵.即: 1112111212222212n n n n mn n m a a a c a a a c a a a c βββ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪⎪⎪ ⎪= ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⇔111122*********22211222n n m m mn ma a a c a a a c a a a c βββββββββ+++=⎧⎪+++=⎪⎨⎪⎪+++=⎩3.线性相关性判别方法:法1法2法3推论♣线性相关性判别法(归纳)♣ 线性相关性的性质① 零向量是任何向量的线性组合,零向量与任何同维实向量正交. ② 单个零向量线性相关;单个非零向量线性无关.③ 部分相关,整体必相关;整体无关,部分必无关. (向量个数变动)④ 原向量组无关,接长向量组无关;接长向量组相关,原向量组相关. (向量维数变动) ⑤ 两个向量线性相关⇔对应元素成比例;两两正交的非零向量组线性无关. ⑥ 向量组12,,,n ααα⋅⋅⋅中任一向量i α(1≤i ≤)n 都是此向量组的线性组合.⑦ 若12,,,n ααα⋅⋅⋅线性无关,而12,,,,n αααβ⋅⋅⋅线性相关,则β可由12,,,n ααα⋅⋅⋅线性表示,且表示法唯一.4. 最大无关组相关知识向量组12,,,n ααα的极大无关组所含向量的个数,称为这个向量组的秩.记作12(,,,)n r αααA 经过有限次初等变换化为B .12,,,n ααα⋅⋅⋅和12,,,n βββ⋅⋅⋅可以相互线性表示. 记作:()()1212,,,,,,n n αααβββ⋅⋅⋅=⋅⋅⋅ ① 矩阵的行向量组的秩=列向量组的秩=矩阵的秩. 行阶梯形矩阵的秩等于它的非零行的个数.② 矩阵的初等变换不改变矩阵的秩,且不改变行(列)向量间的线性关系③ 向量组12,,,s βββ⋅⋅⋅可由向量组12,,,n ααα⋅⋅⋅线性表示,且s n >,则12,,,s βββ⋅⋅⋅线性相关.向量组12,,,s βββ⋅⋅⋅线性无关,且可由12,,,n ααα⋅⋅⋅线性表示,则s ≤n .④ 向量组12,,,s βββ⋅⋅⋅可由向量组12,,,n ααα⋅⋅⋅线性表示,且12(,,,)s r βββ⋅⋅⋅12(,,,)n r ααα=⋅⋅⋅,则两向量组等价; ⑤ 任一向量组和它的极大无关组等价.向量组的任意两个极大无关组等价. ⑥ 向量组的极大无关组不唯一,但极大无关组所含向量个数唯一确定. ⑦ 若两个线性无关的向量组等价,则它们包含的向量个数相等. ⑧ 设A 是m n ⨯矩阵,若()r A m =,A 的行向量线性无关; 5. 线性方程组理论Ax β=1122n n x x x αααβ+++=111211*********2,,n n m m mn n m a a a x b a a a x b A x a a a x b β⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 其中 12,,2,,j j j mj j n αααα⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪⎝⎭1(1)解得判别定理(2)线性方程组解的性质:1212121211221212(1),,(2),,(3),,,,,,,,(4),,(5),,(6k k k k Ax Ax k k Ax k Ax Ax Ax Ax Ax ηηοηηηοηηηηολλλληληληγβηογηβηηβηηο=+⎫⎪=⎪⎬=⎪⎪++⎭==+==-= 是的解也是它的解 是的解对任意也是它的解齐次方程组 是的解对任意个常数 也是它的解 是的解是其导出组的解是的解 是的两个解是其导出组的解211212112212112212),(7),,,,100k k k kk k k Ax Ax Ax Ax Ax ηβηηηοηηηβληληληβλλλληληληλλλ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪=⇔-=⎪=⎪⎪+++=⇔+++=⎪⎪+++=⇔+++=⎩ 是的解则也是它的解是其导出组的解 是的解则也是的解 是的解(3) 判断12,,,s ηηη是Ax ο=的基础解系的条件:① 12,,,s ηηη线性无关; ② 12,,,s ηηη都是Ax ο=的解;③ ()s n r A =-=每个解向量中自由未知量的个数.(4) 求非齐次线性方程组Ax = b 的通解的步骤12112(1()(2)()()(3)(4)10,,...,(5)A b r A b r A r n n r Ax b Ax Ax b x k k ααααααα==<-====++0n-r 0) 将增广矩阵通过初等行变换化为;当时,把不是首非零元所在列对 应的个变量作为自由元;令所有自由元为零,求得的一个;不计最后一列,分别令一个自由元为,其余自由元 为零,得到的{};写出非齐次线性方程组的阶梯形矩阵特解基础 解系 通解 212...,,...,n r n rn r k k k k α---++其中为任意常数.例 求下述方程组的解123451234523457,3232,22623x x x x x x x x x x x x x x ++++=⎧⎪+++-=-⎨⎪+++=⎩解 19100222111117123(,)3121320113220212623001000A A b ⎛⎫-- ⎪⎛⎫ ⎪⎪⎪==--−−→ ⎪⎪⎪ ⎪⎝⎭ ⎪⎪⎝⎭, 由于()()25r A r A ==<,知线性方程组有无穷多解.原方程组等价于方程组1354234519222123322x x x x x x x x ⎧=----⎪⎪⎨⎪=---+⎪⎩,令3451000,1,0.001x x x ⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭求得等价方程组对应的奇次方程组的基础解系 12312021213,,.100010001ξξξ-⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪--- ⎪ ⎪ ⎪⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭求特解: 令3450x x x ===,得12923,.22x x =-=故特解为92232.000η*-⎛⎫⎪- ⎪ ⎪= ⎪⎪ ⎪⎝⎭所以方程组的通解为 1231202921213232100000000010x k k k --⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪--- ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪=+++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,(123,,k k k 为任意常数).(5)其他性质一个齐次线性方程组的基础解系不唯一. √ 若η*是Ax β=的一个解,1,,,s ξξξ是Ax ο=的一个解⇒1,,,,s ξξξη*线性无关√ Ax ο=与Bx ο=同解(,A B 列向量个数相同)⇔()()A r r A r B B ⎛⎫==⎪⎝⎭, 且有结果: ① 它们的极大无关组相对应,从而秩相等; ② 它们对应的部分组有一样的线性相关性; ③ 它们有相同的内在线性关系.√ 矩阵m n A ⨯与l n B ⨯的行向量组等价⇔齐次方程组Ax ο=与Bx ο=同解⇔PA B =(左乘可逆矩阵P ); 矩阵m n A ⨯与l n B ⨯的列向量组等价⇔AQ B =(右乘可逆矩阵Q ).第四部分 方阵的特征值及特征向量1. 施密特正交化过程2. 特征值、特征向量的性质及计算3. 矩阵的相似对角化,尤其是对称阵的相似对角化1.①n 个n 维线性无关的向量,两两正交,每个向量长度为1. ②1(,)ni i i a b αβ===∑③(,)0αβ=. 记为:αβ⊥④21ni i a α====∑ ⑤(,1ααα==. 即长度为1的向量.2. 内积的性质: ① 正定性:(,)0,(,)0αααααο≥=⇔=且 ② 对称性:(,)(,)αββα=③ 线性性:1212(,)(,)(,)ααβαβαβ+=+ (,)(,)k k αβαβ=3. ① 设A 是一个n 阶方阵, 若存在数λ和n 维非零列向量x , 使得 Ax x λ=,则称λ是方阵A 的一个特征值,x为方阵A 的对应于特征值λ的一个特征向量. ②0E A λ-=(或0A E λ-=).③()E A λϕλ-=(或()A E λϕλ-=).④ ()ϕλ是矩阵A 的特征多项式⇒()A O ϕ= ⑤ 12n A λλλ= 1ni A λ=∑tr ,A tr 称为矩阵A ⑥ 上三角阵、下三角阵、对角阵的特征值就是主对角线上的n 各元素.⑦ 若0A =,则λ=0为A 的特征值,且Ax ο=的基础解系即为属于λ=0的线性无关的特征向量.⑧ ()1r A =⇔A 一定可分解为A =()1212,,,n n a a b b b a ⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭、21122()n n A a b a b a b A =+++,从而A 的特征值为:11122n n A a b a b a b λ==+++tr , 23n λλλ====0.○注()12,,,Tn a a a 为A 各行的公比,()12,,,n b b b 为A 各列的公比.⑨ 若A 的全部特征值12,,,n λλλ,()f A 是多项式,则:① 若A 满足()f A O =⇒A 的任何一个特征值必满足()i f λ=0 ②()f A 的全部特征值为12(),(),,()n f f f λλλ;12()()()()n f A f f f λλλ=.⑩ A 与TA 有相同的特征值,但特征向量不一定相同. 4. 特征值与特征向量的求法(1) 写出矩阵A 的特征方程0A E λ-=,求出特征值i λ. (2) 根据()0i A E x λ-=得到 A 对应于特征值i λ的特征向量. 设()0i A E x λ-=的基础解系为 12,,,in r ξξξ- 其中()i i r r A E λ=-.则A 对应于特征值i λ的全部特征向量为1122,i i n r n r k k k ξξξ--+++其中12,,,i n r k k k -为任意不全为零的数.例 求211020413A -⎛⎫⎪= ⎪ ⎪-⎝⎭的特征值和全部特征向量.解 第一步:写出矩阵A 的特征方程,求出特征值.221121020(2)(2)(1)043413A E λλλλλλλλλ-----=-=-=--+=----解得特征值为1231, 2.λλλ=-==第二步:对每个特征值λ代数齐次线性方程组()0A E x λ-=,求其非零解,即对应于特征值λ的全部特征向量.当1λ=- 时,齐次线性方程组为()0A E x +=,系数矩阵111101030010414000A E --⎛⎫⎛⎫ ⎪ ⎪+=→ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭得基础解系:1101P ⎛⎫⎪= ⎪ ⎪⎝⎭,故对应于特征值1λ=-的全部特征向量为11(0)k P k ≠. 当2λ= 时,齐次线性方程组为(2)0A E x -=,系数矩阵4114112000000411000A E ---⎛⎫⎛⎫ ⎪ ⎪-=→ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭得基础解系:2011P ⎛⎫ ⎪= ⎪ ⎪-⎝⎭,3104P ⎛⎫⎪= ⎪ ⎪⎝⎭.故对应于特征值2λ=的全部特征向量为 2233k P k P +, 其中23,k k 不全为零.5. ①1P AP B -= (P 为可逆矩阵)②1P AP B -= (P 为正交矩阵)③A 与对角阵Λ相似.(称Λ是A 6. 相似矩阵的性质: ①E A E B λλ-=-,从而,A B 有相同的特征值,但特征向量不一定相同.○注α是A 关于0λ的特征向量,1P α-是B 关于0λ的特征向量. ②A B =tr tr③A B = 从而,A B 同时可逆或不可逆 ④ ()()r A r B =⑤若A 与B 相似, 则A 的多项式()f A 与B 的多项式()f A 相似. 7. 矩阵对角化的判定方法① n 阶矩阵A 可对角化 (即相似于对角阵) 的充分必要条件是A 有n 个线性无关的特征向量.这时,P 为A 的特征向量拼成的矩阵,1P AP -为对角阵,主对角线上的元素为A 的特征值.设i α为对应于i λ的线性无关的特征向量,则有:121n P AP λλλ-⎛⎫⎪⎪= ⎪ ⎪⎝⎭.② A 可相似对角化⇔()i i n r E A k λ--=,其中i k 为i λ的重数⇔A 恰有n 个线性无关的特征向量.○注:当iλ=0为A 的重的特征值时,A 可相似对角化⇔i λ的重数()n r A =-=Ax ο=基础解系的个数. ③ 若n 阶矩阵A 有n 个互异的特征值⇒A 可相似对角化. 8. 实对称矩阵的性质:① 特征值全是实数,特征向量是实向量; ② 不同特征值对应的特征向量必定正交;○注:对于普通方阵,不同特征值对应的特征向量线性无关; ③ 一定有n 个线性无关的特征向量. 若A 有重的特征值,该特征值i λ的重数=()i n r E A λ--; ④ 必可用正交矩阵相似对角化,即:任一实二次型可经正交变换化为标准形; ⑤ 与对角矩阵合同,即:任一实二次型可经可逆线性变换化为标准形; ⑥ 两个实对称矩阵相似⇔有相同的特征值.9. 正交矩阵 TAA E =正交矩阵的性质:① 1T A A -=;② T TAA A A E ==;③ 正交阵的行列式等于1或-1;④ A 是正交阵,则TA ,1A -也是正交阵; ⑤ 两个正交阵之积仍是正交阵;⑥ A 的行(列)向量都是单位正交向量组.10.例 实对称阵120222023A -⎛⎫⎪=-- ⎪ ⎪-⎝⎭,求正交阵Q ,使得AQ Q 1-为对角阵.解 120222(1)(2)(5)0023A E λλλλλλλ---=---=-+--=--所以A 的特征值为11λ=-,22λ=,35λ=,当11λ=-时,解()0A E x +=,得基础解系为1(2,2,1)T x = 当22λ=时,解(2)0A E x -=,得基础解系为2(2,1,2)T x =-- 当35λ=时,解(5)0A E x -=,得基础解系为3(1,2,2)Tx =- 令111221(,,)333T x y x ==222212(,,)333T x y x ==--333122(,,)333T x y x ==-令123221333212(,,)333122333Q y y y ⎛⎫ ⎪ ⎪⎪==-- ⎪ ⎪ ⎪- ⎪⎝⎭,则⎪⎪⎪⎭⎫ ⎝⎛==-1000500021AQ Q AQ Q T11.123,,ααα线性无关,112122111313233121122(,)(,)(,)(,)(,)(,)βααββαβββαβαββαββββββ=⎧⎪⎪⎪=-⎨⎪⎪=--⎪⎩正交化单位化:111βηβ=222βηβ= 333βηβ= 技巧:取正交的基础解系,跳过施密特正交化。

