竖曲线长度计算公式

合集下载

公路工程高程计算公式

公路工程高程计算公式

公路高程计算公式⒈超高①超高方式:中央分隔带保持水平,超高将两侧行车道绕中央分隔带边缘点旋转(包括路肩点)。

②超高段横断面高程计算图11AA AAAAAA2-23-34-4图12⒉横坡度计算外侧横坡度:ILLEIICXX-+=)(;(公式中的I、E均取正值,下同。

)公式1EBEB内侧横坡度: I L IE I L L I E IL I E I CC CX X +*+-*+--=22)((。

公式 2式中:2 I/(E+I)* L C —在L C 段内横坡等于I %的长度,m 。

X 在区间0~2 I/(E+I)*LC 时,横坡度为I ; 在区间2 I/(E+I)* L C ~L C 段内时,横坡度为I ~E 。

I —横坡度设计值, E —超高设计值, L C —缓和曲线长,m 。

⒊ 竖曲线计算公式:W=I 1-I 2; 当w >0时,为凸曲线;当w <0时,为凹曲线。

L=R*W ; E=T 2/2R ; H=l 2/2r ;T=TA=TB=L/2=R*W/2。

式中:H —切线上任一点至竖曲线上的垂直距离;M . l —曲线上相应于H 的P 点至切点A 或B 点的距离,M .R—二次抛物线的参数。

(原点处的曲率半径)通常称竖曲率半径,M.I1、I2—切线的斜率,即纵坡度,%.纵坡度(%),从左向右上坡取“+”,下坡取“-”值.当α很小时,tanα1≈α1=I1, tan α2≈α2=I2。

T—切线长(M),ZH路线平面图L—竖曲线的曲线长(M)。

双车道公路超高缓和段长度按式(7.5.4)计算:(7.5.4)式中 Lc --超高缓和段长度(m);B --旋转轴至行车道(设路缘带时为路缘带)外侧边缘的宽度(m);Δi --超高坡度与路拱坡度代数差(%):p --超高渐变率,即旋转轴线与行车道(设路缘带时为路缘带)外侧边缘线之间的相对坡度,其值如表7.5.4。

缓和曲线圆曲线计算公式

缓和曲线圆曲线计算公式

缓和曲线、竖曲线、圆曲线、匝道(计算公式)一、缓和曲线上的点坐标计算已知:①缓和曲线上任一点离ZH点的长度:l②圆曲线的半径:R③缓和曲线的长度:l0④转向角系数:K(1或-1)⑤过ZH点的切线方位角:α⑥点ZH的坐标:xZ,yZ计算过程:说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下:当计算第二缓和曲线上的点坐标时,则:l为到点HZ的长度α为过点HZ的切线方位角再加上180°K值与计算第一缓和曲线时相反xZ,yZ为点HZ的坐标切线角计算公式:二、圆曲线上的点坐标计算已知:①圆曲线上任一点离ZH点的长度:l②圆曲线的半径:R③缓和曲线的长度:l0④转向角系数:K(1或-1)⑤过ZH点的切线方位角:α⑥点ZH的坐标:xZ,yZ计算过程:说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下:当只知道HZ点的坐标时,则:l为到点HZ的长度α为过点HZ的切线方位角再加上180°K值与知道ZH点坐标时相反xZ,yZ为点HZ的坐标三、曲线要素计算公式公式中各符号说明:l——任意点到起点的曲线长度(或缓曲上任意点到缓曲起点的长度)l1——第一缓和曲线长度l2——第二缓和曲线长度l0——对应的缓和曲线长度R——圆曲线半径R1——曲线起点处的半径R2——曲线终点处的半径P1——曲线起点处的曲率P2——曲线终点处的曲率α——曲线转角值四、竖曲线上高程计算已知:①第一坡度:i1(上坡为“+”,下坡为“-”)②第二坡度:i2(上坡为“+”,下坡为“-”)③变坡点桩号:SZ④变坡点高程:HZ⑤竖曲线的切线长度:T⑥待求点桩号:S计算过程:五、超高缓和过渡段的横坡计算已知:如图,第一横坡:i1第二横坡:i2过渡段长度:L待求处离第二横坡点(过渡段终点)的距离:x 求:待求处的横坡:i解:d=x/Li=(i2-i1)(1-3d2+2d3)+i1六、匝道坐标计算已知:①待求点桩号:K②曲线起点桩号:K0③曲线终点桩号:K1④曲线起点坐标:x0,y0⑤曲线起点切线方位角:α0⑥曲线起点处曲率:P0(左转为“-”,右转为“+”)⑦曲线终点处曲率:P1(左转为“-”,右转为“+”) 求:①线路匝道上点的坐标:xy②待求点的切线方位角:αT计算过程:注:sgn(x)函数是取符号函数,当x0时sgn(x)=1,当x=0时sgn(x)=0。

