PSK调制和解调的基本原理回顾
PSK调制解调实验报告
PSK调制解调实验报告一、实验目的1. 掌握二相绝对码与相对码的码变换方法;2. 掌握二相相位键控调制解调的工作原理及性能测试;3. 学习二相相位调制、解调硬件实现,掌握电路调整测试方法。
二、实验仪器1.时钟与基带数据发生模块,位号:G2.PSK 调制模块,位号A3.PSK 解调模块,位号C4.噪声模块,位号B5.复接/解复接、同步技术模块,位号I6.20M 双踪示波器1 台7.小平口螺丝刀1 只8.频率计1 台9.信号连接线4 根三、实验原理相位键控调制在数字通信系统中是一种极重要的调制方式,它具有优良的抗干扰噪声性能及较高的频带利用率。
在相同的信噪比条件下,可获得比其他调制方式更低的误码率,因而广泛应用在实际通信系统中。
本实验箱采用相位选择法实现相位调制,绝对移相键控是用输入的基带信号选择开关通断控制载波相位的变化来实现。
相对移相键控采用绝对码与相对码变换后,用相对码控制选择开关通断来实现。
PSK 调制电路工作原理二相相位键控的载波为1.024MHz,数字基带信号有32Kb/s 伪随机码、及其相对码、32KHz 方波、外加数字信号等。
相位键控调制解调电原理框图,如图6-1 所示。
1.载波倒相器模拟信号的倒相通常采用运放来实现。
来自1.024MHz 载波信号输入到运放的反相输入端,在输出端即可得到一个反相的载波信号,即π相载波信号。
为了使0 相载波与π相载波的幅度相等,在电路中加了电位器37W01 和37W02 调节。
2.模拟开关相乘器对载波的相移键控是用模拟开关电路实现的。
0 相载波与π相载波分别加到模拟开关A:CD4066 的输入端、模拟开关B:CD4066 的输入端,在数字基带信号的信码中,它的正极性加到模拟开关 A 的输入控制端,它反极性加到模拟开关 B 的输入控制端。
用来控制两个同频反相载波的通断。
当信码为“1”码时,模拟开关A 的输入控制端为高电平,模拟开关A 导通,输出0 相载波,而模拟开关B 的输入控制端为低电平,模拟开关B 截止。
PSK(DPSK)调制与解调资料讲解
P S K(D P S K)调制与解调实验题目——PSK(DPSK)调制与解调一、实验目的1、掌握绝对码、相对码的概念以及它们之间的变换关系和变换方法。
2、掌握产生PSK(DPSK)信号的方法。
3、掌握PSK(DPSK)信号的频谱特性。
二、实验内容1、观察绝对码和相对码的波形。
2、观察PSK(DPSK)信号波形。
3、观察PSK(DPSK)信号频谱。
4、观察PSK(DPSK)相干解调器各点波形。
三、实验仪器1、信号源模块2、数字调制模块3、数字解调模块4、20M双踪示波器5、导线若干四、实验原理1、2PSK(2DPSK)调制原理2PSK信号是用载波相位的变化表征被传输信息状态的,通常规定0相位载波和π相位载波分别代表传1和传0,其时域波形示意图如图所示。
2PSK 信号是用载波的不同相位直接去表示相应的数字信号而得出的,在这种绝对移相的方式中,由于发送端是以某一个相位作为基准的,因而在接收系统也必须有这样一个固定基准相位作参考。
如果这个参考相位发生变化,则恢复的数字信息就会与发送的数字信息完全相反,从而造成错误的恢复。
这种现象常称为2PSK 的“倒π”现象,因此,实际中一般不采用2PSK 方式,而采用差分移相(2DPSK )方式。
2DPSK 方式即是利用前后相邻码元的相对载波相位值去表示数字信息的一种方式。
如图为对同一组二进制信号调制后的2PSK 与2DPSK 波形。
0 0 0 1 0 1 1 1 0 0 0 1 1 1 0 0 1数字信息(绝对码)PSK 波形DPSK 波形相对码从图中可以看出,2DPSK 信号波形与2PSK 的不同。
2DPSK 波形的同一相位并不对应相同的数字信息符号,而前后码元相对相位的差才唯一决定信息符号。
这说明,解调2DPSK 信号时并不依赖于某一固定的载波相位参考值。
只要前后码元的相对相位关系不破坏,则鉴别这个关系就可以正确恢复数字信息,这就避免了2PSK 方式中的“倒π”现象发生。
PSK的调制解调解析
1 引言通信按照传统的理解就是信息的传输。
在当今高度信息化的社会,信息和通信已成为现代社会的命脉。
信息作为一种资源,只有通过广泛的传播与交流,才能产生利用价值,促进社会成员之间的合作,推动社会生产力的发展,创造出巨大的经济效益。
而通信作为传输信息的手段或方式,与传感技术,计算机技术相互融合,已为21世纪国际社会和世界经济发展的强大推动力。
1.1 数字通信系统的模型按照信道中传输的是模拟信号还是数字信号,相应的将通信系统分为模拟通信系统和数字通信系统。
模拟通信系统是利用模拟信号来传递信息的通信系统,模拟信号有时也称连续信号。
而数字通信系统是利用数字信号来传递信息的通信系统。
数字信号有时也称为离散信号。
近年来数字通信的发展远远超过模拟通信,数字通信在各个领域的应用也越来越广泛。
本文讨论的也是数字通信中调制解调原理。
数字通信系统的一般模型如图1所示。
图1 数字通信系统模型其中,信源编码有两个基本功能:一是提高信息传输的有效性,即设法减少码元数目和降低码元速率。
二是完成数/模转换,即当信息源给出的是模拟信号时,信源编码器将其转换成数字信号,信源译码是信源编码的逆过程。
信道编码的目的是增强数字信号的抗干扰能力,信道译码是信道编码的逆过程。
加密和解密是为了保证所传信息的安全。
数字调制就是将数字基带信号的频谱搬移到高频处,形成适合在信道中传输的带通信号。
图1为数字通信系统的一般化模型,实际的数字通信系统不一定包含图中的所有环节。
模拟信号经过数字编码后也可以在数字通信系统中传输。
1.2 数字通信的特点目前,数字通信在不同的通信业务中都得到了广泛的应用,究其原因也是数字通信相较于模拟同通信具有以下的一些优点。
(1)数字通信系统抗干扰能力强,且噪声不积累。
数字通信系统中传输的是离散取值的数字波形,接受端的目标不是精确的还原被传输的波形,而是从受噪声干扰的信号中判决出发送端所发送的事两个状态总的哪一个即可。
(2)数字通信系统传输差错可控。
贼详细的8PSK调制与解调详细过程