线性代数(同济大学第五版)向量讲义、例题

线性代数(同济大学第五版)向量讲义、例题

第三章 向量§1 向量的概念及运算一、n 维向量的概念定义1:n 个数n a a a ,,,21 组成的有序数组称为n 维向量,其中),2,1(n i a i =称为n 维向量的第i 个分量。

分量是实数的向量称为n 维实向量,分量是复数的向量称为n 维复向量。

n 维向量可写成一行,称为行向量;即),,,(21n T a a a =α.也可写成一列,称为列向量,即⎪⎪⎪⎪⎭⎫ ⎝⎛=n a a a 21α.用小写的黑体希腊字母 ,,,γβα来代表向量。

每一个分量都是0的向量称为n 维零向量。

记为O ,即)0,,0,0( =O向量),,,(21n a a a --- 称为向量),,,(21n a a a ---= α的负向量,记为-α。

在n 维向量中,两个向量),,,(21n a a a =α,),,,(21n b b b =β相等,是指它们的各个分量对应相等,即),2,1(n i b a i i ==这时,记为βα=.如干个同维数的列向量(或同维数的行向量)所组成的集合叫做向量组.二、n 维向量的线性运算定义2:设向量组),,,(21n a a a =α,),,,(21n b b b =β,则βα+=),,,(2211n n b a b a b a +++ 称为向量βα,的和,记为βαγ+=.加法满足下列运算规律: 1)交换律:αββα+=+2)结合律:γβαγβα++=++)()(3)存在零向量O ,对一切向量α,使ααα=+=+O O 4)对第一向量α,存在-α,使O =-+)(αα 向量减法:)(βαβα-+=- 定义3:向量),,,(21n a a a =α与数k 的数量乘积为向量),,,(21n k k k ααα ,记为αk .数量乘法满足的运算规律。

