高中数学知识点大全
高中数学259个知识点
高中数学259个知识点一、集合与函数概念。
1. 集合。
- 集合的定义:把一些元素组成的总体叫做集合。
- 集合元素的特性:确定性、互异性、无序性。
- 集合的表示方法:列举法、描述法、韦恩图法。
- 集合间的基本关系:子集(如果集合A的所有元素都是集合B的元素,那么A是B的子集,记作A⊆ B)、真子集(如果A⊆ B且A≠ B,则A是B的真子集,记作A⊂neqq B)、相等(A = B当且仅当A⊆ B且B⊆ A)。
- 集合的基本运算:- 交集:A∩ B={xx∈ A且x∈ B}。
- 并集:A∪ B = {xx∈ A或x∈ B}。
- 补集:设U为全集,A⊆ U,则∁_UA={xx∈ U且x∉ A}。
2. 函数及其表示。
- 函数的概念:设A,B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数y和它对应,那么就称f:A→ B为从集合A到集合B的一个函数,记作y = f(x),x∈ A。
- 函数的三要素:定义域、值域、对应关系。
- 函数的表示方法:解析法、图象法、列表法。
3. 函数的基本性质。
- 单调性:- 增函数:设函数y = f(x)的定义域为I,如果对于定义域I内的某个区间D 内的任意两个自变量的值x_1,x_2,当x_1时,都有f(x_1),那么就说函数y = f(x)在区间D上是增函数。
- 减函数:设函数y = f(x)的定义域为I,如果对于定义域I内的某个区间D 内的任意两个自变量的值x_1,x_2,当x_1时,都有f(x_1)>f(x_2),那么就说函数y = f(x)在区间D上是减函数。
- 奇偶性:- 奇函数:设函数y = f(x)的定义域为D,如果对于任意x∈ D,都有f(-x)= - f(x),且0∈ D时f(0)=0,则函数y = f(x)是奇函数。
- 偶函数:设函数y = f(x)的定义域为D,如果对于任意x∈ D,都有f(-x)=f(x),则函数y = f(x)是偶函数。
高中数学必考知识点
章节/主题
必考知识点
集合与函数
1. 集合的表示法(列举法、描述法)2. 集合的运算(交集、并集、补集)3. 函数的概念与表示法4. 函数的单调性、奇偶性5. 幂函数、指数函数、对数函数的性质与图像
数列
1. 数列的定义与表示法2. 等差数列的定义、通项公式、性质及求和3. 等比数列的定义、通项公式、性质及求和4. 数列的极限及其应用
三角函数
1. 三角函数的定义、诱导公式、同角关系式2. 三角函数的性质(周期性、奇偶性、单调性)3. 三角函数的图像与性质4. 三角恒等变换5. 解三角形(正弦定理、余弦定理、面积公式)
平面向量与解析几何
1. 向量的表示法(模长、坐标表示)2. 向量的加法、减法、数乘运算3. 向量的数量积、向量积、混合积4. 直线的方程(点斜式、斜截式、两点式)5. 圆的方程与性质6. 直线与圆的位置关系
导数及其应用
1. 导数的概念与运算2. 导数的几何意义3. 导数的应用(单调性判断、极值与最值问题、曲线的切线问题)4. 定积分的概念与运算5. 定积分的应用(平面图形的面积计算、体积计算)
概率与统计
1. 概率的基本概念(必然事件、不可能事件、随机事件)2. 概率的计算(等可能事件的概率、互斥事件的概率、独立事件的概率)3. 统计的基本概念(总体、个体、样本、样本容量)4. 统计方法(频率分布表、直方图、折线图)5. 概率与统计的应用(抽样调查、回归分析、独立性检验)
立体几何
1. 空间几何体的结构特征(柱体、锥体、球体)2. 空间几何体的表面积和体积3. 空间点、直线、平面的位置关系4. 空间向量的应用5. 三视图(正视图、侧视图、俯视图)
不等式与线性规划
1. 不等式的性质与解法(一元二规划的实际应用
高中数学所有知识点归类大全
高中数学所有知识点归类大全一、数学初等函数1. 指数函数:定义、对数、幂函数、应用。
2. 三角函数:定义、几何语言、正弦余弦定理、半正弦函数等。
3. 对数函数:定义、有理函数的对数、指数函数的对数等。
4. 幂函数:定义、幂函数定义、幂函数的性质、幂函数的应用等。
5. 向量函数:定义、表示、性质等。
6. 积分函数:定义、概念、初等函数积分、重积分等。
二、统计与概率1. 概率的定义、公理、概率的计算。
2. 离散分布与连续分布:定义、概率分布函数、期望值等。
3. 抽样估计:抽样分布函数、均匀抽样、样本总体的判断等。
4. 回归分析:定义、正态模型、最小二乘估计、多项式回归模型等。
5. 贝叶斯分析:定义、贝叶斯统计、贝叶斯方法应用等。
6. 推断分析:点估计、区间估计、参数误差等。
三、代数1. 多项式及其性质:定义、系数、次数、根的处理等。
2. 同类型代数式:定义、因式分解、完全平方式等。
3. 向量空间:定义、向量空间的子空间、线性相关、线性无关等。
4. 线性方程组:定义、矩阵方程组、逆矩阵解、三角形法等。
5. 二元一次方程:一次函数性质、椭圆方程、双曲线方程等。
6. 不定系数线性方程组:定义、条件互异、充分必要性等。
四、几何1. 直角坐标系:定义、坐标方程组、投影面等。
2. 点、线:定义、直线的性质、平行线的性质等。
3. 平面图形:定义、圆的性质、锐角三角形、钝角三角形等。
4. 正多边形:定义、正五边形性质、正六边形性质等。