贼详细的8PSK调制与解调详细过程⼀、关于1.花了⼏天写了⼀个8PSK调制的MATLAB程序,从产⽣序列到最后解调出原始信号。
2.我在⽹上查资料的时候发现并没有详细的⼀个调制完整过程,于是我把写的完整过程贴出来。
3.要想把通信专业学好的话,脑⼦⾥⾸先要有⼀个通信系统的全过程,从信源开始到信宿结束。
但是在课本的系统框图中,有些模块在⼀般情况下并⽤不上。
⽐如信道编码、信源编码、加密、解密等等。
在本篇仿真过程中不涉及这⼏个模块,等有时间再额外写。
⽽且在实际中⼜会涉及到源信息频率与发射设备所⽀持的频率不⼀致,这⼜如何解决?4.通信专业要学的真是太多了,想总结出来⼗分困难,在实现通信系统的每⼀步都涉及到很多技术,如采样、滤波、调制、同步(⾮常重要,但⼜⼗分难)、解调等等,⽽且还挺难,因为经历过这个过程,所以在本⽂中,尽量把涉及到的原理都解释⼀下。
5.其实这个过程很简单,主要是加深对通信系统的了解。
6.、、、、、、还不知道6写啥⼆、程序中未涉及到但是不得不知的⼀些知识点1. matlab信号处理⼯具规定单位频率为奈圭斯特频率(采样频率的⼀半),所以基本的滤波器设计函数的截⽌频率参数均以奈圭斯特频率为基准做归⼀化。
例如,对于⼀个采样频率为1000Hz的系统,300Hz则对应300/500=0.6。
若要将归⼀化频率转换为单位圆上的弧度,则将归⼀化值乘以π(pi)即可。
2. 尽量对基带信号进⾏编码(本⽂使⽤的格雷码),对解决误⽐特率问题效果很好,在仿真过程中未编码之前百分之3左右,编码后为0。
3. 数字通信系统中,由于总的传输特性不理想,会使传输波形产⽣畸变,会引起幅度失真和相位失真,表现为连续传输的脉冲波形会受到破坏,使得接收端前后脉冲不再能清晰的分开,也就是产⽣了码间串扰。
时域中,抽样时刻⽆码间串扰的条件为,抽样时刻仅存在当前码元的抽样值,不存在历史时刻码元抽样值的加权值。
在实际的传输系统中,很少利⽤⽅波作为基带脉冲波形,因为基带脉冲波形的功率谱形状为 Sa(f)形状,旁瓣功率⼤,容易对其他频带产⽣⼲扰,也容易失真。
PSK数字信号的调制与解调分享
信息对抗大作业一、实验目的。
使用MATLAB构成一个加性高斯白噪声情况下的2psk调制解系统,仿真分析使用信道编码纠错和不使用信道编码时,不同信道噪声比情况下的系统误码率。
二、实验原理。
数字信号的传输方式分为基带传输和带通传输,在实际应用中,大多数信道具有带通特性而不能直接传输基带信号。
为了使数字信号在带通信道中传输,必须使用数字基带信号对载波进行调制,以使信号与信道的特性相匹配。
这种用数字基带信号控制载波,把数字基带信号变换为数字带通信号的过程称为数字调制。
数字调制技术的两种方法:①利用模拟调制的方法去实现数字式调制,即把数字调制看成是模拟调制的一个特例,把数字基带信号当做模拟信号的特殊情况处理;②利用数字信号的离散取值特点通过开关键控载波,从而实现数字调制。
这种方法通常称为键控法,比如对载波的相位进行键控,便可获得相移键控(PSK)基本的调制方式。
图1相应的信号波形的示例101作为360180度,也就是反相。
当传输数字信号时,"1"也就带上了信息。
相移键控是利用载波的相位变化来传递数字信息,而振幅和频率保持不变。
在2PSK中,通常用初始相位0和π分别表示二进制“1”和“0”。
因此,2PSK信号的时域表达式为(t)=Acost+)其中,表示第n个符号的绝对相位:=因此,上式可以改写为图22PSK信号波形解调原理2PSK信号的解调方法是相干解调法。
由于PSK信号本身就是利用相位传递信息的,所以在接收端必须利用信号的相位信息来解调信号。
下图2-3中给出了一种2PSK信号相干接收设备的原理框图。
图中经过带通滤波的信号在相乘器中与本地载波相乘,然后用低通滤波器滤除高频分量,在进行抽样判决。
判决器是按极性来判决的。
即正抽样值判为1,负抽样值判为0.2PSK信号相干解调各点时间波形如图3所示.当恢复的相干载波产生180°倒相时,解调出的数字基带信号将与发送的数字基带信号正好是相反,解调器输出数字基带信号全部出错.图32PSK信号相干解调各点时间波形这种现象通常称为"倒π"现象.由于在2PSK 信号的载波恢复过程中存在着180°的相位模糊,所以2PSK 信号的相干解调存在随机的"倒π"现象,从而使得2PSK 方式在实际中很少采用。
psk数字带通调制系统的调制与解调
通信原理大作业之--psk数字带通调制系统的调制与解调一、实验原理:二进制移相键控(2PSK)在二进制数字调制中,当正弦载波的相位随二进制数字基带信号离散变化时,则产生二进制移相键控(2PSK)信号. 通常用已调信号载波的0°和180°分别表示二进制数字基带信号的 1 和0. 二进制移相键控信号的时域表达式为e2PSK(t)=an*g(t-nTs)]*cosωct其中, an与2ASK和2FSK时的不同,在2PSK调制中,an应选择双极性,即(2-1-10)(2–1-11)若g(t)是脉宽为Ts, 高度为1的矩形脉冲时,则有e2PSK(t)= cosωct, 发送概率为P-cosωct, 发送概率为1-P由式(2 -1 - 11)可看出,当发送二进制符号1时,已调信号e2PSK(t)取0°相位,发送二进制符号0时,e2PSK(t)取180°相位.若用φn表示第n个符号的绝对相位,则有:φn= 0°, 发送1 符号 180°, 发送0 符号这种以载波的不同相位直接表示相应二进制数字信号的调制方式,称为二进制绝对移相方式。
二进制移相键控信号的典型时间波形如图2 - 11 所示.。
图 2 – 11 二进制移相键控信号的时间波形二进制移相键控信号的调制原理图如图2 - 12 所示. 其中图(a)是采用模拟调制的方法产生2PSK信号,图(b)是采用数字键控的方法产生2PSK信号。
图2- 122PSK信号的调制原理图2PSK信号的解调通常都是采用相干解调, 解调器原理图如图2- 13 所示。
在相干解调过程中需要用到与接收的2PSK信号同频同相的相干载波。
图2- 132PSK信号的解调原理图2PSK信号相干解调各点时间波形如图2 - 14 所示.。
