《材料科学基础》回复与再结晶

合集下载

大连理工大学 材料科学基础 第五章 回复与再结晶

大连理工大学 材料科学基础 第五章 回复与再结晶

粒长大后趋于缓慢。
8
B:电阻率resistivity:其大小与点阵 中的点缺陷密切相关,随温度升高, 空位浓度下降,故电阻率呈现连续 下降趋势。
C:内应力inner stress:回复之后, 宏观内应力基本消除,微观内应力 部分消除;再结晶后,冷变形造成 的内应力全部消除。
D:密度density:密度在再结晶阶段急剧增加,主要是 由于此时位错密度显著降低造成的。
4th
冷加工变形:加工硬化,可使位错数量增加, 金属的强度和硬度增加
冷加工缺点:内应力,这种残余应力在金属零 件进一步加工和使用过程中往往会产生不应有的变 形,使用中也会由于大气环境与内应力的共同作用, 造成零件的应力腐蚀;冷加工也可能使电阻率增加 等。这时金属处于一种不稳定状态。
1
体发
不生

锈应
• 再结晶不是一个恒温过程,它是自某一温度开始, 在一个温度范围内连续进行的过程,发生再结晶 的最低温度称再结晶温度。
31
影响再结晶温度的因素:
• 1、金属的预先变形度:金属预先变形程度越大, 再结晶温度 越低。当变形度达到一定值后,再结晶温度趋于某一最低值, 称最低再结晶温度。
• 纯金属的最低再结晶温度与其熔点之 间的近似关系: T再≈(0.35-0.4)T熔, 其 中T再、T熔为绝对温度K.
R m r m 0
R — 屈服强度回复率
m — 变形后屈服强度 r — 回复后屈服强度 0 — 原始态的屈服强度
1.0
同一变形度的Fe在不同温度下的回复
0.8
300oC
350oC
0.6
400oC
0.4
450oC
0.2
500oC
0 100 200 300 400

材料科学基础第七章(1)

材料科学基础第七章(1)
• 7.1.2.3 内应力的变化:在回复阶段可部分消除,在再结晶阶段全部消除。
• 7.2 回复
• 7.2.1 回复过程中微观结构的变化机制:回复指冷变形金属加热时尚未发生 微米量级的组织变化前的微观结构及性能的变化过程,分低温回复,中温回 复和高温回复三种。
• 7.2.1.1 低温回复:冷变形金属在0.1Tm~0.3Tm温度范围内所产生回复称为低 温回复。低温时原子活动能量有限,主要局限于点缺陷运动。通过空位迁移 至晶界、位错或与间隙原子结合而消失,空位浓度显著下降。
• 冷变形金属开始发生再结晶的最低温度称为再结晶温度。可用金相法、硬度 法和X射线衍射法测定。
• 金相法:以显微镜观察到第一个新晶粒或晶界凸出形核而出现锯齿状边缘的 退火温度为再结晶温度。
• 硬度法:以硬度-退火温度曲线上硬度开始显著降低或软化50%的温度为再结 晶温度。
• 为了便于比较和使用,通常规定冷变形量大于70%的金属在1小时内能够完成 再结晶(体积分数>0.95)的最低温度为再结晶温度。
(7-3)
• 如果将同样的冷变形金属的性能在不同温度下回复到同样程度,则有:
• c0t1exp(-Q/RT1)= ln(x0/x)=c0t2exp(-Q/RT2)
• 即: t1/t2=exp[-Q(1/T2-1/T1)/R]
(7-4)
• 此式为用实验数据导出工艺参数的依据。
• 7.2.3 去应力退火:冷变形金属在回复阶段能消除大部分内应力,又能保持 冷变形的硬化效果,因此回复也称为去应力退火。
• 图7-11是经98%强冷轧的纯铜在不同温度下的等温 再结晶动力学曲线。等温下的再结晶速度开始很
小,随再结晶体积分数φV的增大而增加,并在 0.5处达到最大,然后又逐渐减小。具有典型的形

材料科学基础-第六章_金属及合金的回复与再结晶

材料科学基础-第六章_金属及合金的回复与再结晶

晶界凸出形核机制
在晶界处A 晶粒中的某些亚晶粒能通过 晶界迁移而凸入B 晶粒中,借消耗B 中的 具有亚晶粒组织晶粒间的凸出形核机制 亚晶而生长,从而形成再结晶的核心。
第六章 金属及合金的回复与再结晶-§6.3 再结晶
2.长大
再结晶晶核形成之后,即借界面的移动向周围畸变区域长大。 ①再结晶晶核长大(晶界迁移)的驱动力 无畸变的新晶粒与周围畸变的旧晶粒之间的畸变能差。 ②晶界的迁移方向 晶界总是背离其曲率中心,向着畸变区域推进,直至全部形成无畸变的等 轴晶粒为止,再结晶即告完成。
将后式代入前式并积分,以x0表示开始时性能增量的残留分数,则得:
t dx Q / RT x0 x c0e 0 dt x

x0 ln c0 te Q/RT x
回复的速度随温度升高和加热时间的延长而增大。
举例:
采用不同的温度加热冷变形金属使之回复到同样的程度(即残留分数相 同),则所需时间不同。
轴小晶粒,并随时间的延长不断长大,直至伸长的晶粒完全转变为新的等轴 晶粒为止。
3.晶粒长大阶段
再结晶过程中形成的等轴晶粒逐步相互吞并而长大,直至达到一个稳定的 尺寸。
第六章 金属及合金的回复与再结晶-§6.1 冷变形金属在加热时的组织和性能变化
二、储存能及内应力的变化
1.储存能的变化
冷变形造成的偏离平衡位置 大、能量较高的原子,在加热
冷变形后保留在金属内部的畸变 能,或称储存能。 冷变形金属在不同加热温度时 组织和性能的变化
第六章 金属及合金的回复与再结晶-§6.1 冷变形金属在加热时的组织和性能变化
一、显微组织的变化
1.回复阶段
显微组织几乎没 有发生变化,晶粒 仍保持冷变形后的 伸长状态。

