有理数的乘除法、乘方运算
有理数的加减乘除乘方混合运算
归纳:有理数的混合运算顺序法则 1、先算乘方运算,再算乘除运算, 最后算加减; 2 、同级运算,按照从左到右的顺序进行. 3、如果有括号,应先算小括号里的, 再算中括号里的,然后算大括号里的.
Байду номын сангаас
练习1、指出下列各题的运算顺序(口答)
117 8 2 4 3
1 2 3 50 2 1 10 2 2 1 3 1 0.5 1 3 3 9 3 1 1 0.5 4 4 1
2、计算 117 8 2 4 3
1 2 3 50 2 1 10 2 2 1 3 1 0.5 1 3 3 9 3 1 1 0.5 4 4 1
2 2
小 结 1、有理数的混合运算顺序; 2、 运算时要多注意符号和运算 顺序; 3、做题时遵循“观察——分析— —计算——检查”的程序进行计 算。
分析:有括号,先算小括号,再算括号外面, 小括号里有乘法和减法运算,先乘法再减法; 括号外面有除法和加法,先除法再加法。
1 3 50 (2 1) 5
2 3 解:原式=3+50 1 3 50 5 5 5 250 3 50 3 3 3 9 250 241 . 3 3 3
2 2
练习2、议一议 说一说:
2 23 与 2 23有什 么不同
1 1 2 2 与2 2有什么不同 2 2 2 2 6 3 与6 3 有什么不同
练习3:计算
36 (2 7) (28 14) (7)
10 8 2 4 3
有理数的乘除乘方
有理数的乘、除及乘方运算一、知识要点:1. 有理数的乘法法则:(1) 两数相乘,同号 ,异号 ,并把 .任何数同0相乘,都得 .(2) 不等于0的数相乘,积的正负号由 的个数决定,当负因数有奇数个时,积为 ;当负因数有偶数个时,积为 .几个数相乘,有一个因数为0,积就为 .2. 乘积是 的两个数互为倒数3. 有理数的除法法则:除以一个数等于乘上 .两数相除,同号 ,异号 ,并把绝对值相除.0除以任何一个不等于0的数,都得0.4. 有理数的乘方法则:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数.二、典型例题:例1、计算:(1)⎪⎭⎫ ⎝⎛-⨯÷-43875.3 (2)532121⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-(3)⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛-⨯22176412(4)()[]2432611--⨯--例2、如果0,0><+ab b a ,则a 0,b 0. 如果()03<-ab ,则ab 0. 如果02>-b a ,则b .例3、已知a 、b 为有理数,下列说法中,正确的是( )A.若a >b,则a 2>b 2B. 若︱a ︱>b,则a 2>b 2B. 若 a 3>b 3,则a 2>b 2 D. a >︱b ︱,则a 2>b 2例4、已知:a 、b 互为倒数,c 、d 互为相反数,|m |=5,n 是绝对值最小的数,求5ab -(c+d)×2008 - n + m 的值。
例5、计算:(-2)100+(-2)101的是( )A. 2100 B.-1 C.-2 D.-2100三、练习:1. 用四舍五入法把3.1415926精确到千分位是 .2. 用科学记数法表示302400,应记为 .3. 若m,n 互为相反数,xy 互为倒数,则(m +n )+5xy = ;4. 若 3-x 与9+y 互为相反数,求y x -的值5. 一个数的相反数比它的本身大,则这个数是 ( )A.正数B.负数C.0D.负数和06. 如果10<<a ,那么aa a 1,,2之间的大小关系是( ) A .a a a 12<< B .a a a 12<< C . 21a a a << D . a a a<<21 7. 下列计算错误的个数是 ( ) ①221⎪⎭⎫ ⎝⎛=4 ②-52=25 ③2516542= ④811912=⎪⎭⎫ ⎝⎛-- ⑤-(-14 ) =1 ⑥()001.01.03=-- ⑦ 55=-=a ,a 则 ⑧ -a=-2则a = 2 8. A 、5个 B 、4个 C 、3个 D 、2个9. 平方等于4的数是 ,立方等于—8的数是 。
有理数的乘除乘方运算(含答案)
有理数的运算(乘、除、乘方)教学目的:1、理解有理数的乘法法则;掌握异号两数的乘除运算的规律;2、会进行有理数的乘法、除法、乘方的运算,能灵活运用运算律进行简化运算。
教学重点:1、有理数的乘法、除法法则;2、熟练的进行有理数乘法、除法、乘方运算。
教学难点:若干个有理数相乘,积的符号的确定,乘方的符号确定。
有理数的乘法有理数的乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。
例1:计算(1) )3()5(-⨯-(2) 4)7(⨯-(3))109()35(-⨯-例题目的:掌握有理数的乘法法则。
有理数乘法法则的推广:(1)几个不等于0的数相乘,积的符号由负因数的个数决定。
当负数的个数为奇数时,积为负,当负因数为偶数个时,积为正。
(2)几个数相乘,有一个因数为0,积为0。
例2:(1))4()37(21-⨯-⨯ (2) )253()5.2()94(321-⨯-⨯-⨯例题目的:会算两个以上有理数的乘法,并能判定积的符号。
有理数乘法的运算律:在有理数运算中,乘法的交换律,结合律以及乘法对加法的分配律仍然成立。
乘法交换律:两个数相乘,交换因数的位置,积不变,用式子表示为a·b =b·a 乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变.用式子表示成(a·b)·c =a·(b·c)乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘. 用字母表示成:a(b +c)=a·b +a·c例3:计算:(1) 25.18)5.4(⨯⨯- (2) )]23()3[()2(-+-⨯-(3) )8(161571-⨯例题目的:掌握有理数乘法的运算律。
有理数的除法法则1:两个有理数相除,同号得正,异号向负,并把绝对值相除。
0除以任何非0的数都得0。
倒数与负倒数的概念:乘积为1的两个有理数互为倒数,即若a , b 互为倒数,则1=ab ;乘积为1-的两个有理数互为负倒数,即若b a ,互为负倒数,则1-=⋅b a法则2:除以一个数等于乘以这个数的倒数,即a ÷b )0(1≠⋅=b ba 例4:1. 求下列各数的倒数,负倒数。
七年级数学有理数的乘除和乘方
____ 2 3 1
22 22 ____ 2 2 2
3.怀化市2006年的国民生产总值约为亿元,预计2007年比上一年增长, 用科学计数法表示2007年怀化市的国民生产总值. ____
4.某省有67440000人,按要求分别取这个数的近似数,并指出近似数的有效数字. (1)精确到十万位; (2)精确到百万位; (3)精确到千万位.
(1)若9月30日的游客人数记为1万,10月2 日的游客人数是多少? (2)请判断7天内游客人数最多的是哪天? 最少的是哪天?他们相差多少万人? (3)求这一次黄金周期间游客在该地总人 数.
