22《二次函数》章节核心知识点分类整合
人教版九年级上册 第22章 二次函数复习知识点总结和题型讲解
![人教版九年级上册 第22章 二次函数复习知识点总结和题型讲解](https://img.taocdn.com/s3/m/8c50b264cf84b9d528ea7a72.png)
二次函数复习知识点一、二次函数概念:1.二次函数的概念:一般地,形如y=ax2+bx+c(a,b,c是常数,a≠0)的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数a≠0,而b c,可以为零.二次函数的定义域是全体实数.2. 二次函数y=ax2+bx+c的结构特征:⑴等号左边是函数,右边是关于自变量x的二次多项式。
(①含自变量的代数式是整式,②自变量的最高次数是2,③二次项系数不为0.)⑵a b c,,是常数,a是二次项系数,b是一次项系数,c是常数项.二、二次函数的基本形式1. y=ax2的性质:2. y=ax2+k的性质:(k上加下减)3. y=a(x-h)2的性质:(h左加右减)4. y =a (x -h)2+k 的性质:5. y =ax2+bx+c 的性质:三、二次函数的图象与各项系数之间的关系1. 二次项系数a.(a 决定了抛物线开口的大小和方向)二次函数2y ax bx c =++中,a 作为二次项系数,显然a ≠0 ① 当0a >时,抛物线开口向上,当0a <时,抛物线开口向下;②a 的绝对值越大,开口越小,反之a 的绝对值越小,开口越大。
总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小.2. 一次项系数b (a 和b 共同决定抛物线对称轴的位置).抛物线c bx ax y ++=2的对称轴是直线abx 2-=,故:①0=b 时,对称轴为y 轴;② (即a 、b 同号)时,对称轴在y 轴左侧;③ (即a 、b 异号)时,对称轴在y 轴右侧.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异”3. 常数项c(c 决定了抛物线与y 轴交点的位置)⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的. 四、二次函数图象的平移1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,;⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”.方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿x 轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)五、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 六、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.七、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达1. 关于x 轴对称2y a x b x c =++关于x 轴对称后,得到的解析式是2y ax bx c =---; ()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y a x b x c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+; ()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y a x b x c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.八、二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠),适用条件:已知抛物线上三点的坐标,一般选用一般式;2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠),适用条件:已知图像上点两坐标,且其中一点为抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 交点式(两根式):12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标), 适用条件:已知图像上三点坐标,其中两点为抛物线与x 轴的两个交点(1x ,0),(2x ,0),一般选用交点式;九、二次函数的最值如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值),即当abx 2-=时,a b ac y 442-=最值。
《二次函数》知识点知识点总结
![《二次函数》知识点知识点总结](https://img.taocdn.com/s3/m/90ba998832d4b14e852458fb770bf78a65293add.png)
《二次函数》知识点知识点总结《二次函数》知识点总结一、二次函数的定义一般地,如果形如 y = ax²+ bx + c(a、b、c 是常数,a ≠ 0)的函数,那么就叫做二次函数。
