中考数学非常难的动点直角三角形求最短距离问题解题技巧分享
动点问题中的最值、最短路径问题解析版
专题01 动点问题中的最值、最短路径问题动点问题是初中数学阶段的难点,它贯穿于整个初中数学,自数轴起始,至几何图形的存在性、几何图形的长度及面积的最值,函数的综合类题目,无不包含其中.其中尤以几何图形的长度及面积的最值、最短路径问题的求解最为繁琐且灵活多变,而其中又有一些技巧性很强的数学思想(转化思想),本专题以几个基本的知识点为经,以历年来中考真题为纬,由浅入深探讨此类题目的求解技巧及方法.一、基础知识点综述1. 两点之间,线段最短;2. 垂线段最短;3. 若A 、B 是平面直角坐标系两定点,P 是某直线上一动点,当P 、A 、B 在一条直线上时,PA PB 最大,最大值为线段AB 的长(如下图所示);(1)单动点模型作图方法:作已知点关于动点所在直线的对称点,连接成线段与动点所在直线的交点即为所求点的位置. 如下图所示,P 是x 轴上一动点,求PA +PB 的最小值的作图.(2)双动点模型P是∠AOB一点,M、N分别是边OA、OB上动点,求作△PMN周长最小值.作图方法:作已知点P关于动点所在直线OA、OB的对称点P’、P’’,连接P’P’’与动点所在直线的交点M、N即为所求.OBPP'P''MN5. 二次函数的最大(小)值()2y a x h k=-+,当a>0时,y有最小值k;当a<0时,y有最大值k.二、主要思想方法利用勾股定理、三角函数、相似性质等转化为以上基本图形解答. (详见精品例题解析)三、精品例题解析例1. (2019·凉山州)如图,正方形ABCD中,AB=12,AE=3,点P在BC上运动(不与B、C重合),过点P作PQ⊥EP,交CD于点Q,则CQ的最大值为例2.(2019·凉山州)如图,已知A、B两点的坐标分别为(8,0),(0,8). 点C、F分别是直线x=-5和x轴上的动点,CF=10,点D是线段CF的中点,连接AD交y轴于点E,当△ABE面积取最小值时,tan∠BAD=()x y A B C F D EO x=-5A .817B . 717C . 49D . 59例3.(2019·)如图,矩形硬纸片ABCD 的顶点A 在y 轴的正半轴及原点上滑动,顶点B 在x 轴的正半轴及原点上滑动,点E 为AB 的中点,AB =24,BC =5,给出结论:①点A 从点O 出发,到点B 运动至点O 为止,点E 经过的路径长为12π;②△OAB 的面积的最大值为144;③当OD 最大时,点D 的坐标为)2626125,262625(,其中正确的结论是(填写序号).例4.(2019·XX )已知抛物线2y x bx c =-+(b 、c 为常数,b >0)经过点A (-1,0),点M (m ,0)是x 轴正半轴上的动点,若点Q (1,2Q b y +22AM QM +332时,求b 的值.例5. (2019·)如图,一副含30°和45°角的三角板ABC 和EDF 拼合在个平面上,边AC 与EF 重合,12AC cm .当点E 从点A 出发沿AC 方向滑动时,点F 同时从点C 出发沿射线BC 方向滑动.当点E 从点A 滑动到点C 时,点D 运动的路径长为cm ;连接BD ,则△ABD 的面积最大值为2cm .例6. (2019·)如图,在菱形ABCD 中,连接BD 、AC 交于点O ,过点O 作OH ⊥BC 于点H ,以O 为圆心,OH 为半径的半圆交AC 于点M .(1)求证:DC 是圆O 的切线;(2)若AC =4MC ,且AC =8,求图中阴影部分面积;(3)在(2)的前提下,P 是线段BD 上的一动点,当PD 为何值时,PH +PM 的值最小,并求出最小值. ABC DH O M N专题01 动点问题中的最值、最短路径问题(解析)例1. (2019·凉山州)如图,正方形ABCD中,AB=12,AE=3,点P在BC上运动(不与B、C重合),过点P作PQ⊥EP,交CD于点Q,则CQ的最大值为【答案】4.【解析】解:∵PQ⊥EP,∴∠EPQ=90°,即∠EPB+∠QPC=90°,∵四边形ABCD是正方形,∴∠B=∠C=90°,∠EPB+∠BEP=90°,∴∠BEP=∠QPC,∴△BEP∽△CPQ,∴BE BP CP CQ=,∵AB=12,AE=3,∴BE=9,设CQ=y,BP=x,CP=12-x,(0<x<12)∴912xx y=-,即()()21216499x xy x-==--+,∴当x=6时,y有最大值为4,即CQ的最大值为4.【点睛】此题为“一线三直角模型”,解题方法为相似三角形性质求解,综合利用二次函数的性质求解最值问题.例2.(2019·)如图,已知A、B两点的坐标分别为(8,0),(0,8). 点C、F分别是直线x=-5和x轴上的动点,CF=10,点D是线段CF的中点,连接AD交y轴于点E,当△ABE面积取最小值时,tan∠BAD=()A . 817B . 717C . 49D . 59【答案】B .【解析】解:S △ABE =142BE OA BE ⨯⨯=,当BE 取最小值时,△ABE 面积为最小值.设x =-5与x 轴交于点G ,连接DG ,因为D 为CF 中点,△CFG 为直角三角形,所以DG =152CD =,∴D 点的运动轨迹为以G 为圆心,以5半径的圆上,如图所示 xyABD E O x=-5G由图可知:当AD 与圆G 相切时,BE 的长度最小,如下图,xyABD E O x=-5G H过点E 作EH ⊥AB 于H ,∵OG =5,OA =8,DG =5,在Rt △ADG 中,由勾股定理得:AD =12,△AOE ∽△ADG , ∴AO AD OE DG =, 求得:OE =103, 由OB =OA=8,得:BE =143,∠B =45°,AB =82 ∴EH =BH =27223BE =,AH =AB -BH =1723, ∴tan ∠BAD =727317172EH AH ==, 故答案为B .【点睛】此题解题的关键是找到△ABE 面积最小时即是AD 与D 的远动轨迹圆相切的时刻. 进而构造以∠BAD 为角的直角三角形,利用勾股定理求出边长,代入三角函数定义求解.例3.(2019·)如图,矩形硬纸片ABCD 的顶点A 在y 轴的正半轴及原点上滑动,顶点B 在x 轴的正半轴及原点上滑动,点E 为AB 的中点,AB =24,BC =5,给出结论:①点A 从点O 出发,到点B 运动至点O 为止,点E 经过的路径长为12π;②△OAB 的面积的最大值为144;③当OD 最大时,点D 的坐标为)2626125,262625(,其中正确的结论是(填写序号).【答案】②③.【解析】解:根据题意可知:OE =12AB =12,即E 的轨迹为以O 为圆心以12为半径的四分之一圆(第一象限的部分),根据弧长公式,得点E 的路径长为:9012180π⨯⨯=6π,故①错误; 因为AB =24,当斜边AB 上的高取最大值时,△OAB 的面积取最大值,点O 在以AB 为直径的圆上(圆心为E ),当OE ⊥AB 时,斜边AB 上的高最大, 所以△OAB 的面积取最大值为:124122⨯⨯=144,故②正确;连接OE 、DE ,得:OD ≤OE +DE ,当O 、E 、D 三点共线时取等号,即OD 的最大值为25,如图,过点D 作DF ⊥y 轴于F ,过点E 作EG ⊥y 轴于G ,25DF OD 即:1225EG DF =,512AF AD EG AE ==, 即:51125AF EG DF ==,设DF =x ,在Rt △ADF 中,由勾股定理得:221255x x ⎛⎫+= ⎪⎝⎭,解得:x =26,在Rt △ODF 中,由勾股定理得:OF =26,即点D 的坐标为)2626125,262625(,故③正确.综上所述,答案为:②③. 例4.(2019·XX )已知抛物线2y x bx c =-+(b 、c 为常数,b >0)经过点A (-1,0),点M (m ,0)是x 轴正半轴上的动点.若点Q (1,2Q b y +)在抛物线上,当22AM QM +的最小值为3324时,求b 的值. 【答案】见解析. 【解析】解:∵2y x bx c =-+经过点A (-1,0),∴1+b +c =0,即21y x bx b =--- ∵点Q (1,2Q b y +)在抛物线2y x bx c =-+上, ∴324Q b y =--, 即13,224b Q b ⎛⎫+-- ⎪⎝⎭, ∵b >0,∴Q 点在第四象限,2222AM QM AM QM ⎛⎫+=+ ⎪⎝⎭所以只要构造出22AM QM ⎛⎫+ ⎪⎝⎭即可得到22AM QM +的最小值取N (1,0),连接AN ,过M 作MG ⊥AN 于G ,连接QM ,如图所示,△AGM 为等腰直角三角形,GM =22AM ,即当G 、M 、Q 三点共线时,GM +MQ 22QM +取最小值, 此时△MQH 为等腰直角三角形,∴QM=2QH=3224b⎛⎫+⎪⎝⎭,GM=22AM=()212m+∴()223332222=21222244bAM QM AM QM m⎛⎫⎡⎤⎛⎫+=++++=⎪⎢⎥⎪⎝⎭⎝⎭⎣⎦①∵QH=MH,∴324b+=12b m+-,解得:m=124b-②联立①②得:m=74,b=4.