1)结合律:αα)()(kl l k = 2)分配律:βαβαk k k +=+)( 3)分配律:αααl k l k +=+)( 4)对任何向量α,恒有αα=⋅1§2向量组的线性关系一、线性表示出定义1:若m ααα ,,21是m 个n 维向量,m k k k ,,,21 是一组数,则向量αααm k k k +++ 2211称为这m 个向量的线性组合.对于n 维向量m ααα ,,21及β,若存在一组数m k k k ,,,21 使得m m k k k αααβ+++= 2211那么β称为m ααα ,,21的线性组合,或称β可由m ααα ,,21线性表示.定理1:如果有两个向量组Ⅰ: m ααα ,,21、Ⅱ: n βββ ,,21,向量组Ⅰ中的每个向量均可由向量组Ⅱ线性表示,向量组Ⅱ中的每个向量也均可由向量组Ⅰ线性表示,则称两个向量组等价. 二、线性相关与线性无关定义2:设m ααα ,,21是m 个n 维向量,如果存在不全为零的数m k k k ,,,21 使得O k k k m m =+++ααα 2211那么m ααα ,,21称为线性相关,否则称为线性无关.所谓线性无关,即只有021====m k k k 时,才有O k k k m m =+++ααα 2211.三、向量组线性关系的判定1).仅含一个零向量的向量总是线性相关的,与此相反,任意一个非零向量总是线性无关的.任何含有零向量的向量组线性相关.2).向量组m ααα ,,21线性相关的充分必要条件是它构成的矩阵),,(21m A ααα =的秩小于向量个数m ;向量组线性无关的充分必要条件是m A R =)((n 个n 维向量线性无关的充分必要条件是以n 个向量作为行的n 阶行列式0||≠A ).例 研究下列向量组是线性相关还是线性无关(1) ⎪⎪⎭⎫ ⎝⎛-=3211α,⎪⎪⎭⎫ ⎝⎛-=5202α,⎪⎪⎭⎫⎝⎛-=2013α(2) (),1,1,1,21T--=β(),0,2,3,02T -=β()T 1,3,4,23--=β分析 给出一个n 维向量组m ααα ,,21,就有一个相应的矩阵),,(21m A ααα =,首先求出)(A R ,若m A R =)(,则m ααα ,,21线性无关,若m A R <)(,则m ααα ,,21线性相关.解(1) 因为⎪⎪⎭⎫ ⎝⎛-=3211α,⎪⎪⎭⎫ ⎝⎛-=5202α,⎪⎪⎭⎫⎝⎛-=2013α得到矩阵 ⎪⎪⎭⎫ ⎝⎛---==253022101),,(321αααA 因为⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛---=000220101~253022101A 所以32)(<=A R故向量组321,,ααα线性相关. (2) 因为(),1,1,1,21T--=β(),0,2,3,02T -=β()T 1,3,4,23--=β得到矩阵⎪⎪⎪⎭⎫⎝⎛-----==101321431202),,(321βββB 因为⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-----=000000110202~101321431202B 所以32)(<=B R故向量组321,,βββ线性相关. 推论1:n 个n 维向量),,,(112111n a a a =α;),,,(222212n a a a =α;……),,,(21nn n n n a a a =α线性相关⇔行列式n m ij a A ⨯=)det(||=0.证:必要性:设m ααα ,,21线性相关,当n=1时,结论显然成立。

(完整版)线性代数第五章特征值、特征向量试题及答案

(完整版)线性代数第五章特征值、特征向量试题及答案

第五章 特征值和特征向量一、特征值与特征向量定义1:设A 是n 阶矩阵,λ为一个数,若存在非零向量α,使λαα=A ,则称数λ为矩阵A 的特征值,非零向量α为矩阵A 的对应于特征值λ的特征向量。

定义2:()E A f λλ-=,称为矩阵A 的特征多项式,)(λf =0E A λ-=,称为矩阵A 的特征方程,特征方程的根称为矩阵A 的特征根 矩阵E A λ-称为矩阵A 的特征矩阵齐次方程组(0)=-X E A λ称为矩阵A 的特征方程组。

性质1:对等式λαα=A 作恒等变形,得(0)=-αλE A ,于是特征向量α是齐次方程组(0)=-X E A λ的非零解向量,由齐次线性方程组有非零解的充要条件知其系数行列式为零,即0=-E A λ,说明A 的特征值λ为0E A λ-=的根。

由此得到对特征向量和特征值的另一种认识:(1)λ是A 的特征值⇔0=-E A λ,即(λE -A )不可逆.(2)α是属于λ的特征向量⇔α是齐次方程组(0)=-X E A λ的非零解.计算特征值和特征向量的具体步骤为: (1)计算A 的特征多项式,()E A f λλ-=(2)求特征方程)(λf =0E A λ-=的全部根,他们就是A 的全部特征值;(3)然后对每个特征值λ,求齐次方程组(0)=-X E A λ的非零解,即属于λ的特征向量.性质2:n 阶矩阵A 的相异特征值m λλλ 21,所对应的特征向量21,ξξ……ξ线性无关性质3:设λ1,λ2,…,λn 是A 的全体特征值,则从特征多项式的结构可得到:(1)λ1+λ2+…+λ n =tr(A )( A 的迹数,即主对角线上元素之和). (2)λ1λ2…λn =|A |.性质4:如果λ是A 的特征值,则(1)f(λ)是A 的多项式f(A )的特征值.(2)如果A 可逆,则1/λ是A -1的特征值; |A |/λ是A *的特征值. 即: 如果A 的特征值是λ1,λ2,…,λn ,则 (1)f(A )的特征值是f(λ1),f(λ2),…,f(λn ).(2)如果A 可逆,则A -1的特征值是1/λ1,1/λ2,…,1/λn ; 因为A AA =*,A *的特征值是|A |/λ1,|A |/λ2,…,|A |/λn .性质5:如果α是A 的特征向量,特征值为λ,即λαα=A 则(1)α也是A 的任何多项式f(A )的特征向量,特征值为f(λ);(2)如果A 可逆,则α也是A -1的特征向量,特征值为1/λ;α也是A *的特征向量,特征值为|A |/λ 。

线性代数(同济大学第五版)第五章

线性代数(同济大学第五版)第五章

十、化二次型为标准形
定理1: 任给可逆矩阵C, 令B=CTAC(A与B为合同 矩阵), 如果A为对称矩阵, 则B也为对称矩阵. 说明1: 若A与B是合同矩阵,则: 1.正(负,零) 特征值的个数相同,2.具有相同的秩. 说明2: 二次型 f 经可逆变换 x=Cy 后, 其秩不变, 但 f 的矩阵由A变为B=CTAC; 用正交变换化二次型为标准形的具体步骤: 1. 将二次型表示成矩阵形式 f = xTAx, 求出A; 2. 求出A的所有特征值1, 2, ·, n ; · · 3. 求出对应特征值i 的正交单位化的特征向量组, 从而有正交规范向量组 1, 2, ·, n ; · · 4. 记P=(1, 2, ·, n ), 作正交变换x=Py, 则得 f 的 · · 标准形: f = 1y12+2y22+·+nyn2 . · ·
十二、正定二次型
如果对任意的 x 0, 都有 f(x)>0, 则称 f 为正定 二次型, 并称对称矩阵A为正定矩阵; 如果对任意的 x 0, 都有 f(x)<0, 则称 f 为负定 二次型, 并称对称矩阵A为负定矩阵. 概念:正惯性指数,负惯性指数 推论: 对称矩阵A为正定的充分必要条件是A的特 征值全为正. 定理3(霍尔维茨定理): (1)对称矩阵A为正定的充 分必要条件是A的各阶主子式为正, 即
七、相似矩阵
P-1AP = B 定理1: 若n阶矩阵A与B相似, 则A与B的特征多项 式相同, 从而A与B的特征值亦相同. 推论: 若n阶方阵A与对角阵=diag(1, 2,·, n ) · · 相似, 则1, 2,·, n 既是A的n个特征值. · · 相似矩阵的性质: 若A与B相似, 则Am与Bm相似(m为正整数). (A)与 (B) 相似 当矩阵A与对角阵=diag(1, 2,·, n )相似时, · · 则 (A)= P()P-1. 而

线性代数(同济大学第五版)矩阵的特征值与特征向量讲义、例题

线性代数(同济大学第五版)矩阵的特征值与特征向量讲义、例题

第五章 矩阵的特征值与特征向量§1矩阵的特征值与特征向量一、矩阵的特征值与特征向量定义1:设A 是n 阶方阵,如果有数λ和n 维非零列向量x 使得x Ax λ=,则称数λ为A 的特征值,非零向量x 称为A 的对于特征值λ的特征向量.由x Ax λ=得0)(=-x E A λ,此方程有非零解的充分必要条件是系数行列式0=-E A λ,此式称为A 的特征方程,其左端是关于λ的n 次多项式,记作)(λf ,称为方阵A 特征多项式.设n 阶方阵)(ij a A =的特征值为n λλλ,,,21 ,由特征方程的根与系数之间的关系,易知:nn n a a a i +++=+++ 221121)(λλλA ii n =λλλ 21)(例1 设3阶矩阵A 的特征值为2,3,λ.若行列式482-=A ,求λ. 解:482-=A 64823-=∴-=∴A Aλ⨯⨯=32A 又 1-=∴λ例2 设3阶矩阵A 的特征值互不相同,若行列式0=A , 求矩阵A 的秩.解:因为0=A 所以A 的特征值中有一个为0,其余的均不为零.所以A 与)0,,(21λλdiag 相似.所以A 的秩为2.定理1对应于方阵A 的特征值λ的特征向量t ξξξ,,,21 ,t ξξξ,,,21 的任意非零线性组合仍是A 对应于特征值λ的特征向量.证明 设存在一组不全为零的数t k k k ,,,21 且存在一个非零的线性组合为t t k k k ξξξ+++ 2211,因为t ξξξ,,,21 为对应于方阵A 的特征值λ的特征向量。