2.比较下面算式结果的大小(在横线上填“>”、“<”或“=” )
3
32 12
负分数
分数
除法 乘方
相反数
绝对值
比较大小 科学记数法 应用题 近似数
有效数字
练习:1.”十· 一”黄金周期间,嘉兴南湖风 景区在7天假期中每天旅游的人数变化如 下表(正数表示比前一天多的人数,负数表 示比前一天少的人数): (单位:万人)
日期 1日 2日 3日 4日 5日 6日 7日
人数 +1.6 +0.8 +0.4 -0.4 变化 -0.8 +0.2 -1.2
64,
64,
3
64
1 1 1 1
10 11 12
13
(5) 3 (2)
3
4
(1) 2 (2) 4
10 3
计算
(0.25)
2003
(4)
2004
(1)
2007
1 1 2 2 1 2 1 3 3 1 2 3 3 4 4 4 2 1 2 3 4 2 5 5 5 5
有理数加减乘除乘方混合运算相关法则知识整理汇总
有理数加减乘除乘方混合运算相关法则知识整理一、知识整理填空答案符号计算绝对值加法同号取相同的符号绝对值相加异号取绝对值大的符号绝对值相减减法减去一个数等于加上这个数的相反数乘法同号取正绝对值相乘异号取负除法同号取正绝对值相除异号取负除以一个数等于乘以这个数的倒数二、一个运算中,含有有理数的加、减、乘、除、乘方等多种运算,称为有理数的混合运算.三、运算法则1、有理数的加法法则:1)同号两数的相加,取相同的符号,并把绝对值相加;2)异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;3)一个数同0相加仍得这个数.2、有理数的减法法则: 减去一个数,等于加上这个数的相反数.3、有理数的乘法法则:1)两数相乘同号得正,异号得负,并把绝对值相乘;2)任何数与0相乘,积仍为0.4、有理数的除法法则: 1)除以一个数就是乘以这个数的倒数;2)两数相除同号得正,异号得负;并把绝对值相除;3)零除以任何非零的数得为零.注:0不能作除数5、有理数的乘方符号法则:1)正数的任何次幂都是正数;2)负数的奇次幂为负,偶次幂为正.四、有理数的运算律1、加法交换律:a+b=b+a2、加法结合律:(a+b)+c=a+(b+c)3、乘法交换律:ab=ba4、乘法结合律:(ab)c=a(bc)5、乘法分配律:a(b+c)=ab+ac五、有理数混合运算的法则:(1)先算乘方,再算乘除,最后算加减。
(2)如有括号,先进行括号里的运算。
1.先算乘方,再算乘除,最后算加减。
2.同级运算依照从左到右的顺序运算;3.若有括号,先小括号,再中括号,最后大括号,依次运算;。
有理数乘除法及乘方经典例题和课后练习
一、有理数乘法1. 有理数乘法法则(1)两数相乘,同号得正,异号得负,并把绝对值相乘;(2)任何数同0相乘,都得0.例1: (1)(—3)X 9(2)(-12)X(-2)(3)3 591654(4) 56 4 1(5)(-2012)X(+ 8)X 0X(-5 40.5 )X( - 1999)2、倒数(1) 定义:乘积为1的两个有理数数互为倒数。
倒数不能独立存在。
1(2) 若a^0,则a的倒数是匚,0没有倒数;a若a、b互为倒数,则ab=1;倒数为本身的数是土 1.(一个数的倒数与原数的符号是一致的).例2:倒数是3的数是 ____ ; a+b (a+b M 0)的倒数是.例3: a与b互为相反数,x与y互为倒数,c的绝对值等于2,求a|b +xy- 1c.3、有理数乘法法则的推广(1)几个不等于0的数相乘,积的符号由负因数的个数决定•当负因数有奇数个时,积为负;当负因数有偶数个时,积为正•再把绝对值相乘.(2)几个有理数相乘,有一个因数为0,积就为0.注意:进行有理数乘法运算时先定符号后定值; 第一个因数是负数时,可省略括 号.例如:判断下列算式积的符号并计算结果:(1)3 X (-5) X (-2) ;(2)3 X (-5) X (-2)X (-4);(3) -3 X (-5) X (-2) X (-4) X (-3) X (-6) ; (4)(-2) X (-3) X 0X (-4);4、有理数的乘法运算律小学学习的乘法运算律(交换律、结合律、分配律)都适用于有理数乘法.计算 下列式子比较可以说明:(1) 5 X (-6) ,(-6) X 5;(2)[ 3X (-4) ]X (-5) ,3X[ (-4) X (-5) ];(3)5 X[ 3+(-7)], 5X 3+5X (-7)11 6 + 12 ) X (-24)⑶ 5 X (-11 )-(-6) X (-11 )-1 172二、有理数的除法有理数的除法法则:(1)除以一个不等于0的数等于乘以这个数的倒数,即 a 十例 4.(1)4 X (- 0.17) X( -25)⑵( 1361b=a x (b^ 0)b(2)两数相除,同号得正,异号得负,并把绝对值相除.(3)0除以任何一个不为0的数,都得0.注意:1.0不能做除数;2.做有理数的除法运算时,一般的,不能整除的情况下, 应用法则(1),能整除时,应用法则(2); 3.有理数的除法是有理数的乘法的逆运算。
有理数的乘除及乘方运算
授课类型 C 有理数的乘除法 C 有理数的乘方 T 运用能力教学目标有理数的乘除及乘方运算教学内容1.有理数的乘除法(☆☆)1) 有理数乘法法则两数相乘,同号得正,异号得负,并把绝对值相乘. 任何数同0相乘,都得0. 2) 有理数乘法的运算律(1)两个数相乘,交换因数的位置,积相等. ab=ba(乘法结合律)(2)三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等. abc=a(bc)(乘法结合律)(3)一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加. a(b+c)=ab+ac(乘法分配律) 3)有理数乘法法则的推广(1)几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数的个数是偶数时,积为正数;负因数的个数是奇数时,积为负数.(2)几个数相乘,如果有一个因数为0,则积为0.在进行乘法运算时,若有带分数,应先化为假分数,便于约分;若有小数及分数,一般先将小数化为分数,或凑整计算;利用乘法分配律及其逆用,也可简化计算.2.有理数除法法则除以一个不等于0的数,等于乘这个数的倒数. a ÷b=a ·1b(b ≠0) 两数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数,都得0. 5)倒数及有理数除法(1)乘积为1的两个数互为倒数.倒数是成对出现的,单独一个数不能称为倒数;互为倒数的两个数的乘积一定是正数;0没有倒数;求一个非零有理数的倒数,只要把它的分子和分母颠倒位置即可(正整数可以看作分母为1的分数). 注意: ,a b 互为倒数,则1a b =;,a b 互为负倒数,则1a b =-.反之亦然. (2)有理数除法的运算步骤:首先确定商的符号,然后再求出商的绝对值.【例4】 计算:(1)4113(3)11559211⎛⎫⎛⎫⎛⎫-⨯-⨯-⨯+⨯⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(2)()()()345826-⨯--⨯--⨯-⎡⎤⎡⎤⎣⎦⎣⎦ <分析>(1)小题是化带分数为假分数后约分. (2)小题是遵循括号先运算的原则. <解> (1)4113(3)11559211⎛⎫⎛⎫⎛⎫-⨯-⨯-⨯+⨯⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=9101133959211⎛⎫-⨯⨯⨯⨯=- ⎪⎝⎭(2) ()()[]()()34582(6)12581228-⨯--⨯--⨯-=-⨯-+=⎡⎤⎣⎦<教学建议>紧扣有理数乘法法则步骤,先定符号,再求绝对值,有括号的先算括号里的数.【例5】 计算:(1)1571(8)16-⨯-; (2)()()999812512412161616⎛⎫⎛⎫⎛⎫-⨯---⨯-+⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ <分析> (1)小题需变形后使用分配律;(2)小题逆向应用分配律,较复杂的有理数混合运算,要注意解题方法的选取. <解> (1)()()15137187181616⎛⎫-⨯-=--⨯- ⎪⎝⎭ ()()()13718816155685687.5575.52⎛⎫=-⨯-+-⨯- ⎪⎝⎭=+=+=(2)()()9985124121616⎛⎫⎛⎫⎛⎫⨯⨯⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭9--12---+-16 =()9985412121616⎛⎫⨯⎡⎤ ⎪⎣⎦⎝⎭---+-=- <教学建议> 教师可以提问学生,应该采用什么方法比较简便(即运用分配律解).【教学拓展】计算:(1)111321335⎛⎫⎛⎫⎛⎫-÷÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ (2)()()112103523⎛⎫⎛⎫-÷-⨯-÷- ⎪ ⎪⎝⎭⎝⎭<解> (1)11110352532133537621⎛⎫⎛⎫⎛⎫⎛⎫-÷÷-=-⨯⨯-=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ (2)()()112103523⎛⎫⎛⎫-÷-⨯-÷- ⎪ ⎪⎝⎭⎝⎭=511011210356⎛⎫⎛⎫⎛⎫-⨯-⨯-⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭<教学建议> 教师可以提问学生分析式子的特点,可按法则2进行处理,转化为乘法.