即当22AM QM+的最小值为3324时,b=4.【点睛】此题需要利用等腰直角三角形将22AM QM+转化为222AM QM⎛⎫+⎪⎝⎭,进而根据两点之间线段最短及等腰三角形性质求解.例5. (2019·)如图,一副含30°和45°角的三角板ABC和EDF拼合在个平面上,边AC与EF重合,12AC cm=.当点E从点A出发沿AC方向滑动时,点F同时从点C出发沿射线BC方向滑动.当点E从点A滑动到点C时,点D运动的路径长为cm;连接BD,则△ABD的面积最大值为2cm.【答案】24-1223623126;【解析】解:如图1所示,当E运动至E’,F滑动到F’时,DD'E'G图1过D ’作D ’G ⊥AC 于G ,D ’H ⊥BC 交BC 延长线于点H ,可得∠E ’D ’G =∠F ’D ’H ,D ’E ’=D ’F ’,∴Rt △E ’D ’G ≌Rt △F ’D ’H ,∴D ’G =G ’H ,∴D ’在∠ACH 的角平分线上,即C ,D ,D ’三点共线.通过分析可知,当D ’E ’⊥AC 时,DD ’的长度最大,随后返回初始D 点,如图2所示,D 点的运动路径为D →D ’→D ,行走路线长度为2DD ’;BD'图2∵∠BAC =30°,AC =12,DE =CD∴BC =CD =DE=由图知:四边形E ’CF ’D ’为正方形,CD ’=EF =12,∴DD ’=CD ’-CD =12-D 点运动路程为2DD ’=24-D'图3如图3所示,当点D 运动至D ’时,△ABD ’的面积最大,最大面积为:'''''''ABC AE D BD F E CF D S S S S ++-△△△正方形=(((211112222⨯+⨯--⨯+⨯=【点睛】准确利用全等、角平分线判定得到D 点的运动轨迹是关键,利用三角函数及勾股定理求解,计算较为繁琐,尤其是利用割补法求解三角形的面积时对学生计算能力要求较高,此题难度较大,新颖不失难度.例6. (2019·)如图,在菱形ABCD 中,连接BD 、AC 交于点O ,过点O 作OH ⊥BC 于点H ,以O 为圆心,OH 为半径的半圆交AC 于点M .(1)求证:DC 是圆O 的切线;(2)若AC =4MC ,且AC =8,求图中阴影部分面积;(3)在(2)的前提下,P 是线段BD 上的一动点,当PD 为何值时,PH +PM 的值最小,并求出最小值.BD【答案】见解析.【解析】(1)证明:过点O 作ON ⊥CD 于N , AC 是菱形ABCD 的对角线,∴AC 平分∠BCD ,∵OH ⊥BC ,ON ⊥CD ,∴OH =ON ,又OH 为圆O 的半径,∴ON 为圆O 的半径,即CD 是圆O 的切线.(2)由题意知:OC =2MC =4,MC =OM =2,即OH =2,在Rt △OHC 中,OC =2OH ,可得:∠OCH =30°,∠COH =60°,由勾股定理得:CH==23OCH OMHS S S π-=-△阴影扇形(3)作点M 关于直线BD 的对称点M ’,连接M ’H 交BD 于点P , 可知:PM =PM ’即PH +PM =PH +PM ’=HM ’,由两点之间线段最短,知此时PH +PM 最小, ∵OM ’=OM =OH ,∠MOH =60°,∴∠MM ’H =30°=∠HCM ,∴HM ’=HC=即PH +PM的最小值为在Rt △M ’PO 及Rt △COD 中,OP =OM ’ tan 30°=3,OD =OCtan 30°=3, 即PD =OP +OD=B D。
动点直角三角形问题的解法
“动点直角三角形问题”的三种解法李永红中考数学压轴题中常会出现“动点直角三角形问题”,如2013年山西、成都、攀枝花、长春、济宁、绵阳、襄阳等省市中考数学试卷中均出现了“动点直角三角形问题”,对于这类问题的解决,即使是数学尖子生也感到很棘手.其实,解决“动点直角三角形问题”有“法”可循,并不算“难”.一、例题分析例1 在直角坐标系中,已知点)0,1(A ,)2,0(-B ,将线段AB 绕点A 按逆时针方向旋转090至AC ,如图1.(1)求点C 的坐标;(2)若抛物线2212++-=ax x y 经过点C .①求抛物线的解析式;②在抛物线上是否存在点P (点C 除外)使ABP ∆是以AB 为直角边的直角三角形?若存在,求出所有点P 的坐标;若不存在,请说明理由.分析(1)构造三垂图可求得点C 的坐标为)1,3(-C .(2)①将点C 的坐标代入2212++-=ax x y 可求得抛物线的解析式为221212++-=x x y . ②法1(利用数形结合):如图2,易求得直线AC 的解析式为2121+-=x y . 由⎪⎪⎩⎪⎪⎨⎧++-=+-=2212121212x x y x y 解得⎩⎨⎧=-=11y x 或⎩⎨⎧-==13y x (舍去).此时点P 的坐标为)1,1(-.设过点B 且与直线AC 平行的直线的解析式为b x y +-=21,将点)2,0(-B 代入,得2-=b ,所以过点B 且与直线AC 平行的直线的解析式为221--=x y .由⎪⎪⎩⎪⎪⎨⎧++-=--=221212212x x y x y 解得⎩⎨⎧-=-=12y x 或⎩⎨⎧-==44y x .此时点P 的坐标为)1,2(--或)4,4(-.综上,存在符合条件的点P ,其坐标为)1,1(-或)1,2(--或)4,4(-. 法2(构造三垂图):如图3,延长CA 交抛物线于点),(1n m P ,过点1P 作x D P ⊥1轴于点D ,易证DA P 1∆∽AOB ∆,∴OBAD OA D P =1.∵1=OA ,2=OB ,m AD -=1,n D P =1,∴211m n -=,即m n 2121-=.∵点),(1n m P 在抛物线上,∴221212++-=m m n .由⎪⎪⎩⎪⎪⎨⎧++-=-=2212121212m m n m n 解得⎩⎨⎧=-=11n m 或⎩⎨⎧-==13n m (舍去).此时点P 的坐标为)1,1(-.过点B 作直线AC 的平行线,交抛物线于点2P ,3P .过点2P 作y E P ⊥2轴于点E ,易证2BEP ∆∽AOB ∆,可求得点2P 的坐标为)1,2(--;过点3P 作y F P ⊥3轴于点F ,易证3BFP ∆∽AOB ∆,可求得点3P 的坐标为)4,4(-;综上,存在符合条件的点P ,其坐标为)1,1(-或)1,2(--或)4,4(-. 法3(利用勾股定理): 设抛物线上存在点)22121,(2++-m m m P ,使ABP ∆是以AB 为直角边的直角三角形.分别利用勾股定理可得52=AB ,,)22121()1(2222++-+-=m m m AP 2222)42121(++-+=m m m BP . 当点A 、B 分别为直角顶点时,分别由+2AB =2AP 2BP 、+2AB 2BP 2AP =得到关于m 的一元四次方程,用已学知识难以求解.例2 已知抛物线32++=bx ax y 与x 轴交于点)0,3(-A ,)0,1(B ,与y 轴交于点C ,如图4. (1)求抛物线的解析式及顶点的坐标;(2)在抛物线的对称轴l 上存在点Q ,使ACQ ∆为直角三角形,请求出点Q 的坐标.分析(1)易求得抛物线的解析式为322+--=x x y ,顶点坐标为)4,1(-.(2)法1(利用数形结合):由于不易求直线AQ 或CQ 的解析式,所以本题不适合利用数形结合来解决. 法2(构造三垂图):如图5,在对称轴l 上存在四个符合条件的点Q ,分别构造三垂图并利用三角形相似可求得)4,1(1-Q ,)2,1(2--Q ,)2173,1(3+-Q ,)2173,1(4--Q . 法3(利用勾股定理):设点Q 的坐标为),1(n -,分别利用勾股定理可得182=AC ,,422n AQ +=22)3(1-+=n CQ .当090=∠ACQ 时,由+2AC =2CQ 2AQ 得224)3(118n n +=-++,解得4=n ,所以)4,1(1-Q .当090=∠CAQ 时,由+2AC =2AQ 2CQ 得22)3(1418-+=++n n ,解得2-=n ,所以)2,1(2--Q .当090=∠AQC 时,由+2AQ =2CQ 2AC 得18)3(1422=-+++n n ,解得2173±=n ,所以)2173,1(3+-Q ,)2173,1(4--Q . 综上,符合条件的点Q 有四个,分别为)4,1(1-Q ,)2,1(2--Q ,)2173,1(3+-Q ,)2173,1(4--Q . 二、方法比较利用数形结合:该方法并不是对每一个题都适用,当相应的直线方程能较容易求出时,可以使用该方法,而且解法比较简捷.构造三垂图:该方法对每一个题都适用,但解法较繁,当考虑情况不周时容易漏解.利用勾股定理:当动点在曲线上时,利用勾股定理得到的方程是一元四次方程,用已学知识难以求解,该方法不适用;当动点在直线上时,利用勾股定理得到的三个方程是一元一次方程或一元二次方程,容易求解而且不易漏解.通过上述分析和比较可以看到,解“动点直角三角形问题”通常有三种解法,解题时应根据题设条件选择恰当的解法,才能使问题快速地得以解决.。