则有),,2,1(1t i k Ak i i i ==ξλξ所以)()(22112211t t t t k k k k k k A ξξξλξξξ+++=+++ 所以t t k k k ξξξ+++ 2211是A 对应于特征值λ的特征向量. 求n 阶方阵A 的特征值与特征向量的方法:第一步:写出矩阵A 的特征多项式,即写出行列式E A λ-.第二步:解出特征方程0=-E A λ的根n λλλ,,,21 就是矩阵A 的特征值.第三步:解齐次线性方程组0)(=-x E A i λ,它的非零解都是特征值i λ的特征向量.例3 求矩阵⎪⎪⎪⎭⎫ ⎝⎛--=201034011A 的特征值和特征向量.解 A 的特征多项式为2)1)(2(201034011λλλλλλ--=-----=-E A 所以,A 的特征值为1,2321===λλλ. 当21=λ时,解方程组0)2(=-x E A .由⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--=-000010001~2010340112E A ,得基础解系⎪⎪⎪⎭⎫ ⎝⎛=1001p ,所以特征值21=λ的全部特征向量为11p k ,其中1k 为任意非零数.当132==λλ时,解方程组0)(=-x E A .由⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--=-000210101~101024012E A ,得基础解系⎪⎪⎪⎭⎫ ⎝⎛--=1212p ,所以特征值132==λλ的全部特征向量为22p k ,其中2k 为任意非零数. 二、特征值与特征向量的性质与定理性质1 n 阶方阵A 可逆的充分必要条件是矩阵A 的所有特征值均非零. 此性质读者可利用A n =λλλ 21可证明.定理 2 若21,λλ是n 阶方阵A 的两互不相等的特征值,对应的特征向量分别为21,p p ,则21,p p 线性无关.证明 假设设有一组数21,x x 使得02211=+p x p x (1)成立. 以2λ乘等式(1)两端,得0222121=+p x p x λλ (2) 以矩阵A 左乘式(1)两端,得0222111=+p x p x λλ (3) (3)式减(2)式得0)(1211=-p x λλ 因为21,λλ不相等,01≠p ,所以01=x .因此(1)式变成022=p x . 因为02≠p ,所以只有02=x . 这就证明了21,p p 线性无关.性质2 设)(A f 是方阵A 的特征多项式,若λ是A 的特征值.对应于λ的特征向量为ξ,则)(λf 是)(A f 的特征值,而ξ是)(A f 的对应于)(λf 的特征向量,而且若O A f =)(,则A 的特征值λ满足0)(=λf ,但要注意,反过来0)(=λf 的根未必都是A 的特征值.例4 若λ是可逆方阵A 的特征值,ξ是A 的对应于特征值λ的特征向量,证明:1-λ是1-A 的特征值,ξ是1-A 对应于特征值1-λ的特征向量,证明 λ 是可逆方阵A 的特征值,ξ是A 的对应于特征值λ的特征向量λξξ=∴A ξξλ11--=∴Aξξλ11--=∴A A A ξξλ*1A A =∴-1-∴λ是1-A 的特征值,ξ是1-A 对应于特征值1-λ的特征向量, 1-λA 是*A 的特征值,ξ是*A 对应于特征值1-λA 的特征向量.例5 设3阶矩阵A 的特征值1,2,2,求E A --14.解:A 的特征值为1,2,2,,所以1-A 的特征值为1,12,12, 所以E A--14的特征值为4113⨯-=,41211⨯-=,41211⨯-=所以311341=⨯⨯=--E A .例6 若21,λλ是n 阶方阵A 的两互不相等的特征值,对应的特征向量分别为21,p p ,证明21p p +一定不是A 的特征向量.证明 假设21p p +是矩阵A 的特征向量,对应的特征值为.λ根据特征值定义可知:)()(2121p p p p A +=+λ …………………(1) 21,λλ 又是n 阶方阵A 的特征值,对应的特征向量分别为21,p p .,111p Ap λ=∴ 222p Ap λ= (2)将(2)带入(1)式整理得:0)()(2211=-+-p p λλλλ因为21,λλ是n 阶方阵A 的两互不相等的特征值,对应的特征向量分别为21,p p 线性无关.所以21λλλ==.与21,λλ是n 阶方阵A 的两互不相等的特征值矛盾. 所以假设不成立.例7 若A 为正交矩阵,则1±=A ,证明,当1-=A 时,A 必有特征值1-;当1=A 时,且A 为奇数阶时,则A 必有特征值1.证明 当1-=A 时.TT T A E A A E A AA A E A +=+=+=+)(A E A E T +-=+-=,所以 .0=+A E `所以1-是A 的一个特征值反证法:因为正交阵特征值的行列式的值为1,且复特征值成对出现,所以若1不是A 的特征值,那么A 的特征值只有-1,以及成对出现的复特征值。

线性代数同济大学第五版5-1

线性代数同济大学第五版5-1
上页 下页
再把它们单位化,取
1 1 1 5 b1 2 , b2 1 , b3 2 0 3 1 1 1
1 1 b1 e1 2 , 6 b1 1
b3 e3 b3
1 1 b2 e2 1 , 3 b2 1
1 1 0 . 2 1
e1 , e2 , e3即合所求.
上页 下页
1 例3 已知 a 1 1 , 求一组非零向量a 2 , a 3 , 使 a 1 , a 2 , 1 a 3 两两正交.


eiT a = kieiTei = ki ,
ki = eiT a = [a, ei].
上页 下页
例1 已知三维向量空间中两个向量
1 1 1, 1
1 2 2 1
正交,试求 3 使 1 , 2 , 3 构成三维空间的一个正交 基. 解 设 3 x1 , x2 , x3 T 0, 且分别与 1 , 2正交. 则有
的 一个规范正交基.
上页
下页
例2:
1 1 4 设a1 2 , a2 3 , a3 1, 试 用 1 1 0 施 密 特 正 交 化 过 程 把组 向 量 规 范 正 交 化 这 .
定义 3 设 n 维向量 e1 , e2 , · , er 是向量空 · ·
间V( V Rn ) 的一个基, 如果 e1 , · , er 两两正交, · · 且都是单位向量, 则称 e1, · , er 是 V 的一个规范 · ·
正交基.
上页 下页

线性代数课件同济大学第五版

线性代数课件同济大学第五版

第二章 矩阵及其运算
P47 习题二
§2.1 矩阵:
t1, t2 §2.3 逆矩阵: t10, t11(1)(3) §2.4 矩阵的分块: t27, t28 课后练习:t25,t26
§2.2 矩阵的运算:
线性代数课件(同济大学 第五版)作业与课后练习
第三章 矩阵的初等变换与线性方程组
P78 习题三
第一章 行列式
P25 习题一
§1.1 §1.2二阶、三阶行列式, 逆序数:
t2, t4(1)(3) t5,t9 §1.3 行列式的性质: t6(1)(3), t8(1)(2)(5) §1.4 行列式按行(列)展开: t9 §1.5 克莱姆法则: t10
§1.3 n阶行列式:
线性代数课件(同济大学 第五版)作业与课后练习
t1(1), t2 §3.2 矩阵的秩: t4, t2 课后练习:t3 §3.3 线性方程组的解: t13(1), t14(1), t16 课后练习:t17
§3.1 矩阵的初等变换:
线性代数课件(同济大学 第五版)作业与课后练习
第四章 向量组的线性相关性
P106 习题四
t1 §4.2 向量组的线性相关性: t4 课后练习:t5,t6, t8 §4.3 向量组的秩: t11, t13 课后练习:t12(2) §4.4 线性方程组解的结构: t20(1), t26(1) §4.5 向量空间: t38 课后练习:t37
§4.1 向量组及其线性组合:
线性代数课件(同济大学 第五版)作业与课后练习
第五章 相似矩阵与二次型
P134 习题五
§5.1 向量的内积、长度与正交性:
t1
课后练习:t7,
§5.2 方阵的特征值与特征向量:

线性代数(同济大学第五版)矩阵讲义、例题

线性代数(同济大学第五版)矩阵讲义、例题

第二章 矩阵矩阵及其运算是线性代数的核心,是后续各章的基础,本章主要讨论矩阵的概念、矩阵运算、初等矩阵、逆矩阵与伴随矩阵以及矩阵方程.§1 矩阵的概念定义1 由n m ⨯个数),,2,1;,2,1(n j m i a ij ==排成的m 行n 列的数表:⎪⎪⎪⎪⎪⎭⎫⎝⎛=mn m m n n a a a a a a a a a A 212222111211称为m 行n 列矩阵,其中ij a 称为矩阵A 的第i 行第j 列元素.矩阵可用大写字母 ,,B A 来表示,简记为n m A ⨯或n m ij a A ⨯=)(. 当n m =时, ()n a a a A 11211 =,则称A 称为m 阶方阵或m 阶矩阵;当1=m 时, ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=12111m a a a A ,则称A 称为行矩阵当1=n 时,A 称为列矩阵。

定义2 设n m A ⨯中每个元素都是零的矩阵称为零矩阵,记为:n m O ⨯ 或O . 定义3 矩阵n m ij a ⨯-)(称为矩阵n m ij a A ⨯=)(的负矩阵,记作A -. 定义4 如果n m ij a A ⨯=)(与m xn ij b B )(=,有ij ij b a =),,2,1;,2,1(n j m i ==,那么称这两矩阵相等,记为B A =.几个特殊矩阵(1) 设方阵n n ij a A ⨯=)(中, ),,2,1,,(0n j i j i a ij =≠=,则称它为对角矩阵,记为:),,,(2211nn a a a diag ;特别地,当12211====nn a a a 时,即⎪⎪⎪⎪⎪⎭⎫⎝⎛=100010001 A 时,称A 为n 阶单位矩阵,记作n E 或E .(2)设方阵nn ij a A ⨯=)(中,⎪⎪⎪⎪⎪⎭⎫⎝⎛=nn n n a a a a a a A 022211211时,当j i >时0=ij a ,称为上三角阵.(4)设方阵nn ij a A ⨯=)(中,⎪⎪⎪⎪⎪⎭⎫⎝⎛=nn n n a a a a a a A 21222111时,当j i <时0=ij a ,称为下三角阵.§2 矩阵的运算一、矩阵的加法定义 5 设两个同型矩阵n m ij n m ij b B a A ⨯⨯==)(,)(,可以相加,其和是同型矩阵n m ij c C ⨯=)(,其元素是B A ,对应元素之和,称为矩阵B A ,之和,记为B AC +=.即 n m ij ij n m ij b a c ⨯⨯+=)()(由于矩阵的加法归结为两个数表对应元素相加,因而与数的加法有相同运算性质;;A O A =+ A B B A +=+ .)()(C B A C B A ++=++例1 已知.212111320112B A B A +⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫⎝⎛-=,求, 解 ⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛+++++--+=+5322012312201111)1(2B A . 二、数与矩阵的乘法定义6:数k 与矩阵n m ij a A ⨯=)(相乘,即以数k 乘A 的每个元素,即n m j i ka kA ⨯=)(⎪⎪⎪⎪⎪⎭⎫⎝⎛=mn m m n n ka ka ka ka ka ka ka ka ka 212222111211称为矩阵()nm ij a A ⨯=与数k 的数量乘积,记为kA .由此可知,若矩阵A 的所有元素有公因数,则公因数可提到矩阵A 外作为系数.矩阵=-⨯nm ij a )(⎪⎪⎪⎪⎪⎭⎫⎝⎛---------mn m m n n a a a a a a a a a 212222111211称为矩阵A 的负矩阵,记为A -显然有O A A =-+)( 数量乘积满足以下规律:A kl lA k )()(=;OA =0;AA =1;lAkA A l k +=+)(;kB kA B A k +=+)(三、矩阵的乘法定义7设矩阵s m ik a A ⨯=)(与矩阵n s kj b B ⨯=)(可以相乘,其积AB 是n m ⨯矩阵n m ij c C ⨯=)(,其元素ij c 是矩阵A 的第i 行元素与矩阵B 的第j 列元素对应乘积之和,即AB C =,其中∑==+++=SK kj ik sj is j i j i ij b a b a b a b a c 12211 ,),,2,1;,2,1(n j m i ==.单位矩阵E 与数k 相乘所得矩阵称为数量矩阵,简称数量阵.例2 设⎪⎪⎭⎫⎝⎛--=213012A , ⎪⎪⎪⎭⎫⎝⎛--=051231B ,则AB C =. 解:⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫⎝⎛--⎪⎪⎭⎫ ⎝⎛--==81570051231213012AB C如果n m ij a A ⨯=)(是一线性方程组的系数矩阵,而⎪⎪⎪⎪⎪⎭⎫⎝⎛=n x x x X21 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=m b b b B 21,分别是未知量和常数项所成的1⨯n 和1⨯m 矩阵,那么线性方程组可以写成矩阵形式,B AX =.矩阵乘法满足运算规律 (1)矩阵的乘法满足结合律,即)()(BC A C AB =(2)矩阵乘法和加法适合分配律,即BC AC C B A +=+)(,CB CA B A C +=+)((3)矩阵的乘法不适合交换律,即:一般AB ≠BA例3 ⎪⎪⎭⎫ ⎝⎛--=1111A ,⎪⎪⎭⎫⎝⎛--=1111B ,求.AB⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=000011111111AB .而 ⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫⎝⎛--=222211111111BA (4)数乘矩阵与所有的n n ⨯矩阵相乘是可交换的.)()(kE A A kE kA ==对于矩阵的乘法,请特别注意:(1) 乘积AB 只有当左矩阵A 的列数等于右矩阵的行数时才有意义.同理,仅当A 为方阵时,2A 才有意义.(2) 矩阵乘法一般不满足交换律.实际上,AB 有意义时,BA 未必有意义,即使AB 与BA 都有意义,二者也未必相等.当BA AB =时,称B A ,相乘是可交换的.特别地,当E AB =时,E BA =也成立.(3)矩阵乘法与数的乘法不同,有O AB =不能得出B A ,至少有一个为O 的结论,由此又得AY AX =及O A ≠不能得出Y X =的结论,这又使得在解矩阵方程时不能像解通常代数方程那样约去非零的因子.四、方阵的幂(1)设A 为n 阶方阵,定义A 的幂为,1A A =,,2 AA A = .1A A A k k -=对于正整数l k ,成立kl l K l k l k A A A A A ==+)(;对于0≠A 时,定义,0E A =,)(1k kA A --=则这两个运算公式可推广于任何整数l k ,.(2) 对任何正整数k ,求方阵的幂kA ,往往需要一定的技巧,常用的几种方法:① 用乘法算出,,32A A 以此观察或通过递推得出kA 的结构,写出一般表达式.必要时用数学归纳法证明.例4 设⎪⎪⎪⎭⎫ ⎝⎛=101020101A ,(1)求);2(E A A -(2)求).2(21≥--n A A n n解 (1) =-)2(E A A ⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛101000101101020101⎪⎪⎪⎭⎫ ⎝⎛=000000000(2) =--12n nAA =--)2(1E A A n O E A A An =--)2(2例5 设矩阵⎪⎪⎪⎭⎫ ⎝⎛=010101001A ,证明E A A A n n -+=-22)3(≥n ,并由此计算100A.证明 利用数学归纳法,当3=n 时,由于,1010110010101010010101010012⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=A,0111020010101010011011110013⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=A可直接验证E A A A -+=23成立. 设k n =时,E A AA k k-+=-22成立,则对于1+=k n 时:A E A A A A A k k k )(221-+==-+AA A k -+=-31A E A A A k --++=-)(21E A A k -+=-21即对于1+=k n 等式也成立,故对于一切3≥n 成立.利用已经证明的等式计算100A,可得:E A A A -+=298100E A E A A -+-+=2296)()(2296E A A -+= )(3294E A A -+= =)(4922E A A -+=E A 49502-=故.105001500011000100014910101100150100⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛=A② 利用结合律,若方阵的各行对应成比例,则矩阵可写成T αβ的形式,由于αβT是一个数,所以将矩阵的幂归结为数的幂与矩阵之积.例6 设⎪⎪⎪⎭⎫ ⎝⎛=963321642A ,求nA .