当恢复的相干载波产生180°倒相时,解调出的数字基带信号将与发送的数字基带信号正好是相反,解调器输出数字基带信号全部出错。
实验六PSK调制与解调
实验六2PSK调制与解调一、实验目的1、理解二进制移相键控(Phase Shift Keying,PSK)调制和解调的基本原理;2、了解2PSK调制和解调的实现方法。
二、实验原理一个正弦载波。
如果它被一个双极性比特流按照图6-1所示的方案调制,它的极性将在每一次比特流极性改变时跟着改变。
图6-1对正弦波来说,极性的翻转就等价于反相。
因此,乘法器的输出就是BPSK(2PSK)信号。
二进制移相键控的解调可分两个步骤来考虑。
1、限带信号波形的恢复,使其转化到基带信号;2、从基带的限带波形里重建二进制消息比特流。
在本实验中,实现第一步依靠的是一个“窃取”的本地同步载波。
第二步的抽样判决由定标模块实现,最后还应线性解码,重建原始单极性基带信号。
解调原理如图6-2所示。
图6-2三、实验设备1、主机TIMS-301F2、TIMS基本插入模块(1)TIMS-148音频振荡器(Audio Oscillator)(2)TIMS-150乘法器(Multiplier)或TIMS-425正交模块(Quadrature Utilities),此模块集成了2个乘法器和1个加法器(3)TIMS-151移相器(Phase Shifer)(4)TIMS-153序列产生器(Sequence Generator)(5)TIMS-154可调低通滤波(Tuneable LPF)(6)TIMS-402定标模块(decision-maker module)(7)TIMS-406线性编码器(Line Code Encoder)(8)TIMS-407线性译码器(Line Code Decoder)3、计算机4、Pico虚拟仪器四、实验步骤1、将Tims系统中音频振荡(Audio Oscillator)、移相器(Phase Shifter)、序列码产生器(Sequence Generator)、线性编码器(Line-code Encode)、乘法器(Multiplier)按图6-3连接。
实验10、PSK调制解调
实验 10 PSK 调制解调一、实验目的1.掌握 PSK 调制解调的工作原理及性能要求;2.进行 PSK 调制、解调实验,掌握相干解调原理和载波同步方法;3.理解 PSK 相位模糊的成因,思考解决办法。
二、实验原理1.1 2PSK 调制原理2PSK(二进制相移键控,Phase Shift Keying)信号是用载波相位的变化表征被传输信息状态的,通常规定0 相位载波和π 相位载波分别代表传“1”和传“0”。
1 1 0 0 1NRZ输入PSK调制信号图 10-1 2PSK 调制信号波形PSK 调制由“信道编码与频带调制-A4”模块完成,该模块基于 FPGA 和 DA 芯片,采用软件无线电的方式实现频带调制。
图 10-2 PSK 调制电路原理框图上图中,基带数据和时钟,通过 2P6 和 2TP8 两个铆孔输入到 FPGA 中,FPGA 软件完成PSK 的调制后,再经 DA 数模转换即可输出相位键控信号,调制后的信号从 4TP2 输出。
2.2PSK 解调原理实验中 2PSK 信号的解调采用相干解调法,首先要从调制信号中提取相干载波,在实验中采用数字 costas 环提取相干载波,二相 PSK(DPSK)解调器采用数字科斯塔斯环(Constas 环)解调,其原理如下图所示。
图 10-3 数字科斯塔斯特环原理图设已调信号表达式为 s (t ) = A 1 ⨯cos(ωt +ϕ(t ))(A 1 为调制信号的幅值),经过乘法器与载波信号 A 2 cos ωt (A2 为载波的幅值)相乘,得:e (t ) = 1A A [cos(2ωt + ϕ(t )) + cos ϕ(t )] 02 1 21可知,相乘后包括二倍频分量 2A 1 A 2 cos(2ωt + ϕ(t )) 和cos ϕ(t ) 分量(ϕ(t ) 为时间的函数)。
因此,需经低通滤波器除去高频成分cos(2ωt +ϕ(t )) ,得到包含基带信号的低频信号,然后同向端和正交端两路信号相乘,其差值作为环路滤波器的输入,然后控制 VCO 载波频率和相位,得到和调制信号同频同相的本地载波。
PSK调制与解调
实验五 PSK 调制与解调一. 实验目的1 掌握相移键控的原理。
2 运用MATLAB 对PSK 的调制与解调过程进行仿真,记录并分析仿真结果。
二. 实验内容及各个功能模块及流程和工作原理二进制绝对相移键控(2PSK )是用二进制数字信号控制载波的两个相位,这两个相位通常相隔∏弧度,例如用相位0和∏分别表示1和0。
所以这种调制又称二相相移键控。
二进制相移键控信号的时域表达式为:t w nT t g a t s c s n n PSK cos )([)(2-=∑2PSK 信号的调制原理框图如下图所示:三. 软件详细设计、关键技术与难点、测试数据PSK 基于MA TLAB 的程序代码:a=[1 1 0 0 1 1 0 0]I=linspace(0,2*pi,50);f=sin(2*I);t=linspace(0,10*pi,400);out=1:400;b=1:400;d=1:400;c=1:7;w=1:400;for i=1:7if a(i)==0for j=1:50out(j+50*(i-1))=f(j);endelsefor j=1:50out(j+50*(i-1))=-f(j);endendendfor i=1:7for j=1:50m=0;n=0;if out(j+50*(i-1))-f(j)==0m=m+1;endif out(j+50*(i-1))+f(j)==0n=n+1;endendif m>nc(i)=0;elsec(i)=1;endendcfor i=1:7for j=1:50b(j+50*(i-1))=a(i);d(j+50*(i-1))=c(i);w(j+50*(i-1))=f(j);endendsubplot(3,1,1),plot(t,b),axis([0 10*pi -0.2 1.2]),xlabel('t'),ylabel('调制信号'); subplot(3,1,2),plot(t,w),axis([0 10*pi -1.2 1.2]),xlabel('t'),ylabel('载波'); subplot(3,1,3),plot(t,out),axis([0 10*pi -1.2 1.2]),xlabel('t'),ylabel('PSK波形'); 仿真结果如下:五.实习的收获、心得、问题、困难和建议通过实验让我更加深入的掌握了MATLAB然见的使用,在这次实验中,我查阅了很多相关资料,了解了数字调制的基本原理和主要过程,进一步学习了信号的传输的有关内容。