【初二】最短距离问题总结
【初二】最短距离问题总结在初二数学课程中,最短距离问题是一个常见的问题类型。
本文将对最短距离问题进行总结和简要解析。
最短距离问题定义最短距离问题是指在给定的条件下,求解两个点之间最短路径的问题。
该问题常见于几何、图论和最优化等领域,在实践中具有广泛的应用。
最短距离问题解决方法1. 直线距离计算最简单的情况是直线距离计算。
当两个点在平面直角坐标系中给出时,可以使用勾股定理(即直角三角形斜边长度公式)计算两点之间的直线距离。
2. 曼哈顿距离计算曼哈顿距离是指在矩形网格中,从一个点到达另一个点所需要的最小移动次数(只能上下左右移动,不能斜向移动)。
曼哈顿距离计算可以通过两点横纵坐标的差值相加得到。
3. 最短路径算法对于复杂的情况,如图论中求解两点之间的最短路径,可以使用最短路径算法。
常见的最短路径算法包括迪杰斯特拉算法(Dijkstra Algorithm)和弗洛伊德算法(Floyd Algorithm)等。
这些算法可以在给定网络、权重或距离信息的情况下,计算出两点之间最短路径的长度和路径。
最短距离问题应用举例最短距离问题在实际生活中有广泛的应用,下面列举几个例子:1. 导航系统:导航系统通过计算起点和终点之间的最短路径,为驾驶员提供最优的导航路线。
2. 物流配送:物流公司需要计算货物从起点到终点的最短路径,以最大程度地减少运输成本和时间。
3. 网络通信:计算机网络中的路由算法使用最短路径算法来确定数据包传输的最佳路径。
4. 旅行规划:旅行者可以使用最短路径算法规划旅游路线,使得行程更加紧凑和高效。
总结最短距离问题是初二数学课程中的一个重要内容。
通过不同计算方法和最短路径算法,可以有效地解决两点之间最短路径的问题。
最短距离问题在实际中有许多应用场景,涉及导航、物流、网络通信和旅行规划等领域。
如何利用勾股定理求得最短距离
如何利用勾股定理求得最短距离人教版初中八年级(下册)第十八章介绍了勾股定理的内容和它的一些运用,勾股定理主要用来解决直角三角形三条边之间的关系的一个重要定理。
它在解三角函数、四边形以及实际生活中的运用也极其广泛,也是近几年全国各地中考的高频考点。
其中勾股定理在解决某些出现的最短距离的问题中发挥了很好的作用。
现分别举出勾股定理在长方体、圆柱体、圆锥体中是如何求得最短距离的例子,以便找出用它来解决问题的技巧和方法。
例1、 如图所示,有一个长方体木箱,长为40cm ,宽为30cm ,高为50cm ,点Q 距离点C 为10cm , 一只蚂蚁从A 点爬行到Q 点的最短距离是多少?【分析】这一道题从表面上看似乎与勾股定理没有什么联系,但通过仔细分析后,将长方体展开,就会与勾股定理产生联系,要解决本题必须分两种情况。
解: 第一种情况:将长方体右侧面CBGF 展开,使得与面ABCD 在同一个平面上,过Q 点作QH ⊥BC 于H ,连接AQ ,如图2,AQ 就是蚂蚁从A 点爬行到Q 点的距离。
由题意可知,cm AB 40=,cm BH CQ 10==,cm QH 50=,则cm AH 50=,根据勾股定理可得:222QH AH AQ +=,cm QH AH AQ 7125050502222≈=+=+=。
第二种情况:将上面的面CDEF 展开,使得与面ABCD 在同一个平面上,连接AQ ,如图3,AQ 就是蚂蚁从A 点爬行到Q 点的距离。
由题意可知,cm AB 40=,cm BQ 60=,根据勾股定理可得:222BQ AB AQ +=,22BQ AB AQ +=,cm AQ 72320604022≈=+=。
显然,第一种情况所求得的AQ 的值要比第二种情况所求得的AQ 的值要小,所以蚂蚁从A 点爬行到Q 点的最短距离是cm 250。
例2、如图4,有一个圆柱体,它的高为12cm ,底面半径为3cm ,在圆柱体下底面的A 点有一只蚂蚁,它想吃到上底面与A 点相对的B 点处的食物,沿着圆柱体侧面爬行的最短距离是多少?(π的近似值取3)A B D C E F G• •Q 图1A B D C E FG• • Q 图2 FGQ • H A BDCEF G•• Q 图3EF • Q【分析】这看上去是一个曲面的路线问题,但实际上可以通过圆柱体的侧面展开图来转化为 平面上的路线问题。
勾股定理最短路径问题做题技巧
勾股定理是数学中的经典定理,被广泛应用于解决直角三角形中的各种问题。
其中,勾股定理最短路径问题是一个常见而又有一定挑战性的问题,需要我们对勾股定理的应用进行深入理解和掌握。
下面,我将共享一些在做勾股定理最短路径问题时的一些技巧和注意事项,希望能对大家有所帮助。
1. 确定直角三角形在解决勾股定理最短路径问题时,首先需要确定问题中是否存在直角三角形。
通常情况下,我们可以通过问题描述中给出的线段长度或角度信息来判断是否为直角三角形。
一旦确定存在直角三角形,我们便可以应用勾股定理来解决最短路径问题。
2. 确认最短路径在确定了直角三角形后,接下来我们需要确认问题中所要求的最短路径。
这个最短路径可能是直角三角形中的某条边,也可能是直角三角形内部的某一段路径。
在实际问题中,我们经常需要根据具体情况来判断最短路径的具体位置。
3. 应用勾股定理一旦确定了直角三角形和最短路径,我们就可以开始应用勾股定理来求解问题了。
勾股定理的表达式为a^2 + b^2 = c^2,其中a、b分别为直角三角形的两条直角边,c为斜边。
我们可以根据勾股定理的这一表达式来进行问题的推理和计算,从而得出最终的最短路径结果。
4. 注意特殊情况在应用勾股定理解决最短路径问题时,我们还需要特别注意一些特殊情况。
当直角三角形的两条直角边长度相等时,斜边也将会最短,这种情况下我们可以直接应用勾股定理来得出结果。
另外,当直角三角形的两条直角边长度有一个为0时,斜边也将为另一条直角边,这时最短路径也就不言而喻了。
5. 结合实际问题当我们应用勾股定理解决最短路径问题时,需要将数学知识与实际问题相结合,确保解答的合理性和可行性。
我们可以通过画图、列方程等方法来辅助求解,从而得出准确的最短路径结果。
在解决勾股定理最短路径问题时,我们需要确保对勾股定理的基本原理有充分的理解,同时要灵活运用对问题进行分析和求解。
希望以上共享的技巧和注意事项能够帮助大家在做题时更加得心应手,解决问题时得心应手。
三角形最短距离问题
三角形最短距离问题三角形最短距离问题是一个常见的几何问题,它涉及到如何找到三角形内两个点之间的最短距离。
在解决这个问题之前,我们首先需要了解一些基本概念和定理。
我们来回顾一下三角形的基本定义。
三角形是由三条线段组成的图形,它们的端点连接起来形成一个封闭的图形。
三角形有三个顶点和三条边,其中任意两条边的交点称为顶点。
根据三角形的边长关系,我们可以将三角形分为等边三角形、等腰三角形和一般三角形。
在解决三角形最短距离问题时,我们通常会遇到以下几种情况:1. 在一般三角形中,我们需要找到两个点之间的最短距离。
这个问题可以通过计算两个点之间的直线距离来解决。
我们可以使用勾股定理来计算两点之间的距离,即d = √((x2-x1)² + (y2-y1)²),其中(x1, y1)和(x2, y2)分别表示两个点的坐标。
2. 在等腰三角形中,我们需要找到顶点到底边的最短距离。
根据等腰三角形的性质,顶点到底边的最短距离是底边中点到顶点的距离。
因此,我们可以通过计算底边中点的坐标来解决这个问题。
3. 在等边三角形中,我们需要找到任意两个点之间的最短距离。
由于等边三角形的三条边相等,任意两个点之间的最短距离是等边三角形边长的一半。
因此,我们可以通过计算等边三角形的边长来解决这个问题。
除了上述情况外,我们还可以通过其他方法解决三角形最短距离问题,如使用向量法、坐标轴法等。
这些方法可以根据具体情况选择使用,以求解问题的简洁和高效。
总结起来,三角形最短距离问题是一个几何问题,涉及到三角形内两个点之间的最短距离。
通过运用几何定理和方法,我们可以有效地解决这个问题。
在实际应用中,三角形最短距离问题经常出现,比如在计算机图形学、建筑设计和地理测量等领域。
因此,掌握解决这个问题的方法对于我们的学习和工作都具有重要意义。