其中,x 是自变量,a 叫做二次项系数,b 叫做一次项系数,c 叫做常数项。
需要注意的是,二次函数的二次项系数 a 不能为 0,如果 a = 0,那么就变成了一次函数。
二、二次函数的图像二次函数的图像是一条抛物线。
当 a > 0 时,抛物线开口向上;当 a < 0 时,抛物线开口向下。
抛物线的对称轴是直线 x = b / 2a 。
抛物线的顶点坐标为(b / 2a,(4ac b²) / 4a)。
三、二次函数的表达式1、一般式:y = ax²+ bx + c(a ≠ 0)2、顶点式:y = a(x h)²+ k(a ≠ 0),其中顶点坐标为(h,k)3、交点式:y = a(x x₁)(x x₂)(a ≠ 0),其中 x₁、x₂是抛物线与 x 轴交点的横坐标四、二次函数的性质1、当 a > 0 时,在对称轴左侧,y 随 x 的增大而减小;在对称轴右侧,y 随 x 的增大而增大。
函数有最小值,当 x = b / 2a 时,y 最小值=(4ac b²) / 4a 。
2、当 a < 0 时,在对称轴左侧,y 随 x 的增大而增大;在对称轴右侧,y 随 x 的增大而减小。
函数有最大值,当 x = b / 2a 时,y 最大值=(4ac b²) / 4a 。
五、抛物线的平移抛物线的平移实质上是它的顶点(h,k)的移动(点的移动规律)。
向左平移 h 个单位长度,顶点坐标变为(h m,k);向右平移 m个单位长度,顶点坐标变为(h + m,k)。
向上平移 n 个单位长度,顶点坐标变为(h,k + n);向下平移 n个单位长度,顶点坐标变为(h,k n)。
六、二次函数与一元二次方程的关系二次函数 y = ax²+ bx + c(a ≠ 0),当 y = 0 时,就变成了一元二次方程 ax²+ bx + c = 0(a ≠ 0)。
《二次函数》知识点总结(修改版)
![《二次函数》知识点总结(修改版)](https://img.taocdn.com/s3/m/443493fc964bcf84b8d57b58.png)
《二次函数》主要知识点归纳(修改版)(何老师归纳)一、概念:形如2y ax bx c=++(a b c,,是常数,0a≠)的函数,叫做二次函数。
1:条件:① a不为零②最高项次数为2(整理后)③整式2:特殊:若a=0 则y=bx+c 是一次函数3:若y=0,则函数图象交于x轴,化为一元二次方程a x2+bx + c =04:特殊解析式:形如y=kx²-2kx-3k这样各项都含参数k的二次函数,图像必过定点.(令y=0, 则kx²-2kx-3k=0,化掉参数k得:x²-2x-3=0)二、二次函数的几种基本形式1:2y ax=的性质:a越大,抛物线的开口越小,越靠近y轴2. 2y ax c=+的性质:平移规律:上加下减y。
3.()2y a x h=-的性质:平移规律:左加右减x。
y=3(x+4)2(x-2)2y=3x24.()2y a x h k=-+(顶点式)的性质:平移规律:左加右减x 。
上加下减y,5.2y ax bx c =++(一般式)的性质: 先将一般式2y ax bx c =++通过配方法化成22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,再对比顶点式,()2y a x h k =-+可得2424b ac b h k a a -=-=,.故两者性质相同。
三、二次函数2y ax bx c =++(或()2y a x h k =-+)图象及性质再归纳: 1:开口方向.①:当0>a 时,开口向上;当0<a 时,开口向下; ②:a 相等,几条抛物线的开口大小、形状相同. ③:a 越大,抛物线的开口越小,越靠近y 轴 2:对称轴,直线abx 2-=(或直线x =h ) 3:顶点坐标:),(ab ac a b 4422-- 或(h,k )4:增减性 ①:若0>a ,当x<a b 2-时,y 减;当x>a b2-时,y 增,简记:左减右增; ②:若0<a ,当x<a b 2-时,y 增;当x>ab2-时,y 减,简记:左增右减;5:最值 ⑴:若定义域是全体实数,则在顶点处取得最大值(或最小值),即:当a b x 2-=时,ab ac y 442-=最值,(或当x =h 时,最值是y =k )2-32⑵: 若定义域是21x x x ≤≤, 则:①:若a b 2-在21x x x ≤≤内,则当x=a b 2-时,ab ac y 442-=最值;②:若ab2-不在21x x x ≤≤内,则需要考虑函数在21x x x ≤≤范围内的增减性, A: 若y 为增,则当2x x =时,c bx ax y ++=222最大,当1x x =时,c bx ax y ++=121最小; B: 若y 为减,则当1x x =时,c bx ax y ++=121最大,当2x x =时,c bx ax y ++=222最小。
九年级数学上册第二十二章二次函数知识点总结(新版)新人教版
![九年级数学上册第二十二章二次函数知识点总结(新版)新人教版](https://img.taocdn.com/s3/m/90d51bba3968011ca2009169.png)