PSK调制解调实验报告
PSK调制解调实验报告PSK调制解调实验报告一、实验目的1. 了解与掌握PSK调制解调的基本原理及特点。
2. 了解PSK调制解调的硬件实现过程。
二、实验原理1. PSK调制PSK调制是在载波的相位上进行调制的一种方法,使用一定数量的离散相位值来体现调制数据。
其调制信号可以表示为s(t)=Acos(ωt+φ)其中,A为振幅,ω为角频率,φ是相位值,即φ=2πfct+2πφm(t)2. PSK解调在接收端,需要对接收信号进行解调。
对于PSK信号,解调过程由相位鉴别器实现。
相位鉴别器输入PSK信号,输出一串数字流,序列反映的是PSK锁定在给定的离散相位之一的时间。
三、实验器材及工具1. 端口配置:操作系统:Windows 7Python:3.5.3Matplotlib:2.0.0Scipy:0.18.1Numpy:1.11.3PyAudio:0.2.72. 设备及电路:信号发生器功率放大器变频器射频滤波器相位锁定环路示波器四、实验步骤1. 使用Python编程语言进行PSK调制解调的设计和实现。
2. 编写一个实时的模拟接收器程序,进行PSK解调并显示结果图像。
3. 装置实验所需的设备及电路,包括信号发生器、功率放大器、变频器、射频滤波器和相位锁定环路。
4. 调节各设备参数,使其符合实验要求,并采集数据。
5. 对采集到的数据进行处理和分析,得出实验结果。
五、实验结果1. 绘制出PSK调制解调的数据流图。
2. 根据所得的实验数据,进一步验证了PSK调制解调技术的正确性和可靠性。
通过反复调节设备参数,在正确的相位值处实现了准确的脉冲恢复。
3. 在相位鉴别器的设计中,应做到准确、高速,同时尽可能的降低误码率和噪声。
六、实验结论本次实验主要使用Python语言对PSK调制解调进行了模拟试验,并通过实验数据验证了PSK调制解调技术的正确性和可靠性。
同时也对相位鉴别器的设计略为进行了概述。
在实际应用中,需要根据具体需求进行优化和处理,以适应各种复杂的情况和环境。
psk dpsk调制解调的工作原理
一、概述在无线通信系统中,调制技术起着至关重要的作用。
其中,相位调制(PSK)和差分相位调制(DPSK)是常见的调制方式,它们能够在保持带宽效率的同时提供良好的抗干扰性能。
本文将重点介绍PSK和DPSK调制的工作原理。
二、PSK调制的工作原理1. 基本原理PSK调制是一种将数字信号转换为相位信号的调制方式。
在PSK调制中,数字信号被映射到不同的相位角度上,从而实现信号的调制。
对于二进制数字信号"0"和"1",可以分别映射到相角为0°和180°的两个相位上。
PSK调制可以实现二进制数字信号的传输。
2. 调制过程PSK调制的过程包括相位映射和载波调制两个主要步骤。
数字信号经过映射器将其映射到不同的相位上。
经过调制器与正弦载波相乘,得到调制后的信号。
经过滤波等环节,得到最终的PSK调制信号。
3. 解调过程PSK调制信号在接收端经过解调器解调时,需要进行相位解调。
解调器通过比较接收到的信号与参考信号的相位差来恢复数字信号。
在恢复数字信号的过程中,可以利用差分相位解调(Demodulation)等技术来提高系统的鲁棒性。
三、DPSK调制的工作原理1. 基本原理DPSK调制是相位调制的一种特殊形式,其特点在于仅传输相位变化的信息。
在DPSK调制中,相位调制比较的是连续时间的相位变化,而不是绝对的相位大小。
这种特性使得DPSK调制对于相位偏移和载波漂移具有较好的鲁棒性。
2. 调制过程DPSK调制的过程与PSK调制类似,主要包括映射和调制两个步骤。
不同之处在于,DPSK调制器比较的是相邻信号之间的相位差,而不是绝对的相位角度。
这种方式使得DPSK调制对于载波相位偏移具有一定的免疫能力。
3. 解调过程DPSK调制信号在接收端经过解调器解调时,也需要进行相位解调。
与PSK调制类似,在解调过程中可以利用相位差检测和信号重采样等技术来恢复数字信号,提高系统的性能。
psk调制解调电路的新原理和过程
Psk调制解调电路的新原理和过程目录: 1. 引言 2. Psk调制原理 3. Psk解调原理 4. Psk调制解调电路的实现5. 新原理和过程6. 总结1. 引言Psk(相位偏移键控)调制和解调技术是无线通信中常用的调制解调方式之一。
它通过改变载波信号的相位,来传输数字信号。
本文将介绍Psk调制解调电路的基本原理和传统实现方式,同时探讨一些新的原理和过程,以拓宽对这一主题的理解。
2. Psk调制原理Psk调制的基本原理是根据数字信号的码元来调整载波信号的相位。
具体来说,假设二进制数字信号的两种状态为0和1,将0映射到一个特定的相位,如0°,将1映射到另一个相位,如180°。
这样,在传输过程中,根据数字信号的变化,载波信号的相位会相应地改变,从而传输数字信息。
这种方式使得信号在频谱中具有良好的集中性,能够有效地传输数据。
3. Psk解调原理Psk解调的过程是将调制后的Psk信号转换为可供数字系统处理的基带信号。
解调电路需要对Psk信号的相位进行检测,判断每个码元所对应的相位,并将其转化为数字信号。
常见的解调方式有包络检波、相干解调等。
包络检波方法通过检测Psk信号的幅度变化来确定相位,而相干解调则是通过将Psk信号与本地参考信号相乘,再通过低通滤波得到基带信号。
4. Psk调制解调电路的实现传统上,Psk调制解调电路的实现主要基于模拟电路。
调制电路通常由载波产生器和相位调制电路组成,而解调电路则需要相位解调器和解调滤波器。