公路线路(缓和曲线、竖曲线、圆曲线、匝道)坐标计算公式

公路线路(缓和曲线、竖曲线、圆曲线、匝道)坐标计算公式

公路线路(缓和曲线、竖曲线、圆曲线、匝道)坐标计算公式一、缓和曲线上的点坐标计算已知:①缓和曲线上任一点离ZH点的长度:l②圆曲线的半径:R③缓和曲线的长度:l0④转向角系数:K(1或-1)⑤过ZH点的切线方位角:α⑥点ZH的坐标:x Z,y Z计算过程:说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下:当计算第二缓和曲线上的点坐标时,则:l为到点HZ的长度α为过点HZ的切线方位角再加上180°K值与计算第一缓和曲线时相反x Z,y Z为点HZ的坐标切线角计算公式:二、圆曲线上的点坐标计算已知:①圆曲线上任一点离ZH点的长度:l②圆曲线的半径:R③缓和曲线的长度:l0④转向角系数:K(1或-1)⑤过ZH点的切线方位角:α⑥点ZH的坐标:x Z,y Z计算过程:说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下:当只知道HZ点的坐标时,则:l为到点HZ的长度α为过点HZ的切线方位角再加上180°K值与知道ZH点坐标时相反x Z,y Z为点HZ的坐标三、曲线要素计算公式公式中各符号说明:l——任意点到起点的曲线长度(或缓曲上任意点到缓曲起点的长度)l1——第一缓和曲线长度l2——第二缓和曲线长度l0——对应的缓和曲线长度R——圆曲线半径R1——曲线起点处的半径R2——曲线终点处的半径P1——曲线起点处的曲率P2——曲线终点处的曲率α——曲线转角值四、竖曲线上高程计算已知:①第一坡度:i1(上坡为“+”,下坡为“-”)②第二坡度:i2(上坡为“+”,下坡为“-”)③变坡点桩号:S Z④变坡点高程:H Z⑤竖曲线的切线长度:T⑥待求点桩号:S计算过程:五、超高缓和过渡段的横坡计算已知:如图,第一横坡:i1第二横坡:i2过渡段长度:L待求处离第二横坡点(过渡段终点)的距离:x 求:待求处的横坡:i解:d=x/Li=(i2-i1)(1-3d2+2d3)+i1六、匝道坐标计算已知:①待求点桩号:K②曲线起点桩号:K0③曲线终点桩号:K1④曲线起点坐标:x0,y0⑤曲线起点切线方位角:α0⑥曲线起点处曲率:P0(左转为“-”,右转为“+”)⑦曲线终点处曲率:P1(左转为“-”,右转为“+”)求:①线路匝道上点的坐标:x,y②待求点的切线方位角:αT计算过程:注:sgn(x)函数是取符号函数,当x<0时sgn(x)=-1,当x>0时sgn(x)=1,当x=0时sgn(x)=0。

纵断面设计——竖曲线设计

纵断面设计——竖曲线设计

纵断面设计——竖曲线设计纵断面上相邻两条纵坡线相交的转折处,为了行车平顺用一段曲线来缓和,这条连接两纵坡线的曲线叫竖曲线。

竖曲线的形状,通常采用平曲线或二次抛物线两种。

在设计和计算上为方便一般采用二次抛物线形式。

纵断面上相邻两条纵坡线相交形成转坡点,其相交角用转坡角表示。

当竖曲线转坡点在曲线上方时为凸形竖曲线,反之为凹形竖曲线。

一、竖曲线如图所示,设相邻两纵坡坡度分别为i1 和i2,则相邻两坡度的代数差即转坡角为ω= i1-i2 ,其中i1、i2为本身之值,当上坡时取正值,下坡时取负值。

当i1- i2为正值时,则为凸形竖曲线。

当i1 - i2 为负值时,则为凹形竖曲线。

(一)竖曲线基本方程式我国采用的是二次抛物线形作为竖曲线的常用形式。

其基本方程为:若取抛物线参数为竖曲线的半径,则有:(二)竖曲线要素计算公式竖曲线计算图示1、切线上任意点与竖曲线间的竖距通过推导可得:2、竖曲线曲线长:L = Rω3、竖曲线切线长:T= TA =TB ≈ L/2 =4、竖曲线的外距:E =⑤竖曲线上任意点至相应切线的距离:式中:x —为竖曲任意点至竖曲线起点(终点)的距离, m;R—为竖曲线的半径,m。

二、竖曲线的最小半径(一)竖曲线最小半径的确定1.凸形竖曲线极限最小半径确定考虑因素(1)缓和冲击汽车行驶在竖曲线上时,产生径向离心力,使汽车在凸形竖曲线上重量减小,所以确定竖曲线半径时,对离心力要加以控制。

(2)经行时间不宜过短当竖曲线两端直线坡段的坡度差很小时,即使竖曲线半径较大,竖曲线长度也有可能较短,此时汽车在竖曲线段倏忽而过,冲击增大,乘客不适;从视觉上考虑也会感到线形突然转折。

因此,汽车在凸形竖曲线上行驶的时间不能太短,通常控制汽车在凸形竖曲线上行驶时间不得小于3秒钟。

(3)满足视距的要求汽车行驶在凸形竖曲线上,如果竖曲线半径太小,会阻挡司机的视线。

为了行车安全,对凸形竖曲线的最小半径和最小长度应加以限制。

道路竖曲线计算

道路竖曲线计算

第二节 竖曲线设计纵断面上相邻两条纵坡线相交的转折处,为了行车平顺用一段曲线来缓和,这条连接两纵坡线的曲线叫竖曲线。

竖曲线的形状,通常采用平曲线或二次抛物线两种。

在设计和计算上为方便一般采用二次抛物线形式。

纵断面上相邻两条纵坡线相交形成转坡点,其相交角用转坡角表示。

当竖曲线转坡点在曲线上方时为凸形竖曲线,反之为凹形竖曲线。

一、竖曲线如图所示,设相邻两纵坡坡度分别为i 1 和i 2,则相邻两坡度的代数差即转坡角为ω= i 1-i 2 ,其中i 1、i 2为本身之值,当上坡时取正值,下坡时取负值。

当 i 1- i 2为正值时,则为凸形竖曲线。

当 i 1 - i 2 为负值时,则为凹形竖曲线。

(一)竖曲线基本方程式我国采用的是二次抛物线形作为竖曲线的常用形式。

其基本方程为: 若取抛物线参数P 为竖曲线的半径 R ,则有: (二)竖曲线要素计算公式竖曲线计算图示1、切线上任意点与竖曲线间的竖距h 通过推导可得:2、竖曲线曲线长: L = R ω3、竖曲线切线长: T= T A =T B ≈ L/2 =2ωR 4、竖曲线的外距: E =RT 22⑤竖曲线上任意点至相应切线的距离:Rx y 22=式中:x —为竖曲任意点至竖曲线起点(终点)的距离, m ;R —为竖曲线的半径,m 。