【例6】 已知:a 的相反数是213,b 的倒数是122-,求算式32a b a b +-的值.<分析> 利用相反数和倒数的概念求出a 、b ,然后求代数式的值. <解> 依题意2521,335a b =-=-=-, 则:52563335355452223535a b a b ⎛⎫-+⨯--- ⎪+⎝⎭==-⎛⎫-+--⨯- ⎪⎝⎭ =43131515⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭=431543151313⎛⎫-⨯-=⎪⎝⎭练1.计算: (1)()()6416-÷- (2)()1751÷- <解> (1)()()()641664164-÷-=+÷= (2)()()1175117513÷-=-÷=-练2.计算:(1)()30.250.57045⎛⎫-⨯⨯-⨯ ⎪⎝⎭;(2)()110.0333323⎛⎫⎛⎫-⨯⨯- ⎪ ⎪⎝⎭⎝⎭<解> (1)小题是小数结合相乘凑成整数.(2)小题是小数化成分数,互为倒数结合相乘为1.(1)()30.250.57045⎛⎫-⨯⨯-⨯ ⎪⎝⎭ =()()()330.250.54700.2527055⎛⎫⎛⎫-⨯⨯⨯-=-⨯⨯- ⎪ ⎪⎝⎭⎝⎭=()313533530.57052510⎛⎫⎛⎫-⨯-=+⨯=⎪ ⎪⎝⎭⎝⎭(2)()113100110.033333323100322⎡⎤⎛⎫⎛⎫-⨯⨯-=-⨯-⨯= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ 练3. 计算: 1111122111;42612⎛⎫-⨯-+- ⎪⎝⎭<解> 直接顺向应用分配律;111112211142612⎛⎫-⨯-+- ⎪⎝⎭=()()()()937131212121242612⎛⎫⎛⎫-⨯+-⨯-+-⨯+-⨯- ⎪ ⎪⎝⎭⎝⎭=()2718(14)1310-++-+=-; 练4.计算: 735(1)(36)1246⎡⎤-+---⨯-⎢⎥⎣⎦<解>原式=()735(36)(36)36(1)(36)1246⎛⎫⎛⎫-⨯-+⨯-+-⨯---⨯- ⎪ ⎪⎝⎭⎝⎭=21-27+30-36=-12练5.已知x 的负倒数是5,y 的相反数是-6,求算式2x yy x++的值. <解>由题意可知x =15-,y =6,所以2x y y x ++=12628512965-⨯+=-.做一做: 判断题:1.同号两数相乘,取原来的符号,并把绝对值相乘. ( ) 2.两数相乘,如果积为正数,则这两个因数都是正数. ( ) 3.两数相乘,如果积为负数,则这两个因数都是负数. ( ) 4.一个数除以-1,便得这个数的相反数.( ) 选择题:5.下面计算结果正确的是( ). (A)(-3×4)2=-144 (B)-(3×4)2=-144 (C)-3×(-4)2=-144 (D)3×(-4)2=1446.若)4(531-⋅=x ,则x =( ). (A)25- (B)25(C)52-(D)52解答题:7.判断下列乘积的符号,说明为什么? (1)(-1)×(-1)×(-1);(2));4()31()9.8(-⨯+⨯-(3)(-9)×(+10)×(-8)×(-7)×(-0.1);(4)(-4)×2×(-3)×(-5)×8.8.计算: (1));321(8.0-⨯(2));10()21(51-⨯+⨯-(3));311()211()21()32(-⨯-⨯-⨯+ (4)()113333⎛⎫⎛⎫-⨯÷-⨯ ⎪ ⎪⎝⎭⎝⎭(5))412()39()314(-⨯-÷-;(6))323()33.0()31()91(-÷⨯+÷-.有理数的乘方(1)定义:求几个相同因数积的运算,叫做乘方。
1.3有理数的乘除及乘方
知识点 1:有理数乘法法则 法则:1、两数相乘,同号得正,异号 得负,并把绝对值相乘; 2、0 乘以任何数都得 0。
例:(1) 3 4
12
(2) 3 4
12
(3) 0 199
0
练习:仿上例,计算
3 5
8 5 6 3 3 4
6 3
0 125
9 6
2 6
读作:________________。
54 ,底数是___,指数是___,
读作:________________。 练习:2 仿写
练习:3
例: 3 2 2
32 22
9 4
仿上例,计算
1 3 2
例: 32 3 3 9 23 _________ _______. 34 _________ _______.
23 _________ _______.
读作:________________。
42 _________ _______.
32 ,底数是___,指数是___, 13 _________ _______.
读作:________________。
13 _________ _______.
43 ,底数是___,指数是___,
-5-
a 1、 底数
n指数
22 _________ _______. 33 _________ _______. 13 _________ ______22 3个 2 相乘
练习:1
72 _________ _______. 例: 72
2 2 3
43 _________ _______.
3 2 2
3 2 2
32
22
9 4
七年级上册第1单元数学讲解
七年级上册第1单元数学讲解摘要:一、引言二、课程目标和教学内容三、数学讲解的具体内容1.有理数的概念和性质2.有理数的加减法3.有理数的乘除法4.有理数的乘方四、教学方法和策略五、总结与反思正文:【引言】七年级上册第1 单元数学讲解主要涉及有理数的相关知识。
有理数是中学数学的基础内容,对于学生来说,理解有理数的概念和性质,熟练掌握有理数的运算方法,是学习后续数学知识的关键。
【课程目标和教学内容】本单元的教学目标是使学生掌握有理数的概念和性质,学会有理数的加减法、乘除法、乘方运算,并能在实际问题中灵活运用这些知识。
教学内容主要包括有理数的概念和性质、有理数的运算方法。
【数学讲解的具体内容】1.有理数的概念和性质有理数是指可以表示为两个整数之比的数,包括正有理数、负有理数和零。
有理数具有加法、减法、乘法、除法、乘方等运算性质。
2.有理数的加减法有理数的加减法遵循交换律、结合律和分配律。
有理数的加减运算可通过数轴进行直观理解。
3.有理数的乘除法有理数的乘除法遵循交换律、结合律和分配律。
有理数的乘除运算可通过分数的计算方法进行推导。
4.有理数的乘方有理数的乘方是指有理数自乘若干次。
有理数的乘方运算有以下特点:正数的任何次方都是正数;负数的奇次方是负数,负数的偶次方是正数;零的任何次方都是零。
【教学方法和策略】为了帮助学生更好地理解和掌握有理数的相关知识,教师可采用直观教学法、案例教学法、讨论教学法等多种教学方法。
同时,教师应关注学生的个体差异,针对不同学生制定相应的教学策略。
【总结与反思】通过本单元的学习,学生应能熟练掌握有理数的概念和性质,熟练运用有理数的运算方法。
在实际教学中,教师应及时发现学生的学习问题,引导学生进行反思,提高学生的自主学习能力。
初中数学 文档:有理数乘除运算和乘方
有理数乘除运算和乘方一、基础知识1.有理数的乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;几个不为0的数相乘,积的符号由负因数的个数来决定;如果其中一个因数为0,则积为0。
2.有理数的除法法则:除以一个数等于乘以这个数的倒数。
或两数相除,同号得正,异号得负,把绝对值相除。
3.乘方:求几个相同因数积的运算。
4.处理好符号仍然是有理数乘法、除法及乘方运算的关键。
计算时,先定符号,再算结果。
5.乘除运算时,带分数化为假分数,小数往往化为分数。
6.运算过程中的负数要加上括号。
二、实战演练1:基础卷一.填空题:1.251542⨯-=______; 32)2()211(-⋅-=______。
2.8.0)40()25.1()5.2(⨯-⨯-⨯-=______。
322)8.0()32(3-÷-⨯-=______。
3.当5,2,3=-=-=c b a 时,则代数式a c b ÷+-)(的值为______。
4.倒数是它本身的数是______,相反数是它本身的数是______,平方是它本身的数是______;绝对值是它本身的数是______;立方是它本身的数是______。
5.在中,指数是______,底数是______,幂是______。
二.选择题:1.如果0=ab ,则( )A .都为0;B .不都为0;C .至少有一个是0;D .都不为0。
2.下列说法正确的是( )A .任何正数大于它的倒数;B .任何小于1的数,它的倒数一定大1;C .任何数都有倒数;D .两数互为倒数,它们的相同次幂仍互为倒数。
3.一个有理数和它的相反数之积( )A .符号必为正;B .符号必为负;C .一定不小于0;D .一定不大于04.若0>+b a 且0≤ab ,那么只要( )A .0,0<>b a ;B .0,0><b a ;C .异号;D .必有一个为正,且正的绝对值较大。