这些电路在实现上较为复杂,不仅需要精确的设计,而且在制造过程中也容易受到各种噪声和失真的影响。
模拟电路的性能通常会受到工艺、温度等因素的影响,可能无法满足高精度和高速传输的需求。
5. 新原理和过程随着数字电路和信号处理技术的发展,Psk调制解调电路的实现方式也在不断创新。
一种新的原理是将Psk调制解调电路实现在数字领域中,利用现代的低功耗、高速度的数字集成电路,以及数字信号处理器(DSP)的算法。
7实验十二十三MPSK调制与解调
实验十二MPSK调制【实验目的】1、了解M进制相位调制(MPSK modulation )的组成和基本原理。
2、通过搭建MPSK仿真系统,了解MPSK调制实现方法。
【实验原理】在M进制移相键控调制(MPSK),在M进制符号间隔人内,已调信号的载波相位是M个MPSK的信号表示如下:其中Ts是M进制符号间隔,T s =(log 2M)T b二kT b ;T b是二进制符合间隔;g T(t)是脉冲成形滤波器冲击响应。
将(1)式进一步展开,得到2 二2 二s(t)=gT(t) [cos (i —1)]cos 啦—[sin (i -1)]sin £I. M M J= gr(t)[si c cosy-a s SinM]式中a广co晋(iT)心和-1)U1,2「3M OWT s '与比‘是一组多电平幅度序列,在每个M进制符号间隔Ts内,要保证a i2 a i2 =1 O^tET s在每个M进制符号间隔Ts内,MPSK各信号波形具有等能量T s 2 1 T s 2=L s (t)dt=2 J0 g T(t)dt =其中Eg是脉冲g T(t)的能量,若g T(t)为矩形脉冲,则可能的离散相位之一,其中每个载波相位对应于KK个二进制符号(M =2 )。
s(t)=g T(t)cos[2Jif c t + 2;r M _1)]i =1, 2, 3M 0 兰t 兰T s(1)E s 2Eg4)于是得到I2Es i (t) =d 〒M a cCOSCO c t _ a ssin%t]fl (t )与f2(t )为两个完备的归一化正交基函数,fl (t )与f2(t )的线性组合构成,即 MPSK 信号的正交展开式为S i (t) n f i (t) S 2 f 2(t)E Scos M(i -1)i =1,2,3 MW sin M (i -1)i =1,2,3 M(也可以由式(2)(3)导出) 于是得MPSK 信号的二维矢量表示为:s =冷1用2]=[7巨丸,佢比]i=1,图1、图2是相应地MPSK 信号的二维矢量图和产生原理框图(以8PSK 为例):g T (t)=2E s T scos :2f tf 2(t)-孚sin 2兀 f c t其中T sS i1 =0 S i (t)f 1(t)dtMPSK 信号的每个信号波形可由(3)S2=『S(t) f 2(t)dtf i ( t)=设i s-si图2 MPSK 信号的产生原理框图图中输入的二进制序列 •b n •经串并变换后成为3比特并行码,这相当于将二进制码变换为八进制,每三比特码又与 %和%电平之间有一定关系。
PSK电路调试解调
实验九、PSK电路调试解调一、实验目的(1)掌握PSK调制的工作原理及电路组成;(2)了解载频信号的产生方法;二、实验内容利用1.024MHZ的正弦波作为载波,数字基带信号为32Kbit/S伪随机码。
实验要求采用绝对移相键控,通过直接采用调相法来实现调制,即用输入的基带信号直控制载波相位的变化来实现相移键控。
解调要求用相干解调,将基带信号解调出来。
三、实验原理模拟信号1.024MHZ载波输入到载波反相器的反相输入端,在输出端即可得到一个反相的载波信号,即π相载波信号。
对载波的相移键控是用模拟开关电路实现的。
0相载波和π相载波分别加在两个模拟开关的输入端,在数字基带信号的信码中,它的正极性加到模拟开关1的输入控制端,它反极性加到模拟开关2的输入控制端,用来控制两个不同频反相载波的通断。
解调电路主要由乘法器、低通滤波器、放大器、电压比较器以及延时消抖电路组成。
乘法器由4066来实现,主要实现调制信号与同频载波信号相乘,低通滤波器把基带信号滤出来,放大器将由低通滤波器输出的信号放大,电压比较器是将放大信号与最佳比较电压比较,延时消抖电路将电压比较器的输出波形的毛刺消除,得到的波形就是解调出来的基带信号。
实验框图如下:放大器电压比较器延时消抖电路实验电路图如下四、实验元件清单TL082CD4片、4066BD2片、74HC74D4片、LM311H1片、74HC04D1个、74HC10D1个、7486N1个、函数信号发生器2个、电容电阻若干、五、实验结果及分析仿真波形13由仿真波形1可以看出,两路载波相位相差π,符合载波要求。
由仿真波形2可以看出PSK 调制信号的输出与预期的结果相符,反映了基带信号的码元变化情况。
相干解调输出是调制信号与载波信号相乘的结果,反映在波形上就是振幅随基带信号的规律变化。
低通滤波器的输出就是解调出来的基带信号,它的变化直接反映了基带信号的变化情况。
从波形变化情况来看,低通滤波输出波形基本符合基带信号的变化规律。
PSK调制解调过程总结
8PSK信号调制解调模块总结一、8PSK信号发送端的调制对1800Hz单载波进展码元速率恒为2400Bd的8PSK调制,即对于每个码元调制所得的信号长度等于四分之三个载波信号周期。
发送端完整的信号调制框图如下所示:信息的发送是以数据帧的形式进展发送的,每次只发送一个数据帧,而不是连续发送的,这样信息在发送前发送端就不需要先跟接收端建立连接,但同时在对信号进展信源编码,信道编码和前导及探测报头序列的过程中那么降低了信号传送的效率。
数据帧主要包括两局部即前导及探测报头序列和所要传输的数据局部。
调制框图中各个模块的功能如下所示:1、截尾卷积编码一般情况下,卷积编码的时候在输入信息序列输入完毕后都还要再输入一串零比特的数据用于对移位存放器进展复位,这样在一定程度上影响了信源的编码效率。
而截尾卷积编码那么是在每次编码完成后不对移位存放器进展复位操作,而是将上次编码后编码存放器的状态作为下次编码时移位存放器的初始状态。