二、竖曲线的最小半径(一)竖曲线最小半径的确定1.凸形竖曲线极限最小半径确定考虑因素 (1)缓和冲击汽车行驶在竖曲线上时,产生径向离心力,使汽车在凸形竖曲线上重量减小,所以确定竖曲线半径时,对离心力要加以控制。

(2)经行时间不宜过短当竖曲线两端直线坡段的坡度差很小时,即使竖曲线半径较大,竖曲线长度也有可能较短,此时汽车在竖曲线段倏忽而过,冲击增大,乘客不适;从视觉上考虑也会感到线形突然转折。

因此,汽车在凸形竖曲线上行驶的时间不能太短,通常控制汽车在凸形竖曲线上行驶时间不得小于3秒钟。

(3)满足视距的要求汽车行驶在凸形竖曲线上,如果竖曲线半径太小,会阻挡司机的视线。

高速公路线路(缓和曲线、竖曲线、圆曲线、匝道)坐标计算公式

高速公路线路(缓和曲线、竖曲线、圆曲线、匝道)坐标计算公式

高速公正路路(缓和曲线、竖曲线、圆曲线、匝道)坐标计算公式未知2021-12-27 21:40:34 本站高速公路的一些线路坐标、高程计算公式(缓和曲线、竖曲线、圆曲线、匝道)一、缓和曲线上的点坐标计算:①缓和曲线上任一点离ZH点的长度:l②圆曲线的半径:R③缓和曲线的长度:l0④转向角系数:K(1或-1)⑤过ZH点的切线方位角:α⑥点ZH的坐标:x Z,y Z计算过程:说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下:当计算第二缓和曲线上的点坐标时,那么:l为到点HZ的长度α为过点HZ的切线方位角再加上180°K值与计算第一缓和曲线时相反x Z,y Z为点HZ的坐标切线角计算公式:二、圆曲线上的点坐标计算:①圆曲线上任一点离ZH点的长度:l②圆曲线的半径:R③缓和曲线的长度:l0④转向角系数:K(1或-1)⑤过ZH点的切线方位角:α⑥点ZH的坐标:x Z,y Z计算过程:说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下:当只知道HZ点的坐标时,那么:l为到点HZ的长度α为过点HZ的切线方位角再加上180°K值与知道ZH点坐标时相反x Z,y Z为点HZ的坐标三、曲线要素计算公式公式中各符号说明:l——任意点到起点的曲线长度〔或缓曲上任意点到缓曲起点的长度〕l1——第一缓和曲线长度l2——第二缓和曲线长度l0——对应的缓和曲线长度R——圆曲线半径R1——曲线起点处的半径R2——曲线终点处的半径P1——曲线起点处的曲率P2——曲线终点处的曲率α——曲线转角值四、竖曲线上高程计算:①第一坡度:i1(上坡为“+〞,下坡为“-〞)②第二坡度:i2(上坡为“+〞,下坡为“-〞)③变坡点桩号:S Z④变坡点高程:H Z⑤竖曲线的切线长度:T⑥待求点桩号:S计算过程:五、超高缓和过渡段的横坡计算:如图,第一横坡:i1第二横坡:i2过渡段长度:L待求处离第二横坡点〔过渡段终点〕的间隔:x求:待求处的横坡:i解:d=x/Li=(i2-i1)(1-3d2+2d3)+i1六、匝道坐标计算:①待求点桩号:K②曲线起点桩号:K0③曲线终点桩号:K1④曲线起点坐标:x0,y0⑤曲线起点切线方位角:α0⑥曲线起点处曲率:P0(左转为“-〞,右转为“+〞)⑦曲线终点处曲率:P1(左转为“-〞,右转为“+〞) 求:①线路匝道上点的坐标:x,y②待求点的切线方位角:αT计算过程:注:sgn(x)函数是取符号函数,当x<0时sgn(x)=-1,当x>0时sgn(x)=1,当x=0时sgn(x)=0。

竖曲线高程计算

竖曲线高程计算
变坡角:相邻两条坡度线的坡角差,通常用坡度值之差代替,用ω 表示 ω =α 2-α 1≈tgα 2 - tgα 1=i2 - i1 ω <0:凸形竖曲线:
ω >0:凹型竖曲线
竖曲线的作用
(1)缓冲作用:以平缓曲线取代折线可消除汽车在变坡点的冲击。 (2)保证公路纵向的行车视距:
凸形:纵坡变化大时,盲区较大。 凹形:下穿式立体交叉的下线。 (3)将竖曲线与平曲线恰当的组合,有利于路面排水和改善行车的视 线诱导和舒适感。 凸形竖曲线主要控制因素:行车视距。 凹形竖曲线的主要控制因素:缓和冲击力。 竖曲线的线形:可采用圆曲线或二次抛物线。 《规范》规定采用二次抛物线作为竖曲线的线形。 特点:抛物线的纵轴保持直立,且与两相邻纵坡线相切。
其中: y——竖曲线上任一点竖距; 直坡段上,y=0。
x2 y
2R
x——竖曲线上任一点离开起(终)点距离;

以变坡点为分界计算: 上半支曲线 x = Lcz - QD 下半支曲线 x = ZD - Lcz 以竖曲线终点为分界计算: 全部曲线 x = Lcz - QD
[例4-3]:某山岭区一般二级公路,变坡点桩 号为k5+030.00,高程H1=427.68m, i1=+5%,i2=-4%,竖曲线半径R=2000m。
试计算竖曲线诸要素以及桩号为k5+000.00 和k5+100.00处的设计高程。
解:1.计算竖曲线要素 ω=i2- i1= - 0.04-0.05= - 0.09<0,为凸形。 曲线长 L = Rω=2000×0.09=180m
X-----计算点桩号与竖曲线起 点的桩号差
说明: 相邻坡段的坡度为i1和i2,代数差为ω=i2 -i1 ω为正时,是凹曲线;ω为负,是凸曲线。 2.竖曲线诸要素计算公式 竖曲线长度L或竖曲线半径R: (前提:ω