九年级数学上册:第22章 二次函数知识点归纳及相关典型题第一部分 基础知识1.定义:一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数. 2.二次函数2ax y =的性质(1)抛物线2ax y =的顶点是坐标原点,对称轴是y 轴. (2)函数2ax y =的图像与a 的符号关系.①当0>a 时⇔抛物线开口向上⇔顶点为其最低点;②当0<a 时⇔抛物线开口向下⇔顶点为其最高点.(3)顶点是坐标原点,对称轴是y 轴的抛物线的解析式形式为2ax y =)(0≠a . 3.二次函数 c bx ax y ++=2的图像是对称轴平行于(包括重合)y 轴的抛物线. 4.二次函数c bx ax y ++=2用配方法可化成:()k h x a y +-=2的形式,其中ab ac k a b h 4422-=-=,.5. 二次函数由特殊到一般,可分为以下几种形式: ①2axy =;②k ax y +=2;③()2h x a y -=;④()k h x a y +-=2;⑤c bx ax y ++=2.6.抛物线的三要素:开口方向、对称轴、顶点.①a 的符号决定抛物线的开口方向:当0>a 时,开口向上;当0<a 时,开口向下;a 越大,抛物线的开口越小;a 越小,抛物线的开口越大。
②平行于y 轴(或重合)的直线记作h x =.特别地,y 轴记作直线0=x .7.顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a 相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同. 8.求抛物线的顶点、对称轴的方法(1)公式法:a b ac a b x a c bx ax y 442222-+⎪⎭⎫ ⎝⎛+=++=, ∴顶点是),(a b ac a b 4422--,对称轴是直线abx 2-=.(2)配方法:运用配方的方法,将抛物线的解析式化为()k h x a y +-=2的形式,得到顶点为(h ,k ),对称轴是直线h x =.(3)抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称点的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失. 9.抛物线c bx ax y ++=2中,c b a ,,的作用(1)a 决定开口方向及开口大小,这与2ax y =中的a 完全一样.(2)b 和a 共同决定抛物线对称轴的位置.由于抛物线c bx ax y ++=2的对称轴是直线a b x 2-=,故:①0=b 时,对称轴为y 轴;②0>ab(即a 、b 同号)时,对称轴在y 轴左侧;③0<a b(即a 、b 异号)时,对称轴在y 轴右侧,“左同右异”.(3)c 的大小决定抛物线c bx ax y ++=2与y 轴交点的位置.当0=x 时,c y =,∴抛物线c bx ax y ++=2与y 轴有且只有一个交点(0,c ): ①0=c ,抛物线经过原点; ②0>c ,与y 轴交于正半轴;③0<c ,与y 轴交于负半轴.10.几种特殊的二次函数的图像特征如下:11.用待定系数法求二次函数的解析式(1)一般式:c bx ax y ++=2.已知图像上三点或三对x 、y 的值,通常选择一般式. (2)顶点式:()k h x a y +-=2.已知图像的顶点或对称轴,通常选择顶点式.(3)交点式:已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式:()()21x x x x a y --=. 12.直线与抛物线的交点(1)y 轴与抛物线c bx ax y ++=2得交点为(0, c ).(2)与y 轴平行的直线h x =与抛物线c bx ax y ++=2有且只有一个交点(h ,c bh ah++2).(3)抛物线与x 轴的交点二次函数c bx ax y ++=2的图像与x 轴的两个交点的横坐标1x 、2x ,是对应一元二次方程02=++c bx ax 的两个实数根.抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式判定:①有两个交点⇔0>∆⇔抛物线与x 轴相交;②有一个交点(顶点在x 轴上)⇔0=∆⇔抛物线与x 轴相切; ③没有交点⇔0<∆⇔抛物线与x 轴相离. (4)平行于x 轴的直线与抛物线的交点同(3)一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为k ,则横坐标是k c bx ax =++2的两个实数根.(5)一次函数()0≠+=k n kx y 的图像l 与二次函数()02≠++=a c bx ax y 的图像G 的交点,由方程组cbx ax y n kx y ++=+=2的解的数目来确定:①方程组有两组不同的解时⇔l 与G 有两个交点; ②方程组只有一组解时⇔l 与G 只有一个交点;③方程组无解时⇔l 与G 没有交点.(6)抛物线与x 轴两交点之间的距离:若抛物线c bx ax y ++=2与x 轴两交点为()()0021,,,x B x A ,由于1x 、2x 是方程02=++c bx ax 的两个根,故ac x x a b x x =⋅-=+2121,()()a a acb ac a b x x x x x x x x AB ∆=-=-⎪⎭⎫⎝⎛-=--=-=-=444222122122121中考回顾1.(2017天津中考)已知抛物线y=x 2-4x+3与x 轴相交于点A ,B (点A 在点B 左侧),顶点为M.