这样一方面使得信源的编码的码率得到了提高,另一方面也增加了信息的平安性,因为接收端只有知道发送端编码器中的移位存放器的初始状态或者付出比拟大的解码代价的情况下才能对接收到的信号进展解调,否那么解调出来的永远是乱码。
2、交织码元的交织其实是属于信道编码,交织的目的是通过将信息在信道中受到的突发连续过失分散开来,使得接收到的信号中的过失趋向于随机过失,降低接收端信息解调出错的概率,从而提高通信中信息的可靠性。
交织的方法一般是用两个适当大小的矩阵,同一时间一个用于数据的存储另外一个那么用于数据的读取,而且两个矩阵的存取或者输出是交替的。
输入序列按照逐行〔列〕的顺序存储到其中的一个矩阵中,而输出序列那么是按照逐列〔行〕的顺序从另一个矩阵中读取。
通常矩阵越大,那么对于连续性的突发错误的分散效果越好,但是编码的时延也就越大。
3、Walsh码Walsh码是一种同步正交码,在同步传输的情况下,具有良好的自相关特性和处处为零的互相关特性。
实验五 2PSK调制解调
实验五 2PSK 调制解调仿真(院、系) 专业 班 课程一、实验目的1.熟悉2PSK 调制解调原理。
2.掌握编写2PSK 调制解调程序的要点。
3.掌握使用Matlab 调制解调仿真的要点。
二、实验容1.根据2PSK 调制解调原理,设计源程序代码。
2.通过Matlab 软件仿真给定信号的调制波形。
3. 对比给定信号的理论调制波形和仿真解调波形。
三、实验原理 1. 2PSK 的调制原理所谓的二进制相移键控(2PSK )信号,是指在二进制调制中,正弦载波的相位随着二进制数字基带信号离散变化而产生的信号。
已调信号载波可以用“0”和“π”或者“+π/2”和“-π/2”来表示二进制基带信号的“0”和“1”。
2PSK 信号的时域表达式为:)cos(2n c PSK t A e ϕω+= 其中,n ϕ表示第n 个符号的绝对相位:时发送时发送”“”“010n ⎩⎨⎧=πϕ即2PSK 表达式也可以为:PP tA tA t e c c PSK -⎩⎨⎧-=1cos cos )(2概率为概率为ωω即发送二进制符号“0”时(取+1),取0相位;发送二进制符号“1”时(取-1),取π相位。
所以二进制绝对相移,则是以载波的不同相位直接去表示相应 二进制数字信号。
由于表示信号的两种码元的波形相同,极性相反,故2PSK 信号一般可以表述为一个双极性全占空矩形脉冲序列与一个正弦载波的相乘。
由于2PSK信号是双极性不归零码的双边带调制,所以如果数字基带信号不是双极性不归零码时,则要先转成双极性不归零码,然后再进行调制。
调制方法有模拟法和相位键控选择法。
2PSK调制原理图如图1和图2所示。
模拟法使源信号如果不是双极性不归零,则转成双极性不归零码后与本地载波相乘即可调制成2PSK信号。
相位键控选择法则是通过电子开关来实现的,当双极性不归零码通过电子开关时,遇低电平就以180度相移的本地载波相乘输出,遇高电平,电子开关则连通没相移的本地载波上然后输出。
实验10、PSK调制解调
实验 10 PSK 调制解调一、实验目的1.掌握 PSK 调制解调的工作原理及性能要求;2.进行 PSK 调制、解调实验,掌握相干解调原理和载波同步方法;3.理解 PSK 相位模糊的成因,思考解决办法。
二、实验原理1.1 2PSK 调制原理2PSK(二进制相移键控,Phase Shift Keying)信号是用载波相位的变化表征被传输信息状态的,通常规定0 相位载波和π 相位载波分别代表传“1”和传“0”。
1 1 0 0 1NRZ输入PSK调制信号图 10-1 2PSK 调制信号波形PSK 调制由“信道编码与频带调制-A4”模块完成,该模块基于 FPGA 和 DA 芯片,采用软件无线电的方式实现频带调制。
图 10-2 PSK 调制电路原理框图上图中,基带数据和时钟,通过 2P6 和 2TP8 两个铆孔输入到 FPGA 中,FPGA 软件完成PSK 的调制后,再经 DA 数模转换即可输出相位键控信号,调制后的信号从 4TP2 输出。
2.2PSK 解调原理实验中 2PSK 信号的解调采用相干解调法,首先要从调制信号中提取相干载波,在实验中采用数字 costas 环提取相干载波,二相 PSK(DPSK)解调器采用数字科斯塔斯环(Constas 环)解调,其原理如下图所示。
图 10-3 数字科斯塔斯特环原理图设已调信号表达式为 s (t ) = A 1 ⨯cos(ωt +ϕ(t ))(A 1 为调制信号的幅值),经过乘法器与载波信号 A 2 cos ωt (A2 为载波的幅值)相乘,得:e (t ) = 1A A [cos(2ωt + ϕ(t )) + cos ϕ(t )] 02 1 21可知,相乘后包括二倍频分量 2A 1 A 2 cos(2ωt + ϕ(t )) 和cos ϕ(t ) 分量(ϕ(t ) 为时间的函数)。
因此,需经低通滤波器除去高频成分cos(2ωt +ϕ(t )) ,得到包含基带信号的低频信号,然后同向端和正交端两路信号相乘,其差值作为环路滤波器的输入,然后控制 VCO 载波频率和相位,得到和调制信号同频同相的本地载波。
简述psk调制解调电路的工作原理及工作过程
简述psk调制解调电路的工作原理及工作过程一、前言PSK调制解调电路是一种常见的数字信号处理电路,它能够将数字信号转换为模拟信号进行传输,并在接收端将模拟信号还原为数字信号。
本文将详细介绍PSK调制解调电路的工作原理及工作过程。
二、PSK调制原理1. PSK调制概述PSK调制是指通过改变载波相位来传输数字信息的一种数字调制方式。
在PSK调制中,基带数字信号经过编码后与载波相位进行相乘,形成一个PSK信号。
对于二进制数据而言,当数据位为0时,载波不改变相位;当数据位为1时,载波相位发生180度的变化。
2. PSK调制电路PSK调制电路主要由以下几个部分组成:(1) 预处理电路:用于对基带数字信号进行预处理,如滤波、增益等。
(2) 码元生成器:用于产生基带数字信号的二进制码元序列。
(3) 相位编码器:用于将码元序列转换为相应的相位信息。
(4) 模拟乘法器:用于将相位信息与载波进行乘积运算。
(5) 滤波器:用于滤除多余频率成分,保留所需频率成分。