竖曲线的计算方法

竖曲线的计算方法

竖曲线铁路线路的纵断面最理想的当然是平道,然而事实上是不可能的,为了适应地形的起伏,以减少工程量,纵断面必须用各种不同的坡面连接而成。

两相邻坡段的连续点谓之变坡点。

相邻坡段的坡度差是两相邻坡段的坡度代数差。

当相邻坡段的坡度差超过允许值时,为了保证行车平顺和安全,应在变坡点处用竖曲线连接起来。

允许不设竖曲线的坡度差允许值是根据车轮不脱轨、车钩不脱钩、列车不撞车和行车平稳等要求进行分析确定的。

一般情况下,竖曲线采用圆曲线,也可以采用抛物线,个别情况下,还可以采用连续短坡曲线。

竖曲线的计算一、圆曲线形竖曲线圆曲线形竖曲线的几何要素和各点设计标高,可按下列公式计算,如图。

R α x T TyRCα/2 BAi1i21、竖曲线的切线长度TT=R·tan(α/2)=R/2·tanα=R/2·△i‰=R/2000·△i(m) (5-1)式中 R-竖曲线半径(m);α-竖曲线转角(度);△i-相邻坡段的坡度代数差(‰)。

R=5000m时, T=2.5△i(m)R=10000m时,T=5.0△i(m)R=15000m时,T=7.5△i(m)R=20000m时,T=10.0△i(m)R=25000m时,T=12.5△i(m)2、竖曲线长度CC≈2T=R/1000·△i(m) (5-2)3、竖曲线纵距yy=x2/2R (m) (5-3)式中 x-竖曲线上计算点至竖曲线起(终)点的横距(m)。

当x=T时,变坡点的纵距Y即为竖曲线的外矢距E。

Y=E=T2/2R=1/2R(C/2)2=C2/8R (5-3.1)4、竖曲线上各点的设计标高H设h为计算点的坡度标高,则H=h±y (5-4)式中的y值,凹形取“+”,凸形取“-”。

【算例一】一凹形竖曲线i1=-4‰,i2=+2‰,△i=6‰,变坡点的里程为K235+165,标高为54.60m,R=15000m,计算竖曲线上各20m点的设计标高。

CASIO 计算器竖曲线计算程式

CASIO 计算器竖曲线计算程式

CASIO 计算器竖曲线计算程式R " B J " T " Q X " Q " Q Z L "H " Q Z H " C " C P " E " H P ": A = Q - T : B = Q + T ↙Lbl 0 : {I }: I " S Q " < A ⇒G= H - C ( Q - I ) ◢≠=> I > B ⇒G = H + E ( I - Q ) ◢≠=> S = I - Q : I < Q ⇒D = I - A: P = S C : Goto 1 : ≠=> D = B - I :: P = S E : Goto 1Lbl 1 : C > 0 ⇒Goto 2 ◢≠=> Goto 3 ◢Lbl 2 : E > 0 ⇒Goto 4 ◢≠=> Goto 6 ◢Lbl 3 : E > 0 ⇒Goto 7 ◢≠=> Goto 5 ◢Lbl 4 : C > E ⇒Goto 6 ◢≠=> Goto 7 ◢Lbl 5 : C > E ⇒Goto 7 ◢≠=> Goto 6 ◢Lbl 6 : G " G H " = H + P - D2 ÷ 2÷ R ◢Goto 0 ↙Lbl 7 : G " G H " = H + P + D2 ÷ 2÷ R ◢Goto 0 ↙BJ半径 QX切线长 QZL交点里程QZH交点高程 CP前坡HP后坡SQ所求里程公路三维坐标控制系统高程控制部分(for 4850)公路三维坐标控制系统高程控制部分(for CASIO4850)主程序DH{SZ}:SZS≤S1=>N=1:Prog“HDAT”:GOTO 1△S≤S2=>N=2:Prog“HDAT”:GOTO 1△S≤S3=>N=3:Prog“HDAT”:GOTO 1△……Lbl 1:S ≤I =>Q= F+G(S- E △S >I =>Q= F+G(S- E)+(-1)^J(S-I)^2/(2 M△R= Q+11.75 P-0.03:”DH=”: Q= Q ◢Z=0=>Q= Q △Z≠0=>Q= R △{H}:H”H=”: T= Q-H“△H=”: T= T ◢{ABKL}: T=Abs T: U= T / 8 : T ≤8=>W= TA+14+L△T >8=>W=8A+B(T-8)+14+2Int U+L△T >16=>W=8A+8B+K(T-16)+14+2 Int U+L△“DW”: W= W ◢“△W”: D= W-Abs Z◢竖曲线数据库HDATN=1=>E= xxxx.xxx: F= xxxx.xxx: G= xxxx.xxx: J= xxxx.xxx: M= xxxx.xxx: O= xxxx.xxx△N=2=>E= xxxx.xxx: F= xxxx.xxx: G= xxxx.xxx: J= xxxx.xxx: M= xxxx.xxx: O= xxxx.xxx△N=3=>E= xxxx.xxx: F= xxxx.xxx: G= xxxx.xxx: J= xxxx.xxx: M= xxxx.xxx: O= xxxx.xxx△……I= E- O说明:(1)变量赋值说明E变坡点桩号F变坡点高程G变坡点前段坡比I该段竖曲线起点桩号即高差改正值为零处桩号J竖曲线系数 1为凸2为凹M竖曲线半径O 竖曲线切线长P路面横坡(已在坐标反算程序中赋值)Q路线设计高程,当Z=0时为中桩设计高程(或中分带边缘设计高程),当Z≠0时为路基边缘设计高程R 路基边缘设计高程T:“△H”高差V边坡分级,第n级坡W开口、坡脚设计宽度(根据高差及坡比求得)可计算任意高度处的设计宽度D宽差(当其为负則向中桩方向移相应宽度,当其为正则向外移相应宽度)S、Z所测点对应桩号及距中桩处的距离A、B、K横断面一、二、三级坡比L附加宽度(以便根据横断面设计实际情况调整,象坠落台、护坡道、路堑处边沟设置宽度的不固定值设置及填方段为使路基满足设计的压实要求超填的宽度)H实测高程(2)编制思路该程序编者根据工地的实际情况编制在此仅供一个编制思路,用户需根据实际情况进行修改。