七年级数学上册专题第4讲有理数的加减乘除乘方运算重点、考点知识总结及练习
第4讲有理数的加减乘除乘方运算知识点1 加减运算有理数加法法则:①同号两数相加,取相同的符号,并把绝对值相加.②异号两数相加,绝对值相等时,和为0;绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.③一个数同0相加,仍得这个数.有理数减法法则:减去一个数,等于加这个数的相反数. .有理数加法运算律:①加法交换律:两个加数相加,交换加数的位置,和不变.②加法结合律:三个数加,先把前两个数相加,或者先把后两个数相加,和不变.有理数加减混合运算的步骤:①把算式中的减法转化为加法; ②省略加号与括号;③利用运算律及技巧简便计算,求出结果. 加减混合运算技巧:把符号相同的加数相结合; 把和为整数的加数相结合;把分母相同或便于通分的加数相结合; 既有小数又有分数的运算要统一后再结合; 把带分数拆分后再结合; 分组结合; 先拆项后结合.【典例】⎧⎪⎨⎪⎩加减运算有理数的运算乘除运算乘方运算()a b a b -=+-a b b a +=+()()a b c a b c ++=++1.计算:(1)4+(﹣6);(2)(﹣116)+(-23);(3)-2-(﹣3.5);(4)|(﹣7)+(﹣2)|-(﹣3);(5)[1.4﹣(﹣3.6+5.2)﹣4.3]﹣(﹣1.5).【方法总结】考查了有理数的加法,在进行有理数加法运算时,首先判断两个加数的符号:是同号还是异号,是否有0,从而确定用哪一条法则.在应用过程中,要牢记“先符号,后绝对值”.注意:绝对值有括号的作用.2.【题干】计算:(1)﹣2.4+3.5﹣4.6+3.5;(2)(−478)−(−512)+(−414)−(+3178);(3)−200956−(+200823)−(−401834)+(−112);(4)1+(﹣2)+3+(﹣4)…+2015+(﹣2016)+2017+(﹣2018).【方法总结】(1)把和为整数的数结合在一起;(2)把分母相同或容易通分的数结合在一起;(3)拆项法,把带分数拆成整数和分数,再把所有整数和分数分别结合在一起;(4)找规律,相邻两数之和为﹣1.本题考查的是有理数加减混合运算,掌握有理数加减混合运算的方法“将有理数加减法统一成加法”是解题的关键.能使用运算律的要使用运算律,以简化计算,减少计算错误. 【随堂练习】1.(2017秋•小店区校级月考)计算:(1)﹣3+(﹣4)﹣(﹣5); (2)1+(﹣2)+|﹣2|﹣5; (3)﹣5﹣(+11)+;(4).2.(2016秋•靖远县校级月考)计算题: (1)27﹣28+(﹣7)﹣32 (2)1+(﹣2)﹣(﹣3)﹣4; (3)0.5+(﹣)﹣(﹣2.75)+0.25 (4)3+(﹣1)+(﹣3)+1+2.知识点2 乘除运算有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数同相乘,都得.有理数乘法的运算步骤:先确定积的符号,再确定积的绝对值. 多个有理数相乘:(1)几个不是的数相乘,负因数的个数是偶数时,积为正数;负因数的个数是奇数时,积为负数,即“奇负偶正”.(2)几个数相乘,如果其中有因数为,那么积等于. 有理数乘法运算律:(1)乘法交换律:一般地,有理数乘法中,两个数相乘,交换因数的位置,积相等.(2)乘法结合律:一般地,有理数乘法中,三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等.00000ab ba(3)分配律:一般地,有理数乘法中,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.倒数的概念:乘积是的两个数互为倒数.整除:一个整数a 除以一个不为0的整数b ,商是整数,而没有余数,则我们说a 能被b 整除(或说b 能整除a ).【典例】1.计算:(1)(﹣2)×(﹣8); (2)(﹣8)÷(﹣1.25); (3)11÷17×(−411); (4)(−1.5)×45÷(−25)×34.【方法总结】(1)根据有理数的乘法运算法则进行计算即可得解; (2)根据有理数的除法运算法则进行计算即可得解;(3)把除法转化为乘法,然后根据有理数的乘法运算法则进行计算即可得解;(4)把小数转化为分数,除法转化为乘法,然后根据有理数的乘法运算法则进行计算即可得解.()()ab c a bc =()a b c ab ac +=+1本题考查了有理数的乘法和除法,熟记运算法则是解题的关键.2.计算:(1)37×(﹣45)×712×58;(2)292324÷(﹣112);(3)﹣5×(﹣115)+13×(﹣115)﹣3×(﹣115).【方法总结】(1)利用乘法交换律和乘法结合律,把分子或分母容易约分的因数结合;(2)先把除法转换为乘法,再利用乘法的分配律计算;(3)利用乘法分配律的逆运用,即可解答.本题考查了有理数的乘除法的运算,解决本题的关键是选用合适的乘法运算律进行计算.【随堂练习】1.(2017秋•夏邑县期中)小华在课外书中看到这样一道题:计算:()+().她发现,这个算式反映的是前后两部分的和,而这两部分之间存在着某种关系,利用这种关系,她顺利地解答了这道题(1)前后两部分之间存在着什么关系?(2)先计算哪部分比较简便?并请计算比较简便的那部分.(3)利用(1)中的关系,直接写出另一部分的结果.(4)根据以上分析,求出原式的结果.2.(2017秋•兴化市期中)小明对小丽说:“请你任意想一个数,把这个数乘2后加12,然后除以6,再减去你原来所想的那个数与6的差的三分之一,我可以知道你计算的结果.”请你根据小明的说法探索:(1)如果小丽一开始想的那个数是﹣5,请列式并计算结果; (2)如果小丽一开始想的那个数是2m ﹣3n ,请列式并计算结果; (3)根据(1)、(2),尝试写出一个结论.3.(2017秋•盐都区校级月考)阅读下列材料: 计算:÷﹙﹣+﹚. 解法一:原式=÷﹣÷+÷=×3﹣×4+×12=.解法二:原式=÷﹙﹣+﹚=÷=×6=.解法三:原式的倒数=﹙﹣+﹚÷=﹙﹣+﹚×24=×24﹣×24+×24=4. 所以,原式=.(1)上述得到的结果不同,你认为解法 是错误的; (2)请你选择合适的解法计算:﹙﹣﹚÷﹙﹣+﹣﹚.知识点3 乘方乘方的概念:求个相同因数的积的运算叫做乘方,乘方的结果叫做幂.(1)一般地,个相同的因数相乘,即,记作,读作“的次方”;(2)在中,叫做底数,叫做指数;(3)当看作的次方的结果时,读作的次幂. 注意:,其底数为,;,其底数为,;,其底数为,; n n a n a a a a ⋅⋅⋅⋅⋅⋅⋅ 个n a a n n a a n n a a n a n ()224-=()2-()()()22224-=-⨯-=224-=-2()()222121224-=-⨯=-⨯⨯=-239=749⎛⎫⎪⎝⎭372333977749⎛⎫=⨯= ⎪⎝⎭,其底数为,; ,带分数的乘方运算,一定要先化成假分数后再运算.一个数可以看作这个数本身的一次方,例如,就是,指数通常省略不写. 正数的任何次幂都是正数;负数的奇数次幂是负数,负数的偶数次幂是正数.特别的,一个数的二次方,也称为这个数的平方;一个数的三次方,也称为这个数的立方. 科学记数法:把一个大于的数表示成的形式(其中,是正整数). 用科学记数法表示一个位整数,其中的指数是,的指数比整数的位数少. 万,亿 .【典例】1.一张纸的厚度为 0.09mm (毫米),将这张纸连续对折8次,这时它的厚度是多少?假设连续对折始终是可能的,那么对折15次后,所得的厚度是否可以超过你的身高?先猜猜,然后计算出实际答案.【方法总结】根据乘方的定义和题意可计算出折第一次、第二次、第三次、第四次得厚度,由此可算出折第8次的厚度.一张纸的厚度为0.09mm ,对折1次后纸的厚度为0.09×2mm ;对折2次后纸的厚度为0.09×2×2=0.09×22mm ;对折3次后纸的厚度为0.09×23mm ;对折n 次后纸的厚度为0.09×2n mm ,据此列出算式.即可求解.本题主要考查从实际问题中寻找规律的能力.乘方是乘法的特例,乘方的运算可以利用乘法的运算来进行.乘方的意义就是多少个某个数字的乘积. 2.若|x −2|+(y −23)2=0,则y x =__________.【方法总结】绝对值和偶次方具有非负性,由“若几个非负数的和为0,则这几个非负数都为0”可求出x 、y 的值,然后将x 、y 的值代入计算即可求解.239=77323339777⨯==221391224⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭51511010n a ⨯110a ≤<n n 101n -101410=810=3.德国科学家贝塞尔推算出天鹅座第61颗暗星距地球102000000000000km,比太阳到地球的距离还远690000倍.(1)用科学记数法表示出暗星到地球的距离;(2)用科学记数法表示出690000这个数;(3)如果光的速度大约是300000km/s,那么你能计算出从暗星发出的光线到地球需要多少秒吗?用科学记数法表示出来.【方法总结】用科学记数法表示较大数的形式为a×10n,其中1≤|a|<10,n为正整数.确定n的值时,要看由原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.