在解决这个问题时,我们应该注重思维的灵活性和问题的实际应用,以期得到准确和有效的解答。
中考数学动点最值问题归纳及解法
中考数学动点最值问题归纳及解法最值问题是初中数学的重要内容,也是一类综合性较强的问题,它贯穿初中数学的始终,是中考的热点问题,它主要考察学生对平时所学的内容综合运用,无论是代数问题还是几何问题都有最值问题,在中考压轴题中出现比较高的主要有利用重要的几何结论(如两点之间线段最短、三角形两边之和大于第三边、两边之差小于第三边、垂线段最短等)。
利用一次函数和二次函数的性质求最值。
动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。
)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。
“坐标几何题”(动点问题)分析动点个数两个一个两个问题背景特殊菱形两边上移动特殊直角梯形三边上移动抛物线中特殊直角梯形底边上移动考查难点探究相似三角形探究三角形面积函数关系式探究等腰三角形考点①菱形性质②特殊角三角函数③求直线、抛物线解析式④相似三角形⑤不等式①求直线解析式②四边形面积的表示③动三角形面积函数④矩形性质①求抛物线顶点坐标②探究平行四边形③探究动三角形面积是定值④探究等腰三角形存在性特点①菱形是含60°的特殊菱形;△AOB是底角为30°的等腰三角形。
②一个动点速度是参数字母。
③探究相似三角形时,按对应角不同分类讨论;先画图,再探究。
④通过相似三角形过度,转化相似比得出方程。
⑤利用a、t范围,运用不等式求出a、t的值。
①观察图形构造特征适当割补表示面积②动点按到拐点时间分段分类③画出矩形必备条件的图形探究其存在性①直角梯形是特殊的(一底角是45°)②点动带动线动③线动中的特殊性(两个交点D、E是定点;动线段PF长度是定值,PF=OA)④通过相似三角形过度,转化相似比得出方程。
⑤探究等腰三角形时,先画图,再探究(按边相等分类讨论)近几年共同点:①特殊四边形为背景;②点动带线动得出动三角形;③探究动三角形问题(相似、等腰三角形、面积函数关系式);④求直线、抛物线解析式;⑤探究存在性问题时,先画出图形,再根据图形性质探究答案。
【配套K12】中考数学 专题复习六 求最短路径问题
中考数学专题复习学案六求最短路径问题【专题思路剖析】知识点:“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”。
“饮马问题”,“造桥选址问题”。
考的较多的还是“饮马问题”,出题背景变式有角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等。
这类问题在中考中出现的频率很高,一般与垂线段最短、两点之间线段最短关系密切解题总思路:找点关于线的对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查。
在解决最短路径问题时,我们通常利用轴对称、平移等变换把不在一条直线上的两条线段转化到一条直线上,从而作出最短路径的方法来解决问题.【典型例题赏析】类型1 利用“垂线段最短”求最短路径问题例题1:(2015•辽宁省盘锦,第15题3分)如图,菱形ABCD的边长为2,∠DAB=60°,E为BC的中点,在对角线AC上存在一点P,使△PBE的周长最小,则△PBE的周长的最小值为.考点:轴对称-最短路线问题;菱形的性质.分析:连接BD,与AC的交点即为使△PBE的周长最小的点P;由菱形的性质得出∠BPC=90°,由直角三角形斜边上的中线性质得出PE=BE,证明△PBE是等边三角形,得出PB=BE=PE=1,即可得出结果.解答:解:连接BD,与AC的交点即为使△PBE的周长最小的点P;如图所示:∵四边形ABCD是菱形,∴AC⊥BD,AB=BC=CD=DA=2,∴∠BPC=90°,∵E为BC的中点,∴BE=BC=1,PE=BC=1,∴PE=BE,∵∠DAB=60°,∴∠ABC=120°,∴∠PBE=60°,∴△PBE是等边三角形,∴PB=BE=PE=1,∴PB+BE+PE=3;故答案为:3.点评:本题考查了菱形的性质、轴对称以及最短路线问题、直角三角形斜边上的中线性质;熟练掌握菱形的性质,并能进行推理计算是解决问题的关键.【方法点评】本题易错误的利用两点之间线段最短解决,解答时需要准确识图,找到图形对应的知识点.【变式练习】(2015•福建第16题 4分)如图,在△ABC中,∠ACB=90°,AB=5,BC=3,P是AB边上的动点(不与点B重合),将△BCP沿CP所在的直线翻折,得到△B′CP,连接B′A,则B′A 长度的最小值是.考点:翻折变换(折叠问题)..分析:首先由勾股定理求得AC的长度,由轴对称的性质可知BC=CB′=3,当B′A有最小值时,即AB′+CB′有最小值,由两点之间线段最短可知当A、B′、C三点在一条直线上时,AB′有最小值.解答:解:在Rt△ABC中,由勾股定理可知:AC===4,由轴对称的性质可知:BC=CB′=3,∵CB′长度固定不变,∴当AB′+CB′有最小值时,AB′的长度有最小值.根据两点之间线段最短可知:A、B′、C三点在一条直线上时,AB′有最小值,∴AB′=AC﹣B′C=4﹣3=1.故答案为:1.点评:本题主要考查的是轴对称的性质、勾股定理和线段的性质,将求B′A的最小值转化为求AB′+CB′的最小值是解题的关键.类型2 利用“两点之间线段最短”求最短路径问题例题2:(2015•四川凉山州第26题5分)菱形ABCD在平面直角坐标系中的位置如图所示,顶点B(2,0),∠DOB=60°,点P是对角线OC上一个动点,E(0,﹣1),当EP+BP最短时,点P的坐标为.考点:菱形的性质;坐标与图形性质;轴对称-最短路线问题..分析:点B的对称点是点D,连接ED,交OC于点P,再得出ED即为EP+BP最短,解答即可.解答:解:连接ED,如图,∵点B的对称点是点D,∴DP=BP,∴ED即为EP+BP最短,∵四边形ABCD是菱形,顶点B(2,0),∠DOB=60°,∴点D的坐标为(1,),∴点C的坐标为(3,),∴可得直线OC的解析式为:y=x,∵点E的坐标为(﹣1,0),∴可得直线ED的解析式为:y=(1+)x﹣1,∵点P是直线OC和直线ED的交点,∴点P的坐标为方程组的解,解方程组得:,所以点P的坐标为(),故答案为:().点评:此题考查菱形的性质,关键是根据一次函数与方程组的关系,得出两直线的解析式,求出其交点坐标.【方法点评】“两点(直线同侧)一线型”在直线上求一点到两点的和最短时,利用轴对称的知识作一点关于直线的对称点,连接对称点与另一点与直线的交点就是所求的点;“一点两线型”求三角形周长最短问题,作点关于两直线的对称点,连接两个对称点与两直线分别有两个交点,顺次连接所给的点与两交点即可得三角形;“两点两线型”求四边形的周长最短类比“一点两线型”即可.【变式练习】(2015•营口,第10题3分)如图,点P是∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB上的动点,△PMN周长的最小值是5cm,则∠AOB的度数是()A.25° B.30° C.35° D.40°考点:轴对称-最短路线问题.分析:分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,由对称的性质得出PM=CM,OP=OC,∠COA=∠POA;PN=DN,OP=OD,∠DOB=∠POB,得出∠AOB=∠COD,证出△OCD是等边三角形,得出∠COD=60°,即可得出结果.解答:解:分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,如图所示:∵点P关于OA的对称点为C,关于OB的对称点为D,∴PM=CM,OP=OC,∠COA=∠POA;∵点P关于OB的对称点为D,∴PN=DN,OP=OD,∠DOB=∠POB,∴OC=OP=OD,∠AOB=∠COD,∵△PMN周长的最小值是5cm,∴PM+PN+MN=5,∴CM+DN+MN=5,即CD=5=OP,∴OC=OD=CD,即△OCD是等边三角形,∴∠COD=60°,∴∠AOB=30°;故选:B.点评:本题考查了轴对称的性质、最短路线问题、等边三角形的判定与性质;熟练掌握轴对称的性质,证明三角形是等边三角形是解决问题的关键.类型3、求圆上点,使这点与圆外点的距离最小的方案设计在此问题中可根据圆上最远点与最近点和点的关系可得最优设计方案。
直角三角形 两定点 到对边动点距离和最小
直角三角形两定点到对边动点距离和最小示例文章篇一:《神奇的直角三角形》嘿,同学们!今天我要跟你们讲讲一个超级有趣的数学问题——直角三角形中两定点到对边动点距离和最小。
你们看,直角三角形就像一个神秘的小城堡,充满了各种神奇的秘密等着我们去发现。