竖曲线

竖曲线

竖曲线竖曲线设计竖曲线定义:纵断面上相邻两条纵坡线相交的转折处,为了行车平顺用一段曲线来缓和,这条连接两纵坡线的曲线叫竖曲线。

竖曲线的形状,通常采用平曲线或二次抛物线两种。

在设计和计算上为方便一般采用二次抛物线形式。

纵断面上相邻两条纵坡线相交形成转坡点,其相交角用转坡角表示。

当竖曲线转坡点在曲线上方时为凸形竖曲线,反之为凹形竖曲线。

一.凹凸竖曲线的判别如图所示,设相邻两纵坡坡度分别为i1 和i2,则相邻两坡度的代数差即转坡角为ω= i2-i1,其中i1、i2为本身之值,当上坡时取正值,下坡时取负值。

当i2- i1为正值时,则为凹形竖曲线。

当i2 – i1 为负值时,则为凸形竖曲线。

二.主要公式坡度差:ω= I2-I1竖曲线曲线长:L = Rω竖曲线切线长:T= TA =TB ≈L/2 = Rω/2或者:T=(I1-I2)/2*R竖曲线的外距: E =T2 /2R修正值:X=D2 /2R其中D为所求点桩号到竖曲线起点或终点的距离三.竖曲线的半径竖曲线半径的确定1.凸形竖曲线极限最小半径确定考虑因素:(1)缓和冲击汽车行驶在竖曲线上时,产生径向离心力,使汽车在凸形竖曲线上重量减小,所以确定竖曲线半径时,对离心力要加以控制。

(2)经行时间不宜过短当竖曲线两端直线坡段的坡度差很小时,即使竖曲线半径较大,竖曲线长度也有可能较短,此时汽车在竖曲线段倏忽而过,冲击增大,乘客不适;从视觉上考虑也会感到线形突然转折。

因此,汽车在凸形竖曲线上行驶的时间不能太短,通常控制汽车在凸形竖曲线上行驶时间不得小于3秒钟。

(3)满足视距的要求汽车行驶在凸形竖曲线上,如果竖曲线半径太小,会阻挡司机的视线。

为了行车安全,对凸形竖曲线的最小半径和最小长度应加以限制。

2.凹形竖曲线极限最小半径确定考虑因素(1)缓和冲击:在凹形竖曲线上行驶重量增大;半径越小,离心力越大;当重量变化程度达到一定时,就会影响到旅客的舒适性,同时也会影响到汽车的悬挂系统。

缓和曲线、竖曲线、圆曲线、计算

缓和曲线、竖曲线、圆曲线、计算

速公路的一些线路坐标、高程计算公式(缓和曲线、竖曲线、圆曲线、匝道) 一、缓和曲线上的点坐标计算已知:①缓和曲线上任一点离ZH点的长度:l②圆曲线的半径:R③缓和曲线的长度:l④转向角系数:K(1或-1)⑤过ZH点的切线方位角:α⑥点ZH的坐标:xZ ,yZ计算过程:说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下:当计算第二缓和曲线上的点坐标时,则:l为到点HZ的长度α为过点HZ的切线方位角再加上180°K值与计算第一缓和曲线时相反x Z ,yZ为点HZ的坐标切线角计算公式:二、圆曲线上的点坐标计算已知:①圆曲线上任一点离ZH点的长度:l②圆曲线的半径:R③缓和曲线的长度:l④转向角系数:K(1或-1)⑤过ZH点的切线方位角:α⑥点ZH的坐标:xZ ,yZ计算过程:说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下:当只知道HZ点的坐标时,则:l为到点HZ的长度α为过点HZ的切线方位角再加上180°K值与知道ZH点坐标时相反x Z ,yZ为点HZ的坐标三、曲线要素计算公式公式中各符号说明:l——任意点到起点的曲线长度(或缓曲上任意点到缓曲起点的长度)l1——第一缓和曲线长度l2——第二缓和曲线长度l——对应的缓和曲线长度R——圆曲线半径R1——曲线起点处的半径R 2——曲线终点处的半径P——曲线起点处的曲率1——曲线终点处的曲率P2α——曲线转角值四、竖曲线上高程计算已知:①第一坡度:i(上坡为“+”,下坡为“-”)1(上坡为“+”,下坡为“-”)②第二坡度:i2③变坡点桩号:SZ④变坡点高程:HZ⑤竖曲线的切线长度:T⑥待求点桩号:S计算过程:五、超高缓和过渡段的横坡计算已知:如图,第一横坡:i1第二横坡:i2过渡段长度:L待求处离第二横坡点(过渡段终点)的距离:x 求:待求处的横坡:i解:d=x/Li=(i2-i1)(1-3d2+2d3)+i1六、匝道坐标计算已知:①待求点桩号:K②曲线起点桩号:K③曲线终点桩号:K1④曲线起点坐标:x0,y⑤曲线起点切线方位角:α⑥曲线起点处曲率:P(左转为“-”,右转为“+”)⑦曲线终点处曲率:P(左转为“-”,右转为“+”)1求:①线路匝道上点的坐标:x,y②待求点的切线方位角:αT计算过程:注:sgn(x)函数是取符号函数,当x<0时sgn(x)=-1,当x>0时sgn(x)=1,当x=0时sgn(x)=0。