5. 空间几何:定义、球面坐标系、球面角等。
6. 极坐标系:定义、极线条件、极角等。
高中数学知识点大全
高中数学知识大全
高中数学知识大全
一、集合与逻辑
1.集合的概念与表示
2.集合的运算
3.命题与逻辑连接词
4.充分条件与必要条件
5.全称量词与存在量词
二、函数与方程
1.函数的定义与性质
2.初等函数
3.函数的零点与方程的根
4.二次函数与一元二次方程
5.函数图象的变换与对称
6.抽象函数与分段函数
7.函数的导数与极值
8.函数的单调性与最值
9.函数图象的拟合与插值
三、不等式与数列
1.不等式的概念与性质
2.一元二次不等式及其解法
3.均值不等式及其应用
4.等差数列与等比数列的概念与性质
5.数列的通项公式与求和公式
6.数列的递推公式与迭代公式
7.数列的极限及其应用
8.裂项相消法与倒序相加法
9.数学归纳法及其应用
四、三角函数与平面向量
1.三角函数的概念与性质
2.三角恒等变换及其应用
3.正弦定理与余弦定理及其应用
4.平面向量的概念与运算
5.向量的数量积与向量夹角及其应用
6.向量的应用及其综合题解题思路
7.正弦定理与余弦定理的综合运用
8.平面向量的数量积及其应用
9.解三角形的方法及其应用
10.三角函数的图象变换及其应用
11.正切函数及其应用
12.三角恒等变换的综合运用
13.向量的应用题解题思路与方法探讨
14.解三角形中的范围问题及其求解方法
15.正弦定理与余弦定理中的边角转换关系及其应用
16.平面向量的坐标运算及其应用题解题思路探索。
高中数学知识点总结(最全版)
高中数学知识点总结(最全版)第一章函数概念(1)函数的概念①设、是两个非空的数集,如果按照某种对应法则,对于集合中任何一个数,在集合中都有唯一确定的数和它对应,那么这样的对应(包括集合,以及到的对应法则)叫做集合到的一个函数,记作、②函数的三要素:定义域、值域和对应法则、③只有定义域相同,且对应法则也相同的两个函数才是同一函数、(2)区间的概念及表示法①设是两个实数,且,满足的实数的集合叫做闭区间,记做;满足的实数的集合叫做开区间,记做;满足,或的实数的集合叫做半开半闭区间,分别记做,;满足的实数的集合分别记做、注意:对于集合与区间,前者可以大于或等于,而后者必须,(前者可以不成立,为空集;而后者必须成立)、(3)求函数的定义域时,一般遵循以下原则:①是整式时,定义域是全体实数、②是分式函数时,定义域是使分母不为零的一切实数、③是偶次根式时,定义域是使被开方式为非负值时的实数的集合、④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1、⑤中,、⑥零(负)指数幂的底数不能为零、⑦若是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集、⑧对于求复合函数定义域问题,一般步骤是:若已知的定义域为,其复合函数的定义域应由不等式解出、⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论、⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义、(4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的、事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值、因此求函数的最值与值域,其实质是相同的,只是提问的角度不同、求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值、②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值、③判别式法:若函数可以化成一个系数含有的关于的二次方程则在时,由于为实数,故必须有,从而确定函数的值域或最值、④不等式法:利用基本不等式确定函数的值域或最值、⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题、⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值、⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值、⑧函数的单调性法、(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种、解析法:就是用数学表达式表示两个变量之间的对应关系、列表法:就是列出表格来表示两个变量之间的对应关系、图象法:就是用图象表示两个变量之间的对应关系、(6)映射的概念①设、是两个集合,如果按照某种对应法则,对于集合中任何一个元素,在集合中都有唯一的元素和它对应,那么这样的对应(包括集合,以及到的对应法则)叫做集合到的映射,记作、②给定一个集合到集合的映射,且、如果元素和元素对应,那么我们把元素叫做元素的象,元素叫做元素的原象、(6)函数的单调性①定义及判定方法函数的性质定义图象判定方法函数的单调性如果对于属于定义域I内某个区间上的任意两个自变量的值x1、x2,当x1< x2时,都有f(x1)<f(x2),那么就说f(x)在这个区间上是增函数、(