此题考查科学记数法的表示方法,关键是要正确确定a的值以及n的值.【随堂练习】1.(2017秋•石景山区期末)(﹣1)2018÷.2.(2017秋•蚌埠期中)﹣32×(﹣)3=______.3.(2017秋•浦东新区期中)用简便方法计算:﹣35×(﹣)5×(﹣5)6(结果可用幂的形式表示)综合运用1.若|a|=2,b=﹣3,c是最大的负整数,a+b﹣c的值为_______.2.2.5+(﹣214)﹣1.75+(﹣12)=____.3.某外贸企业为参加2016年中国江阴外贸洽谈会,印制了105 000张宣传彩页.105 000这个数字用科学记数法表示为___________.4.一根1米长的绳子,第一次剪去一半,第二次剪去剩下的一半,如此剪下去,第四次后剩下的绳子的长度是_______ 米;第n次后剩下的绳子的长度是_______ 米.5.将一张长方形的纸按如图对折,对折时每次折痕与上次的折痕保持平行,第一次对折后可得到1条折痕(图中虚线),第二次对折后可得到3条折痕,第三次对折后得到7条折痕,那么第10次对折后得到的折痕比第9次对折后得到的折痕多_______条.6.计算:(﹣0.5)+|0﹣614|﹣(﹣712)﹣(﹣4.75).7.高速公路养护小组,乘车沿东西向公路巡视维护,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米):+18,﹣9,+7,﹣14,﹣3,+11,﹣6,﹣8,+6,+15.(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)养护过程中,最远处离出发点有多远?(3)若汽车行驶每千米耗油量为a升,求这次养护小组的汽车共耗油多少升?8.计算下列各式:(1)(﹣14)×(﹣100)×(﹣6)×(0.01);(2)91819×15;(3)﹣100×18﹣0.125×35.5+14.5×(﹣12.5%);(4)(1﹣2)×(2﹣3)×(3﹣4)×(4﹣5)×…(19﹣20).9.已知(x+3)2+|3x+y+m|=0中,y的平方等于它本身,求m的值.。
有理数的加减乘除及乘方运算
《有理数的加减乘除及乘方运算(教师版)》(总17页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--有理数的加减乘除及乘方运算学生姓名年级初一学科数学授课教师日期时段核心内容有理数的四则运算以及乘方运算课型一对一/一对N教学目标1、掌握有理数的加法法则,减法法则,乘法法则,除法法则;2、灵活运用加法交换律,加法结合律,乘法交换律,乘法结合律,乘法分配律;3、正确理解乘方的意义,掌握乘方的符号规律;4、注意混合运算的顺序。
重、难点1、有理数的符号问题;2、有理数的四则运算法则的应用与准确度问题;3、正确理解乘方的底数、指数的概念,并合理运算。
课首沟通1、了解学生最近对所学的内容的掌握程度以及遇到的困难并进行解决。
2、对以前学生计算出现的典型错误再次强调。
3、了解学生的作业的完成情况。
知识导图课首小测1、下列运算中,正确的是()A.(+6)+(-13)=+7B.(+6)+(-13)=-19C.(+)+()= ()=2【参考答案】D2、如果两个数的和是负数,那么()A.这两个数都是负数B.这两个数中,一个为负数,一个为零C.一个数为正数,一个数为负数,并且负数的绝对值大于正数的绝对值D.以上三种情形都有可能存在【参考答案】D3、把-1+(-2)-(+3)去括号后的结果是()+2+3 +3 +2-3【参考答案】C4、若家用电冰箱冷藏室的温度是2℃,冷冻室的温度是-6℃,则冷藏室与冷冻室的温度相差()℃℃℃℃【参考答案】C5、如果两个有理数的积小于零,和大于零,那么这两个有理数()A、符号相反B、符号相反,绝对值相等C、符号相反,且负数的绝对值较大D、符号相反,且正数的绝对值较大【参考答案】D【解析】两个有理数之积小于零,说明两数一正一负,其和大于零,说明正数的绝对值较大。
6、绝对值不大于4的所有整数的积等于()A、24B、36C、-36D、0【参考答案】D7、下列各组的两个数中,运算后结果相等的是()A 、2332和B 、()3333--和C 、()2222--和 D 、323233-⎪⎭⎫ ⎝⎛-和 【参考答案】B8、已知两个数的商是-3,被除数是212,则除数是。
有理数的乘除及乘方
有理数的乘除及乘方一、有理数的乘法1.有理数乘法法则:(1)两数相乘,同号得 ,异号得 ,并把绝对值 .(2)任何数同零相乘,都得 .例题:①(-3) ×(+8)=__________;②173()()64-⨯+=________;③8( 2.3)()5-⨯-=__________; ④123()()54+⨯+=__________;⑤2()05-⨯=__________. (3)几个不等于0的数相乘,积的符号是由负因数的个数绝定的,当负因数有奇数个时,积得 ,当负因数有偶数个时,积得 .例题:①(-5)×(-6)×3×(-2)=__________;②(-2)×3×4×(-1)×(-3) =__________;③(-3)×(-1)×2×(-6)×0×(-2)=__________.2.有理数的乘法的运算律:交换律:a ×b=________; 结合律:(ab)c=__________=________;分配律: a(b+c)=___________. 例题:计算①118(0.36)()()411-⨯+⨯- ②-13×23-0.34×27+13×(-13)-57×0.34 ③231()243412--⨯ ④-3.14×35.2+6.28×(-23.3)-1.57×36.4 二、有理数的除法1.有理数除法法则:(1)两数相除,同号得 ,异号得 ,并把绝对值________.(2)0不能做除数,零除以任何一个__________零的数,都得零. (3)除以一个不为零的数等于乘以这个数的_________.注意:除法没有分配律,有括号时要先作括号内的.例题1:①(+28)÷(-7)=___________; ②515()()124+÷-=_______________; ③4(0.24)()5-÷-=_____________; ④23110()÷-=___________; ⑤5( 2.4)()3-÷+=___________; ⑥18()(0.72)5-÷-=____________.例题2:化简下列各式:①246-=________; ②279--=___________;③213-=__________;④07-=________. ④23110()÷-=___________; ⑤5( 2.4)()3-÷+=___________; ⑥18()(0.72)5-÷-=____________.例题3:计算①(-120)÷(-5)÷(-8) ②(-49)÷1(2)3-÷73÷(3)- ③18÷11()63- ④2(4)3-÷127-三、有理数的乘方1.求几个_________因数的积的运算,叫乘方.乘方的结果叫做_______.乘方是特殊的乘法运算.如果有n 个a 相乘,可以写为n a .nn a a a a = 个其中,n a 叫做a 的n 次方.也叫做a 的n 次幂. a 叫做幂的_________,a 可以取任何有理数;n 叫做幂的_________,可取任何正整数. 例题1:把下列各式写成乘方运算的形式,并指出底数和指数各是什么?①(-1.5)·(-1.5)·(-1.5)·(-1.5)=____________________底数是__________指数是____________.②111111555555⨯⨯⨯⨯⨯=____________________ 底数是__________指数是____________.例题2:① (-3)4=_________; ②0.53=_______; ③-44=________; ④-(-2)6=________⑤32()3=_______.2.幂运算性质:(1)正数的任何次幂都是________(正,负)数,负数的______(奇,偶)次幂是负数,负数的偶次幂是______数. (2)任何一个不为_______的数的零次幂都等于_______.例题1: ①(-5)4=_______; ②-54=________;③(-1)101=_______; ④-1100=_______;⑤302()3-=________.例题2:计算①2221(6)()72(3)3-÷--+⨯- ②232100(2)(2)()(2)3÷---÷-+- ③23118(3)5()(15)52-÷-+⨯---÷ ④0322004111()()(1)(2)(1)2216⎡⎤--÷--⨯-÷-⎢⎥⎣⎦3.有理数的混合运算的顺序;先算乘方,再算乘除,最后算加减.同级运算从左到右.如果有括号先算括号里面的,按小括号,中括号,大括号依次进行.例题:计算①()3111(2)30.4122⎧⎫⎡⎤⎛⎫----+⨯-÷-⎨⎬ ⎪⎢⎥⎝⎭⎣⎦⎩⎭ (注意运算顺序) ②753()18 1.456 3.9569618-+⨯-⨯+⨯ (应用分配律)③()()()21034454512242⎡⎤-⨯---÷--+⎣⎦(化繁为简) 四、有效数字和科学记数法1.科学记数法:把一个大于10的数记成a×10n 的形式,其中a 是整数位数只有_______的数, 即110a ≤<,n 是比原数的整数部分的位数少1的正整数.像这种记数法叫____________.例.8900000=8.9×106 286000=2.86×105 1003400=1.0034×106 例题1:用科学记数法表示下列各数. ①135000;②329.506;③1000000000.例题2:下列各数是用科学记数法表示的,请写出这个数. ①5.7×105;②3.72×107;③2.0×109.2.近似数就是与实际很接近的数.精确度是近似数的精确程度,一般有两种形式(1)一个近似数四舍五入到哪一位,就称这个近似数精确到哪一位.例.π≈3 (精确到个位) π≈3.1 (精确到0.1, 或叫做精确到十分位)π≈3.14(精确到0.01, 或叫做精确到百分位)π≈3.141(精确到 , 或叫做精确到 .)π≈3.1416(精确到 , 或叫做精确到 .)(2)一个近似数,从左边第一个不是0的数字起,到精确到的数位止,所有的数字,都叫做这个数字的有效数字.一个近似数有几个有效数字就称这个近似数保留几个有效数字.例题:用四舍五入法对下列各数取近似数. ①0.056846(保留4个有效数字) ②4672164(保留5个有效数字) ③2.5(保留3个有效数字) ④0.005876(保留3个有效数字)。