想象一下,在这个三角形里,有两个固定的点,就好像是城堡里的两个重要宝藏存放点。
然后呢,在对边还有一个动来动去的点,就像是一个调皮的小精灵。
我们的任务就是要找出,当这个小精灵跑到哪里的时候,两个宝藏存放点到它的距离加起来是最小的。
这是不是听起来就很刺激?就比如说,我们把这个直角三角形画在纸上,然后仔细观察。
哎呀,我一开始盯着它看,脑袋都快晕啦,这可真是个难题!我就想啊,这怎么能找到答案呢?这时候,我的同桌小明凑过来,他说:“嘿,这有啥难的,咱们慢慢分析呗!”我白了他一眼,说:“你说得轻松,你来试试!”小明还真就拿起笔,在纸上写写画画起来。
过了一会儿,他抬起头,一脸得意地说:“我好像有点思路啦!”我赶紧凑过去,着急地问:“快说说,快说说!”小明清了清嗓子,说:“咱们可以利用勾股定理呀,说不定能找到点线索。
”我听了,皱着眉头想:“勾股定理能行?”然后我们就一起尝试着用勾股定理来计算,算来算去,还是没个头绪。
这时候,我们的数学老师走了过来,看到我们愁眉苦脸的样子,笑着问:“怎么啦,小家伙们?”我们把问题告诉了老师,老师眨眨眼睛,说:“别急别急,咱们一起来想想。
”老师拿起笔,在黑板上画了一个大大的直角三角形,开始给我们讲解。
“同学们,你们看,我们可以这样这样……”老师一边讲,一边比划着。
哎呀,经过老师这么一讲,我突然有种恍然大悟的感觉!原来这个问题并没有那么难嘛!你们说,数学是不是就像一个充满惊喜的大宝藏,只要我们用心去挖掘,总能找到那些闪闪发光的宝贝?所以呀,通过这次的探索,我明白了,遇到难题不要怕,只要我们肯思考,多和同学们交流,多向老师请教,就一定能找到答案!你们觉得呢?示例文章篇二:哎呀呀,今天老师给我们出了一道特别难的数学题,叫“直角三角形,两定点到对边动点距离和最小”。
初中最短路线题目
初中最短路线题目
最短路线问题是在初中数学中常见的一类问题,这类问题主要考察学生对几何图形和几何性质的理解,以及如何利用这些性质来找到最短路径。
下面是一个常见的最短路线问题的例子:
题目:在直角三角形ABC中,角C=90度,角A=30度,在直线BC或AC 上取一点P,使得三角形PAB的周长最小,找出点P的位置。
这个问题需要我们使用数学中的轴对称和最短路径等概念来解决。
我们可以按照以下步骤来解答:
1. 首先,由题意可知,角A=30度,所以AB不是直角三角形ABC的最长边。
因此,我们可以通过作AB的垂直平分线来找到点P。
2. 其次,由于点P在垂直平分线上,我们可以将点C关于AB的对称点C'
找出来。
由于点C和点C'关于AB对称,所以线段CC'与AB垂直。
3. 最后,我们只需要连接线段PC'与AC或BC相交,交点即为点P。
此时,三角形PAB的周长最小。
通过以上步骤,我们可以找到点P的位置,使得三角形PAB的周长最小。
这个问题主要考察了轴对称和最短路径等概念的应用。
三角形动点最小值问题
三角形动点最小值问题三角形动点最小值问题相关问题问题一:什么是三角形动点最小值问题?•该问题是指在给定一个三角形ABC和一个动点P,寻找P在三角形内部的位置,使得AP + BP + CP 的和达到最小值的问题。
问题二:如何求解三角形动点最小值问题?•通过数学的最小值求解方法,可以使用解析几何的知识来应用。
问题三:有什么实际应用场景?•该问题在运筹学、城市规划和地理信息系统等领域有广泛的应用。
例如,在规划物流配送中,需要确定物流中心的位置,以使得运送货物的总距离最小。
问题四:是否存在多个最小值?•当三角形ABC是等边三角形时,动点P的最小值只有一个;其他类型的三角形ABC,动点P的最小值可能有多个。
问题五:如何确定动点P的最小值位置?•动点P的最小值位置可以通过求导等方法来确定。
当三角形ABC 是等腰直角三角形时,动点P的最小值位置为三角形ABC的重心;其他类型的三角形ABC,动点P的最小值位置为三角形ABC内切圆的圆心。
问题六:有没有其他可能的扩展问题?•可以将三角形动点最小值问题扩展到四边形、多边形等不同形状的多边形。
问题七:如何优化求解三角形动点最小值问题的算法?•可以使用数值计算方法,如梯度下降算法等,来对三角形动点最小值问题进行求解的优化。
问题八:如何处理动点P在三角形外部的情况?•在求解三角形动点最小值问题时,通常会假设动点P在三角形内部。
但如果动点P在三角形外部,那么最小值问题就没有意义。
因此,可以通过增加约束条件或判断动点P是否在三角形内部来处理这种情况。
问题九:如何确定三角形ABC的位置和大小?•在实际应用中,三角形ABC的位置和大小通常是已知的。
如果不已知,可以通过已知的三个顶点坐标来确定。
例如,通过计算三个顶点的坐标与边长关系,或者通过计算三边长度、角度等信息来确定三角形ABC的位置和大小。
问题十:如何快速求解动点P的最小值位置?•快速求解动点P的最小值位置可以通过几何分析、数值计算等方法来实现。
小专题(一):利用勾股定理解决最短路线问题
小专题(一):利用勾股定理解决最短路线问题本文将介绍如何利用勾股定理来解决最短路线问题。
在许多实际应用中,我们需要找到两点之间的最短路径。
这个问题在物流、传输网络以及旅行规划等领域都是非常重要的。
勾股定理简介勾股定理是数学中的一个基本定理,用于解决直角三角形中的关系。
根据勾股定理,直角三角形的两个直角边长度分别为a和b,斜边长度为c,则有以下关系式成立:$c^2 = a^2 + b^2$问题描述假设我们要从A点到B点,但是我们希望走的路径尽可能短。
我们可以将这个问题转化为一个几何问题,即找到直角三角形的斜边长度最小的情况。
解决方法我们可以利用勾股定理来解决这个问题。
假设A点的坐标为(x1, y1),B点的坐标为(x2, y2)。
则A点到B点的直线距离为:$d = \sqrt{(x2 - x1)^2 + (y2 - y1)^2}$我们可以将坐标系中的点表示为直角三角形的两个直角边,直线距离表示为斜边长度。
根据勾股定理,我们可以通过计算斜边长度来找到两点之间的最短路径。
应用举例假设我们需要规划一条从家到公司的最短路径。
我们可以利用勾股定理来计算不同路径的距离,并选择最短的路径进行出行。
假设家的坐标为(1, 1),公司的坐标为(5, 5)。
根据勾股定理的计算公式,我们可以得到:$d = \sqrt{(5 - 1)^2 + (5 - 1)^2} = \sqrt{16 + 16} = \sqrt{32}$所以最短路径的长度为$\sqrt{32}$。
在实际应用中,我们可以通过比较不同路径的长度来选择最优的路径。
总结利用勾股定理解决最短路线问题可以帮助我们在实际应用中找到两点之间最短的路径。
通过将问题转化为几何问题,并利用勾股定理的计算公式,我们可以简单而有效地解决这个问题。
在实际应用中,我们可以根据勾股定理的计算结果选择最优的路径进行出行或者路线规划。
小专题(一):利用勾股定理解决最短路程问题
小专题(一):利用勾股定理解决最短路程
问题
简介
本文将介绍如何利用勾股定理来解决最短路程问题。
勾股定理是数学中的一条基本定理,可以用于计算直角三角形的边长。
通过应用勾股定理,我们可以找到两个点之间的最短距离。
解决方法
1. 理解勾股定理:
勾股定理表达式为:a^2 + b^2 = c^2。
其中,a和b是直角三角形的两个直角边,c是斜边。
可以根据已知的两个边长度求解第三个边的长度。
2. 确定两个点的坐标:
在解决最短路程问题时,首先需要确定两个点的坐标,分别表示为点A(x1, y1)和点B(x2, y2)。
3. 计算两点间的距离:
使用勾股定理计算点A和点B之间的距离,可以采用以下公式:
距离AB = √((x2 - x1)^2 + (y2 - y1)^2)
4. 应用最短路程问题:
通过上述计算,我们可以得到点A和点B之间的最短距离。
这个最短距离可以用于解决一些实际问题,如路程规划、导航等。
示例
假设我们需要计算一个城市中两个地点之间的最短距离,其中点A的坐标为A(2, 3),点B的坐标为B(5, 7)。
我们可以使用勾股定理计算出点A和点B之间的最短距离:
距离AB = √((5 - 2)^2 + (7 - 3)^2) = √(3^2 + 4^2) = √(9 + 16) = √25 = 5
因此,点A和点B之间的最短距离为5。
结论
通过利用勾股定理,我们可以解决最短路程问题,找到两个点之间的最短距离。
这个方法可以应用于各种实际问题中,具有很实用的价值。
三角形最短距离问题
三角形最短距离问题三角形最短距离问题是一个经典的几何问题,它涉及到如何确定平面上两个三角形之间的最短距离。
在解决这个问题之前,我们需要先了解一些基本概念和定义。
我们来定义一下什么是三角形。
三角形是由三条线段组成的图形,每条线段称为三角形的边,而连接边的端点称为三角形的顶点。