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图象上升为增)(4)利用复合函数如果对于属于定义域I内某个区间上的任意两个自变量的值x1、x2,当x1< x2时,都有f(x1)>f(x2),那么就说f(x)在这个区间上是减函数、(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图象下降为减)(4)利用复合函数②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数、③对于复合函数,令,若为增,为增,则为增;若为减,为减,则为增;若为增,为减,则为减;若为减,为增,则为减、yxo(7)打“√”函数的图象与性质分别在、上为增函数,分别在、上为减函数、(8)最大(小)值定义①一般地,设函数的定义域为,如果存在实数满足:(1)对于任意的,都有;(2)存在,使得、那么,我们称是函数的最大值,记作、②一般地,设函数的定义域为,如果存在实数满足:(1)对于任意的,都有;(2)存在,使得、那么,我们称是函数的最小值,记作、(9)函数的奇偶性①定义及判定方法函数的性质定义图象判定方法函数的奇偶性如果对于函数f(x)定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)叫做奇函数、(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于原点对称)如果对于函数f(x)定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)叫做偶函数、(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于y轴对称)②若函数为奇函数,且在处有定义,则、③奇函数在轴两侧相对称的区间增减性相同,偶函数在轴两侧相对称的区间增减性相反、④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数、第二章基本初等函数(Ⅰ)〖2、1〗指数函数【2、1、1】指数与指数幂的运算(1)根式的概念①如果,且,那么叫做的次方根、当是奇数时,的次方根用符号表示;当是偶数时,正数的正的次方根用符号表示,负的次方根用符号表示;0的次方根是0;负数没有次方根、②式子叫做根式,这里叫做根指数,叫做被开方数、当为奇数时,为任意实数;当为偶数时,、③根式的性质:;当为奇数时,;当为偶数时,、(2)分数指数幂的概念①正数的正分数指数幂的意义是:且、0的正分数指数幂等于0、②正数的负分数指数幂的意义是:且、0的负分数指数幂没有意义、注意口诀:底数取倒数,指数取相反数、(3)分数指数幂的运算性质① ②③【2、1、2】指数函数及其性质(4)指数函数函数名称指数函数定义0101函数且叫做指数函数图象定义域值域过定点图象过定点,即当时,、奇偶性非奇非偶单调性在上是增函数在上是减函数函数值的变化情况变化对图象的影响在第一象限内,越大图象越高;在第二象限内,越大图象越低、〖2、2〗对数函数【2、2、1】对数与对数运算(1)对数的定义①若,则叫做以为底的对数,记作,其中叫做底数,叫做真数、②负数和零没有对数、③对数式与指数式的互化:、(2)几个重要的对数恒等式,,、(3)常用对数与自然对数常用对数:,即;自然对数:,即(其中…)、(4)对数的运算性质如果,那么①加法:②减法:③数乘:④⑤ ⑥换底公式:【2、2、2】对数函数及其性质(5)对数函数函数名称对数函数定义函数且叫做对数函数图象0101定义域值域过定点图象过定点,即当时,、奇偶性非奇非偶单调性在上是增函数在上是减函数函数值的变化情况变化对图象的影响在第一象限内,越大图象越靠低;在第四象限内,越大图象越靠高、(6)反函数的概念设函数的定义域为,值域为,从式子中解出,得式子、如果对于在中的任何一个值,通过式子,在中都有唯一确定的值和它对应,那么式子表示是的函数,函数叫做函数的反函数,记作,习惯上改写成、(7)反函数的求法①确定反函数的定义域,即原函数的值域;②从原函数式中反解出;③将改写成,并注明反函数的定义域、(8)反函数的性质①原函数与反函数的图象关于直线对称、②函数的定义域、值域分别是其反函数的值域、定义域、③若在原函数的图象上,则在反函数的图象上、④一般地,函数要有反函数则它必须为单调函数、〖2、3〗幂函数(1)幂函数的定义一般地,函数叫做幂函数,其中为自变量,是常数、(2)幂函数的图象(3)幂函数的性质①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象、幂函数是偶函数时,图象分布在第一、二象限(图象关于轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限、②过定点:所有的幂函数在都有定义,并且图象都通过点、③单调性:如果,则幂函数的图象过原点,并且在上为增函数、如果,则幂函数的图象在上为减函数,在第一象限内,图象无限接近轴与轴、④奇偶性:当为奇数时,幂函数为奇函数,当为偶数时,幂函数为偶函数、当(其中互质,和),若为奇数为奇数时,则是奇函数,若为奇数为偶数时,则是偶函数,若为偶数为奇数时,则是非奇非偶函数、⑤图象特征:幂函数,当时,若,其图象在直线下方,若,其图象在直线上方,当时,若,其图象在直线上