初一数学 有理数的乘除法及乘方
有理数的乘除法及乘方【要点】1、有理数乘法法则:(1)两数相乘,同号得正,异号得负,并把绝对值相乘; (2)任何数同0相乘都得0; (3)多个有理数相乘: a :只要有一个因数为0,则积为0。
b :几个不为零的数相乘,积的符号由负数的个数决定,当负数的个数为奇数,则积为负,当负数的个数为偶数,则积为正。
2、乘法运算律:(1)乘法交换律:a b b a ⨯=⨯ (2)乘法结合律:)(c b a c b a ⨯⨯=⨯⨯ (3)乘法分配律:c a b a c b a ⨯+⨯=+⨯)( 3、有理数除法法则:(1)法则:除以一个数等于乘以这个数的倒数(2)符号确定:两数相除,同号得正,异号得负,并把绝对值相除。
(3)0除以任何一个非零数,等于0;0不能作除数! 二、有理数乘方:1、n 个相同因数的积的运算,叫做乘方。
乘方的结果叫做幂;用字母表示an a a a a 个⋅⋅⋅⋅记作na ,其中a 叫做底数,n 叫做指数,n a 的结果叫做幂;读法:na 读作a 的n 次方。
2、正数的任何次幂都是正数,负数的奇次幂是负数,负数的偶次幂是正数。
a n 与-a n 的区别.(1)a n 表示n 个a 相乘,底数是a ,指数是n ,读作:a 的n 次方.(2)-a n 表示n 个a 乘积的相反数,底数是a ,指数是n ,读作:a 的n 次方的相反数. 如:(-2)3底数是-2,指数是3,读作(-2)的3次方,表示3个(-2)相乘.(-2)3=(-2)×(-2)×(-2)=-8.-23底数是2,指数是3,读作2的3次方的相反数.-23=-(2×2×2)=-8. 注:(-2)3与-23的结果虽然都是-8,但表示的含义并不同. 例题例1、(1))2.0()52(-⨯+;(2))213()311(+⨯-;(3)-⨯-()65.13(32) (4)(—24)×0例2、计算:(1)()()3275-⨯-⨯-⨯ (2)5411511654⎛⎫⎛⎫⨯-⨯⨯- ⎪ ⎪⎝⎭⎝⎭例3、(1)5个数相乘积为负,则其中正因数有 个。
有理数乘除乘方练习题
一、有理数乘法1. 计算:3 × 42. 计算:5 × (2) × 33. 计算:(2) × (3) × (4)4. 计算:5 × (6) × 75. 计算:(3) × 4 × (2)6. 计算:5 × (2) × (3) × 47. 计算:(3) × (2) × (5) × 48. 计算:6 × (7) × 89. 计算:5 × (3) × 4 × (2)10. 计算:(2) × (3) × (4) × 5二、有理数除法1. 计算:6 ÷ 22. 计算:5 ÷ (3)3. 计算:(2) ÷ (4)4. 计算:6 ÷ (3)5. 计算:5 ÷ (2)6. 计算:(3) ÷ 47. 计算:6 ÷ (2)8. 计算:5 ÷ (3) ÷ 29. 计算:(2) ÷ (4) ÷ (3)10. 计算:6 ÷ (3) ÷ (2)三、有理数乘方1. 计算:(2)^32. 计算:(3)^23. 计算:(4)^34. 计算:(5)^45. 计算:(6)^26. 计算:(7)^37. 计算:(8)^48. 计算:(9)^29. 计算:(10)^310. 计算:(11)^4四、混合运算1. 计算:3 × (2) ÷ 4 + 52. 计算:6 ÷ (3) × (2) 43. 计算:(3)^2 × (2) ÷ 4 + 54. 计算:6 ÷ (3) × (2) ÷ (4) + 75. 计算:(3)^3 ÷ (2) × (4) 56. 计算:6 ÷ (3) × (2) × (4) ÷ (5) + 67. 计算:(3)^2 ÷ (2) × (4) ÷ (5) 78. 计算:6 ÷ (3) × (2) × (4) × (5) + 89. 计算:(3)^3 ÷ (2) × (4) ÷ (5) ÷ (6) + 910. 计算:6 ÷ (3) × (2) × (4) × (5) × (6) + 10一、有理数乘法11. 计算:(7) × 8 × (9)12. 计算:5 × (3) × (2) × 413. 计算:(6) × (5) × 7 × (2)14. 计算:4 × (3) × (2) × 515. 计算:(2) × 7 × (8) × (9)16. 计算:5 × (4) × (3) × 217. 计算:(6) × (7) × 8× (9)18. 计算:3 × 2 × (5) × 419. 计算:(2) × (3) × 6 × (7)20. 计算:5 × (4) × (3) × (2)二、有理数除法21. 计算:12 ÷ (6) ÷ 322. 计算:9 ÷ 3 ÷ (2)23. 计算:(4) ÷ (2) ÷ (3)24. 计算:6 ÷ (3) ÷ (2)25. 计算:5 ÷ 5 ÷ (3)26. 计算:(2) ÷ (4) ÷ (5)27. 计算:8 ÷ (2) ÷ (4)28. 计算:7 ÷ 7 ÷ (3)29. 计算:(3) ÷ (2) ÷ (6)30. 计算:9 ÷ (3) ÷ (2)三、有理数乘方31. 计算:(8)^232. 计算:(5)^333. 计算:(4)^434. 计算:(3)^535. 计算:(2)^636. 计算:(7)^737. 计算:(6)^838. 计算:(5)^939. 计算:(4)^1040. 计算:(3)^11四、混合运算41. 计算:2 × (3) ÷ 4 + 5 × (2)42. 计算:4 ÷ (2) × (3) 6 ÷ 343. 计算:(5)^2 × (3) ÷ 2 + 744. 计算:6 ÷ (3) × (2) ÷ (4) 845. 计算:(3)^3 ÷ (2) × (4) + 546. 计算:6 ÷ (3) × (2) × (4) ÷ (5) 647. 计算:(3)^2 ÷ (2) × (4) ÷ (5) + 748. 计算:6 ÷ (3) × (2) × (4) × (5) + 849. 计算:(3)^3 ÷ (2) × (4) ÷ (5) ÷ (6) 950. 计算:6 ÷ (3) × (2) × (4) × (5) × (6) 10一、有理数乘法51. 计算:(10) × (5) × 652. 计算:7 × (3) × (2) × 453. 计算:(8) × (9) × 7 × (2)54. 计算:4 × 5 × (3) × 255. 计算:(2) × 7 × (8) × 956. 计算:5 × (4) × 3 × (2)57. 计算:(6) × (7) × 8 × (9)58. 计算:3 × 2 × (5) × 459. 计算:(2) × (3) × 6 × 760. 计算:5 × (4) × (3) × (2)二、有理数除法61. 计算:15 ÷ (5) ÷ 362. 计算:9 ÷ 3 ÷ (2)63. 计算:(4) ÷ (2) ÷ (3)64. 计算:6 ÷ (3) ÷ (2)65. 计算:5 ÷ 5 ÷ (3)66. 计算:(2) ÷ (4) ÷ (5)67. 计算:8 ÷ (2) ÷ (4)68. 计算:7 ÷ 7 ÷ (3)69. 计算:(3) ÷ (2) ÷ (6)70. 计算:9 ÷ (3) ÷ (2)三、有理数乘方71. 计算:(9)^272. 计算:(6)^373. 计算:(5)^474. 计算:(4)^575. 计算:(3)^676. 计算:(8)^777. 计算:(7)^878. 计算:(6)^979. 计算:(5)^1080. 计算:(4)^11四、混合运算81. 计算:3 × (2) ÷ 4 + 6 × (2)82. 计算:4 ÷ (2) × (3) 9 ÷ 383. 计算:(5)^2 × (3) ÷ 2 + 1084. 计算:6 ÷ (3) × (2) ÷ (4) 1285. 计算:(3)^3 ÷(2) × (4) + 15. 计算:6 ÷ (3) × (2) × (4) ÷ (5) 1887. 计算:(3)^2 ÷ (2) × (4) ÷ (5) + 2188. 计算:6 ÷ (3) × (2) × (4) × (5) + 2489. 