平移该抛物线,使点M 平移后的对应点M'落在x 轴上,点B 平移后的对应点B'落在y 轴上,则平移后的抛物线解析式为( A )A.y=x 2+2x+1B.y=x 2+2x-1C.y=x 2-2x+1D.y=x 2-2x-12.(2017四川成都中考)在平面直角坐标系xOy 中,二次函数y=ax 2+bx+c 的图象如图所示,下列说法正确的是( B )A. abc<0, b 2-4ac>0B. abc>0, b 2-4ac>0C. abc<0, b 2-4ac<0D. abc>0, b 2-4ac<03.(2017内蒙古赤峰中考)如果关于x 的方程x 2-4x+2m=0有两个不相等的实数根,那么m 的取值范围是 m<2 .4.(2017内蒙古赤峰中考)如图,二次函数y=ax 2+bx+c (a ≠0)的图象交x 轴于A ,B 两点,交y 轴于点D ,点B 的坐标为(3,0),顶点C 的坐标为(1,4).备用图(1)求二次函数的解析式和直线BD 的解析式;(2)点P 是直线BD 上的一个动点,过点P 作x 轴的垂线,交抛物线于点M ,当点P 在第一象限时,求线段PM 长度的最大值;(3)在抛物线上是否存在异于B ,D 的点Q ,使△BDQ 中BD 边上的高为2,若存在求出点Q 的坐标;若不存在请说明理由.解:(1)设二次函数的解析式为y=a (x-1)2+4.∵点B (3,0)在该二次函数的图象上, ∴0=a (3-1)2+4,解得:a=-1.∴二次函数的解析式为y=-x 2+2x+3.∵点D 在y 轴上,所以可令x=0,解得:y=3. ∴点D 的坐标为(0,3).设直线BD 的解析式为y=kx+3,把(3,0)代入得3k+3=0,解得:k=-1. ∴直线BD 的解析式为y=-x+3.(2)设点P 的横坐标为m (m>0), 则P (m ,-m+3), M (m ,-m 2+2m+3),PM=-m2+2m+3-(-m+3)=-m2+3m=-, PM最大值为(3)如图,过点Q作QG∥y轴交BD于点G,作QH⊥BD于点H,则QH=2设Q(x,-x2+2x+3),则G(x,-x+3),QG=|-x2+2x+3-(-x+3)|=|-x2+3x|.∵△DOB是等腰直角三角形,∴∠3=45°,∴∠2=∠1=45°.∴sin∠1=,∴QG=4.得|-x2+3x|=4,当-x2+3x=4时,Δ=9-16<0,方程无实数根.当-x2+3x=-4时,解得:x1=-1,x2=4,Q1(4,-5),Q2(-1,0).模拟预测1.已知二次函数y=kx2-6x+3的图象与x轴有交点,则k的取值范围是(D)A.k<3B.k<3,且k≠0C.k≤3D.k≤3,且k≠02.若点M(-2,y1),N(-1,y2),P(8,y3)在抛物线y=-x2+2x上,则下列结论正确的是(C)A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y1<y3<y2解:x=-2时,y1=-x2+2x=-(-2)2+2×(-2)=-2-4=-6,x=-1时,y2=-x2+2x=-(-1)2+2×(-1)=--2=-2,x=8时,y3=-x2+2x=-82+2×8=-32+16=-16.∵-16<-6<-2,∴y3<y1<y2.故选C.3.已知一元二次方程ax2+bx+c=0(a>0)的两个实数根x1,x2满足x1+x2=4和x1·x2=3,则二次函数y=ax2+bx+c(a>0)的图象有可能是()解析:∵x1+x2=4,∴-=4.∴二次函数的对称轴为x=-=2.∵x1·x2=3,=3.当a>0时,c>0,∴二次函数图象交于y轴的正半轴.4.小明在用“描点法”画二次函数y=ax2+bx+c的图象时,列了如下表格:x…-2 -1 0 1 2 …y…-6-4 -2-2 -2…根据表格中的信息回答问题:该二次函数y=ax2+bx+c在x=3时,y=-4.5.若关于x的函数y=kx2+2x-1与x轴仅有一个公共点,则实数k的值为k=0或k=-1.6.抛物线y=-x2+bx+c的图象如图,若将其向左平移2个单位长度,再向下平移3个单位长度,则平移后的解析式为.解析:由题中图象可知,对称轴x=1, 所以- =1,即b=2.把点(3,0)代入y=-x2+2x+c,得c=3.故原图象的解析式为y=-x2+2x+3,即y=-(x-1)2+4,然后向左平移2个单位,再向下平移3个单位,得y=-(x-1+2)2+4-3,即y=-x2-2x. 答案:y=-x2-2x7.如图①,若抛物线L1的顶点A在抛物线L2上,抛物线L2的顶点B也在抛物线L1上(点A与点B不重合),我们把这样的两抛物线L1,L2互称为“友好”抛物线,可见一条抛物线的“友好”抛物线可以有很多条.(1)如图②,已知抛物线L3:y=2x2-8x+4与y轴交于点C,试求出点C关于该抛物线对称轴对称的对称点D的坐标;(2)请求出以点D为顶点的L3的“友好”抛物线L4的解析式,并指出L3与L4中y同时随x增大而增大的自变量的取值范围;(3)若抛物线y=a1(x-m)2+n的任意一条“友好”抛物线的解析式为y=a2(x-h)2+k,请写出a1与a2的关系式,并说明理由.解:(1)∵抛物线L3:y=2x2-8x+4,∴y=2(x-2)2-4.∴顶点为(2,-4),对称轴为x=2,设x=0,则y=4,∴C(0,4).∴点C关于该抛物线对称轴对称的对称点D的坐标为(4,4).(2)∵以点D(4,4)为顶点的L3的友好抛物线L4还过点(2,-4),∴L4的解析式为y=-2(x-4)2+4.∴L3与L4中y同时随x增大而增大的自变量的取值范围是2≤x≤4.(3)a1=-a2,理由如下:∵抛物线L1的顶点A在抛物线L2上,抛物线L2的顶点B也在抛物线L1上,∴可以列出两个方程由①+②,得(a1+a2)(m-h)2=0,∴a1=-a2.。