方,若,其图象在直线下方、〖补充知识〗二次函数(1)二次函数解析式的三种形式①一般式:②顶点式:③两根式:(2)求二次函数解析式的方法①已知三个点坐标时,宜用一般式、②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式、③若已知抛物线与轴有两个交点,且横线坐标已知时,选用两根式求更方便、(3)二次函数图象的性质①二次函数的图象是一条抛物线,对称轴方程为顶点坐标是、②当时,抛物线开口向上,函数在上递减,在上递增,当时,;当时,抛物线开口向下,函数在上递增,在上递减,当时,、③二次函数当时,图象与轴有两个交点、(4)一元二次方程根的分布一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布、设一元二次方程的两实根为,且、令,从以下四个方面来分析此类问题:①开口方向:②对称轴位置:③判别式:④端点函数值符号、①k<x1≤x2 ②x1≤x2<k ③x1<k<x2 af(k)<0 ④k1<x1≤x2<k2 ⑤有且仅有一个根x1(或x2)满足k1<x1(或x2)<k2 f(k1)f(k2)0,并同时考虑f(k1)=0或f(k2)=0这两种情况是否也符合⑥k1<x1<k2≤p1<x2<p2 此结论可直接由⑤推出、(5)二次函数在闭区间上的最值设在区间上的最大值为,最小值为,令、(Ⅰ)当时(开口向上)①若,则②若,则③若,则xy0>aOabx2-=pqf(p)f(q)xy0>aOabx2-=pqf(p)f(q)xy0>aOabx2-=pqf(p)f(q)xy0>aOabx2-=pqf(p)f(q)①若,则②,则xy0>aOabx2-=pqf(p)f(q)(Ⅱ)当时(开口向下)①若,则②若,则③若,则xy0<aOabx2-=pqf(p)f(q)xy0<aOabx2-=pqf(p)f(q)xy0<aOabx2-=pqf(p)f(q)①若,则②,则、xy0<aOabx2-=pqf(p)f(q)xy0<aOabx2-=pqf(p)f(q)第三章函数的应用一、方程的根与函数的零点1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。
高中数学知识点大全
高中数学知识点大全一、代数部分1. 整式与分式1.1 定义与性质1.2 合并同类项1.3 四则运算法则1.4 分式的运算2. 方程与不等式2.1 一元一次方程2.2 一元一次不等式2.3 二次方程2.4 二次不等式2.5 一元高次方程3. 函数3.1 函数的基本概念3.2 常见函数类型3.3 函数的运算3.4 反函数与复合函数3.5 函数的图像与性质4. 数列与数列的表示4.1 等差数列4.2 等比数列4.3 通项公式与求和公式二、几何部分1. 几何基础知识1.1 点、线、面的基本概念 1.2 角的定义与性质1.3 相交线与平行线1.4 同位角与内错角2. 三角形与四边形2.1 三角形的分类与性质 2.2 三角形的面积和周长 2.3 直角三角形2.4 各类四边形的性质3. 圆的属性3.1 圆的基本概念3.2 圆心角与弧长3.3 切线与切圆3.4 圆的面积和周长4. 空间几何与立体图形4.1 空间图形的投影与展开 4.2 空间几何的基本概念4.3 空间几何的性质与计算4.4 立体图形的体积和表面积三、概率与统计1. 概率1.1 随机事件与样本空间1.2 概率的定义与性质1.3 事件的计算与排列组合1.4 条件概率与独立事件2. 统计2.1 统计数据的收集与整理2.2 统计量的计算2.3 随机变量与概率分布2.4 抽样与估计四、解析几何1. 平面与直线的相关知识1.1 平面与直线的方程1.2 平面与直线的位置关系1.3 两平面与两直线的位置关系1.4 空间中的平行与垂直关系2. 空间曲面与方程2.1 二次曲面的性质2.2 空间曲面的方程2.3 曲线的参数方程2.4 曲线在曲面上的投影与切线3. 空间解析几何相关定理3.1 距离公式与中点坐标3.2 空间点的投影与距离3.3 空间线段的位置关系3.4 空间角的计算与性质五、数学思维与方法1. 数学证明1.1 数学归纳法1.2 数学递推法1.3 反证法与逆否命题2. 问题解决与数学建模2.1 解决实际问题的数学模型2.2 优化问题与约束条件2.3 数学建模的基本步骤2.4 实际问题的数学求解方法这篇文章详细介绍了高中数学的各个知识点,包括代数、几何、概率与统计、解析几何以及数学思维与方法等内容。
高中数学知识点总结完整版
高中数学知识点总结完整版一、代数1. 集合与函数- 集合的概念、表示法和运算- 函数的定义、性质和运算- 特殊函数:一次函数、二次函数、指数函数、对数函数、三角函数2. 代数式- 整式与分式- 多项式的性质和定理- 二次根式和完全平方式3. 方程与不等式- 一元一次方程、一元二次方程的解法- 不等式的性质和解集- 绝对值不等式的解法4. 序列与数列- 等差数列和等比数列的通项公式和求和公式- 数列的极限概念5. 函数图像- 函数图像的绘制和变换- 函数的极值和最值问题二、几何1. 平面几何- 点、线、面的基本性质- 三角形、四边形的性质和计算- 圆的性质和相关公式2. 空间几何- 空间直线和平面的方程- 空间几何体(棱柱、棱锥、圆柱、圆锥、球)的性质和计算3. 解析几何- 坐标系的建立和应用- 曲线的方程和性质- 圆锥曲线(椭圆、双曲线、抛物线)三、概率与统计1. 