第五章:竖曲线设计介绍

第五章:竖曲线设计介绍

8000
60
9000
6000
40
3000
2000Βιβλιοθήκη (2)半径的选择选择竖曲线半径主要应考虑以下因素: 1)选择半径应符合表所规定的竖曲线的最小半径和最小长度 的要求。 2)在不过分增加土石方工程量的情况下,为使行车舒适,宜 采用较大的竖曲线半径。 3)结合纵断面起伏情况和标高控制要求,确定合适的外距值 ,按外距控制选择半径:
1. 竖曲线的计算
(1) 用二次抛物线作为竖曲线的基本方程式 二次抛物线一般方程为
y 1 x 2 ix 2k
i dy x i dx k
当x 0时,
i i1;
x L时,
i
L k i1
i2 ,

k L L
i2 i1
抛物线上任一点的曲率半径为
R
ω为正,变坡点在曲线下方,竖曲线开口向上,为凹形竖曲 线;ω为负,变坡点在曲线上方,竖曲线开口向下,为凸形 竖曲线。
各级道路在变坡点处均应设置竖曲线。 竖曲线的线形采用二次抛物线。由于在其应用范围内,圆
曲线与抛物线几乎没有差别,因此,竖曲线通常表示成圆 曲线的形式,用圆曲线半径R来表示竖曲线的曲率半径。
(3)
将(2)式和(3)式代入(1)式,得二次抛物线竖曲线基本
方程式为
y


2L
x2

i1x

y

1 2R
x2

i1x
式中:ω ——坡差 (%);
L——竖曲线长度 (m);
R——竖曲线半径 (m)。
(2) 竖曲线几何要素计算 竖曲线的几何要素主要有:竖曲线切线长T、曲线长L和外距E。

铁路线路平纵断面图识读—竖曲线计算

铁路线路平纵断面图识读—竖曲线计算

车钩错动示意图
11
(1)竖曲线半径 ①列车通过变坡点不脱轨要求。如Δi ≥ 3‰设置竖曲线即满 足。 ②满足行车平稳要求。允许离心加速度的大小和行车速度有 关。 ③满足不脱钩要求。与相邻车辆相对倾斜引起的车钩中心线 上下位移允许值有关,Rv≥3000m即满足。 ④竖曲线半径与列车纵向力的关系。
12
项目任务4:竖曲线计算
目标:掌握纵断面设计的坡度、坡段长度、坡度代数 差的基本概念,能读懂纵断面图中主要项目及项目设 计要求,会进行竖曲线的施工计算。
知识点: 一、坡段长度
相邻两坡段的坡度变化 点称为变坡点。相邻两变 坡点间的水平距离称为坡段长度。
1.坡段长度对工程和运营的影响
不同坡长的纵断面
(1)对工程数量的影响
《线规》规定:路段设计速度为160km/h的地段,当相邻坡段的坡 度差大于1‰时,竖曲线半径应采用15000m;当路段设计速度小于 160km/h,相邻坡段的坡度差大于3‰时,竖曲线半径应采用10000m。
(2)竖曲线要素计算 ①竖曲线切线长
TSH
RSH i 2000
(m)
Vmax≥160km/h : Vmax〈160km/h :
采用较短的坡段长度可更好地适应地形起伏,减少路基、桥隧等工程 数量。但最短坡段长度应保证坡段两端所设的竖曲线不在坡段中间重叠。
2
(2)对运营的影响 从运营角度看,因为列车通过变坡点时,变坡点前后的列车运
行阻力不同,车钩间存在游间,将使部分车辆产生局部加速度,影 响行车平稳;同时也使车辆间产生冲击作用,增大列车纵向力,坡 段长度要保证不致产生断钩事故。
7
如前一坡段的坡度i1为6‰下坡,后一坡段的坡度i2为4‰上坡,则坡度差 Δi为:

竖曲线要素计算

竖曲线要素计算

[转]缓和曲线、竖曲线、圆曲线、匝道(计算公式)来源:王维超的日志一、缓和曲线上的点坐标计算已知:①缓和曲线上任一点离ZH点的长度:l②圆曲线的半径:R③缓和曲线的长度:l0④转向角系数:K(1或-1)⑤过ZH点的切线方位角:α⑥点ZH的坐标:xZ,yZ计算过程:说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下:当计算第二缓和曲线上的点坐标时,则:l为到点HZ的长度α为过点HZ的切线方位角再加上180°K值与计算第一缓和曲线时相反xZ,yZ为点HZ的坐标切线角计算公式:二、圆曲线上的点坐标计算已知:①圆曲线上任一点离ZH点的长度:l②圆曲线的半径:R③缓和曲线的长度:l0④转向角系数:K(1或-1)⑤过ZH点的切线方位角:α⑥点ZH的坐标:xZ,yZ计算过程:说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下:当只知道HZ点的坐标时,则:l为到点HZ的长度α为过点HZ的切线方位角再加上180°K值与知道ZH点坐标时相反xZ,yZ为点HZ的坐标三、曲线要素计算公式公式中各符号说明:l——任意点到起点的曲线长度(或缓曲上任意点到缓曲起点的长度)l1——第一缓和曲线长度l2——第二缓和曲线长度l0——对应的缓和曲线长度R——圆曲线半径R1——曲线起点处的半径R2——曲线终点处的半径P1——曲线起点处的曲率P2——曲线终点处的曲率α——曲线转角值四、竖曲线上高程计算已知:①第一坡度:i1(上坡为“+”,下坡为“-”)②第二坡度:i2(上坡为“+”,下坡为“-”)③变坡点桩号:SZ④变坡点高程:HZ⑤竖曲线的切线长度:T⑥待求点桩号:S计算过程:五、超高缓和过渡段的横坡计算已知:如图,第一横坡:i1第二横坡:i2过渡段长度:L待求处离第二横坡点(过渡段终点)的距离:x 求:待求处的横坡:i解:d=x/Li=(i2-i1)(1-3d2+2d3)+i1六、匝道坐标计算已知:①待求点桩号:K②曲线起点桩号:K0③曲线终点桩号:K1④曲线起点坐标:x0,y0⑤曲线起点切线方位角:α0⑥曲线起点处曲率:P0(左转为“-”,右转为“+”)⑦曲线终点处曲率:P1(左转为“-”,右转为“+”)求:①线路匝道上点的坐标:xy②待求点的切线方位角:αT计算过程:注:sgn(x)函数是取符号函数,当x0时sgn(x)=1,当x=0时sgn(。