计算:(3)^3 ÷ (2) × (4) ÷ (5) ÷ (6) 2790. 计算:6 ÷ (3) × (2) × (4) × (5) × (6) 30一、有理数乘法91. 计算:(12) × (6) × 592. 计算:8 × (3) × (2) × 493. 计算:(9) × (7) × 8 × (2)94. 计算:5 × 4 × (3) × 295. 计算:(2) × 7 × (8) × 996. 计算:5 × (4) × 3 × (2)97. 计算:(6) × (7) × 8 × (9)98. 计算:3 × 2 × (5) × 499. 计算:(2) × (3) × 6 × 7100. 计算:5 × (4) × (3) × (2)二、有理数除法101. 计算:18 ÷ (9) ÷ 3102. 计算:12 ÷ 3 ÷ (2)103. 计算:(6) ÷ (2) ÷ (3)104. 计算:9 ÷ (3) ÷ (2)105. 计算:10 ÷ 5 ÷ (3)106. 计算:(4) ÷ (2) ÷ (5)107. 计算:16 ÷ (4) ÷ (2)108. 计算:14 ÷ 7 ÷ (3)109. 计算:(5) ÷ (2) ÷ (6)110. 计算:15 ÷ (5) ÷ (2)三、有理数乘方111. 计算:(10)^3112. 计算:(7)^4113. 计算:(6)^5114. 计算:(5)^6115. 计算:(4)^7116. 计算:(3)^8117. 计算:(8)^9118. 计算:(7)^10119. 计算:(6)^11120. 计算:(5)^12四、混合运算121. 计算:4 × (3) ÷ 4 + 7 × (2)122. 计算:5 ÷ (2) × (3) 12 ÷ 3123. 计算:(6)^2 × (3) ÷ 2 + 14124. 计算:9 ÷ (3) × (2) ÷ (4) 18125. 计算:(4)^3 ÷ (2) × (4) + 21126. 计算:8 ÷ (3) × (2) × (4) ÷ (5) 24127. 计算:(3)^2 ÷ (2) × (4) ÷ (5) + 27128. 计算:7 ÷ (3) × (2) × (4) × (5) + 30129. 计算:(3)^3 ÷ (2) × (4) ÷ (5) ÷ (6) 33 130. 计算:8 ÷ (3) × (2) × (4) × (5) × (6) 36答案一、有理数乘法1. 122. 303. 244. 605. 246. 1207. 3608. 969. 12010. 60二、有理数除法1. 32. 5/34. 25. 1/36. 1/57. 3/58. 29. 1/310. 3三、有理数乘方1. 82. 1253. 2564. 2435. 646. 21877. 40968. 5314419. 5904910. 16777216四、混合运算1. 12. 13. 14. 16. 17. 18. 19. 110. 1。
有理数的乘除、乘方及科学计数法
一、一周知识概述本周学习有理数的乘法、除法和乘方,以及科学记数法、近似数和有效数字.(一)、有理数乘法的法则及运算律1、有理数的乘法法则两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同零相乘,都得零.几个不等于零的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正.几个数相乘,有一因数为零,积就为零. 两个有理数的积等于1,这两个数互为倒数.2、运算定律(1)乘法交换律:两个数相乘,交换因数的位置,积不变.即ab=ba.(2)乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变.(3)乘法分配律:一个数与两个数的和相乘,等于把这个数分别与两个数相乘,再把积相加.即a(b+c)=ab+ac.(二)、有理数的除法法则1、有理数的除法法则法则1:除以一个数等于乘以这个数的倒数,0不能作除数;法则2:两数相除,同号得正,异号得负,并把绝对值相除,零除以任何一个不等于零的数都得零.2、倒数的意义乘积是1的两个数互为倒数,其中一个数是另一个数的倒数,0没有倒数.(三)有理数乘方法则:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数,零的任何非零次幂都是零.(三)、科学记数法一个大于10的数可以记为a×10n的形式,其中a是整数数位只有一位的数,即1≤a <10,n是正整数,像这样的记数法就是科学记数法.注意:用科学记数法表示大于10的有理数时,n是比原数的整数数位少1的整数.(四)近似数和有效数字1、近似数:近似数就是与实际很接近的数.取近似数的方法是“四舍五入法”,还有根据实际问题而采用的“进一法”和“去尾法”.2、有效数字:一般地,一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位.这时,从左边第一个不是0的数字起,到末位数字为止,所有的数字都叫做这个数的有效数字.对带有计数单位的近似数,其有效数字的确定由记数单位前的数字确定.如28.70万有4个有效数字2、8、7、0,而不是6个.用科学记数法表示的近似数,其有效数字由a×10n(1≤a<10)中的a确定,如1.350×104中有4有效数字1、3、5、0.3、精确度:是近似数精确的程度,一般有两种形式:一是精确到哪一位;二是保留几个有效数字.二、重点知识归纳及讲解1、有理数乘法法则是重点,要准确而熟练地运用.乘法运算时,先确定积的符号,特别是确定几个因式乘积的符号,然后再把各因式的绝对值相乘.带分数参与乘法运算时,要把带分数化成假分数.乘法的交换律、结合律、分配律在有理数的运算中应用非常广泛,对简便运算起很大作用要灵活运用.2、有理数的除法,给出了两种形式的法则,用不同的法则计算,所得的商是相同的,但一般情况下,如果不能整除的,则选用“转化”的法则,即把除法转化为乘法来计算,能整除的就直接用除法法则计算较简便,熟练运用除法法则计算也是重点.3、正确理解倒数的意义.(1)乘积为1的两个数互为倒数;(2)如果两个数互为倒数,那么它们符号相同,即正数的倒数是正数,负数的倒数是负数,0没有倒数.(3)倒数等于本身的数是±1.4、计算例1、[答案] 沁园春·雪 <毛泽东>北国风光,千里冰封,万里雪飘。
补课:有理数的乘、除、乘方、混合运算
有理数的乘法一、有理数的乘法运算法则:(一)没有0因数相乘的情况下-----答案由两部分组成1、由负因数的个数确定符号----------+⎧⎨⎩奇数(如1,3,5,)个负因数,积为“—”偶数(如2,4,6,)个负因数,积为“”,可省略----------先写2、把绝对值相乘-------------------------------------------------------------------------------------------------------------后写(二)有一个以上的0因数相乘,积为0(三)适用的应算律: 1.2.()3.()a b b a a b c a b c a b c d a b a c a d ⨯=⨯⎧⎪⨯⨯=⨯⨯⎨⎪ ⨯+-=⨯+⨯-⨯⎩(四)策略:在有理数的乘、除中,碰到小数就 ,碰到带分数就 练习:1、(–4)×(–9) 2、(–52)×813、(–12)×2.45×0×9×1004、(–253)×1355、10.12512(16)(2)2-⨯⨯-⨯- 6、(-6)×(-4)-(-5)×107、(0.7-103-254+ 0.03)×(-100) 8、(–11)×52+(–11)×953二、有理数的倒数:(一)定义:如 ,则称a 与b 互为倒数;其中一个是另一个的倒数。
(二)几种情况下的倒数:1、整数:2的倒数是 ;12-的倒数是 ;0没有倒数发现:①互为倒数的两数必然 ;②把整数的分母看成 ,然后分子与分母 2、分数:12的倒数是 ;23-的倒数是 ;112的倒数是 ;223-的倒数是 ;发现:求倒数时,碰到带分数,必须化为3、小数:0.25的倒数是 ; 1.125-的倒数是 ;发现:求倒数时,碰到小数,必须化为 ,三、有理数的除法法则:(a b a b ÷=⨯的 )--------------- 就是看到除法,就转化为 练习:1、(-18)÷(-9) 2、-3÷(-31) 3、0÷(–105) 4、(-2)÷(-1.5)×(-3)5、 -0.2÷(-151)×(-261) 6、[65÷(-21-31)+281]÷(-181)四、乘方:(一)在n a 中,a 称为 ;n 称为 ;n a 称为 。
有理数的乘除法和乘方
6.五个有理数相乘,若积为负数,则其中负有理数的个数不可能是( )
A.1 B.2 C.3 D.5
7.如果两个数的商为负数,和也为负数,那么这两个数( )
A.都是负数
B.互为相反数
C.一正一负,且负数的绝对值较大; D.一正一负,且负数的绝对值较小
8.对于算式2008×(-8)+(-2008)×(-18),逆用分配律写成积的形式是( )
−
9 4
⎞ ⎟⎠
=
−
3 2
;④
(−36)
÷
(−9)
=
−4
.其中正确的是____________(只需填写序
号)
13.若四个不相等的整数的积为6,则这四个整数的和为________.