3. PSK调制过程(1) 码元生成器产生二进制码元序列,经过相位编码器转换为相应的相位信息。
(2) 相位信息经过模拟乘法器与载波进行乘积运算,形成一个PSK信号。
(3) PSK信号经过滤波器滤除多余频率成分,保留所需频率成分。
三、PSK解调原理1. PSK解调概述PSK解调是指通过检测接收到的载波相位来还原数字信息的一种数字解调方式。
在PSK解调中,接收端通过检测接收到的载波相位来判断传输的是0还是1。
2. PSK解调电路PSK解调电路主要由以下几个部分组成:(1) 滤波器:用于滤除多余频率成分,保留所需频率成分。
(2) 相移网络:用于将接收到的信号进行相移操作,以便进行比较。
(3) 相位比较器:用于比较接收到的信号与参考信号之间的相位差异,并输出对应的数字信息。
3. PSK解调过程(1) 接收到的信号经过滤波器滤除多余频率成分,保留所需频率成分。
(2) 经过相移网络将接收到的信号进行相移操作,以便进行比较。
PSK调制和解调的基本原理回顾
1第1章 PSK 调制和解调的基本原理回顾我们这里设计的课题(PSK 调制与解调)涉及到两种:2PSK 和2DPSK 1.1 三种数字调制的比较数字调制就是用载波信号的某些离散状态来表征所传送的信号,在接收端也对载波信号的离散调制参量进行检测。
和模拟信号一样,数字调制也有调幅、调频和调相三种基本形式,即有振幅键控(ASK )、移频键控(FSK )和移相键控(PSK )三种基本形式。
如下图所示:图1-1 三种调制方式图各种调制方式的对比分析。
由于噪声干扰的影响最终表现在收方恢复信码时的误码率性能上,所以系统的抗噪声性能可以用系统平均的误码率来表征。
即用各自系统的平均误码率P e 对广义信噪比ε的曲线来表示系统的抗噪声性能。
ε为输入信号每个码元的平均能量与输入噪声的单边功率谱(双边谱的二倍)密度之比,即称广义信噪比。
在此种条件下,可以用相同ε值或相同P e 去比较误码率P e 或ε的大小,从而合理地比较各种键控方式。
(1)ASK 相干解调 P e =1/2erfc[2ε]ε=A 2T/n 0(2)ASK 非相干解调P e ≈[1+πε21].e-ε/2(3)FSK 相干解调P e =1/2erfc[2ε](4)FSK(5)PSK(6)DPSK的意义.令2PSKe0(t)特性为:a也就是说,在一个码元持续时间T s内,e0(t)为:2cosωc t ,概率为Pe0(t)=-cosωc t ,概率为(1-P)即发送二进制0时(a n取+1)e0(t)取0相位;发送二进制符号1时(a n取-1)e0(t)取π相位。
调制可以采用模拟调制的方式产生2PSK,即2PSK信号可通过乘法器来得到。
也可以采用数字键控的方式产生。
调制原理见下:(a)模拟调制(b) 数字键控调制1-3 2PSK调制原理图1.3 2DPSK调制原理相对移相,就是利用载波相位的相对值来传递信息,也就是利用前后码元载波相位的相对变化来传递信息,所以也称为“差分移相”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
BPSK 信号调制器如下: 通常有两种调制方法 (1)相乘法:
双极性 二进制信号
BPSK 已调信号
cos c t
(2)相位选择法
3
cos c t 180 移相
开关电路
0
BPSK 已调信号
π s(t)
2PSK 信号的解调通常采用相干解调法,其原理框图如下:
e2PSK (t )
带通 滤波器
cos c t
()
2
( )
4
4
可见,在 OQPSK 中,仅存在小于=90°的相位跃变,而不存在过零点跃变。
所以 OQPSK 信号的带限不会导致信号包络经过零点。OQPSK 包络的变化小多了,
因此对 OQPSK 的硬限幅或非线性放大不会再生出严重的频带扩展,OQPSK 即使再
非线性放大后仍能保持其带限的性质。
OQPSK 的调制和相干解调框图如图 1-3、图 1-4 所示
QPSK 数据码元对应的相位变化如图 1-1 所示,OQPSK 数据码元对应相位变化
8
如图 1-2 所示。
(-1,1)
Q信道 +1
(1,1)
-1 (-1,-1)
+1
0
I信道
-1
(1,-1)
(-1,1) -1
(-1,-1)
Q信道 +1
(1,1)
+1
0
I信道
-1
(1,-1)
图 1-1 QPSK 相位变化图
表示信号 1,用载波相位π来表示信号-1(或者用相位 0 表 示-1,用相位π表示 1) 其表达式可写成:
SBPSK (t) [ an g(t nTs )]cosct
n
an 为双极性码元。 用 Systemview 仿真得到的 BPSK 波形如下
信息码如上图所示
2
由上图可以看出 BPSK 信号相位为 0 时表示 1 相位为π时 表示-1
4.2.1 串并转换................................................7 4.2.2 载波调制................................................9 4.2.3 科斯塔斯环解调 ........................................15 4.2.4 抽样判决 .............................................. 17 4.2.5 并串转换 .............................................. 17 五、实验结论....................................................... 18 六、调试报告....................................................... 19 6.1 频率调制器 FM 参数设置 ......................................19 6.2 低通滤波器参数设置 ......................................... 19 6.3 脉冲串的参数设置 ........................................... 20 七、实验心得....................................................... 21 八、参考文献....................................................... 22