第22章《二次函数》讲义 第8讲 二次函数与方程(有答案)
![第22章《二次函数》讲义 第8讲 二次函数与方程(有答案)](https://img.taocdn.com/s3/m/2334faaa680203d8ce2f24f3.png)
第3讲 二次函数与方程、不等式1.一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2.顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3.两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). 二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.(1)、a+b+c 的符号:由x=1时抛物线上的点的位置确定:点在x 轴上方,则a+b+c 。
点在x 轴下方,则a+b+c 。
点在x 轴上,则a+b+c 。
(2)、a-b+c 的符号:由x=-1时抛物线上的点的位置确定:点在x 轴上方,则a -b+c 。
点在x 轴下方,则a -b+c 。
点在x 轴上,则a -b+c 。
(3)、2a±b 的符号: 由对称轴与X=1或X=-1的位置相比较的情况决定. (4)、b 2-4ac 的符号由抛物线与x 轴交点的个数确定:2个交点,b 2-4ac >0; 1个交点,b 2-4ac=0; 没有交点,b 2-4ac <0.1、二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:①、当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-. ②、当0∆=时,图象与x 轴只有一个交点;③、当0∆<时,图象与x 轴没有交点.(1)当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >;(2)当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <.2、抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3、二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式; ⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标.⑸ 与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母考点1、待定系数法求二次函数解析式例1、已知点A(2,3)在函数y=ax2-x+1的图象上,则a等于()A.-1 B.1 C.2 D.-2例2、若一次函数y=x+m2与y=2x+4的图象交于x轴上同一点,则m的值为()A.m=2 B.m=±2 C.m=D.m=±例3、已知抛物线顶点为(1,3),且与y轴交点的纵坐标为-1,则此抛物线解析式是.例4、已抛物线过点A(-1,0)和B(3,0),与y轴交于点C,且BC=,则这条抛物线的解析式为.例5、二次函数y=2x2+bx+c的图象经过点(2,3),且顶点在直线y=3x-2上,则二次函数的关系式为:.例6、已知二次函数的图象经过点(0,-1)、(1,-3)、(-1,3),求这个二次函数的解析式.并用配方法求出图象的顶点坐标.例7、已知抛物线y=ax2+bx+c的顶点在直线y=x上,且这个顶点到原点的距离为又知抛物线与x轴两交点横坐标之积等于-1,求此抛物线的解析式.1、已知抛物线的顶点坐标是(2,1),且抛物线的图象经过(3,0)点,则这条抛物线的解析式是()A.y=-x2-4x-3 B.y=-x2-4x+3 C.y=x2-4x-3 D.y=-x2+4x-32、已知抛物线y=ax2+bx+c与x轴交点的横坐标的和为-4,积是-5,且抛物线经过点(0,-5),则此抛物线的解析式为( C )A.y=x2-4x-5 B.y=-x2+4x-5 C.y=x2+4x-5 D.y=-x2-4x-53、已知二次函数y=x2+bx+c的图象过A(c,0),对称轴为直线x=3,则此二次函数解析式为.4、抛物线y=ax2+bx+c中,已知a:b:c=l:2:3,最小值为6,则此抛物线的解析式为.5、已知y与x2+2成正比例,且当x=1时,y=6.(1)求y与x之间的函数关系式;(2)若点(a,12)在函数图象上,求a的值.6、如图,抛物线y=2+bx-2与x轴交于A、B两点,与y轴交于C点,且A(-1,0).(1)求抛物线的解析式及顶点D的坐标;(2)若将上述抛物线先向下平移3个单位,再向右平移2个单位,请直接写出平移后的抛物线的解析式.