根据边的长度,三角形可以分为等边三角形(三边长度相等)、等腰三角形(两边长度相等)和普通三角形(三边长度都不相等)。
在解决三角形最短距离问题时,我们通常会遇到两种情况。
第一种情况是两个三角形不相交,也就是说它们没有共同的顶点或边。
在这种情况下,最短距离就是两个三角形之间所有顶点之间的最小距离。
我们可以通过计算每个顶点的欧几里得距离来找到最小值。
第二种情况是两个三角形相交,也就是说它们至少有一个共同的顶点或边。
在这种情况下,最短距离就是两个三角形之间的最短边长。
我们可以通过计算每个三角形的边长来找到最小值。
除了以上两种情况,有时候我们也会遇到特殊情况,比如两个三角形重合在一起或者其中一个三角形完全包含另一个三角形。
在这些情况下,最短距离就是0,因为它们之间没有距离。
为了更好地理解这个问题,我们可以通过一个具体的例子来说明。
假设我们有两个三角形ABC和DEF,它们的顶点分别为A、B、C 和D、E、F。
我们需要求解的就是三角形ABC和DEF之间的最短距离。
我们先计算出每个顶点之间的距离,即AB、AC、AD、AE、AF、BC、BD、BE、BF、CD、CE、CF的长度。
然后,我们找到其中的最小值,即为最短距离。
如果两个三角形相交,我们还需要计算出每个三角形的边长,即AB、AC、BC和DE、DF、EF的长度。
然后,我们找到其中的最小值,即为最短距离。
通过上述的分析,我们可以看出,求解三角形最短距离问题实际上就是求解几个线段之间的最短距离。
我们可以通过计算每个线段的长度来找到最小值,从而得到最短距离。
总的来说,三角形最短距离问题是一个基于几何概念的问题,它涉及到如何确定平面上两个三角形之间的最短距离。
中考数学压轴题专题解析---直角三角形中的动点问题
中考数学压轴题专题解析---直角三角形中的动点问题这节课我们学什么1.动点直角三角形一线三直角问题2.动点直角三角形SAS问题3.动点直角三角形三角比问题4.动点直角三角形勾股定理问题知识点梳理动点直角三角形问题,一般都需要讨论哪个角是可能构成直角,然后根据题型,运用不同的方法.如下为总结的四种方法:1.先讨论哪个角是直角,然后第一类用一线三直角构造相似求解,分别用未知数的式子表示出一线三直角模型的边长;2.用边角边,即两边对应成比例夹角相等,一般是动点构成的直角三角形与已知的直角三角形相似,需要求出已知直角三角形的边长,以及用未知数的式子求出动点直角三角形的边长,通过对应边成比例建立等式;3.利用三角比来求解,实际上这个和上面一种情况类似,但是动点构成的直角三角形中,某个锐角的三角比已知,这样,直接在动点三角形中运用三角比直接可以建立等式;4.第四种方法就比较简单粗暴了,就是把动点直角三角形三边的长度用未知数的式子,或者直接是数字表示出来,用勾股定理建立等式,求解出未知数.典型例题分析1、动点直角三角形一线三直角问题; 例1.已知如图在平面直角坐标系xoy 中,抛物线与轴分别交于点(2,0)A 、点B (点B 在点A 的右侧),与y 轴交于点C ,1tan 2CBA ∠=. (1)求该抛物线的表达式;(2)设该抛物线的顶点为D ,求四边形ABCD 的面积;(3)设抛物线上的点E 在第一象限,BCE ∆是以BC 为一条直角边的直角三角形,请直接写出点E 的坐标.【答案:(1)∵当时,,∴(0,3)C在Rt COB ∆中,∵∴∴∴点(6,0)B把(2,0)A (6,0)B 分别代入,得:得解得:∴该抛物线表达式为(2)∵∴顶点41D -(,) ∴(3)点E 的坐标是108(,)或1635(,)】2、动点直角三角形SAS 问题 例2.已知:如图,抛物线2445y x mx =-++与y 轴交于点C ,与x 轴交于点A 、B ,(点A 在点B 的左侧)且满足4OC OA =.设抛物线的对称轴与x 轴交于点M . (1)求抛物线的解析式及点M 的坐标;(2)联接CM ,点Q 是射线CM 上的一个动点,当QMB ∆与COM ∆相似时,求直线AQ 的解析式.【答案:(1)根据题意:04C (,)∵4OC OA = ∴0A (-1,) 把点A 代入得4045m =--+ 解得∴抛物线的解析式∴(2)根据题意得:3BM =,2tan CMO ∠=,直线CM :4y x =+ (i )当90COM MBQ ∠=∠=︒时,COM QBM ∆∆∽ ∴2BQtan BMQ BM∠== ∴6BQ =即5,6Q -()∴AQ :(ii )当90COM BQM ∠=∠=︒时,COM BQM ∆∆∽ 同理Q () ∴AQ :】例3.如图,在ABC Rt ∆中,︒=∠90C ,5=AB ,43tan =B ,点D 是BC 的中点,点E 是AB 边上的动点,DE DF ⊥交射线AC 于点F . (1)求AC 和BC 的长;(2)当EF BC //时,求BE 的长;(3)联结EF ,当DEF ∆和ABC ∆相似时,求BE 的长.【答案:解:(1)在中,∠C ∵43tan ==BC AC B ,∴设k AC 3=,k BC 4= ∴55==k AB ,∴1=k ∴3=AC ,4=BC(2)过点E 作BC EH ⊥,垂足为H .A C易得EHB ACB ∆∆∽设k CF EH 3==,k BH 4=,k BE 5=∵EF BC //∴FDC EFD ∠=∠∵︒=∠=∠90C FDE ∴EFD FDC ∆∆∽ ∴CDFDFD EF =∴CD EF FD ⋅=2 即)44(2492k k -=+化简,得04892=-+k k 解得91324±-=k (负值舍去)∴92013105-==k BE(3)过点E 作BC EH ⊥,垂足为H .易得EHB ACB ∆∆∽ 设k EH 3=,k BE 5=∵︒=∠+∠90HDE HED ︒=∠+∠90HDE FDC ∴FDC HED ∠=∠∵︒=∠=∠90C EHD ∴EHD DCF ∆∆∽∴DFDECD EH =当DEF ∆和ABC ∆相似时,有两种情况:①43==BC AC DF DE ;∴43=CD EH 即4323=k 解得21=k ∴255==k BE②34==AC BC DF DE ;∴34=CD EH 即3423=k 解得98=k∴9405==k BE综合①、②,当DEF ∆和ABC ∆相似时,BE 的长为25或940.】3、动点直角三角形三角比问题例4.已知:如图,在Rt ABC ∆中,90C ∠=︒,2BC =,4AC =,P 是斜边AB 上的一个动点,PD AB ⊥,交边AC 于点D (点D 与点A 、C 都不重合),E 是射线DC 上一点,且EPD A ∠=∠.设A 、P 两点的距离为x ,BEP ∆的面积为y . (1)求证:2AE PE =;(2)求y 关于x 的函数解析式,并写出它的定义域; (3)当BEP ∆与ABC ∆相似时,求BEP ∆的面积.【答案:(1)∵90APD C ∠=∠=︒,A A ∠=∠,∴ADP ABC ∆∆∽.∴21==AC BC AP PD . ∵EPD A ∠=∠,PED AEP ∠=∠,∴EPD EAP ∆∆∽. ∴21==AP PD AE PE . ∴2AE PE =.(2)由EPD EAP ∆∆∽,得21==AP PD PE DE ,∴2PE DE =. ∴24AE PE DE ==. 作EHAB ⊥,垂足为点H .∵AP x =,∴x PD 21=.∵PD HE //,∴34==AD AE PD HE .∴x HE 32=. 又∵52=AB ,∴x x y 32)52(21⋅-=,即x x y 352312+-=.定义域是5580<<x .另解:由EPD EAP ∆∆∽,得21==AP PD PE DE ,∴2PE DE =. ∴24AE PE DE ==.ABD E∴x x AE 3522534=⨯=.∴12233ABE S x x ∆⋅⨯==.∴AB BP S S ABE BEP =∆∆,即5252352x xy-=.∴x x y 352312+-=.定义域是5580<<x . (3)由PEH BAC ∆∆∽,得AC AB HE PE =,∴x x PE 352532=⋅=.当BEP ∆与ABC ∆相似时,只有两种情形:90BEP C ∠=∠=︒或90EBP C ∠=∠=︒.(i )当90BEP ∠=︒时,AB BC PB PE =,∴515235=-x x.解得453=x . ∴1625453352516931=⨯+⨯⨯-=y . (ii )当90EBP ∠=︒时,同理可得253=x ,45=y .】PGABCDFPGABCD例5.已知ABC ∆为等边三角形,6AB =,P 是AB 上的一个动点(与A 、B 不重合),过点P 作AB 的垂线与BC 相交于点D ,以点D 为正方形的一个顶点,在ABC ∆内作正方形DEFG ,其中D 、E 在BC 上,F 在AC 上,(1)设BP 的长为x ,正方形DEFG 的边长为y ,写出y 关于x 的函数解析式及定义域;(2)当2BP =时,求CF 的长;(3)GDP ∆是否可能成为直角三角形?