回复与再结晶的异同点

回复与再结晶的异同点

回复与再结晶的异同点回复和再结晶是金属材料学中常用的两种热处理方法,它们都能够改善材料的力学性能和微观结构。

虽然它们都是通过热处理来改善材料性能,但是它们的机制和效果有很大的不同。

本文将从几个方面来比较回复和再结晶的异同点。

一、机制不同回复是指在高温下,材料中原有的位错被消除或减少,从而使材料的硬度和强度降低,塑性增加的过程。

回复的机制是通过材料中的位错移动和聚集来实现的。

随着温度的升高,材料中的位错能够更容易地移动,从而形成更大的位错环和蠕变流,这有助于位错的聚集和消除。

再结晶是指在高温下,材料中原有的晶粒被消除或减少,从而使材料的晶粒尺寸变小,晶界数量增加,从而提高材料的硬度和强度的过程。

再结晶的机制是通过晶界迁移和晶粒长大来实现的。

随着温度的升高,材料中的原始晶粒能够被破坏,从而形成更小的晶粒。

在材料中存在的能量梯度会引导晶界的迁移,从而使晶粒长大。

二、效果不同回复能够改善材料的塑性,但是对于硬度和强度的提高效果不是很明显。

回复后,材料的位错密度减少,从而使材料的塑性增加。

但是,由于材料中的位错并没有完全消除,所以材料的硬度和强度并没有明显提高。

再结晶能够改善材料的硬度和强度,但是对于塑性的提高效果不是很明显。

再结晶后,材料的晶粒尺寸变小,晶界数量增加,从而使材料的硬度和强度提高。

但是,由于晶粒尺寸变小,晶界的数量增加,所以材料的塑性并没有明显提高。

三、应用不同回复主要用于提高材料的塑性,适用于需要进行复杂成形的材料。

回复后,材料的塑性增加,从而使材料更容易进行成形。

回复也可以用于消除材料中的残余应力,从而提高材料的稳定性和寿命。

再结晶主要用于提高材料的硬度和强度,适用于需要提高材料强度和硬度的材料。

再结晶后,材料的硬度和强度提高,从而使材料更适合用于高强度和高硬度的应用中。

四、温度要求不同回复的温度比较低,一般在0.3Tm~0.5Tm之间。

其中Tm为材料的熔点。

回复的温度比较低,可以减少材料的变形和晶粒长大,从而使材料更容易进行塑性变形。

材料科学基础I__第九章-2__(回复与再结晶)教学文稿

材料科学基础I__第九章-2__(回复与再结晶)教学文稿
高温回复 (>0.5)Tm 高温回复的主要机制为多边化。 由于同号刃位错的塞积而导致晶体点阵弯曲,在退火过程中
通过刃型位错的攀移和滑移,使同号刃型位错沿垂直于滑移面 的方向排列成小角度的亚晶界。此过程称为多边(形)化。
多晶体金属塑性变形时, 滑移通常是在许多互相交 截的滑移面上进行,产生 由缠结位错构成的胞状组 织。因此,多边化后不仅 所形成的亚晶粒小得多, 而且许多亚晶界是由位错 网组成的。
右图: a) 缠结位错 b) 位错线伸直 c) 位错网络 d)Hale Waihona Puke 大的稳定网络三、回复退火的应用
回复退火主要用作去除残余应力,使冷变形的金属件在基本 保持应变硬化状态的条件下,降低其内应力,以免变形或开裂, 并改善工件的耐蚀性。
例如,冷拉钢丝卷制弹簧,在卷成弹簧后要在250~300进行退 火,以降低内应力并使其定型。
1、金相法 以显微镜观察到第一个新晶粒或晶界因凸出形核而出现锯齿状
边缘的退火温度定为再结晶温度。适用于变形量<10~15%的金 属与合金。 2、硬度法
以硬度开始显著降低的温度定为再结晶温度。有时也采用软化 50%的退火温度定为再结晶温度。 3、完全再结晶法
工业生产中常采用经过大变形量(>70%)的冷变形金属,经过1 小时完全再结晶退火的最低温度定为再结晶温度。
可见,再结晶温度是靠实验测出来的。
对于纯金属的再结晶温度,可用经验公式计算: Tr=(0.35~0.4)Tm
公式使用条件:工业纯金属,大变形量,退火时间0.5~1小时。
五、影响再结晶的因素
1、温度
加热温度越高,再结晶速度越快,产生一定体积分数的再结 晶组织需要的时间越短。
2、变形程度
变形程度越大,储能越多, 再结晶驱动力越大,因此变形 程度越大,再结晶速度越快。