解 因为矩阵A 的各行对应成比例,设矩阵TA αβ=,⎪⎪⎪⎭⎫⎝⎛=312α(1,2,3)=Tβ(1,2,3)312(1,2,3)312(1,2,3)312(1,2,3)312963321642⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛= nn A)(1,2,3)312(1,2,3)312(1,2,3)312((1,2,3)312⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛= (1,2,3)313121-⎪⎪⎪⎭⎫ ⎝⎛=n (1,2,3)312311⎪⎪⎪⎭⎫ ⎝⎛=-n.311A n -=③ 若矩阵A 是数量矩阵与幂零矩阵之和,即B E A +=λ,且存在l,使0=l B ,则利用公式kn n k n n k n k n k B C B E C B E C E C B E ++++=+---11110)()()()(λλλλ例7设,000000⎪⎪⎪⎭⎫ ⎝⎛=b c a A 求).,3,2( =n A n解,000000000000000000002⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=ab b c a b c a A,0000000000000000000000023⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛==b c a ab A A A于是,000000002⎪⎪⎪⎭⎫ ⎝⎛=ab A O A n =).3(≥n注 若存在正整数k 使O A k=,则称A 为幂零矩阵,本题中的A 是3阶幂零矩阵,一般主对角线及其下方元素全为0的n 阶矩阵是n 阶幂零矩阵,对一切n k ≥,O A k=.例8 设⎪⎪⎪⎭⎫⎝⎛=λλλ001001A , 求).,3,2( =n A n 解 令,000100010⎪⎪⎪⎭⎫⎝⎛=B 则B E A +=λ,而B 是幂零矩阵.,0000001000001000100001000102⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=B O B k =).3(≥k于是n n B E A )(+=λkn n k n n k n k n B C B E C B E C E C ++++=---11110)()()(λλλB n n B n E n n n 212)1(---++=λλλ ⎪⎪⎪⎪⎪⎭⎫⎝⎛-=---nn nn n n n n n n λλλλλλ0002)1(121.④ 当矩阵Q P A Λ=,且E PQ =时,求矩阵A 的幂问题.例9设,110111121⎪⎪⎪⎭⎫⎝⎛-=P ,11121133031⎪⎪⎪⎭⎫ ⎝⎛---=Q ⎪⎪⎪⎭⎫⎝⎛=Λ066,Q P A Λ=求n A .解:E QP =⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛---=10001000111011112111121133031QP Q QP P A n ΛΛΛ=⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-=-111211330310661*********n ⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-=--1112113303106611011112111n n .211121112622⎪⎪⎪⎭⎫ ⎝⎛--⋅=-n五、矩阵的转置定义8设矩阵n m A ⨯的第),2,1(m i i =行写成第i 列,也将第),,2,1(n j j =列写成第j 行当⎪⎪⎪⎪⎪⎭⎫⎝⎛=mn m m n n a a a a a a a a a A 212222111211时⎪⎪⎪⎪⎪⎭⎫⎝⎛=nm n nm m T a a a a a a a a a A 212221212111. 注 n m ⨯矩阵转置所得到的矩阵是m n ⨯矩阵 满足条件A A T=的矩阵A 称为对称矩阵. 满足条件A A T -=的矩阵A 称为反对称矩阵. 矩阵的转置规律 (1) A A TT =)((2) TTTB A B A +=+)( (3)TTTA B AB =)((4) T T kA kA =)((k 为实数)证明(3):设s m ij a A ⨯=)( n s ij b B ⨯=)( 则AB 中),(j i 的元素为∑=sk kj ik b a 1所以TAB )(中),(j i 的元素为∑=Sk kijk b a1 (1)其次,TB 中),(k i 的元素为ki b TA 中),(j k 的元素为jk a 故TTA B 中),(j i 的元素即为:∑∑===sk ki jk sk jk kib a a b11(2)比较(1),(2)即得(3)例10设⎪⎪⎭⎫ ⎝⎛-=231102A ,⎪⎪⎪⎭⎫⎝⎛-=102324171B ,求T AB )(. ⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛-=1013173140102324171231102AB⎪⎪⎪⎭⎫ ⎝⎛-=213012TA ⎪⎪⎪⎭⎫ ⎝⎛-=131027241T BT T T AB A B )(1031314170213012131027241=⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛-=六、方阵的行列式n 阶方阵A 的2n 个元素按原来的相对位置所成的n 阶行列式称为A 的行列式,记为A 或)det(A .特别需要注意,矩阵与行列式的区别(1) 矩阵A 是2n 个元素按某个规律排成的数表,而行列式A 则是这2n 个元素按某种规则运算所得的数.(2) 两个矩阵当且仅当它们同型且对应元素相等时才相等,而两个行列式相等是指它们经计算所得的值相等,并不要求对应元素相等,甚至阶数都可以不同.(3) 两个同型矩阵相加是对应元素相加,而两个行列式相加必须求得它们的值而后相加,一般不能归结为对应元素之间的运算.(4) 对于矩阵一般不满足A A T=,而行列式A AT=却成立.(5) 当n 阶矩阵A 的每个元素都乘以同一个数l 时,得到的是lA ,而组成行列式A 的每个元素都乘以同一个数l 时,得到的却是A l n .(6) 一般而言BA AB ≠,但却有A B B A AB ==. 例11 设矩阵2112A ⎛⎫= ⎪-⎝⎭,E 为2阶单位矩阵,矩阵B 满足E B BA 2+=,则求B .分析 化简方程乘积形式,两边再取行列式.解:由E B BA 2+=,得E E A B 2)(=-,两边取行列式,得42==-E E A B又,21111=-=-E A 因此2=B . §3 逆矩阵一、逆矩阵定义定义9 对于n 阶矩阵A ,若存在矩阵B ,使,E BA AB ==则称矩阵A 是可逆矩阵或者称A 为非奇异矩阵,矩阵B 为A 的逆矩阵,记为1-=A B .于是E AA A A ==--11.在矩阵运算中,可根据不同情况将单位矩阵E 写成A A 1-或1-AA 是常用的有效技巧.二、逆矩阵的性质① 对于可逆矩阵A ,逆矩阵1-A 是唯一的.证明:假设矩阵C B ,都是矩阵A 的逆矩阵,则有.,E AC E BA ==C EC BAC AC B BE B =====∴)(所以可逆矩阵A 的逆矩阵是唯一的.② 可逆矩阵乘以非零常数为可逆矩阵,可逆矩阵的乘积是可逆矩阵,但可逆矩阵之和未必是可逆矩阵.③ 逆矩阵的运算性质设矩阵B A ,都是可逆矩阵,k 为不为零的常数,则;)(11A A =--111)(---=A B AB ;111)(--=A kkA ;;)()(11T T A A --=.11AA =- 三、伴随矩阵定义10 设ij A 是矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=nn n n n n a a a a a a a a a A 212222111211中元素ij a 的代数余子式,则矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=nn nnn n A A A A A A A A A A212221212111*称为A 的伴随矩阵。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章 矩阵的特征值与特征向量§1矩阵的特征值与特征向量一、矩阵的特征值与特征向量定义1:设A 是n 阶方阵,如果有数λ和n 维非零列向量x 使得x Ax λ=,则称数λ为A 的特征值,非零向量x 称为A 的对于特征值λ的特征向量.由x Ax λ=得0)(=-x E A λ,此方程有非零解的充分必要条件是系数行列式0=-E A λ,此式称为A 的特征方程,其左端是关于λ的n 次多项式,记作)(λf ,称为方阵A 特征多项式.设n 阶方阵)(ij a A =的特征值为n λλλ,,,21 ,由特征方程的根与系数之间的关系,易知:nn n a a a i +++=+++ 221121)(λλλA ii n =λλλ 21)(例1 设3阶矩阵A 的特征值为2,3,λ.若行列式482-=A ,求λ. 解:482-=A 64823-=∴-=∴A Aλ⨯⨯=32A 又 1-=∴λ例2 设3阶矩阵A 的特征值互不相同,若行列式0=A , 求矩阵A 的秩.解:因为0=A 所以A 的特征值中有一个为0,其余的均不为零.所以A 与)0,,(21λλdiag 相似.所以A 的秩为2.定理1对应于方阵A 的特征值λ的特征向量t ξξξ,,,21 ,t ξξξ,,,21 的任意非零线性组合仍是A 对应于特征值λ的特征向量.证明 设存在一组不全为零的数t k k k ,,,21 且存在一个非零的线性组合为t t k k k ξξξ+++ 2211,因为t ξξξ,,,21 为对应于方阵A 的特征值λ的特征向量。