若能,求出BP 的长;若不能,请说明理由.【答案:(1)∵ABC ∆为等边三角形, ∴60B C ∠=∠=︒,6AB BC AC ===. ∵DP AB ⊥,BP x =,∴2BD x = 又∵四边形DEFG 是正方形, ∴EF BC ⊥,EF DE y ==, ∴y EC 33=. ∴6332=++y y x , ∴339)33(-+-=x y .(≤<3)(2)当2BP =时,3392)33(-+⨯-=y 33-=.DEFBC23232-==y CF .(3)GDP ∆能成为直角三角形. ①90PGD ∠=︒时,y y x +=-36,61)3)9x x -=⋅+-得到:113630-=x . ②90GPD ∠=︒时,y x x 234+=, ⋅+=234x x ]339)33[(-+-x , 得到:336-=x .∴当GDP ∆为直角三角形时,BP 的长为113630-或者336-=x .】DABCGP EF4. 二动点直角三角形勾股定理问题例6.如图,AOB ∆的顶点A 、B 在二次函数21332y x bx =-++的图像上,又点A 、B 分别在y 轴和x 轴上,tan 1ABO ∠=.(1)求此二次函数的解析式;(2)过点A 作AC BO //交上述函数图像于点C ,点P 在上述函数图像上,当POC ∆与ABO ∆相似时,求点P【答案:(1)∵点A 在二次函数23312++-=bx x y 的图像上,)23,0(A 在Rt AOB ∆中,︒=∠90AOB ∵1tan ==∠BO AO ABO ,∵23==AO BO ,∴)0,23(-B ∵点B 在二次函数23312++-=bx x y 的图像上 ∴02323)23(312=+--⨯-b ∴21=b ∴2321312++-=x x y (2)∵AC BO //交上述函数图像于点C ,∴设)23,(x C ∴232321312=++-x x ,解得23,021==x x ∵)23,23(C ∴23==AO AC ,223=OC 设抛物线2321312++-=x x y 与x 轴的另一交点为D 可得,)0,3(D∴223)230()233(22=-+-=CD ,3=OD ∴222OD CD OC =+,∴︒=∠90OCD易得,Rt OCA Rt ABO ∆∆∽,Rt ODC Rt ABO ∆∆∽ ∴)23,0(P 或)0,3(P 】课后练习练1.如图,在平面直角坐标系中,二次函数2y x bx c =++的图像与x 轴交于A 、B 两点,B 点的坐标为(3,0),与y 轴交于点(0,3)C -,点P 是直线BC 下方抛物线上的任意一点;(1)求这个二次函数2y x bx c =++的解析式;(2)联结PO 、PC ,并将POC ∆沿y 轴对折,得到四边形POP C ',如果四边形POP C '为菱形,求点P 的坐标;(3)如果点P 在运动过程中,能使得以P 、C 、B 为顶点的三角形与AOC ∆相似,请求出此时点P 的坐标.【答案:】练2.如图,直角坐标平面内的梯形OABC ,OA 在x 轴上,OC 在y 轴上,//OA BC ,点E 在对角线OB 上,点D 在OC 上,直线DE 与x 轴交于点F ,已知2OE EB =,3CB =,6OA =,BA =5OD =.(1)求经过点A 、B 、C 三点的抛物线解析式:(2)求证:ODE OBC ∆∆∽:(3)在y 轴上找一点G ,使得OFG ODE ∆∆∽,直接写出点G 的坐标.【答案:(1)2163y x x =-++或者436)23(312+--=x y(2)24E (,),OE =,OB =OE OC OD OB==,DOE BOC ∠=∠ 故得证 (3)05(,)、05-(,)、020(,)、020-(,)】练3.已知:如图,二次函数22416333y x x =--的图像与x 轴交于点A 、B (点A 在点B 的左侧),抛物线的顶点为Q ,直线QB 与y 轴交于点E .(1)求点E 的坐标;(2)在x 轴上方找一点C ,使以点C 、O 、B 为顶点的三角形与BOE ∆相似,请直接写出点C 的坐标.【答案:(1)令0y =,得224160333x x --= 解方程得122,4x x =-=(4,0)B 又22(1)63y x =-- ∴(1,6)Q -设直线BQ :(0)y kx b k =+≠406k b k b +=⎧⎨+=-⎩解得28y x =-(0,8)E ∴-(2)12345616848(0,2),(0,8),(4,2),(4,8),(,),(,)5555C C C C C C 】练4.已知:正方形ABCD 的边长为4,点E 为BC 边的中点,点P 为AB 边上一动点长,沿PE 翻折BPE ∆得到FPE ∆,直线PF 交CD 边于点Q ,交直线AD 于点G .(1)如图,当 1.5BP =时,求CQ 的长;(2)如图,当点G 在射线AD 上时,设BP x =,DG y =,求y 关于x 的函数关系式,并写出x 的取值范围;(3)延长EF 交直线AD 于点H ,若CQE FHG ∆∆∽,求BP 的长.【答案:(1)由题意,得,90,BE EF PFE B BEP FEP =∠=∠=︒∠=∠ ∵点E 为BC 的中点22BE EC EF EC ∴==∴== 又90,EFQ C EQ EQ ∠=∠=︒=∴EFQ ECQ ∆∆≌,90FEQ CEQ BEP CEQ ∴∠=∠∴∠+∠=︒又90BPE BEP BPE CEQ ∠+∠=︒∴∠=∠90B C ∠=∠=︒∴BPE CEQ ∆∆∽ 1.522BP BE EC QC CQ ∴==即83CQ ∴= (2)由(1)知:BPE CEQ ∆∆∽,BP BE EC CQ ∴= 242x CQ CQ x ∴=∴=44DQ x ∴=- ∵QD AP //4,4DG DQ AP x AG y AG AP∴==-=+又 4444y x y x -∴=+-21616(12)4x y x x -∴=<<-(3)由题意知:90C GFH ∠︒∠==①当点G 在线段AD 的延长线上时,由题意知:G CQE ∠∠=∵CQE FQE ∠∠=∴22DQC FQC CQE G ∠∠∠∠===∴90DQG G ∠+∠︒=∴30G ∠︒=∴30BQP CQE G ∠∠∠︒===tan30BP BE ∴=⋅︒=②当点G 在线段DA 的延长线上时,由题意知:G QCE ∠=∠同理可得:30G ∠=︒30BPE G ∴∠=∠=︒cot30BP BE ∴=⋅︒=综上所述,BP 】课后小测验1.如图,二次函数2y x bx c =++图像经过原点和点(2,0)A ,直线AB 与抛物线交于点B ,且45BAO ∠=︒.(1)求二次函数解析式及其顶点C 的坐标;(2)在直线AB 上是否存在点D ,使得BCD ∆为直角三角形.若存在,求出点D 的坐标,若不存在,说明理由.【答案:(1)(2)由可以知道直线AB 的一次项系数为-1,从而可求得直线AB 的解析式为.当时.根据相互垂直的两直线的一次项系数之积等于-1可求得直线CD 的解析式为,将与联立可求得点D 的坐标为;当时.将与联立得求得点B 的坐标为,然后根据待定系数法求得直线BC 的解析式为直线BC 的解析式为,根据相互垂直的两直线的一次项系数之积等于-1可求得直线CD 的解析式为,将与联立可求得点D 的坐标为。
中考数学动点问题题型方法归纳
图(3)B图(1)B图(2)动点问题题型方法归纳动态几何特点———-问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。
) 动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、 相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。
下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨.一、三角形边上动点1、(2009年齐齐哈尔市)直线364y x =-+与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个单 位长度,点P 沿路线O →B →A 运动. (1)直接写出A B 、两点的坐标;(2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与t 之间 的函数关系式; (3)当485S =时,求出点P 的坐标,并直接写出以点O P Q 、、为顶点的平行四边形的第四个顶点M 的坐标.解:1、A(8,0) B(0,6)2、当0<t <3时,S=t 2当3<t <8时,S=3/8(8—t )t提示:第(2)问按点P 到拐点B 所有时间分段分类;第(3)问是分类讨论:已知三定点O 、P 、Q ,探究第四点构成平行四边形时按已知线段身份不同分类-————①OP 为边、OQ 为边,②OP 为边、OQ 为对角线,③OP 为对角线、OQ 为边。
