勾股定理平方根专题知识点整理

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

勾股定理、平方根专题知识点整理

第一节勾股定理

一、勾股定理:

1、勾股定理定义:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么

a2+b2=c2. 即直角三角形两直角边的平方和等于斜边的平方

A

B

C

a

b

c

勾:直角三角形较短的直角边

股:直角三角形较长的直角边

弦:斜边

勾股定理的逆定理:如果三角形的三边长a,b,c有下面关系:a2+b2=c2,那么这个

三角形是直角三角形。

2. 勾股数:满足a2+b2=c2的三个正整数叫做勾股数(注意:若a,b,c、为勾股数,那么

ka,kb,kc同样也是勾股数组。)

*附:常见勾股数:3,4,5; 6,8,10; 9,12,15; 5,12,13

3. 判断直角三角形:如果三角形的三边长a、b、c满足a2+b2=c2 ,那么这个三角形是直角

三角形。(经典直角三角形:勾三、股四、弦五)

其他方法:(1)有一个角为90°的三角形是直角三角形。

(2)有两个角互余的三角形是直角三角形。

用它判断三角形是否为直角三角形的一般步骤是:

(1)确定最大边(不妨设为c);

(2)若c 2=a 2+b 2,则△ABC 是以∠C 为直角的三角形; 若a 2+b 2<c 2,则此三角形为钝角三角形(其中c 为最大边); 若a 2+b 2>c 2,则此三角形为锐角三角形(其中c 为最大边)

4.注意:(1)直角三角形斜边上的中线等于斜边的一半

(2)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的

一半。

(3)在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角

等于30°。

5. 勾股定理的作用:

(1)已知直角三角形的两边求第三边。 (2)已知直角三角形的一边,求另两边的关系。

(3)用于证明线段平方关系的问题。

(4)利用勾股定理,作出长为n 的线段

二、平方根:(11——19的平方)

1、平方根定义:如果一个数的平方等于a ,那么这个数就叫做a 的平方根。(也称为二次方

根),也就是说如果x 2

=a ,那么x 就叫做a 的平方根。

2、平方根的性质:

①一个正数有两个平方根,它们互为相反数;

一个正数a 的正的平方根,记作“a ”,又叫做算术平方根,它负的平方根,记作“—a ”,这两个平方根合起来记作“±a ”。( a 叫被开方数, “”是二次根号,这里“”,

亦可写成“2

”)

②0只有一个平方根,就是0本身。算术平方根是0。 ③负数没有平方根。

3、 开平方:求一个数的平方根的运算叫做开平方,开平方和平方运算互为逆运算。

4、(1) 平方根是它本身的数是零。

(2)算术平方根是它本身的数是0和1。

(3)

()

()()().0,0,0222

<-=≥=≥=a a a a a a a a a

(4)一个数的两个平方根之和为0

三、立方根:(1——9的立方)

1、立方根的定义:如果一个数的立方等于a ,那么这个数就叫做a 的立方根。(也称为二次

方根),也就是说如果x 3

=a ,那么x 就叫做a 的立方根。记作“3a ”。

2、立方根的性质:

①任何数都有立方根,并且只有一个立方根,正数的立方根是正数,负数的立方根是负数,0的立方根是0. ②互为相反数的数的立方根也互为相反数,即3a -=3a - ③a a a ==3333)(

3、开立方:求一个数的立方根的运算叫做开立方,开立方与立方运算为互逆运算,开立方

的运算结果是立方根。

4、立方根是它本身的数是1,0,-1。

5、平方根和立方根的区别:

(1)被开方数的取值范围不同:在±a 中,a ≥0,在a 3

中,a 可以为任意数值。

(2)正数的平方根有两个,而它的立方根只有一个;负数没有平方根,而它有一个立方根。

6、立方根和平方根:

不同点:

(1)任何数都有立方根,正数和0有平方根,负数没有平方根;即被开方数的取值范围

不同:±a 中的被开方数a 是非负数;3

a 中的被开方数可以是任何数.

(2)正数有两个平方根,任何数都有惟一的立方根;

(3)立方根等于本身的数有0、1、—1,平方根等于本身的数只有0. 共同点:0的立方根和平方根都是0. 四、实数:

1、定义:有理数和无理数统称为实数

无理数:无限不循环小数称(包括所有开方开不尽的数,∏)。 有理数:有限小数或无限循环小数

注意:分数都是有理数,因为任何一个分数都可以化为有限小数或无限循环小数的形式 2、实数的分类:

实数有理数正有理数零负有理数有限小数或无限循环小数无理数正无理数负无理数无限不循环小数⎧⎨⎪⎩⎪⎫⎬⎪⎪⎭⎪⎪⎧⎨⎪⎩⎪⎫⎬⎪

⎭⎪⎧⎨⎪⎪⎪⎪⎩⎪

⎪⎪

实数的性质:①实数的相反数、倒数、绝对值的意义与在有理数范围内的意义是一样的。

②实数同有理数一样,可用数轴上的点表示,且实数和数轴上的点一一对应。 ③两个实数可以按有理数比较大小的法则比较大小。 ④实数可以按有理数的运算法则和运算律进行运算。

实数

3、近似数:由于实际中常常不需要用精确的数描述一个量,甚至在更多情况下不可能得到

精确的数,用以描述所研究的量,这样的数就叫近似数。 取近似值的方法——四舍五入法

4、有效数字:对一个近似数,从左边第一个不是0的数字起,到末位数字止,所有的数

都称为这个近似数的有效数字 5、科学记数法:

把一个数记为做科学记数法。是整数)的形式,就叫其中n ,10a 1(10a n

<≤⨯ 6、实数和数轴:

每一个实数都可以用数轴上的点来表示;反过来,数轴上每一个点都表示一个实数。实数与数轴上的点是一一对应的。

勾股定理:

(一)结合三角形:

1.已知∆ABC 的三边a 、b 、c 满足0)()(2

2

=-+-c b b a ,则∆ABC 为 三角形 2.在∆ABC 中,若2

a =(

b +

c )(b -c ),则∆ABC 是 三角形,且∠ ︒90 3.在∆ABC 中,AB=13,AC=15,高AD=12,则BC 的长为

1.已知2512-++-y x x 与25102

+-z z 互为相反数,试判断以x 、y 、z 为三边的三角形的形状。

2.已知:在∆ABC 中,三条边长分别为a 、b 、c ,a =12

-n ,b =2n ,c =12

+n (n >1) 试说明:∠C=︒90。

3.若∆ABC 的三边a 、b 、

c 满足条件2a c b a c b 2624103382

2++=+++,试判断∆ABC 的形状。

4.已知,0)10(8262

=-+-+-c b a 则以a 、b 、c 为边的三角形是

2.折叠问题:

1.如图,有一张直角三角形纸片,两直角边AC=6,BC=8,将△ABC 折叠,使点B 与点A

相关文档
最新文档