道路曲线计算公式

道路曲线计算公式

高速公路线路(缓和曲线、竖曲线、圆曲线、匝道)坐标计算公式时间:2009-12-27 21:40:34 来源:本站作者:未知我要投稿我要收藏投稿指南高速公路的一些线路坐标、高程计算公式(缓和曲线、竖曲线、圆曲线、匝道)一、缓和曲线上的点坐标计算已知:①缓和曲线上任一点离ZH点的长度:l②圆曲线的半径:R③缓和曲线的长度:l0④转向角系数:K(1或-1)⑤过ZH点的切线方位角:α⑥点ZH的坐标:x Z,y Z计算过程:说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下:当计算第二缓和曲线上的点坐标时,则:l为到点HZ的长度α为过点HZ的切线方位角再加上180°K值与计算第一缓和曲线时相反x Z,y Z为点HZ的坐标切线角计算公式:二、圆曲线上的点坐标计算已知:①圆曲线上任一点离ZH点的长度:l②圆曲线的半径:R③缓和曲线的长度:l0④转向角系数:K(1或-1)⑤过ZH点的切线方位角:α⑥点ZH的坐标:x Z,y Z计算过程:说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下:当只知道HZ点的坐标时,则:l为到点HZ的长度α为过点HZ的切线方位角再加上180°K值与知道ZH点坐标时相反x Z,y Z为点HZ的坐标三、曲线要素计算公式公式中各符号说明:l——任意点到起点的曲线长度(或缓曲上任意点到缓曲起点的长度)l1——第一缓和曲线长度l2——第二缓和曲线长度l0——对应的缓和曲线长度R——圆曲线半径R1——曲线起点处的半径R2——曲线终点处的半径P1——曲线起点处的曲率P2——曲线终点处的曲率α——曲线转角值四、竖曲线上高程计算已知:①第一坡度:i1(上坡为“+”,下坡为“-”)②第二坡度:i2(上坡为“+”,下坡为“-”)③变坡点桩号:S Z④变坡点高程:H Z⑤竖曲线的切线长度:T⑥待求点桩号:S计算过程:五、超高缓和过渡段的横坡计算已知:如图,第一横坡:i1第二横坡:i2过渡段长度:L待求处离第二横坡点(过渡段终点)的距离:x求:待求处的横坡:i解:d=x/Li=(i2-i1)(1-3d2+2d3)+i1六、匝道坐标计算已知:①待求点桩号:K②曲线起点桩号:K0③曲线终点桩号:K1④曲线起点坐标:x0,y0⑤曲线起点切线方位角:α0⑥曲线起点处曲率:P0(左转为“-”,右转为“+”)⑦曲线终点处曲率:P1(左转为“-”,右转为“+”)求:①线路匝道上点的坐标:x,y②待求点的切线方位角:αT计算过程:注:sgn(x)函数是取符号函数,当x<0时sgn(x)=-1,当x>0时sgn(x)=1,当x=0时sgn(x)=0。

竖曲线的形式及高程计算

竖曲线的形式及高程计算

一、设置竖曲线的要求铁路线路所包含的坡度除平坡外,有上坡、下坡。

所谓坡度,即铁路线路的高程变化率,用千分率表示,就是每1000m水平距离高程上升或下降的数值,通常用符号“+、-、0”依次表示上坡、下坡或平坡。

在进行纵断面设计时,相邻两坡段的交点叫变坡点,两变坡点之间的水平距离叫坡段长度。

《铁路线路设计规范》规定:工、Ⅱ级铁路相邻坡段坡度的代数差大于3%0和Ⅲ级铁路相邻坡段坡度的代数差大于4‰时,需用竖曲线连接。

竖曲线的形状主要分为圆曲线形和抛物线形两种。

《新建客货共线铁路设计暂行规定》规定:纵断面宜设计为较长的坡段,相邻坡段的连接宜设计为较小的坡度差。

旅客列车设计行车速度为200 km/h的路段,最小坡段长度不宜小于600m,困难条件下最小坡段长度不应小于400m,且最小坡段长度不得连续使用2个以上。

旅客列车设计行车速度为160km/h的路段,最小坡段长度不宜小于400m,且最小坡段长度不宜连续使用2个以上。

竖曲线不得与缓和曲线、相邻竖曲线重叠设置,也不得设在明桥面和正线道岔内。

二、竖曲线的计算方法1.圆曲线形竖曲线计算《铁路线路设计规范》规定:Ⅰ、Ⅱ级铁路竖曲线半径为10000m Tv=5 X △i ,Ⅲ级铁路竖曲线半径为5000m。

Tv=2.5 X △i(1)竖曲线的切线长Tv=Rv ×tan a/2 = Rv/2 ×tan a= Rv/2000 × △i △i=△i2-△i1 的绝对值Tv-竖曲线的切线长(m);Rv--竖曲线半径,a----竖曲线转角,△i-相邻坡段坡度的代数差(‰)。

(2)竖曲线的曲线长C≈2T。

(3)竖曲线的纵距竖曲线的纵距即竖曲线上任意点与切线上相邻点的标高差,用y表示,即y=x2/2Rv式中Y-竖曲线的纵距(m);x-竖曲线上任意点距竖曲线始点或终点的距离(m);(4)竖曲线标高H=Hp±y 式中H-竖曲线标高(m);Hp-计算点坡度线标高,【例题】某一级铁路,有一圆曲线形竖曲线(如图3-20所示),竖曲线中点里程为K24+400,标高为65.7 m,上坡i1=+2‰,下坡i2=-4‰,试计算竖曲线上每20 m点的标高。