材料科学基础I 回复与再结晶

材料科学基础I 回复与再结晶

§9-7 回复
一、回复过程的特征
1、回复过程中组织不发生变化; 2、宏观一类应力全部消除,微观二类应力部分消除; 3、力学性能变化很小,电阻率显著降低,密度增加; 4、变形储存的能量部分释放。
二、回复过程机制
低温回复 (0.1~0.3)Tm 低温回复阶段主要是空位浓度明显降低。原因: 1、空位迁移到金属表面或晶界而消失; 2、空位与间隙原子结合而消失; 3、空位与位错交互作用而消失; 4、空位聚集成片,晶体崩塌而转变成位错环。
经常需要将冷变形金属加热退火,以使其性能恢复到变形前。
冷变形金属与合金随 着被加热温度升高,依 次发生回复、再结晶和 晶粒长大。
右图为冷变形黄铜随 温度身高组织与性能的 变化情况。可以分为三 个阶段:回复、再结晶 和晶粒长大。其中,再 结晶阶段性能变化最大: 强度迅速下降,塑性迅 速升高。
冷变形金属在加热过程中性能随温度升高而变化,在再结晶 阶段发生突变。
注意:图中纵坐标,向上表示晶粒数少,尺寸大。
§9-9 再结晶后的晶粒长大
冷变形金属完成再结晶后,继续加热时会发生晶粒长大。 晶粒长大又可分为正常长大和异常长大(二次再结晶)。
一、晶粒的正常长大
再结晶刚完成时得到的是细小的、无畸变和内应力的等轴晶 粒。温度继续升高或延长保温时间,晶粒仍可以继续长大,若 是均匀地连续生长,就称为正常长大。
三、再结晶图
把再结晶退火后的晶粒大小、冷变形程度及退火温度间的关 系绘制成三维图形,称为再结晶图。
四、退火孪晶
一些面心立方结构的金属或合金,如铜、铜合金、奥氏体不 锈钢等,经再结晶退火后,其晶粒中出现孪晶组织,称为退火 孪晶。
一般认为退火孪晶 是在晶粒生长过程中 形成的。当晶粒通过 晶界移动而生长时, (111)晶面发生堆垛层 错而产生孪晶。

材料科学基础——回复再结晶

材料科学基础——回复再结晶

塑性变形对金属组织与性能的影响
4. 力学性能
强度、硬度↑ 塑性、韧性↓
加工硬化
利:提高材料强度 弊:增加变形抗力,不利于进一步加工
塑性变形对金属组织与性能的影响
5. 残余应力(remnant stress)
金属形变时,外力做功 的大部分以热的形式散 掉,只有一小部分 (10%-15%)以残余内 应力的方式储存在形变 金属中(储存能),它 随形变量加大而加大, 但占形变总功的分数却 随形变量加大而减小。
Tm(Tm为金属熔点),经过一定时间后, 就会有晶体缺陷密度大为降低的现象,新等 轴晶粒在冷变形的基体内形核长大,直到冷 变形晶粒完全耗尽为止。
0.6 mm
0.6 mm
33% cold worked brass
New crystals nucleate after 3 sec. at 580C.
a. 单个位错滑移、攀移,形成亚晶界。 b. 亚晶合并成Y结点。 c. Y结点移动,亚晶长大,完成多边形化。
多边形化
内容回顾
回复的不同阶段
形变形成位错缠结和胞状结构(如图a,b)→胞内位 错重排列和对消(如图c)→胞壁的峰锐化形成亚晶(如图 d)→亚晶长大(如图e)
低温回复( 0.1Tm < T<0.3Tm)
晶界是有利的再结晶形核 位置,原始晶粒小,再结 晶形核位置多,有利于再 结晶;但原始晶粒小,变 形较均匀,减少形核位置, 不利于再结晶。 总体是前者影响大于后者。 原始晶粒尺寸还可能影响 形变织构,从而影响再结 晶动力学。
亚晶合并机制 亚晶蚕食机制 晶界弓出机制
再结晶核心的长大
再结晶晶核一经形成,就开始自发地长大。 晶核在畸变能的作用下,背离其曲率中心, 向畸变能较高的变形晶粒推移,直到全部形 成无畸变(或畸变很少)的等轴晶粒为止。

8材料科学基础课件-第四章回复与再结晶

8材料科学基础课件-第四章回复与再结晶

ln t 如图:
斜率=Q/R
ln t D Q / RT
或: ln
t1 Q 1 1 ( ) t2 R T1 T2
1 T
由实验斜率可求得Q,据此推算其机制。
返回
一般来讲,激活能Q ln t
不只是一个,常按回复温
度高低分为低温、中温和 高温回复。对应的激活能 为Q1、Q2、Q3。
Q3 Q2
第四章
回复与再结晶
变形金属的热行为
返回
章目录:
4.1 4.2 4.3 4.4 冷变形金属在加热时的变化 回 复
再结晶 再结晶后的晶粒长大
4.5
4.6 4.7
再结晶退火及其组织
金属的热变形 超塑性加工
返回
经冷变形的金属具有如下特点:
• 机械性能和理化性能发生明显变化。强度、硬度升高,塑性韧性下降。
迁移的大角度晶界,成为核心。
• 特点:
(高层错能材料Al,Ni等)
位错易于攀移,位错重排成稳定的亚晶界,胞内位错密度低。
返回
② 亚晶生长
通过亚晶界移动生长,成为大角度晶界。
(低层错能材料,位错难以重组,胞内位错密度高。如 Co、Ag、Cu、Au变量较小时)
A • 作ΔP — T℃曲线如图,能量释放 峰对应于新晶粒的出现 — 再结 0 A — 纯金属,B — 合金
返回
B
T℃
晶,在此之前为回复。
三、性能的变化
经冷变形的金属
缓慢加热,测其性能
的变化,如图所示。
性能急变区对应于新
晶粒的出现,再结晶
之前为回复,之后为
晶粒长大。
返回
总之:由以上变化说明,冷变形金属在加热时要 经历三个阶段:回复、再结晶和晶粒长大。

第7章 《材料科学》回复与再结晶.