14.某商店老板将一件进价为800元的商品先提价 50 ,再打8折卖出,则卖出这件商
品所获利润是________元.
(−2)2 = _______, (−2)3 = _______, (−2)4 = _______, (−2)5 = _______,
(−2)6 = _______。
101 = _______,102 = _______,103 = _______,104 = _______。
3、(1)下列各式中,正确的是( )
3.下列计算结果为1的是( )
A.(+1)+(-2) B.(-1)-(-2) C.( 1 )×(+2)
−2
4.计算
−5 ÷ 4×
1 −4
的结果是(
)
D.(+2)÷ (+ 1 ) 2
A. 5
B. −5 C. 5 16
D. 5 − 16
5.若 ab < 0 ,则 a 的值( )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【要点提示】
1、有理数乘法法则:
(1)两数相乘,同号得正,异号得负,并把绝对值相乘; (2)任何数同0相乘都得0; (3)多个有理数相乘:
a :只要有一个因数为0,则积为0。
b :几个不为零的数相乘,积的符号由0的个数决定,当0的个数为奇数,则积为负, 当0的个数为偶数,则积为正。
2、乘法运算律:(1)乘法交换律;(2)乘法结合律;(3)乘法分配律。
3、有理数除法法则:
(1)法则:除以一个数等于乘以这个数的倒数
(2)符号确定:两数相除,同号得正,异号得负,并把绝对值相除。
(3)0除以任何一个非零数,等于0;0不能作除数! 二、有理数乘方:
1、n 个相同因数的积的运算,叫做乘方。
乘方的结果叫做幂;用字母表示
a
n a a a a 个⋅⋅⋅⋅记作n a ,其中a 叫做底数,n 叫做指数,n a 的结果叫做幂;读法:n a 读作a 的n 次方。
2、正数的任何次幂都是正数,负数的奇次幂是负数,负数的偶次幂是正数。
【典型例题】
例1、计算:(1)()()3275-⨯-⨯-⨯ (2)5411511654⎛⎫
⎛⎫⨯-⨯⨯- ⎪ ⎪⎝⎭⎝⎭
例2、(1)五个数相乘积为负,则其中正因数有 个。
(2)四个各不相等的整数,a,b,c,d,它们的积abcd=25.那么 a+b+c+d= 例3、用简便的方法计算:
(1)1135()26812-+-+×(-24) (2)9989×(-910
)
(3)-13×23-0.34×27+13×(-13)-5
7
×(0.34)
例4、写出下列各数的倒数;3
12,,0.4,3,1,1,11423
---- 例5、计算(1)(-24)÷(-6) (2)(-5.2)÷33
52 (3)(130
-)÷(2112
)31065-
+-
例6、计算1987×19861986-1986×19871987
例7、计算651517÷(-123)(17)1317+-÷(-12)13
【经典练习】 一、选择题:
1、一个有理数和它的相反数之积( )
A .符号必为正
B .符号必为负
C .一定不大于零
D .一定不小于零 2、若0ab >,则下列说法中,正确的是( )
A .a ,b 之和大于0
B .a ,b 之和小于0
C .,a b m 同号
D .无法确定 3、下列说法中,正确的是( )
A .两个有理数的乘积一定大于每一个因数。
B .若一个数的绝对值等于它本身,这个数一定是正数。
C .有理数的乘法就是求几个加数的和的运算。
D .两个连续自然数的积一定是一个偶数。
4、下列说法中,正确的是( )
A .若两个有理数在数轴上的对应点分别在原点的两侧,那么这两个有理数的积一定为负数
B .若两个有理数的积是负数,则这两个数一定互为相反数
C .若两个有理数互为相反数,则这两个有理数的积一定为负数
D .若a 是任意有理数,则
1
a
是它的倒数 5、若ab =0,那么a ,b 的值为( )
A .都为0
B .都不为0
C .至少有一个为0
D .无法确定 6、几个不等于0的有理数相乘,它们的积的符号( )
A .由因数的个数而定
B .由正因数的个数而定
C .由负因数的个数而定
D .由负因数的大小而定 7、下列说法中,正确的是( )
A .若0a b +=,那么0a b ==
B .或0ab =,则0a b ==
C .若0ab ≠,则a ,b 都不等于0
D .若0a b +≠,则a ,b 都不等于0
二、填空题:
1、n 个相同因数a 相乘,即n a a a a ⋅⋅⋅
个
记作________.这种求n 个相同_________的运算叫做乘方,乘方的结果叫________,在n a 中,a 叫_________,_________叫指数. 2、平方得9的数有________个,分别是________.
3、正数的任何次幂都是________;负数的________次幂是负数,偶次幂是________;0的任何次幂都
是________.
4、若a 为有理数,则2a ________0.
5、若22a b =,则a 与b 的关系是_________.
6、计算()()()()()2
3
4
2003
11111-+-+-+-+⋅⋅⋅+-=____________.
三、计算:
1、(1)()()3
2
23-⨯- (2)()2
32714⎛⎫
-+-÷- ⎪⎝⎭
(3)2
342293⎛⎫-÷⨯ ⎪⎝⎭
(4)()24
11[23]6---- (5)2
2122243⎛⎫⎛⎫
-÷-⨯- ⎪ ⎪⎝⎭⎝⎭
(6)()()()23540.25548⎛⎫-⨯--⨯-⨯- ⎪⎝⎭ (7)(
()221420325⎛
⎫⎡⎤-⨯÷--- ⎪⎣⎦⎝
⎭
2、(1)()2001
20020.254-⨯ (2)求()
2003
3-的个位数字.
3、(1)3482773⎛⎫⎛⎫÷-⨯÷- ⎪ ⎪⎝⎭⎝⎭ (2)31121422⎛⎫⎛⎫⎛⎫
-⨯-÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭
(3)()()51
0.25564816⎛⎫-÷-⨯-⨯- ⎪⎝⎭ (4)1111735105⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+---+÷- ⎪ ⎪ ⎪ ⎪
⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭
⎣⎦
(5) 63999177⎛⎫
÷- ⎪⎝⎭
(6) ()3.1435.2 6.2823.3 1.5736.4-⨯+⨯--⨯
(7) ()1111603456⎛⎫
-÷-+- ⎪⎝⎭
(8) ()()220.2518133⎛⎫⎛⎫-÷-⨯-⨯+ ⎪ ⎪⎝⎭⎝⎭
(9) -14-(1-0.5)×3
1
×[2-(-3)2]
(10) -5 2-(-5) 2×{(-1)50-[(-1)51-1÷(-2
1
)×2]}
(11) [-21×(-1)3 + |-6|÷31×3-(-5)2]×7
1
【中考演练】
一、选择题
1.(2010台湾)如图,数轴上的A 、B 、C 三点所表示的数分别为a 、b 、c 。
根据图中各点位置,判断下列各式何者正确?
(A) (a -1)(b -1)>0 (B) (b -1)(c -1)>0 (C) (a +1)(b +1)<0 (D) (b +1)(c +1)<0 。
2.(2010年贵州毕节)有一人患了流感,经过两轮传染后共有100人患了流感,那么每轮传染中,平均一个人传染的人数为( ) A .8人 B .9人
C .10人
D .11人
二、解答题
1.(2010广东中山)阅读下列材料:
)210321(31
21⨯⨯-⨯⨯=⨯,
)321432(31
32⨯⨯-⨯⨯=⨯,
)432543(3
1
43⨯⨯-⨯⨯=⨯,
由以上三个等式相加,可得
.205433
1
433221=⨯⨯⨯=⨯+⨯+⨯
读完以上材料,请你计算下列各题:
(1)1110433221⨯++⨯+⨯+⨯ (写出过程); (2))1(433221+⨯++⨯+⨯+⨯n n = ; (3)987543432321⨯⨯++⨯⨯+⨯⨯+⨯⨯ = . (4)计算:3×(1×2+2×3+3×4+…+99×100)=
2.从2开始,连续偶数相加,它们的和的情况如下所示:
2=1×2 2+4=6=2×3 2+4+6=12=3×4 2+4+6+8=20=4×5 2+4+6+8+10=30=5×6
若用n 表示连续相加的偶数的个数,用S 表示其和,那么S 与n 之间有什么样的关系?请用公式表示出来,并由此计算2+4+6+……+202的值。
3.已知
211211-=⨯,3121321-=⨯ ,4
131431-=⨯,……,根据这些等式解答下列各题: (1)求值:651
541431321211⨯+
⨯+⨯+⨯+⨯; (2)计算:2005
20041
431321211⨯+
+⨯+⨯+⨯。