概率- 随机事件的概率计算- 条件概率和独立事件- 排列组合的基本原理和公式2. 统计- 数据的收集和整理- 统计量(平均数、中位数、众数、方差、标准差)的计算 - 概率分布和正态分布四、数学思维与方法1. 逻辑推理- 命题逻辑、演绎推理- 归纳推理和类比推理2. 数学证明- 直接证明和间接证明- 反证法和数学归纳法3. 问题解决- 问题建模和数学建模- 问题解决的策略和方法五、微积分初步1. 导数- 导数的定义和几何意义- 常见函数的导数公式- 函数的极值和最值问题2. 微分- 微分的定义和应用- 线性近似和误差估计3. 积分- 不定积分的概念和性质- 定积分的基本概念和计算- 积分在几何和物理中的应用以上总结了高中数学的主要知识点,这些知识点构成了高中数学的基础框架,对于理解和掌握更高级的数学概念至关重要。
在实际学习过程中,学生应该通过大量的练习和思考,深化对这些知识点的理解和应用能力。
高中数学知识点大全
高中数学知识点大全1. 函数与方程函数概念:函数是一种多对一的对应关系,可以用来描述两变量之间的依赖关系。
方程解法:- 一元一次方程的解法- 一元二次方程的解法- 基本不等式的解法2. 数列与数学归纳法数列定义:数列是按照一定规律排列的一组数。
常见数列:- 等差数列- 等比数列- 斐波那契数列数学归纳法:通过证明当n=k时命题成立,再证明当n=k+1时命题也成立,从而证明命题对于所有自然数n成立。
3. 三角函数及其应用常见三角函数:- 正弦函数- 余弦函数- 正切函数- 反三角函数三角函数的应用:- 解直角三角形- 多边形的面积计算- 两点间的距离计算4. 平面几何平面几何基本概念:- 点、线、面的概念与性质- 平行线与垂直线的性质- 图形的对称性与轴对称、中心对称平面几何常见问题:- 直线与平面的交点问题- 判断两条线段是否相交- 判断一个点是否在给定图形内部5. 空间几何空间几何基本概念:- 空间中点、线、面的概念与性质- 球、柱、锥等几何体的概念空间几何常见问题:- 线段的长度计算- 面积与体积的计算- 空间图形的投影6. 概率与统计概率的基本概念:- 随机现象、试验与事件的概念- 概率的定义与性质统计的基本概念:- 统计数据的收集和组织- 描述性统计与推论统计的区别概率与统计的应用:- 生活中的概率问题,如扔硬币、掷骰子的概率计算- 调查和样本调查的应用7. 数学证明数学证明基本方法:- 直接证明法- 反证法- 数学归纳法数学证明常见技巧:- 分情况讨论- 引入中间变量- 利用数学恒等式8. 解几何问题的思路与方法解几何问题的思路:- 理清题意,画出几何图形- 运用已知条件与几何定理- 推导出未知结果解几何问题的方法:- 利用相似三角形解决比例问题- 利用勾股定理解决直角三角形问题- 利用面积关系解决平行四边形问题本文对高中数学中常见的知识点进行了概述,包括函数与方程、数列与数学归纳法、三角函数及其应用、平面几何、空间几何、概率与统计、数学证明以及解几何问题的思路与方法。
高中数学知识点大全(完整版)
高中数学知识点大全(完整版)高中数学学问点大全一、集合、简易规律1、集合;2、子集;3、补集;4、交集;5、并集;6、规律连结词;7、四种命题;8、充要条件。
二、函数1、映射;2、函数;3、函数的单调性;4、反函数;5、互为反函数的函数图象间的关系;6、指数概念的扩充;7、有理指数幂的运算;8、指数函数;9、对数;10、对数的运算性质;11、对数函数。
12、函数的应用举例。
三、数列(12课时,5个)1、数列;2、等差数列及其通项公式;3、等差数列前n项和公式;4、等比数列及其通顶公式;5、等比数列前n项和公式。
四、三角函数1、角的概念的推广;2、弧度制;3、任意角的三角函数;4、单位圆中的三角函数线;5、同角三角函数的基本关系式;6、正弦、余弦的诱导公式;7、两角和与差的正弦、余弦、正切;8、二倍角的正弦、余弦、正切;9、正弦函数、余弦函数的图象和性质;10、周期函数;11、函数的奇偶性;12、函数的图象;13、正切函数的图象和性质;14、已知三角函数值求角;15、正弦定理;16、余弦定理;17、斜三角形解法举例。
五、平面对量1、向量;2、向量的加法与减法;3、实数与向量的积;4、平面对量的坐标表示;5、线段的定比分点;6、平面对量的数量积;7、平面两点间的距离;8、平移。
六、不等式1、不等式;2、不等式的基本性质;3、不等式的证明;4、不等式的解法;5、含肯定值的不等式。
七、直线和圆的方程1、直线的倾斜角和斜率;2、直线方程的点斜式和两点式;3、直线方程的`一般式;4、两条直线平行与垂直的条件;5、两条直线的交角;6、点到直线的距离;7、用二元一次不等式表示平面区域;8、简洁线性规划问题;9、曲线与方程的概念;10、由已知条件列出曲线方程;11、圆的标准方程和一般方程;12、圆的参数方程。
八、圆锥曲线1、椭圆及其标准方程;2、椭圆的简洁几何性质;3、椭圆的参数方程;4、双曲线及其标准方程;5、双曲线的简洁几何性质;6、抛物线及其标准方程;7、抛物线的简洁几何性质。
高中数学知识点大全(完整版)
高中数学知识点大全(完整版)1. 实数和复数:实数是数轴上的所有数,包括有理数和无理数;复数由实部和虚部组成,可以表示为a+bi的形式,其中a和b 为实数。