竖曲线计算实例

竖曲线计算实例

第二节 竖曲线设计纵断面上相邻两条纵坡线相交的转折处,为了行车平顺用一段曲线来缓与,这条连接两纵坡线的曲线叫竖曲线。

竖曲线的形状,通常采用平曲线或二次抛物线两种。

在设计与计算上为方便一般采用二次抛物线形式。

纵断面上相邻两条纵坡线相交形成转坡点,其相交角用转坡角表示。

当竖曲线转坡点在曲线上方时为凸形竖曲线,反之为凹形竖曲线。

一、竖曲线如图所示,设相邻两纵坡坡度分别为i 1 与i 2,则相邻两坡度的代数差即转坡角为ω= i 1-i 2 ,其中i 1、i 2为本身之值,当上坡时取正值,下坡时取负值。

当 i 1- i 2为正值时,则为凸形竖曲线。

当 i 1 - i 2 为负值时,则为凹形竖曲线。

(一)竖曲线基本方程式我国采用的就是二次抛物线形作为竖曲线的常用形式。

其基本方程为:Py x 22=若取抛物线参数P 为竖曲线的半径 R ,则有:Ry x 22= Rx y 22=(二)竖曲线要素计算公式竖曲线计算图示1、切线上任意点与竖曲线间的竖距h 通过推导可得:==PQ h )()(2112li y l x R y y A A q p ---=-Rl 22=2、竖曲线曲线长: L = R ω3、竖曲线切线长: T= T A =T B ≈ L/2 =2ωR 4、竖曲线的外距: E =RT 22⑤竖曲线上任意点至相应切线的距离:Rx y 22=式中:x —为竖曲任意点至竖曲线起点(终点)的距离, m;R —为竖曲线的半径,m 。

二、竖曲线的最小半径(一)竖曲线最小半径的确定1、凸形竖曲线极限最小半径确定考虑因素 (1)缓与冲击汽车行驶在竖曲线上时,产生径向离心力,使汽车在凸形竖曲线上重量减小,所以确定竖曲线半径时,对离心力要加以控制。

(2)经行时间不宜过短当竖曲线两端直线坡段的坡度差很小时,即使竖曲线半径较大,竖曲线长度也有可能较短,此时汽车在竖曲线段倏忽而过,冲击增大,乘客不适;从视觉上考虑也会感到线形突然转折。

竖曲线高程计算公式

竖曲线高程计算公式

竖曲线高程计算公式竖曲线高程计算公式是道路工程设计中非常重要的一项内容,它用于确定道路纵向曲线的高程变化。

竖曲线的设计合理与否直接影响到道路的通行安全和舒适性。

竖曲线是指道路在纵向上的曲线形状,主要分为凸曲线和凹曲线。

在道路设计中,通常会根据实际需要选择合适的曲线形状,以满足车辆的行驶速度和舒适度要求。

竖曲线高程计算的目标是确定道路各个点的高程值,使其在竖曲线的路径上平稳过渡。

其计算公式主要包括三个要素:曲线的长度、曲线的半径和曲线的超幅。

曲线的长度是指道路在竖曲线路径上的长度,通常采用米为单位。

曲线长度的选择应综合考虑道路的几何形态、车辆的行驶速度和纵向坡度的要求等因素。

为了保证道路的通行安全和舒适性,曲线长度应尽量接近于所设计的数值。

曲线的半径是指曲线所画圆弧的半径,通常采用米为单位。

曲线半径的选择与车辆的行驶速度有关,车速越高,曲线半径应越大。

一般情况下,公路设计中常采用的最小曲线半径为150米。

曲线的超幅是指曲线路径两侧的高程变化。

超幅的选择应考虑到道路的实际需要以及地形条件等因素。

一般情况下,超幅的设计取决于道路的级别、纵向坡度和平均曲率等因素。

竖曲线高程计算公式可以用简洁的数学表达式表示,具体公式如下:高程(E)= 起点高程(E1)+ A1 + A2 + ... + An其中,A1、A2、...、An分别表示曲线路径上每个曲线段的高差值。

高差的计算可以通过使用切线方位角和曲线半径以及曲线长度来进行。

竖曲线高程计算公式的应用可以通过道路设计软件来实现。

根据实际的设计要求和数据输入,软件会自动生成曲线路径上的高程数值,以便进行进一步的设计工作。

总之,竖曲线高程计算公式在道路工程设计中具有重要的应用价值。

通过合理选择曲线的长度、半径和超幅,并利用计算公式进行高程的确定,可以保证道路的通行安全和驾驶舒适度。

因此,设计师在进行道路竖曲线设计时,应深入理解和掌握相关计算公式,并结合实际情况进行应用,以提升道路设计的质量和效果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

竖曲线长度计算公式
1、外矢距计算公式: L=T2/2R;
2、切线长计算公式:T=1/2*R*(I前-I后);
3、凹曲线任一点计算公式:H =E+Abs(Q-C)*I + L;
4、凸曲线任一点计算公式:H =E-Abs(Q-C)*I - L;
说明:
H=所求点高程;
E=竖曲线交点高程;
Q=起点桩号;
C=所求点桩号;
I=线路纵坡坡率。

扩展资料
竖曲线技术指标主要有竖曲线半径和竖曲线长度。

凸形的竖曲线的视距条件较差,应选择适当的半径以保证安全行车的需要。

凹形的竖曲线,视距一般能得到保证,但由于在离心力作用下汽车要产生增重,因此应选择适当的半径来控制离心力不要过大,以保证行车的平顺和舒适。

一般城市干路相邻坡段的坡度小于0.5%或外距小于5cm时,可以不设置竖曲线。

竖曲线的最小半径与设计速度有关,凹形竖曲线最小半径为100M,凸形竖曲线为100M。

相关文档
最新文档