第7章 《材料科学》回复与再结晶.
(7.1)
式中t为恒温下的加热时间,x为冷变形导致的性能增量经加热后的残留分数,c为 与材料和温度有关的比例常数,c值与温度的关系具有典型的热激活过程的特点:
c c0eQ RT
( 7.2)
式中Q为激活能,R为气体常数(8.31×10-3J/mol·K),c0为比例常数,T为绝对温度。 将式7.2代入方程7.1中并积分,以x0表示开始时性能增量的残留分数,则得: ( 7.3)
特点: ①无孕育期; ②开始变化快,随后变慢; ③长时间处理后,性能趋于一平衡值; ④加热温度越高,回复程度也越高; ⑤变形量越大,初始晶粒尺寸越小, 有助于加快回复速率。
图 同一变形度的Fe在不同温度等温退火后的性能变化曲线
§7.2 回复
§7.2.2 回复动力学
回复特征通常可用一级反应方程来表达,即:
再结晶:经冷变形的金属在足够高的温度下加热时,通过新晶粒 的形核及长大,以无畸变的等轴晶粒取代变形晶粒的过程。
(再结晶是一个显微组织彻底改组、变形储能充分释放、性能显著变化的过程。)
形核的两种方式:晶界凸出形核、亚晶形核。
(1)晶界凸出形核----晶核伸向小位错胞晶粒(畸变能较高域)内
对于变形程度较小的金属(一般小于20%),再结晶晶核往往采用凸出形核机制生 成,如图所示。
※ 注:实际再结晶退火温度一般比上述温度高 100~200℃。 19
§7.3
再结晶
§7.3.4 影响再结晶的因素
(1)退火温度 ----温度越高,再结晶速度越大。 (2) 变形量 ----变形量越大,再结晶温度越低;随变形量增大,再结晶 温度趋于稳定;变形量低于一定值,再结晶不能进行。 (3) 原始晶粒尺寸 ----晶粒越小,驱动力越大;晶界越多,有利于形核。 (4) 微量溶质元素 -----阻碍位错和晶界的运动,不利于再结晶。 (5)第二分散相 ----间距和直径都较大时,提高畸变能,并可作为形核核心, 促进再结晶;直径和间距很小时,提高畸变能,但阻碍晶 界迁移,阻碍再结晶。

材料科学基础-回复与再结晶

材料科学基础-回复与再结晶
— 电阻: 回复阶段已有大的变化(与点缺陷有
关) — 内应力:
回复阶段消除大部或全部内应力; 再结晶阶段全部消除微观内应力 — 亚晶粒尺寸: 回复阶段变化小; 接近再结晶时,显著增大 — 密度: 再结晶阶段急剧增高(缺陷减少) — 储存能的变化: 再结晶阶段释放多
第二节:回复
现象:除内应力大大减少外,在光学显微镜下看不到金 相组织的变化。在电子显微镜下观察,点缺陷有所减少,位 错在形态上也有变化,但数量没有明显减少。
正常长大影响因素
1)温度:温度影响界面迁移速度,温度越高,界面迁移速 度越大,因而晶粒长大速度也越快。
2)时间:正常晶粒长大时,一定温度下,平均晶粒直径随 保温时间的平方根而增大。
3)第二相粒子:第二相粒子对界面迁移有约束力,阻碍界 面迁移、晶粒长大。粒子尺寸越小,粒子的体积分数越大, 极限的平均晶粒尺寸也越小。
再结晶织构的形成机制
— 定向生长理论:晶核位向各异,只有特殊位向的容易长大 — 定向形核理论:再结晶晶核具有择优取向
制耳现象:在冲制筒形和杯形零件时,各向变形不均匀, 造成薄厚不均、边缘不齐的现象。
第五节:金属的热变形
金属的热变形:金属在再结晶温度以上进行的加工、变形。
热变形的实质是:变形中形变硬化和动态软化同时进行的过程, 形变硬化为动态软化所抵消,因而不显示加工硬化作用。
— 退火温度的影响:
退火温度对刚完成再结晶时晶粒尺寸的影响不 大;但对再结晶速率影响很大,降低临界变形 度数值;促进再结晶后的晶粒的长大,温度越 高晶粒越粗
第四节:晶粒长大
晶粒长大:再结晶结束后,材料通常得到新的细小的无畸变的 等轴晶粒,若继续提高加热温度或延长加热时间,引起晶粒进 一步长大的现象 驱动力:总晶界能的降低 按特点分类: — 正常长大:大多数晶粒几乎同时逐渐均匀长大 — 异常长大:少数晶粒突发性的不均匀长大