然后画出各类的图形,根据图形性质求顶点坐标. 2、(2009年衡阳市)如图,AB 是⊙O 的直径,弦BC=2cm, ∠ABC=60º.(1)求⊙O 的直径;(2)若D 是AB 延长线上一点,连结CD,当BD 长为多少时,CD 与⊙O 相切;(3)若动点E 以2cm/s 的速度从A 点出发沿着AB 方向运动,同时动点F 以1cm/s 的速度从B 点出发沿BC 方向运动,设运动时间为)20)((<<t s t ,连结EF ,当t 为何值时,△BEF 为直角三角形.注意:第(3)问按直角位置分类讨论 3、(2009重庆綦江)如图,已知抛物线(1)20)y a x a =-+≠经过点(2)A -,0,抛物线的顶点为D ,过O 作射线OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结BC .图(1)图(2)(1)求该抛物线的解析式;(2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为()t s .问当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形?(3)若OC OB =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1位和2个长度单位的速度沿OC 和BO 停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 的长.注意:发现并充分运用特殊角∠DAB=60°当△OPQ 面积最大时,四边形BCPQ 的面积最小。
直角三角形的应用题解题技巧
直角三角形的应用题解题技巧直角三角形是初中数学中的基础知识之一,它的应用广泛且重要。
在解题过程中,我们需要掌握一些解题技巧。
本文将介绍直角三角形应用题的解题技巧。
一、勾股定理直角三角形的应用问题中,勾股定理是最常见且重要的定理之一。
勾股定理表达为:直角三角形的两条直角边的平方和等于斜边的平方。
在解题中,当我们已知直角三角形的斜边和一条直角边时,可以通过勾股定理求解另一条直角边的长度。
反之,当我们已知直角三角形的两条直角边时,可以通过勾股定理求解斜边的长度。
例如,已知直角三角形的斜边长为5,一条直角边长为3,我们可以使用勾股定理计算另一条直角边的长度。
根据勾股定理:$$3^2 + x^2 = 5^2$$解方程得到$x$的值,即可求得另一条直角边的长度。
二、相似三角形定理在一些应用问题中,我们会遇到两个直角三角形的边长比例相等或相似的情况。
此时可以使用相似三角形定理来解题。
相似三角形定理指出,两个直角三角形的角相等并且对应边的比例相等,则这两个三角形相似。
在解题时,如果我们已知一个直角三角形的边长比例,并且已知一个边长的具体值,可以通过相似三角形定理计算其他边长的值。
例如,已知直角三角形ABC与直角三角形DEF相似,且已知直角三角形ABC的斜边长为5,三角形DEF的斜边长为10。
我们可以通过相似三角形定理计算出直角三角形DEF的另一条直角边的长度。
三、特殊直角三角形在应用题中,有时会碰到特殊的直角三角形,如45-45-90三角形和30-60-90三角形。
这些特殊直角三角形有一些固定的边长比例关系,在解题时可以直接使用这些关系进行计算。
例如,已知一个直角三角形的两条直角边相等,我们可以判断这是一个45-45-90三角形。
在这种三角形中,两条直角边的长度相等,斜边的长度等于直角边的长度乘以$\sqrt{2}$。
同样地,已知一个直角三角形的两条直角边的长度比为1:$\sqrt{3}$,我们可以判断这是一个30-60-90三角形。
直角三角形上的动点问题
直角三角形上的动点问题直角三角形上的动点问题通常涉及到几何和代数的结合,需要运用一些基本的几何定理和代数技巧来解决。
这类问题一般会给出一个直角三角形,并在其上设定一个或多个动点,动点的位置会随着某种条件(如时间、速度等)的变化而变化。
问题的目标通常是找出动点在某个特定条件下的位置或轨迹。
解决这类问题的一般步骤包括:1.理解题意:首先,需要清楚地理解题目的条件和要求。
这包括理解动点的运动规则,以及需要求解的问题是什么。
2.应用几何定理:根据题目条件,可能需要应用一些基本的几何定理,如勾股定理、相似三角形定理等。
3.建立代数方程:根据几何定理和题目条件,可以建立一些代数方程。
这些方程可能会涉及到动点的坐标、速度、加速度等。
4.解方程:解这些代数方程,找出动点的位置或轨迹。
这可能需要一些代数技巧,如因式分解、求根公式等。
5.检验答案:最后,需要检验答案是否符合题目条件。
这可以通过将答案代入原方程或几何图形中进行验证。
以下是一个简单的例子:在直角三角形ABC中,∠C=90°,AC=3,BC=4,动点P从A点出发,沿AC方向以1单位/秒的速度向C点移动。
求当AP=PC时,点P的坐标。
解:设点P的坐标为(x,0),因为点P从A点出发,沿AC方向移动,所以x的取值范围是0≤x≤3。
根据勾股定理,有PC²=x²+BC²=x²+16。
因为AP=PC,所以有(3-x)²=x²+16。
解这个方程,得到x=0.5。
所以,当AP=PC时,点P的坐标为(0.5,0)。
这只是一个简单的例子,实际的直角三角形上的动点问题可能会更复杂,需要运用更多的几何和代数知识来解决。
三角形一点到一条边的最短距离
三角形一点到一条边的最短距离三角形中的一点到一条边的最短距离是指从三角形中的一点到该三角形的一条边上的点的垂直距离。
这个最短距离在三角形的几何学中具有重要的应用,可以帮助我们解决一些实际问题。
让我们来看一个例子。
假设我们有一个三角形ABC,其中点D是三角形内的一点,我们想要求点D到边AB的最短距离。
为了解决这个问题,我们可以运用几何学中的垂直关系。
我们可以通过以下步骤来求解最短距离:1. 首先,我们需要找到边AB上的一个点E,使得DE与AB垂直。
2. 其次,我们需要计算DE的长度,即点D到边AB的最短距离。
那么,我们如何找到点E呢?根据几何学的知识,我们知道如果DE 与AB垂直,那么DE与BC平行。
因此,我们可以通过延长边DC,使其与AB相交于点E,从而得到DE与AB垂直。
现在,我们来计算DE的长度。
根据三角形相似的性质,我们可以得到以下比例关系:AD/DB=AE/EC。
假设三角形ABC的边长分别为a、b、c,我们可以通过以下步骤来计算DE的长度:1. 首先,我们需要计算三角形ABC的面积。
根据海伦公式,我们可以使用三角形的边长来计算其面积,公式为:面积=√(s(s-a)(s-b)(s-c)),其中s=(a+b+c)/2。
2. 其次,我们可以根据三角形的面积和基本公式S=1/2×底×高,计算出三角形ABC的高。
由于DE与BC平行,DE即为三角形ABC的高。
3. 最后,我们可以根据三角形ABC的高和比例关系AD/DB=AE/EC,计算出DE的长度。
通过以上步骤,我们可以得到点D到边AB的最短距离DE的长度。
除了上述方法外,我们还可以应用向量的知识来求解最短距离。
假设三角形ABC的边向量分别为a、b、c,点D的位置向量为d,我们可以通过以下步骤来计算点D到边AB的最短距离:1. 首先,我们需要计算边AB的单位向量n,即n=(b-a)/|b-a|,其中|b-a|表示边AB的长度。
2. 其次,我们可以计算点D到边AB的向量投影,即投影向量p=n·(d-a)·n,其中·表示向量的点乘运算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学非常难的动点直角三角形求最短距离问题解题技巧分
享
套路技巧:点的运动轨迹模糊难辨时,化一般为特殊,通过找特殊点确定运动轨迹。
本题的难点就在于你无法确定动点C的运动轨迹,如果你能确定它的运动轨迹,这样就能通过确定特殊点的位置来确定所求点的轨迹,由于B点运动轨迹为直线,为了保证三角形形状不变,所以C点的运动轨迹也应该属于一条直线,思路如下:
①当点C在y=4的直线上时,图像如下:
此时,在RTCDB中,C点坐标为(6,4)
②当点C运动到X轴上时,图像如下
BC=4,CD=3,BD=5
此时C点坐标为(3,0)
通过(6,4),(3,0)确定直线方程为y=4x/3-4
这样,我们就可以得出如下图形
直线和X和Y轴交点为C,E,垂线段OF的长度即为所求长度
OC=3,OE=4,CE=5,则OF=12/5
想要免费获得更多原创数学资料,请点赞,转发,点击我头像,私信我,回复:初中数学资料。