考点2、函数与方程例1、如果抛物线y=x2+(k-1)x+4与x轴有且只有一个交点,那么正数k的值是()A.3 B.4 C.5 D.6例2、二次函数y=ax2+bx的图象如图,若一元二次方程ax2+bx+m=0有实数根,则以下关于m的结论正确的是()A.m的最大值为2 B.m的最小值为-2C.m是负数D.m是非负数例3、设抛物线y=x2+kx+4与x轴有两个不同的交点(x1,0),(x2,0),则下列结论中,一定成立的是()A.x12+x22=17 B.x12+x22=8 C.x12+x22<17 D.x12+x22>8例4、已知抛物线y=x2-2ax+a+2的顶点在x轴上,则方程的实数根的积为.☆例5、已知关于x的方程mx2-(3m-1)x+2m-2=0.(1)求证:无论m取任何实数时,方程恒有实数根;(2)若m为整数,且抛物线y=mx2-(3m-1)x+2m-2与x轴两交点间的距离为2,求抛物线的解析式;(3)若直线y=x+b与(2)中的抛物线没有交点,求b的取值范围.1、抛物线y=x2-2x-3与坐标轴的交点个数为()A.0个B.1个C.2个D.3个2、如图所示,抛物线y=ax2+bx+c与两坐标轴的交点分别是A、B、E,且△ABE是等腰直角三角形,AE=BE,则下列关系式中不能成立的是()A.b=0 B.S△ABE=c2 C.ac=-1 D.a+c=03、二次函数y=ax2+bx+c的图象与x轴相交于(-1,0)和(5,0)两点,则该抛物线的对称轴是.4、已知抛物线y=x2+kx+4-k交x轴于整点A、B,与y轴交于点C,则△ABC的面积为.5、已知关于x的函数y=ax2+x+1(a为常数)(1)若函数的图象与x轴恰有一个交点,求a的值;(2)若函数的图象是抛物线,且顶点始终在x轴上方,求a的取值范围.考点3、二次函数与不等式(组)例1、如图,是二次函数和一次函数y2=mx+n的图象,观察图象,写出y1>y2时x的取值范围是()A.-2<x<1 B.x<-2或x>1 C.x>-2 D.x<1例2、若函数y=mx2+mx+m-2的值恒为负数,则m取值范围是()例3、已知二次函数y=ax2+bx+c(a≠0)的顶点坐标(1,3)及部分图象(如图所示),其中图象与横轴的正半轴交点为(3,0),由图象可知:①当x 时,函数值随着x的增大而减小;②关于x的一元二次不等式ax2=bx+c>0的解是.例4、如图,已知二次函数y1=ax2+bx+c与一次函数y2=kx+m的图象相交于 A(-2,4)、B(8,2)两点,则能使关于x的不等式ax2+(b-k)x+c-m>0成立的x的取值范围是.例5、如图,直线y=x+m和抛物线y=x2+bx+c都经过点A(2,0),B(5,3).(1)求m的值和抛物线的解析式;(2)求不等式ax2+bx+c≤x+m的解集(直接写出答案);(3)若抛物线与y轴交于C,求△ABC的面积.1、抛物线y=ax2+bx+c(a>0)和直线y=mx+n(m≠0)相交于两点P(-1,2),Q(3,5),则不等式-ax2+mx+n>bx+c的解集是()A.x<-1 B.x>3 C.-1<x<3 D.x<-1或x>32、已知:二次函数y=x2-4x+a,下列说法中错误的个数是()①当x<1时,y随x的增大而减小②若图象与x轴有交点,则a≤4③当a=3时,不等式x2-4x+a>0的解集是1<x<3④若将图象向上平移1个单位,再向左平移3个单位后过点(1,-2),则a=-3.A.1 B.2 C.3 D.43、直线y=-3x+2与抛物线y=x24、已知函数y=x2-2x-3的图象,根据图象回答下列问题.(1)当x取何值时y=0.(2)方程x2-2x-3=0的解是什么?(3)当x取何值时,y<0?当x取何值时,y>0?(4)不等式x2-2x-3<0的解集是什么?5、如图,二次函数的图象与x轴交于A、B 两点,与y轴交于点C,且点B的坐标为(1,0),点C的坐标为(0,-3),一次函数y2=mx+n的图象过点A、C.(1)求二次函数的解析式;(2)求二次函数的图象与x轴的另一个交点A的坐标;(3)根据图象写出y2<y1时,x的取值范围.1、一抛物线和抛物线y=-2x2的形状、开口方向完全相同,顶点坐标是(-1,3),则该抛物线的解析式为()A.y=-2(x-1)2+3 B.y=-(2x+1)2+3C.y=-2(x+1)2+3 D.y=-(2x-1)2+32、已知关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根是1,-1,给出下列结论:①a+b+c=0;②b=0;③a=1.c=-1.其中正确的是()A.①②B.①③C.②③D.①②③3、已知:二次函数y=x2-4x-a,下列说法中错误的个数是()①若图象与x轴有交点,则a≤4②若该抛物线的顶点在直线y=2x上,则a的值为-8③当a=3时,不等式x2-4x+a>0的解集是1<x<3④若将图象向上平移1个单位,再向左平移3个单位后过点(1,-2),则a=-1⑤若抛物线与x轴有两个交点,横坐标分别为x1、x2,则当x取x1+x2时的函数值与x取0时的函数值相等.A.1 B.2 C.3 D.44、二次函数y=ax2+bx+c的图象如图所示,则这个二次函数的关系式为,5、如图是抛物线y=ax2+bx+c的一部分,其对称轴为直线x=1.