山东大学《材料科学基础》讲义第10章 回复与再结晶

山东大学《材料科学基础》讲义第10章 回复与再结晶

第10章回复与再结晶§1 冷变形金属在加热时的变化一、显微组织的变化二、性能的变化(一)力学性能的变化回复阶段:强度、硬度、塑性等力学性能变化不大。

再结晶阶段:随加热温度升高,强度、硬度显著下降,塑性急剧升高。

当晶粒长大时,强度、硬度继续下降,塑性在晶粒严重粗化时,也下降。

(二)物理性能的变化回复阶段:,密度变化不大,电阻明显下降;再结晶阶段:密度急剧升高。

(三)内应力的变化回复阶段,内应力部分消除;再结晶阶段,内应力全部消除。

§2 回复一、回复过程中微观结构的变化机制回复:回复的驱动力:弹性畸变能的降低。

根据回复阶段加热温度及内部结构变化特征、机制不同,将其分为三类:(一)低温回复温度:0.1T m~0.3 T m。

结构变化:主要是点缺陷的运动,空位浓度降低。

(二)中温回复温度:0.3T m~0.5 T m。

结构变化:除点缺陷的运动外,位错也开始运动,位错密度降低。

(三)高温回复温度:≥0.5 T m。

结构变化:位错运动发生多边化,形成亚晶结构;总的应变能下降。

二、回复动力学特点:①无孕育期;②变化速率先快后慢;③最后趋于恒定值。

回复过程的表达式:dx / dt= - cx (c=c0exp(-Q/RT))→ln(x0/x)= c0texp(-Q/RT)。

如果采用两个不同温度将同一冷变形金属的性能回复到同样程度,则有:三、去应力退火§3 再结晶再结晶:经冷变形的金属在足够高的温度下加热时,通过新晶粒的形核及长大,以无畸变的等轴晶粒取代变形晶粒的过程。

再结晶是一个显微组织彻底改组、变形储能充分释放、性能显著变化的过程。

一、再结晶的形核及长大形核的两种方式:晶界凸出形核、亚晶形核。

(一)晶界凸出形核变形度较小时,再结晶核心一般以凸出形核方式形成。

如右图所示。

若界面由I向II推进,则:当α>π/2时,晶界可以自发生长,因此,凸出形核所需的能量条件为:ΔE>2σ/ lΔE-单位体积A、B相邻晶粒储存能差;ΔA-增加的晶界面积。

回复、再结晶课件

回复、再结晶课件

图7-2 冷变形金属退火时某些性 能的变化
(5) 密度 : 密度在再结晶阶段发 密度: 生明显增高,除与前期点缺陷数 生明显增高, 目减小有关外, 目减小有关外,主要是在再结晶 阶段中位错密度显著降低所致。 阶段中位错密度显著降低所致。 (6) 储能的释放:当冷变形金属 储能的释放: 加热到足以引起应力松弛的温度 储能就被释放出来。 时,储能就被释放出来。回复阶 段时各材料释放的储存能量均较 小,储能释放曲线的高峰开始出 现对应于再结晶的开始。 现对应于再结晶的开始。
北京航空大学
材料科学基础课件
第七章 回复与再结晶
本章需要掌握的内容: 本章需要掌握的内容: 回复、再结晶、晶粒长大的过程与机制; 回复、再结晶、晶粒长大的过程与机制;金属 的热变形。 的热变形。
金属材料经塑性变形后,畸变能升高, 金属材料经塑性变形后,畸变能升高,使其处于热 力学不稳定的高自由能状态。因此, 力学不稳定的高自由能状态。因此,经塑性变形的材料 具有自发恢复到变形前低自由能状态的趋势。 具有自发恢复到变形前低自由能状态的趋势。当冷变形 金属加热时会发生回复 再结晶和晶粒长大等过程 回复、 等过程。 金属加热时会发生回复、再结晶和晶粒长大等过程。
第三节 再结晶
冷变形金属加热到一定温度后, 冷变形金属加热到一定温度后,在原变形组织中产生了 无畸变的新晶粒, 无畸变的新晶粒,而性能也发生了明显的变化并恢复到 变形前的状况,这个过程称之为再结晶。 变形前的状况,这个过程称之为再结晶。与前述回复的 变化不同,再结晶是一个显微组织重新改组的过程。 变化不同,再结晶是一个显微组织重新改组的过程。 再结晶的驱动力是变形金属经回复后未被释放的储 存能(相当于变形总储能的 相当于变形总储能的90% 。 存能 相当于变形总储能的 % )。 通过再结晶退火可以 消除冷加工的影响。在实际生产中起着重要作用。 消除冷加工的影响。在实际生产中起着重要作用。

材料科学基础回复与再结晶

材料科学基础回复与再结晶
(2)粒子附近可能作为再结晶形核位置:大而硬 且间距宽的第二相粒子,由于形变时粒子附近出现 更多的不均匀形变区,这些区域有大的显微取向差, 可促发形核。
(3)弥散和稠密分布的第二相粒子钉扎晶界,阻 碍迁动。
35
5. 退火温度: 退火温度越高,再结晶速度越大。退火温度与
再结晶速度v的关系可用阿累尼乌斯公式表示: v再=Aexp(-Q/RT)
动态再结晶时,大量位错被再结晶核心的大角 度界面推移而消除,当这样的软化过程占主导地位 时,流变应力下降,应力-应变曲线出现峰值。
随材料内、外影响因素的不同,应变曲线可出 现单峰或多峰现象。
55
56
动态再结晶组织结构变化的特点: (1)晶内存在被缠结位错所分割成的亚晶粒。 (2)反复形核,有限长大,晶粒较细。
再结晶退火温度:T再+100~200℃。
39
第三节 晶粒长大
再结晶结束后,材料的晶粒一般比较细小(等 轴晶),若继续升温或延长保温时间,晶粒会继续 长大。晶粒长大是一个自发过程,晶粒长大的驱动 力来自总的界面能的降低。
晶粒长大按其特点可分为两类:
(1)正常晶粒长大(大多数晶粒几乎同时逐渐均 匀长大);(2)异常晶粒长大(少数晶粒突发性 的不均匀长大)。
19
第二节 再结晶
再结晶:冷变形金属被加热到适当温度时,在变形 组织内部新的无畸变的等轴晶粒逐渐取代变形晶粒, 而使形变强化效应完全消除的过程。
再结晶是一个显微组织重新改组,变形储存能 充分释放,性能显著变化的过程,其驱动为回复后 未被释放的变形储存能。
20
一、再结晶的形核与长大
1. 形核(非均匀形核)
形变温度越高,应变速率越小,应变量越大, 越有利于动态再结晶。 应用:采用低的变形终止温度、大的最终变形量、 快的冷却速度可获得细小晶粒。