2. 幂和根:幂是指数运算,如a的n次幂表示为an;根是幂的逆运算,开x次方根表示为x√a。
3. 代数运算:加法、减法、乘法和除法是代数运算的基本运算,它们遵循相应的运算法则。
4. 贝叶斯定理:条件概率和全概率公式的应用,用于计算事件的概率。
5. 几何:包括平面几何和立体几何,涉及到图形的性质,如平行、垂直、相似、全等等。
6. 向量:具有大小和方向的量,在代数中用坐标表示,可以进行向量的加法、减法和数量乘法等运算。
7. 函数:函数是自变量与因变量之间的依赖关系,常见的函数有线性函数、二次函数、指数函数、对数函数等。
8. 三角函数:包括正弦、余弦、正切、余切等,广泛应用于几何、物理等领域。
9. 极限与连续性:极限是指当自变量趋近于某个特定值时,函数的变化趋势;连续性是指函数在其定义域上无断点。
10. 导数与微分:导数表示函数在某一点处的变化率,微分是导数的几何意义。
11. 积分与不定积分:积分表示函数在一定区间上的面积或曲线长度,不定积分是积分的逆运算。
12. 概率与统计:概率是描述随机事件发生的可能性,统计是收集、整理和分析数据的方法。
13. 矩阵与行列式:矩阵是一个按照一定规则排列的数的矩形阵列,行列式是矩阵的一种特殊表示形式。
14. 数列与数级数:数列是由一个或多个数按一定规律排列而成的序列,数级数是数列的无穷求和。
15. 数论:研究整数性质和整数之间的关系,包括质数、最大公约数、同余等。
16. 解析几何:利用坐标表示几何图形的性质和关系。
17. 空间几何:研究三维空间中图形的性质和关系。
18. 数学证明:用严密的推理和逻辑方法证明数学命题的正确性。
19. 数学建模:将实际问题转化为数学模型,利用数学方法进行求解和分析。
20. 科学计算:利用计算机和数值方法解决数学问题,如差值、插值、数值积分等。
高中数学知识点总结大全
高中数学知识点总结大全一、函数与方程1.函数的定义、性质及基本运算2.一次函数与二次函数的性质、图像和应用3.幂函数、指数函数、对数函数的性质、图像和应用4.三角函数的性质、图像和应用5.复合函数与反函数6.一元二次方程与根的性质7.一元二次不等式与根的性质8.一元二次方程与一元二次不等式的应用9.二元一次方程组与消元法10.二元一次方程组与解法、应用11.不等式方程组与解法、应用12.绝对值方程与绝对值不等式的解法、应用13.分式方程与分式不等式的解法、应用14.二次函数与一元二次方程不等式的关系二、平面几何1.直线及其性质、方程与斜率2.点与直线的位置关系3.线段与角的性质4.三角形内角和定理与外角和定理5.三角形的分类与性质6.相似三角形的性质、判定与应用7.斜率相等的直线8.圆的性质、方程和切线9.圆锥曲线的性质、方程与图像10.向量的概念、性质与基本运算11.向量共线、向量垂直及向量和的性质12.向量与直线的关系、向量的投影与正交投影13.向量的数量积、性质与应用14.向量的叉积、性质与应用三、解析几何1.二次函数的图像与性质2.二次函数与直线的位置关系3.椭圆和双曲线的性质、方程和图像4.平面直角坐标系与极坐标系5.极坐标系中曲线的方程和图像6.参数方程及其应用7.空间中的点、直线和平面的坐标表示8.空间平面与射影几何9.空间曲线的方程、轨迹及其性质10.空间曲面的方程和图像11.空间直线与曲面的位置关系四、概率与统计1.随机事件与样本空间2.概率的性质、计算及应用3.条件概率、独立事件与无关事件4.全概率公式与贝叶斯定理5.随机变量及其分布6.二项分布、泊松分布和正态分布7.统计量及其抽样分布8.抽样分布与区间估计9.假设检验及其应用五、数列与数列极限1.数列的概念与性质2.等差数列的通项公式及其应用3.等比数列的通项公式及其应用4.数列极限的概念、性质及其计算5.数列极限的判定方法6.函数极限与数列极限的关系六、微积分1.导数的概念、定义与计算2.导数的基本性质、应用与几何意义3.反函数与反函数的导数计算4.高阶导数、导数公式与导数计算5.参数方程与极坐标中的导数6.微分与微分近似7.隐函数的导数计算与相关公式8.微分中值定理、泰勒公式及其应用9.函数的极值与最值问题10.函数的单调性与曲线的凹凸性11.不定积分的概念与基本性质12.反常积分与定积分的定义与计算13.定积分的性质及其应用14.微积分的基本公式与积分计算15.微分方程的概念与基本解法16.微积分与几何的应用。
高中数学知识点总结[超全]
高中数学知识点总结[超全]一、函数1.函数的定义:函数是一种特殊的关系,将每一个自变量对应一个唯一的因变量。
2.函数的表示法:①显式表示法:y=f(x)②隐式表示法:F(x,y)=0③参数方程:x=f(t) , y=g(t)④极坐标表示法:ρ=f(θ)3.初等函数:幂函数、指数函数、对数函数、三角函数、反三角函数和常数函数。
4.函数的分类:①奇偶性:奇函数与偶函数②单调性:单调递增与单调递减③周期性:周期函数5.函数的运算:四则运算、函数复合运算、反函数运算。
6.函数的图象:用图象把握函数的基本性质,已知函数的图象可以得到函数的解析式。
7.复合函数求导:链式法则二、极限1.极限的概念:当自变量无限接近于某个数时,函数值的变化趋近于某个确定的值。
2.极限的性质:①唯一性②局部有界性③保号性④夹逼原理⑤极限的四则运算法则⑥函数单调有限原则⑦洛必达法则3.连续性:函数在某一点上连续的充分必要条件是,该点的左右极限相等且与函数值相等。