则有),,2,1(1t i k Ak i i i ==ξλξ所以)()(22112211t t t t k k k k k k A ξξξλξξξ+++=+++ 所以t t k k k ξξξ+++ 2211是A 对应于特征值λ的特征向量. 求n 阶方阵A 的特征值与特征向量的方法:第一步:写出矩阵A 的特征多项式,即写出行列式E A λ-.第二步:解出特征方程0=-E A λ的根n λλλ,,,21 就是矩阵A 的特征值.第三步:解齐次线性方程组0)(=-x E A i λ,它的非零解都是特征值i λ的特征向量.例3 求矩阵⎪⎪⎪⎭⎫ ⎝⎛--=201034011A 的特征值和特征向量.解 A 的特征多项式为2)1)(2(201034011λλλλλλ--=-----=-E A 所以,A 的特征值为1,2321===λλλ. 当21=λ时,解方程组0)2(=-x E A .由⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--=-000010001~2010340112E A ,得基础解系⎪⎪⎪⎭⎫ ⎝⎛=1001p ,所以特征值21=λ的全部特征向量为11p k ,其中1k 为任意非零数.当132==λλ时,解方程组0)(=-x E A .由⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--=-000210101~101024012E A ,得基础解系⎪⎪⎪⎭⎫ ⎝⎛--=1212p ,所以特征值132==λλ的全部特征向量为22p k ,其中2k 为任意非零数. 二、特征值与特征向量的性质与定理性质1 n 阶方阵A 可逆的充分必要条件是矩阵A 的所有特征值均非零. 此性质读者可利用A n =λλλ 21可证明.定理 2 若21,λλ是n 阶方阵A 的两互不相等的特征值,对应的特征向量分别为21,p p ,则21,p p 线性无关.证明 假设设有一组数21,x x 使得02211=+p x p x (1)成立. 以2λ乘等式(1)两端,得0222121=+p x p x λλ (2) 以矩阵A 左乘式(1)两端,得0222111=+p x p x λλ (3) (3)式减(2)式得0)(1211=-p x λλ 因为21,λλ不相等,01≠p ,所以01=x .因此(1)式变成022=p x . 因为02≠p ,所以只有02=x . 这就证明了21,p p 线性无关.性质2 设)(A f 是方阵A 的特征多项式,若λ是A 的特征值.对应于λ的特征向量为ξ,则)(λf 是)(A f 的特征值,而ξ是)(A f 的对应于)(λf 的特征向量,而且若O A f =)(,则A 的特征值λ满足0)(=λf ,但要注意,反过来0)(=λf 的根未必都是A 的特征值.例4 若λ是可逆方阵A 的特征值,ξ是A 的对应于特征值λ的特征向量,证明:1-λ是1-A 的特征值,ξ是1-A 对应于特征值1-λ的特征向量,证明 λ 是可逆方阵A 的特征值,ξ是A 的对应于特征值λ的特征向量λξξ=∴A ξξλ11--=∴Aξξλ11--=∴A A A ξξλ*1A A =∴-1-∴λ是1-A 的特征值,ξ是1-A 对应于特征值1-λ的特征向量, 1-λA 是*A 的特征值,ξ是*A 对应于特征值1-λA 的特征向量.例5 设3阶矩阵A 的特征值1,2,2,求E A --14.解:A 的特征值为1,2,2,,所以1-A 的特征值为1,12,12, 所以E A--14的特征值为4113⨯-=,41211⨯-=,41211⨯-=所以311341=⨯⨯=--E A .例6 若21,λλ是n 阶方阵A 的两互不相等的特征值,对应的特征向量分别为21,p p ,证明21p p +一定不是A 的特征向量.证明 假设21p p +是矩阵A 的特征向量,对应的特征值为.λ根据特征值定义可知:)()(2121p p p p A +=+λ …………………(1) 21,λλ 又是n 阶方阵A 的特征值,对应的特征向量分别为21,p p .,111p Ap λ=∴ 222p Ap λ= (2)将(2)带入(1)式整理得:0)()(2211=-+-p p λλλλ因为21,λλ是n 阶方阵A 的两互不相等的特征值,对应的特征向量分别为21,p p 线性无关.所以21λλλ==.与21,λλ是n 阶方阵A 的两互不相等的特征值矛盾. 所以假设不成立.例7 若A 为正交矩阵,则1±=A ,证明,当1-=A 时,A 必有特征值1-;当1=A 时,且A 为奇数阶时,则A 必有特征值1.证明 当1-=A 时.TT T A E A A E A AA A E A +=+=+=+)(A E A E T +-=+-=,所以 .0=+A E `所以1-是A 的一个特征值反证法:因为正交阵特征值的行列式的值为1,且复特征值成对出现,所以若1不是A 的特征值,那么A 的特征值只有-1,以及成对出现的复特征值。

因为A 是奇数阶的,所以除去成对出现的复特征值后必有奇数个特征值-1.利用矩阵A 的所有特征值之积就等于矩阵A 的行列式的值,可知:这奇数个-1与成对出现的复特征值之积为1. 但是,奇数个-1的乘积为-1,成对出现的复特征值之积为1,它们的乘积也是-1,与1矛盾。