回复和再结晶讲解

回复和再结晶讲解
氏硬度HV与加热温度之间的关系
下面分别详细介绍回复、再结晶、晶粒长大、 再结晶织构以及金属材料的热加工。
第二节 回复 在这一节,涉及的主要问题是:
一、回复的作用 二、回复的动力学 三、回复的机制 四、回复退火的应用
一、回复的作用
260º进行“去应力退火”,内应力能够大部分消除, 而强度、硬度基本不变。这样处理所发生的过程就是回 复。
4、在回复和再结晶的过程中,金属会释放出冷塑 性变形所储存的能量,同时性能也会发生相应的变化。
Δ P,mW Δ ρ ,10-6Ω ·cm HV
125 Δρ
100
HV
30
75
20
50 10
25
ΔP
0
100
200
300
400
温度,°C
图8-1 在室温经75%压缩变形的纯铝(纯度99.998%)以 6ºC/sec的加热速度加热时,热量差Δ P、比电阻的变化Δ ρ 及维
第八章 回复与再结晶
第一节 概述
问题:
1、金属或合金经塑性变形后,为什么要进行退火处理?
金属或合金经塑性变形后,强度、硬度、电阻率和矫 顽力等升高,塑性、韧性、导磁率和耐蚀性则下降,为使 经冷塑性变形的金属的机械性能恢复到冷塑性变形前的状 态,需要对金属加热进行退火。
2、为什么将加工硬化的金属加热到适当的温度能使其恢 复到冷塑性变形前的状态呢?
3、经冷塑性变形的金属加热时,经过那些阶段?各 阶段的特点?
依次经过回复、再结晶和晶粒长大三个阶段 (此三阶段有部分交迭)。如图1所示:
回复
再结晶
晶粒长大
0
T1
T2Biblioteka T3图1 回复、再结晶、晶粒长大过程示意图

潘金生《材料科学基础》(修订版)(名校考研真题 回复与再结晶)【圣才出品】

潘金生《材料科学基础》(修订版)(名校考研真题  回复与再结晶)【圣才出品】

第10章 回复与再结晶一、填空题再结晶完成后,晶粒长大可分为______晶粒长大和______晶粒长大。

[北京工业大学2009研]【答案】正常;异常二、判断题1.冷变形金属经回复退火后,其力学性能可以恢复到变形前的状态。

()[西安交通大学2003研]【答案】×2.再结晶是一个成核及核心长大的过程,因此它是一种相变过程。

()[西安交通大学2003研]【答案】×3.再结晶核心长大伴随着晶界的移动,故其驱动力为晶界能。

()[西安交通大学2003研]【答案】×4.再结晶晶核长大的驱动力是形变储藏能的降低,而再结晶晶粒长大的驱动力是总晶界能的降低。

()[西安交通大学2006研]【答案】√三、名词解释1.冷加工与热加工[中南大学2003研]答:冷加工是指金属材料在低于再结晶温度又是室温下的加工;热加工是指金属材料在再结晶温度以上的加工。

2.再结晶[西南交通大学2009研]答:再结晶是指经过塑性变形的金属,在重新加热过程中,当温度高于再结晶温度后,形成低缺陷密度的新晶粒,使其强度等性能恢复到变形前的水平,但其相结构不变的过程。