若抛物线与x轴一个交点为A(3,0),则由图象可知,不等式ax2+bx+c≥0的解集是:.6、若关于x的方程3x2+5x+11m=0的一个根大于2,另一根小于2,则m的取值范围是.7、如图,已知二次函数y1=ax2+bx+c与一次函数y2=kx+m的图象相交于点A(-2,4),B(8,2),则能使y1<y2成立的x的取值范围是.8、已知点(2,5),(4,5)是抛物线y=ax2+bx+c上的两点,则这条抛物线的对称轴是.9、如图,抛物线y=ax2+bx+c经过A(-4,0)、B(1,0)、C(0,3)三点,直线y=mx+n经过A(-4,0)、C(0,3)两点.(1)写出方程ax2+bx+c=0的解;(2)若ax2+bx+c>mx+n,写出x的取值范围.10、已知抛物线y=ax2+bx+c经过点A(-1,0),且经过直线y=x-3与x轴的交点B及与y轴的交点C.(1)求抛物线的解析式;(2)求抛物线的顶点坐标.11、如图,已知O为坐标原点,∠AOB=30°,∠ABO=90°,且点A的坐标为(2,0).(1)求直线AB的解析式;(2)若二次函数y=ax2+bx+c的图象经过A、B、O三点,求此二次函数的解析式;(3)结合(1)(2)及图象,直接写出使一次函数的值大于二次函数的值的x的取值范围.1、若x1,x2(x1<x2)是方程(x-a)(x-b)=1(a<b)的两个根,则实数x1,x2,a,b的大小关系为()A.x1<x2<a<b B.x1<a<x2<bC.x1<a<b<x2 D.a<x1<b<x22、已知直线与x轴交于点A,与y轴交于点B,C是x轴上一点,如果∠ABC=∠ACB,求:(1)点C的坐标;(2)图象经过A、B、C三点的二次函数的解析式.3、在直角坐标平面内,二次函数图象的经过A(-1,0)、B(3,0),且过点C(0,3).(1)求该二次函数的解析式;(2)若P是该抛物线上一点,且△ABC与△ABP面积相同,求P的坐标.1、抛物线y=x2-mx+m-2与x轴交点的情况是()A.无交点B.一个交点C.两个交点D.无法确定2、已知函数y=ax2+bx+z的图象如图所示,那么函数解析式为()A.y=-x2+2x+3 B.y=x2-2x-3 C.y=-x2-2x+3 D.y=-x2-2x-33、如图,已知直线y=kx+b(k>0)与抛物线y=x2交于A、B两点(A、B两点分别位于第二和第一象限),且A、B两点的纵坐标分别是1和9,则不等式x2-kx-b>0的解集为()A.-1<x<3 B.x<-1或x>3C.1<x<9 D.x<1或x>9(2)(3)4、已知二次函数y=2x2-(4k+1)x+2k2-1的图象与x轴交于两个不同的点,则关于x的一元二次方程2x2-(4k+1)x+2k2-1=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.无法确定5、已知一条抛物线经过E(0,10),F(2,2),G(4,2),H(3,1)四点,选择其中两点用待定系数法能求出抛物线解析式的为()A.E,F B.E,G C.E,H D.F,G6、已知抛物线y=(m-1)x2+x+1与x轴有交点,则m范围是.7、已知二次函数的图象关于直线x=3对称,最大值是0,在y轴上的截距是-1,这个二次函数解析式为.8、如图,是二次函数y=ax2+bx+c(a≠0)的图象的一部分,给出下列命题:①abc<0;②b>2a;③a+b+c=0④ax2+bx+c=0的两根分别为-3和1;⑤8a+c>0.其中正确的命题是.9、如图二次函数y=ax2+bx+c的图象经过A、B、C三点.(1)观察图象,写出A、B、C三点的坐标,并求出抛物线解析式;(2)观察图象,当x取何值时,y<0?y=0?y>0?10、已知函数y=ax2+bx+c的图象如图所示,试根据图象回答下列问题:(1)求出函数的解析式;(2)写出抛物线的对称轴方程和顶点坐标?(3)当x取何值时y随x的增大而减小?(4)方程ax2+bx+c=0的解是什么?(5)不等式ax2+bx+c>0的解集是什么?11、如图,抛物线y=-x2+3x-n经过点C(0,4),与x轴交于两点A、B.(1)求抛物线的解析式;(2)若点P是抛物线上位于x轴上方的一个动点,求△ABP面积的最大值.12、如图,△AOB是边长为2的等边三角形,过点A的直线y=点E.(1)求点E的坐标;(2)求过A、O、E三点的抛物线的解析式.参考答案第8讲二次函数与方程、不等式考点1、待定系数法求二次函数解析式例1、B例2、D例3、例4、例5、例6、例7、1、D2、C3、4、5、6、考点2、函数与方程例1、C例2、A例3、D例4、例5、解:(1)证明:分两种情况讨论.①当m=0时,方程为x-2=0,∴x=2,方程有实数根;②当m≠0,则一元二次方程的根的判别式△=[-(3m-1)]2-4m(2m-2)=9m2-6m+1-8m2+8m=m2+2m+1=(m+1)2∴不论m为何实数,△≥0成立,∴方程恒有实数根;综合①、②,可知m取任何实数,方程mx2-(3m-1)x+2m-2=0恒有实数根.(2)设x1,x2为抛物线y=mx2-(3m-1)x+2m-2与x轴交点的横坐标.令y=0,则mx2-(3m-1)x+2m-2=0∴抛物线y=mx2-(3m-1)x+2m-2不论m为任何不为0的实数时恒过定点(2,0).∵|x1-x2|=2,∴|2-x2|=2,当m=1时,y=x2-2x,把(2,0)代入,左边=右边,m=1符合题意,∴抛物线解析式为y=x2-2x答:抛物线解析式为y=x2-2x;1、D2、D3、4、5、考点3、二次函数与不等式(组)例1、B例2、C例3、例4、例5、1、C2、A3、4、5、1、C2、A3、B4、5、6、7、8、9、10、11、1、C2、3、1、C2、A3、B4、B5、C6、7、8、9、10、11、12、31。