4.间断点:可去间断点、跳跃间断点和无限间断点。
5.无穷小:当自变量趋近于某个数时,函数值无限接近于零的量。
6.无穷大:当自变量趋近于某个数时,函数值无限趋近于无穷大的量。
三、导数1.导数的概念:斜率的极限值,反映函数在某点的变化快慢。
2.导数的性质:①可导与连续的关系②导数的基本运算法则③导数的四则运算法则④反函数的导数⑤参数方程的导数⑥高阶导数3.导数应用:①切线和法线②几何意义③最值及其判定④函数单调性⑤函数凹凸性四、微分1.微分的概念:标量,表达函数的增量。
2.微分的运算法则:线性法则、乘积法则、商法则、复合函数的微分法。
3.微分与导数的关系:微分等于导数乘以自变量增量的值。
4.泰勒公式:将函数用局部线性近似来描述,是微积分的重要工具。
五、积分1.不定积分:求原函数的过程。
2.积分的性质:①线性性质②区间可加性质③积分中值定理3.定积分:反映曲边梯形面积的大小。
4.定积分基本定理:导数与积分是互逆运算。
高三数学知识点全总结大全
高三数学知识点全总结大全一. 函数与方程1.一次函数1.1 定义与性质1.2 求解一次方程2. 二次函数2.1 定义与性质2.2 求解二次方程3. 指数函数与对数函数3.1 指数函数的定义与性质3.2 对数函数的定义与性质4. 复合函数与反函数4.1 复合函数的概念4.2 反函数的概念与性质5. 三角函数5.1 正弦函数、余弦函数、正切函数的定义与性质5.2 三角恒等式的运用6. 方程与不等式6.1 一元二次方程与不等式6.2 绝对值方程与不等式7. 线性规划与整式卷积7.1 线性规划的概念与解法7.2 整式卷积的概念与运算二. 三角学1. 三角函数与三角恒等式1.1 三角函数的图像与性质1.2 三角恒等式的证明与运用2. 三角函数的应用2.1 三角函数在几何中的应用2.2 三角函数在物理中的应用3. 平面直角坐标系3.1 平面直角坐标系的引入与性质3.2 向量的概念与运算4. 复数与平面向量4.1 复数的定义与运算4.2 平面向量的定义与运算5. 解析几何5.1 点、直线、圆的方程5.2 曲线的方程与性质三. 空间解析几何1. 空间直角坐标系1.1 空间直角坐标系的引入与性质1.2 距离与中点公式的运用2. 空间中的直线2.1 直线的方程与性质2.2 直线与平面的位置关系3. 空间中的平面3.1 平面的方程与性质3.2 平面与平面的位置关系4. 空间中的曲线与曲面4.1 曲线的方程与性质4.2 曲面的方程与性质5. 空间中的向量5.1 向量的概念与运算5.2 平面与向量的关系四. 数列与数学归纳法1. 数列的概念与性质1.1 通项与递推式1.2 数列的极限与收敛性2. 数学归纳法2.1 数学归纳法的基本思想 2.2 数学归纳法的应用五. 概率与统计1. 事件与概率1.1 事件的定义与性质1.2 概率的定义与运算2. 排列与组合2.1 排列的定义与性质2.2 组合的定义与性质3. 随机变量与概率分布3.1 随机变量与概率分布的概念3.2 常见离散与连续概率分布的特点与应用4. 统计与抽样4.1 统计的概念与性质4.2 抽样技术与统计推断以上就是高三数学知识点的全面总结大全。
高中数学知识点总结[超全]
高中数学知识点总结[超全]一、初步基础1.集合:包含一定元素的整体2.映射:关联每一个元素到另一个集合元素的一种方式3.函数:一种映射,在不同区间之间限制,且每个元素至多有一个相应元素4.数与运算:加、减、乘、除5.方程、不等式:含有未知量的等式或不等式二、函数与方程1.函数的性质:单调性、奇偶性、周期性、多项式函数、根、零点等2.图像的分析:左、右极限、有孤立点或无穷点等3.解方程和不等式:根、解集、区间、正负等4.函数的运算:四则运算、复合函数、反函数等三、平面与立体几何1.点、线、面、体等基本概念2.图形的面积、周长、体积、等价性等3.相似与全等:图形的比例、相似判定、全等条件等4.三角函数:sin、cos、tan、cot的定义、性质和计算四、导数和微积分1.导数的定义和求法:函数的斜率和变化率2.导数的运算:四则运算、复合函数、反函数等3.微分和微分的应用:近似计算、切线与法线、曲率等4.不定积分和定积分:基本公式、换元积分法等五、数列和数学归纳法1.数列的性质:公差、通项公式、极限等2.数列的运算:求和、部分和、等比等3.数学归纳法的原理和应用六、概率统计1.概率基本概念:事件、样本空间、概率等2.概率的计算:古典概型、加法定理、乘法定理等3.离散与连续型随机变量的概率密度函数、分布函数和期望4.假设检验和区间估计:假设检验的基本原理、一致最有力检验、区间估计等七、解析几何1.空间中的基本概念和坐标系2.点、线、面、平面等的距离计算3.向量与其运算:加、减、数量积、向量积等4.直线和平面的方程:点法式、一般式、截距式等以上就是高中数学中的基本知识点,各知识点都有相应的计算方法和题型,需要学生多做练习。
(完整版)高中数学知识点宝典汇总
①定义法 步骤: a.设 x1, x2 A且 x1 x2 ; b.作差 f (x1 ) f ( x2 ) ; c.判断正负号。
②掌握函数 y ax b a b ac(b ac 0);y x a(a 0) 的图象和性质;
xc
xc
x
函
ax b
b ac
y
a
数
xc
xc
a y x (a 0 )
x
(b –ac≠ 0)
y
图
Y=a
X=-c
象