3.回复[西安工业大学2008研]答:回复是指经冷塑性变形的金属在加热时,在光学显微组织发生改变前(即在再结晶晶粒形成前)所产生的某些结构和性能的变化过程。

4.动态再结晶[西安理工大学2008、北京工业大学2009研]答:动态再结晶是指在金属塑性变形过程中发生的再结晶,即形变硬化与再结晶软化同时进行的过程。

这样可以不断形成位错密度很低的新晶粒,得到的组织细小,综合力学性能好。

5.临界变形度[西安交通大学2003研]答:临界变形度是给定温度下金属发生再结晶所需的最小预先冷变形量。

四、简答题1.简述晶粒生长与二次再结晶的特点,以及造成二次再结晶的原因和防止二次再结晶的方法。

[中南大学2003研]答:(1)晶粒生长的特点:①晶粒生长是无应变的材料在热处理时,平均晶粒尺寸在不改变其分布的情况下,连续增大的过程;②在坯体内晶粒尺寸均匀地生长;③晶粒生长时气孔都维持在晶界上或晶界交汇处。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
36
5. 退火温度: 退火温度越高,再结晶速度越大。退火温度与 再结晶速度v的关系可用阿累尼乌斯公式表示:
v再=Aexp(-Q/RT)
而再结晶速率和产生某一再结晶体积分数x所 需时间成反比,故: 1/tx=Bexp(-Q/RT)
37
三、再结晶温度
对形变金属,从受形变开始就获得储存能,它 立刻就具有回复和再结晶的热力学条件,原则上就 可发生再结晶。 温度不同,只是过程的速度不同罢了,所以, 再结晶并没有一个热力学意义的明确临界温度。人 为定义了一个再结晶温度: 在一定时间内(一小时)刚好完成再结晶的温 度,是一个动力学意义的温度。
13
1. 低温回复(0.1-0.3 Tm) 点缺陷运动:(1)空位、间隙原子移至晶界、位 错处消失;(2)空位聚集(空位群、对)。→点 缺陷密度降低 2. 中温回复(0.3-0.5 Tm)
位错滑移:异号位错相遇而抵销;位错缠结重新排 列。→位错密度降低
14
3. 高温回复( > 0.5 Tm)多边化
40
第三节 晶粒长大
再结晶结束后,材料的晶粒一般比较细小(等 轴晶),若继续升温或延长保温时间,晶粒会继续 长大。晶粒长大是一个自发过程,晶粒长大的驱动 力来自总的界面能的降低。 晶粒长大按其特点可分为两类: (1)正常晶粒长大(大多数晶粒几乎同时逐渐均 匀长大);(2)异常晶粒长大(少数晶粒突发性 的不均匀长大)。
G:晶界迁移速度; G0:常数; QG:晶界迁移激活能。
45
(2)弥散第二相粒子: 弥散第二相粒子对晶界移动有钉扎作用。 产生原因:晶界开始穿过粒子时,晶界面积减小, 即减少了总的界面能量,这时粒子是帮助晶界前进 的。
但当晶界到达粒子的最大截面处后,晶界继续 移动又会重新增加晶界面积,即增加了总的界面能 量,这时粒子对晶界移动产生拖曳力,即起钉扎作 用。
通常认为,由于微量杂质原子与晶界的交互作 用及其在晶界区域的吸附,形成了一种阻碍晶界迁 移的“气团”从而随着杂质含量的增加,显著降低 了晶界的迁移速度。
48
(4)晶粒位向差: 大角度晶界原子排布比较混乱,界面能较高, 扩散系数较大; 小角度晶界的界面能小于大角度晶界,因而小 角度晶界的移动速率低于大角度晶界。
20
第二节
再结晶
再结晶:冷变形金属被加热到适当温度时,在变形 组织内部新的无畸变的等轴晶粒逐渐取代变形晶粒, 而使形变强化效应完全消除的过程。
再结晶是一个显微组织重新改组,变形储存能 充分释放,性能显著变化的过程,其驱动为回复后 未被释放的变形储存能。
21
一、再结晶的形核与长大
1. 形核(非均匀形核) 核心优先在局部形变高的区域形成。(形变带、 晶界、夹杂附近及自由表面附近等)。
出现条件:具有低、中层错能的金属,回复过程较 慢,热加工时,动态回复未能同步抵消加工时位错 的增殖积累,超过某一临界形变量后发生动态再结 晶。
动态再结晶时,大量位错被再结晶核心的大角 度界面推移而消除,当这样的软化过程占主导地位 时,流变应力下降,应力-应变曲线出现峰值。
随材料内、外影响因素的不同,应变曲线可出 现单峰或多峰现象。 56
R为回复部分;
σ为回复退火后的流变应力;
σ0为完全退火后硬化全部消除的流变应力; σm为退火冷变形的流变应力。
7
8
回复动力学特点
(1)回复过程没有孕育期;
(2)开始变化快,随后变慢,直到最后回复速率 为零; (3)每一温度的回复程度有一极限值,退火温度 越高,这个极限值也越高,而达到此极限所需时间 则越短。 (4)回复不能使金属性能恢复到冷变形前的水平。
5. 对组织和性能的影响: (1)织构明显:各向异性;优化磁导率。 (2)晶粒大小不均→性能不均。 (3)晶粒粗大:降低强度和塑韧性;提高表面粗 糙度。
52
第四节 金属的热变形
冷加工:在再结晶温度以下的压力加工过程,发生 加工硬化。 热加工:在再结晶温度以上的压力加工过程,即形 变中伴随回复和再结晶过程(称为动态回复和动态 再结晶)。 热加工温度:T再<T热加工<T固-100~200℃。
23
晶界凸出形核机制的能量条件
假设晶界扫过地方的储 存能全部释放,则由1 到2时的自由能变化为:
E:单位体积变形畸变 能的能量;γb:晶面能。
球面拱出时:
24