7
(ASK)、频移键控(FSK)和相移键控(PSK)。它们分别对应于用载波(正弦波)的 幅度、频率和相位来传递数字基带信号,可以看成是模拟线性调制和角度调制的 特殊情况。
理论上,数字调制与模拟调制在本质上没有什么不同,它们都是属正弦波调 制。但是,数字调制是调制信号为数字型的正弦波调制,而模拟调制则是调制信 号为连续型的正弦波调制。
双极性码如下:
4
通过 BPSK 调制后波形如下:
通过相干解调后波形如下: 经过低通滤波器后恢复出原始信号如下:
5
设源信号为 s(t)通过调制后信号为 s(t) cosct
经过想干解调后信号为
s(t
)
cos 2
c
t
=
1 2
s(t)
1 2
s(t)
cos2ct
通过低通滤波后信号变为 1 s(t)
2
由上图可见通过想干解调后经过滤波正确的恢复出了原信号但是幅
低通 滤波器
抽样 判决器
输出
定时脉冲
其中相干解调中如何得到与接收的信号同频同向的相干载波是一个
关键点,将在后面 Costas 环中提及这里不再赘述。 通过 systemview 仿真解调过程如下所示:
其中随机码 发生器频率 为 10kHz 调制载波与 相干载波频 率为 100kHz 低通滤波截 止频率为 50kHz 其 余 参数默认
1
可以实时地仿真各种位真的 DSP 结构,并进行各种系统的时域 和频域分析、诺、谱分析,以及对各种逻辑电路、射频/模拟电 路(混领器、放大器、RLC 电路、运放电路等)进行理论分析和失 真分析等。
2PSK 信号的调制与解调
1、 二进制相移键控(2PSK) 二进制相移键控又称为 BPSK,通常用载波的相位 0
利用 SystemView,可以构造各种复杂的模拟、数字、数模混合系统和各种多速率 系统,它可用于各种线性或非线性控制系统的设计和仿真。
SystemView 的图符资源十分丰富,特别适合于现代通信系统的设计、仿真和方案 论证。还可进行 CDMA 通信系统和数字电视业务的分析;用户还可以自己用 C 语言编写 自己的用户自定义库。
度变为原信号一半与理论相符
要恢复出与原信号相同幅度的信号只需加入一个 2 倍的增益放大器
ห้องสมุดไป่ตู้
即可。
OQPSK调制与解调系统的设计
一、课程设计目的
1、了解 Systemview 的运行环境及应用领域; 2、通过本课程设计掌握 OQPSK 调制及解调的原理及方法。
6
二、课程设计软件说明
SystemView 是美国 ELANIX 公司推出的,基于 Windows 环境的用于系统仿真分析 的可视化软件工具。使用它,用户可以用图符(Token)去描述自己的系统,无需与复 杂的程序语言打交道,不用写代码即可完成各种系统的设计与仿真。
图 1-2 OQPSK 相位变化图
对于 QPSK 数据码元对 的相位变换由图 1-1 求得为:
码元对 (1,-1)
(-1,1)
(1,1)
(1,-1)
(-1,1)
(1,-1)
相位及相位变化: ( ) 4
3
()
2
4
()
2
( )
4
4
可见,在 QPSK 中存在过零点的 180°跃变。
对于 OQPSK 数据码元对的相位变化由图 1-2 求得为:
电平产生
I(t)
A cost
二进制信息 串并变换
载波 发生器
OQPSK信号
目录
1. 实验要求及开发环境…………… 3 2.
二、课程设计软件说明................................................ 7 三、基本原理........................................................ 2
3.1 调制方式简介 ................................................2 3.2 OQPSK 的含义 ................................................3 3.3 同相正交环法(科斯塔斯环) ..................................5 四、实验框图原理说明............................................... 12 4.1 实验总框图介绍 .............................................12 4.2 五个子部分的介绍 ............................................7
OQPSK 信号可采用正交相干解调方式解调,其原理如图 5-49 所示。由图看 出,它与 QPSK 信号的解调原理基本相同,其差别仅在于对 Q 支路信号抽样判决 时间比 I 支路延迟了/2,这是因为在调制时 Q 支路信号在时间上偏移了/2,所以 抽样判决时刻也应偏移/2,以保证对两支路交错抽样。
OQPSK 克服了 QPSK 的 l80°的相位跳变,信号通过 BPF 后包络起伏小,性能 得到了改善,因此受到了广泛重视。但是,当码元转换时,相位变化不连续,存 在 90°的相位跳变,因而高频滚降慢,频带仍然较宽。
3
()
4
( )
4
码元对 (1,-1) (-1,-1) (-1,1) (1,1) (1,1) (1,1) (1,-1) (-1,-1) (-1,1) (1,1) (1,-1)
相位及 相位变化:( 4 )
2
(
3
)
2
4
3
()
2
4
()
4
0°
(
)
4
0°
(
)
2
( )
2
3
( )
2
3
()
2
4
4
4
4
编码正交频分调制(COFDM):抗多径传播效应和同频干扰好,适合地面广播 和同频网广播。
世广数字卫星广播系统的下行载波的调制技术采用 TDM QPSK 调制体制。它 比编码正交频分多路复用(COFDM)调制技术更适合卫星的大面积覆盖。