因此假设不成立,1必为A 的一个特征值。

§2相似与相似对角化一、相似矩阵的定义定义 1 设B A ,均为n 阶方阵,若有可逆矩阵P 使B AP P =-1,则称矩阵B 是矩阵A 的相似矩阵,或者说A 与B 相似.显然,A BP P =---111)(,所以B与A 也相似.相似具有以下特性: 反身性 A 与A 相似对称性 A 与B 相似,则B 与A 相似传递性 A 与B 相似,A 与C 相似,则B 与C 相似推论1 若A BP P =-1,而ξ是A 属于λ的特征向量,则ξP 是B 属于λ的特征向量.ξ 是A 属于λ的特征向量 λξξ=∴A又A BP P =-1λξξ=∴-BP P 1)()(ξλξP P B =∴所以当A 与B 相似,若有A BP P =-1成立,而ξ是A 属于λ的特征向量,则ξP 是B 属于λ的特征向量.二、相似矩阵的性质定理3 设A 与B 相似,则A 与B 的特征多项式相同,从而A 与B 的特征值亦相同,则有B A =,E B E A λλ-=-,)()(B tr A tr =,)()(B r A r =.证明 因为A 与B 相似,即有可逆矩阵,P 使B AP P =-1.故P E A P P E P AP P E B )()(111λλλ-=-=---- E A P E A P λλ-=-=-1故A 与B 的特征多项式相同,从而A 与B 的特征值亦相同,则有B A =,E B E A λλ-=-,)()(B tr A tr =,)()(B r A r =,性质3设A 与B 相似,则有TA 与TB 相似,若A 、B 可逆,则有1-A 与1-B 相似,*A 与*B 相似,)(A f 与)(B f 相似,)(x f 表示x 的多项式.此性质读者可利用相似矩阵具有相同的特征多项式和相同的特征值来证明.特别地,若矩阵A 与对角阵Λ相似,则称矩阵A 可对角化,此时,对角阵Λ的主对角元素即是矩阵A 特征值,而使Λ=-AP P 1的可逆矩阵P 的列向量,即是对应的特征向量.例8 设A 为三阶实对称矩阵,A 的秩为2,即2)(=A R ,且⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-110011110011A ,(1)求矩阵A 的特征值与特征向量; (2)求A .解:(1)易知特征值1-对应的特征向量为,101⎪⎪⎪⎭⎫ ⎝⎛-特征值1对应的特征向量为,101⎪⎪⎪⎭⎫ ⎝⎛由2)(=A r 知A 的另一个特征值为 0.因为实对称矩阵不同特征值得特征向量正交,从而特征值 0 对应的特征向量为.010⎪⎪⎪⎭⎫ ⎝⎛(2)由 ,0111000110000100010111000111-⎪⎪⎪⎭⎫⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛-=A 得.001000100⎪⎪⎪⎭⎫ ⎝⎛例9 设3阶矩阵A 的特征值为1,1,-2,对应的特征向量依次为⎪⎪⎪⎭⎫ ⎝⎛=0101α,⎪⎪⎪⎭⎫ ⎝⎛=1012α,⎪⎪⎪⎭⎫⎝⎛=1-013α. (I)求矩阵A ; (II)求2009A .解:(I)根据题设可知()⎪⎪⎪⎭⎫ ⎝⎛-=211,,),,(321321ααααααA . 设()321,,ααα=P 可求出⎪⎪⎪⎭⎫⎝⎛-=-101101020211P1211211-⎪⎪⎪⎭⎫⎝⎛-=∴⎪⎪⎪⎭⎫⎝⎛-=∴PP A P AP⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛-=∴10110102021211110001110A⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛-=10302030121101101020210001210 (II)根据(I)知12009120092009211211--⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫⎝⎛-=P P P P A⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛-=101101020212111100011102009⎪⎪⎪⎭⎫⎝⎛-++-=⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫⎝⎛-=20092009200920092009200921021020210212110110102021000121021 三、n 阶方阵A 可对角化的条件定理 4 矩阵A 可以对角化的充分必要条件是矩阵A 有n 个线性无关的特征向量.证明 如果可逆矩阵P , 使Λ=-AP P 1为对角矩阵,也就是Λ=P AP若记矩阵),,,(21n p p p P =,其中n p p p ,,,21 是P 的列向量组, 则有),,,(),,,(2121n n p p p p p p A =⎪⎪⎪⎪⎪⎭⎫ ⎝⎛n λλλ21 即为 ),,,(),,,(221121n n n p p p Ap Ap Ap λλλ = 于是有 .,,2,1,n i p Ap i i i ==λ再由P 是可逆矩阵,便可知n p p p ,,,21 就是A 的n 个线性无关的特征向量.反之,如果n 阶矩阵A 有n 个线性无关的特征向量n p p p ,,,21 , 于是,应有数n λλλ,,,21 使.,,2,1,n i p Ap i i i ==λ以向量组n p p p ,,,21 构成矩阵),,,(21n p p p P =,则P 为可逆矩阵,且Λ=P AP 其中Λ是以n λλλ,,,21 构成的对角矩阵.推论2 若A 有n 个互不相等的特征值,矩阵A 一定可以对角化.例10 某试验性生产线每年1月份进行熟练工与非熟练工的人数统计,然后将1/6 的熟练工支援其他生产部门,其缺额由招收新的非熟练工补齐,新,老非熟练工经过培训及实践至年终考核有2/5成为熟练工.设第n 年1月份统计的熟练工和非熟练工所占百分比分别为n x 和n y ,记成向量⎥⎦⎤⎢⎣⎡n n y x . (1)求⎥⎦⎤⎢⎣⎡++11n n y x 与⎥⎦⎤⎢⎣⎡n n y x 的关系式并写成矩阵形式:⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡++n n n n y x A y x 11; (2) 验证⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡=11,1421ηη是 A 的两个线性无关的特征向量,并求出相应的特征值;(3) 当⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡212111y x 时,求⎥⎦⎤⎢⎣⎡++11n n y x . 解:()1由题意,得⎪⎪⎩⎪⎪⎨⎧⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛++=++n n n n n n n y x y y x x x 615361526511化简⎪⎪⎩⎪⎪⎨⎧+=+=++n n n nn n y x y y x x 531015210911即 ⎪⎪⎭⎫ ⎝⎛⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎪⎪⎭⎫ ⎝⎛++n n n n y x y x 531015210911可见 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=5310152109A()2因为行列式()051114,21≠=-=ηη可见 21,ηη线性无关.又1114ηη=⎪⎪⎭⎫⎝⎛=A ,故1η为A 的特征向量,且相应的特征值为11=λ.22212121ηη=⎪⎪⎪⎪⎭⎫ ⎝⎛-=A ,为A 的特征向量,且相应的特征值为212=λ.()3 因为 ()⎪⎪⎪⎭⎫ ⎝⎛==⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛--++21211111211n n n n n n n n A y x A y x A y x A y x 因此只要计算nA 即可.令 ⎪⎪⎭⎫⎝⎛-==1114),(21ηηP , 则由⎪⎪⎭⎫⎝⎛=-211λλAP P ,有121-⎪⎪⎭⎫ ⎝⎛=P P A λλ, 于是112111142111114--⎪⎪⎭⎫ ⎝⎛-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫⎝⎛=n n n P P A λλ ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+=n n n n 21121121421451因此⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛++n nn n n A y x 21322138101212111.§3 实对称矩阵的相似对角化定理3 设A 为n 阶实对称矩阵,则有A 的所有特征值均为实数. 证明 设λ是实对称矩阵A 的特征值,p 为对应的特征向量. 即p Ap λ=于是有p p Ap p Ap p T T T λ==)(,及.)())(p p p Ap p A p Ap p T T T T T λ===两式相减,得0)(=-p p T λλ因为0≠p ,所以0≠p p T . 故λλ=,即λ为实数.定理4设A 为n 阶实对称矩阵,则有A 的属于不同特征值的特征向量正交.证明 由已知有 )1(111p p A λ=)2(222p p A λ=T p 1以左乘(2)式的两端得21221)(p p Ap p TT λ=因为A 是实对称矩阵,所以)(21Ap p T21)(p Ap T =211)(p p T λ=211p p T λ= 于是().02121=-p p Tλλ因为21λλ≠,故021=p p T,即1p 与2p 正交.推论3设A 为n 阶实对称矩阵,对A 的任意一个i k 重特征值i λ,A 必有i k 个线性无关的特征向量,即i i k n E A r -=-)(λ,所以A 必定可以对角化.定理5设A 为n 阶实对称矩阵,则存在正交矩阵Λ==-AQ Q AQ Q T 1,Λ的主对角元素为矩阵A 的特征值,Q 的列向量为对应的特征向量.证明 设A 的互不相等的特征值为m λλλ,,,21 ,它们的重数依次为m r r r ,,,21 于是, n r r r m =+++ 21.根据定理4及推论3可知,对应特征值i λ恰有i r 个线性无关的实特征向量, 把它们正交单位化,即得i r 个单位正交的特征向量,m i ,,2,1 =.由n r r r m =+++ 21.知这样的特征向量恰有n 个. 又因实对称矩阵不等的特征值对应的特征向量正交(根据定理4),故这n 个特征向量构成规范正交向量组. 以它们为列构成矩阵P , 则为P 正交矩阵,并有Λ=-P A P 1.其中对角矩阵Λ的对角元素含m 个m λλλ,,,21 ,恰 是 A 的n 个特征值.用正交矩阵将实对称矩阵A 化为对角阵的步骤:)(i 求出A 的所有相异的特征值m λλλ,,,21 ;)(ii 每一个i k 重特征值i λ,求出所对应的i k 个线性无关的特征向量;,,,21ik i i ξξξ)(iii 用施密特正交化方法将每一个重特征值i λ所对应的k 个线性无关的特征向量ik i i ξξξ,,,21 先正交化;)(iv 将所求的所有特征向量单位化为m p p p ,,,21 ;)(v 将上面求得的正交单位向量作为列向量,排成一个n 阶方阵P ,则P即为所求得的正交方阵,即有.1Λ==-AP P AP P T例11 设⎪⎪⎪⎭⎫⎝⎛--=0431410a a A ,正交矩阵Q 使得AQ Q T为对角矩阵,若Q的第一列为⎪⎪⎪⎭⎫ ⎝⎛12161,求Q a ,.解:由于⎪⎪⎪⎭⎫ ⎝⎛--=0431410a a A ,存在正交矩阵Q ,使得AQ Q T 为对角阵,且Q 的第一列为⎪⎪⎪⎭⎫ ⎝⎛12161,故A 对应于1λ的特征向量为⎪⎪⎪⎭⎫ ⎝⎛=121611ξ,故⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛12161121611λA , 即⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--12112104314101λa a ,由此可得,1-=a 21=λ. ⎪⎪⎪⎭⎫⎝⎛--=0431410a a A ,由,01413141=---=-λλλλA E 可得413241444131411413141+---=+----=---λλλλλλλλλλ 3214)4(--+=λλλ )5)(2)(4(--+=λλλ故A 的特征值为5,4,2321=-==λλλ,且对应于21=λ的特征向量⎪⎪⎪⎭⎫ ⎝⎛12161. 由()02=-x A E λ,即0414171414321=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-----x x x ⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛-----000010101~0000270414~414171414 可得对应于42-=λ的特征向量.1012⎪⎪⎪⎭⎫⎝⎛-=ξ由()03=-x A E λ,即0514121415321=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--x x x ⎪⎪⎪⎭⎫⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--000110101~000110121~990990121~514121415 可得对应于53=λ的特征向量.1113⎪⎪⎪⎭⎫⎝⎛-=ξ由于A 为实对称矩阵,321,,ξξξ为对应不同特征值的特征向量,所以321,,ξξξ相互正交,只需要单位化⎪⎪⎪⎭⎫ ⎝⎛==12161111ξξη,,10121222⎪⎪⎪⎭⎫ ⎝⎛-==ξξη,11131333⎪⎪⎪⎭⎫ ⎝⎛-==ξξη取()⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--==31216131062312161,,321ηηηQ ,则⎪⎪⎪⎭⎫ ⎝⎛-=Λ=542AQ Q T.。

相关文档
最新文档