若晶界弓出段两端a、b固定,且γb值恒定,则 开始阶段随ab弓出弯曲,R逐渐减小, ΔG值增大, 当 R 达到最小值(ab/2 = L)时, ΔG将达到最大 值。 此后,若继续弓出,由于R的增大而使ΔG减 小,于是,晶界将自发的向前推进。
49
二、晶粒的异常长大(二次再结晶)
1. 异常长大:少数再结晶晶粒的急剧长大现象。 (二次再结晶)
2. 基本条件:正常晶粒长大过程被(第二分散相微 粒、织构)强烈阻碍。 3. 驱动力:界面能变化。(不是重新形核)
50
含MnS的硅钢的二次再结晶
51
4. 机制:钉扎晶界的第二相溶于基体;再结晶织 构中位向一致晶粒的合并;大晶粒吞并小晶粒。
回复:冷变形金属在低温加热时,其显微组织无可 见变化,但其物理、力学性能却部分恢复到冷变形 以前的过程。 要点:
(1)回复阶段不涉及大角度晶面的迁动;
(2)通过点缺陷消除、位错的对消和重新排列来 实现的; (3)过程是均匀的。
6
一、回复动力学
残留应变硬化分数(1-R )
1-R =(σ -σ0)/(σm-σ0)
17
回复亚晶:多边化形成小角度晶界,亚晶界将原来 的晶粒分割成许多亚晶块。
实质是胞壁处的缠结位错不断聚集、使胞壁 变薄,逐渐形成网络,构成清晰的亚晶界过程。
18
过程示意
19
三、回复退火的应用
主要用作去应力退火,使冷加工金属在基本 上保持加工硬化的状态下降低其内应力,以稳定 和改善性能,减少变形和开裂,提高耐蚀性。
41
一、晶粒的正常长大
1. 驱动力 对于系统,晶粒长大的驱动力是总界面能的 减小。 对于个别晶粒,不同曲率是造成晶界迁移的 直接原因。 晶面是向着曲率中心的方向移动。
42
43
2. 晶粒的稳定形状
晶界趋于平直; 晶界夹角趋于120℃; 二维为六边形晶体,三维为理想十六面体。
44
3. 影响晶粒长大的因素 (1)温度:温度越高,晶界易迁移,晶粒易粗化。
如在短时间内时求得的激活能与空位迁移能 相近,而在长时间回复时求得的激活能则与自扩散 激活能相近。
这说明冷变形铁的回复,不能用一种单一的 回复机制来描述。
12
二、回复机理
点缺陷和位错在退火过程中发生运动,从而改 变了它们的组态和分布。 回复时空位迁动和消失是不会影响显微组织的, 只有涉及位错迁动时才会影响显微组织。 位错迁动和重排引起的显微组织变化主要是多 边形化和亚晶形成和长大。
57
动态再结晶组织结构变化的特点: (1)晶内存在被缠结位错所分割成的亚晶粒。 (2)反复形核,有限长大,晶粒较细。 形变温度越高,应变速率越小,应变量越大, 越有利于动态再结晶。 应用:采用低的变形终止温度、大的最终变形量、 快的冷却速度可获得细小晶粒。
58
三、热加工后的组织与性能
46
当晶界能迁移的驱动力与所受阻力相等时,晶 粒的正常长大停止,此时晶粒平均直径(极限的晶 粒平均直径)d和第二相质点半径r、第二相体积分 数的 关系:
d = 4r/3
在第二相质点数量愈多,颗粒越小,阻碍晶 粒长大的能力越强。
47
(3)可溶解的杂质与合金元素: 阻碍晶界迁移,特别是晶界偏聚现象显著的元 素,其阻碍作用更大。
(3)变形量越大,孕育期越短,转变速度越快。
再结晶动力学曲线的表达式:x = 1 - exp(-BtK)
x为再结晶体积分数,实验表明在一定温度范 围内K不随温度变化。
32
三、影响再结晶的因素
1. 形变量: 需要一个最低的形变量(1~5%)才有足够的 储存能作为驱动力和提供形核的位置,低于这个变 形量不会发生再结晶。
25
因此,一段长为2L的晶界,其弓出形核的能 量条件为ΔG < 0 ,即
这样,再结晶的形核将在现成晶界上两点间距 离为2L,而弓出距离大于L的凸起处进行,使弓出 距离达到L所需的时间即为再结晶的孕育期。
26
(2)亚晶长大形核机制 一般发生在变形度大的金属。
借助亚晶作为再结晶的核心,其形核机制又可 分为亚晶合并形核和亚晶粒长大形核两种。
形变量高于一临界值后,形核率随形变量增加 而急剧增加。 一般情况下(中等形变量下),核心的晶体学 位向与它形成所在的形变区域的晶体学位向有统计 关系。
核心不能长入和它形核) 一般发生在变形程度较小(一般小于20%) 的金属中。 变形不均匀,位错密度不同。
方式:晶界总是背离其曲率中心,向着畸变区域 推进,直到全部形成无畸变的等轴晶粒为止,再 结晶即告完成。 注:再结晶不是相变过程。
30
二、再结晶动力学
31
再结晶动力学特点:
(1)具有 S 形特征,存在孕育期,开始时再结晶 速度很小,在体积分数为0.5时最大,然后减慢。
(2)温度越高,孕育期越短,转变速度越快。
35
4. 第二分散相: (1)增加形变储存能而增加再结晶驱动力:因为 它使形变后的结构复杂,使位错密度增加的缘故。
(2)粒子附近可能作为再结晶形核位置:大而硬 且间距宽的第二相粒子,由于形变时粒子附近出现 更多的不均匀形变区,这些区域有大的显微取向差, 可促发形核。
(3)弥散和稠密分布的第二相粒子钉扎晶界,阻 碍迁动。
回复与再结晶
Recovery and Recrystallization
1
冷变形金属在加热时显微组织的变化
2
3
冷变形金属在加热时力学性能、物理性能的变化
4
冷变形金属在加热时内应力的变化 回复阶段:大部分或全部消除第一类内应力,部 分消除第二、三类内应力;
相关文档
最新文档