o X
y
o
x
当 b-ac>0 时 : 单
在 ( , a]和[ a , )
在 ( , c)和 (c, ) 上单调递减;
上单调递增;
调
当 b-ac<0 时 :
在 [ a, 0)和(0, a ] 上单
性
在 ( , c)和 (c, ) 上单调递增。
调递增。
2
③一些有用的结论: .在公共定义域内
五、求函数的值域的常用解题方法: ① 配方法。如函数 y x 4 x 2 1的值域,特点是可化为二次函数的形式;
②换元法:如 y= 1 2 x x ③单调性:如函数 y 2 x log 2 x x ∈ [1,2]
④判别式法(△法)如函数
x 2 2x 3
y=
x2 2x 3
3
⑤利用函数的图像:如函数 ⑦利用基本不等式:如函数
4.等差数列的前 n 项和: ① Sn
n(a1 a n ) 2
② Sn na1 n(n 1) d 2
对于公式②整理后是关于 n 的没有常数项的二次函数(充要条件 )。
5.等差中项 :如果 a , A , b 成等差数列,则有
高中数学知识点大全
高中数学知识点大全一、集合与函数概念1. 集合定义:集合是某些确定的、互不相同的对象的全体。
表示方法:列举法、描述法、图示法。
集合间的关系:子集、真子集、相等。
集合的运算:并集、交集、补集、差集。
常用数集:自然数集(N)、整数集(Z)、有理数集(Q)、实数集(R)。
2. 函数概念定义:函数是两个非空数集之间的映射,使得每一个自变量都有唯一的函数值与之对应。
表示方法:列表法、图象法、解析法。
函数的性质:单调性、奇偶性、周期性、最值。
3. 函数的基本类型一次函数:\( y = ax + b \),图象为直线。
二次函数:\( y = ax^2 + bx + c \),图象为抛物线。
指数函数:\( y = a^x \),\( a > 0 \且 a \neq 1 \)。
对数函数:\( y = \log_a x \),\( a > 0 \且 a \neq 1 \)。
三角函数:正弦函数、余弦函数、正切函数等。
二、立体几何1. 空间几何体多面体:棱柱、棱锥、棱台。
旋转体:圆柱、圆锥、圆台、球。
2. 点、线、面的位置关系点与线:点在直线上、点在直线外。
点与面:点在平面上、点在平面外。
线与线:相交、平行、异面。
线与面:线在面上、线与面相交、线与面平行。
面与面:相交、平行。
3. 空间几何体的表面积与体积棱柱:\( V = Sh \),\( S = 2S_{底} + S_{侧} \)。
棱锥:\( V = \frac{1}{3}Sh \),\( S = S_{底} + S_{侧} \)。
圆柱:\( V = \pi r^2 h \),\( S = 2\pi r(h + r) \)。
圆锥:\( V = \frac{1}{3}\pi r^2 h \),\( S = \pi r(l + r) \),其中 \( l = \sqrt{r^2 + h^2} \)。
三、解析几何1. 坐标系直角坐标系:由两条互相垂直的数轴构成。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学知识点大全
高中数学知识点大全
高中阶段是数学学习中重要的一个阶段,尤其是数学知识点的积累,对于以后的学习和发展都有着不可或缺的作用。
所以在这个阶段中,我们需要学好数学知识点,建立数学知识体系,为以后的学习铺好基础。
以下是高中数学知识点的大全,供大家参考。
一、函数与方程
1.函数的概念
2.函数的表示法
3.函数的图像及性质
4.常用函数(一次函数、二次函数、指数函数、对数函数、三角函数等)
5.函数的复合
6.函数的求导
7.二次函数的解析式
8.一元二次方程的求解
9.一元三次方程的求解
10.二元一次方程组的解法
11.二元二次方程组的解法
二、三角学
1.神圆的定义
2.单位圆
3.三角比的定义
4.三角函数(正弦函数、余弦函数、正切函数、余切函数等)
5.三角函数的周期性
6.三角函数的图像及性质
7.三角函数的和差公式
8.三角函数的倍角公式
9.三角函数的半角公式
10.三角函数的求导公式
三、数学分析
1.导数的定义
2.导数的基本准则(导数的线性性、求导法则、复合函数的导数等)
3.函数的单调性及导数
4.函数的极限及连续性
5.函数的特殊极限
6.不定积分及其定义
7.分部积分法
8.定积分及其定义
9.积分中值定理
10.牛顿—莱布尼茨公式
四、解析几何
1.平面直角坐标系
2.空间直角坐标系
3.平面曲线的方程
4.圆的方程
5.曲面的方程
6.空间曲线的方程
7.平面几何的基本问题(相交线段长度、面积、周长、角度、垂足、中垂线等)
8.空间几何的基本问题(三角形、四边形、球、锥、台、棱锥、棱镜、旋转体的体积、表面积等)
五、数理统计
1.统计基本概念(总体、样本、样品、统计量等)
2.数据的收集和处理
3.基本统计图形
4.频率分布和分组统计
5.常见分布型(正态分布、泊松分布、二项分布等)
6.假设检验
7.置信区间
8.相关和回归分析
总结:
高中数学知识点需要多次反复学习,理解,掌握。
本文着重列出了高中数学知识大纲,让学生能够把握数学的主要内容和方向,具有重要的参考价值。
当然,只是列出了名词,实际的学习过程还要通过与具体的题目相结合,进行实践运用。
通过数学的学习,提高自己的数学水平,提高自己的综合素质。