《二次函数》知识点梳理与总结
![《二次函数》知识点梳理与总结](https://img.taocdn.com/s3/m/3994d371b80d6c85ec3a87c24028915f804d8497.png)
《二次函数》知识点梳理与总结
一、定义
二次函数是一类二元多项式函数,其一般形式如下:
f(x)=ax2+bx+c
其中a≠0,且a,b,c为常数。
它是一阶导数连续可微的函数。
二、性质
1.二次函数的图象是一个双曲线,其有两条对称轴,分别为y轴和其他对称轴,其上还有一个坐标原点称为顶点。
2.关于y轴的对称性:f(-x)=f(x)
3.关于其他对称轴的对称性:f(x+b/2a)=f(x-b/2a)
4.关于顶点:顶点坐标为(-b/2a,f(-b/2a))
5.当a>0时,双曲线凹,即顶点在第四象限。
6.当a<0时,双曲线凸,即顶点在第一象限。
7.函数的单调性:除两端点外,双曲线上任一点,函数值都在顶点极值线的两侧。
8.二次函数的极值:极值点在二次函数在顶点处,y值为f(-b/2a) 9.函数的凹凸:当a>0时,双曲线是凹函数;当a<0时,双曲线是凸函数。
三、解法
1.利用顶点标准格式求二次函数的顶点:
顶点坐标:(-b/2a,f(-b/2a))
2.利用极值定理求二次函数的极值:
极值点在二次函数在顶点处,y值为f(-b/2a)
3.利用对称性求双曲线的轴的对称性:
1)关于y轴的对称性:f(-x)=f(x)
2)关于其他对称轴的对称性:f(x+b/2a)=f(x-b/2a)。
第二十二章《二次函数》知识点总结人教版数学九年级上册
![第二十二章《二次函数》知识点总结人教版数学九年级上册](https://img.taocdn.com/s3/m/3ea4bec8bdeb19e8b8f67c1cfad6195f312be890.png)
《二次函数》知识点总结【知识点1 二次函数的表达式】1. 一般式: . 顶点坐标: . 对称轴: .2. 顶点式: .顶点坐标: . 对称轴: . 【知识点2 二次函数的图象与性质】 1. 二次项系数a 决定抛物线的 开口方向 ;①当0>a 时,抛物线的 ; ②当0<a 时,抛物线的 ; ③ ||a 越大,抛物线的开口 .3.常数项c 决定抛物线 与y 轴 交点的位置 . ①当0=c ,抛物线与y 轴交于 ; ②当0>c ,抛物线与y 轴交于 ; ③当0<c ,抛物线与y 轴交于 .5.根据a 、b 、c 的符号,画出二次函数的草图:①已知 a <0、b <0、c <0 ②已知 a>0、b <0、c >0 6.描述下面二次函数c bx ax y ++=2的增减性: 【知识点3 抛物线与坐标轴的交点】 1. 抛物线c bx ax y ++=2与x 轴的交点个数,即02=++c bx ax . ①当 ,抛物线与x 轴有两个交点; ②当 ,抛物线与x 轴有1个交点; ③当 ,抛物线与x 轴有没有交点;2.求抛物线c bx ax y ++=2与x 轴的交点的过程: 3.求抛物线c bx ax y ++=2与y 轴的交点的过程:4.函数 y = ax 2 + bx + c 的图象如图,那么 ①方程 ax 2 + bx + c =2 的根是 ______________;2.系数a 和b 共同决定抛物线 对称轴的位置 . ①a 和b 同号,对称轴在原点的 ; ②a 和b 异号, .4.根据图象判断出a 、b 、c 的符号:方法总结:第一步:求出对称轴;第二步:用箭头在对称轴两侧标出上升和下降;第三步:描述增减性.①当 时,随的增大而减小; ②当 时, 随的增大而增大;∵轴上的点, 为零,∴ . ∵轴上的点, 为零,∴ .②不等式 ax 2 + bx + c >0 的解集是 ___________; ③不等式 ax 2 + bx + c <2 的解集是 _________.④ a + b + c 0 ,4a 2 b + c 0 , 9a +3 b + c 0 .【知识点4 抛物线的平移】二次函数 y = ax 2 + bx + c 的平移口诀:“上下平移, ;左右平移, .” 【 * *知识点5 抛物线的对称 ** 】抛物线c bx ax y ++=2关于x 轴对称的解析式为 . 抛物线c bx ax y ++=2关于y 轴对称的解析式为 . 【 * *知识点6 二次函数图象的画法 ** 】 画出二次函数3-2-2x x y =的的图象.【典型例题 】1.m2+1+2x −是二次函数,则m 的值为( )C. −1D. 1或−12.【求顶点坐标 】抛物线y =2(x −3)4的顶点坐标是( ) A. (3,4)B. (−3,4)C. (3,−4)D. (2,4)3.【与坐标轴的交点 】抛物线y =−x 2+4x −4与坐标轴的交点个数为( ) A. 0B. 1C. 2D. 34.【平移】将函数y =x 2的图象用下列方法平移后,所得的图象不经过点A(1,4)的方法是( ) A. 向左平移1个单位 B. 向右平移3个单位C. 向上平移3个单位D. 向下平移1个单位5.【平移】抛物线y =x 2+6x +7可由抛物线y =x 2如何平移得到的( )A. 先向左平移3个单位,再向下平移2个单位B. 先向左平移6个单位,再向上平移7个单位C. 先向上平移2个单位,再向左平移3个单位D. 先向右平移3个单位,再向上平移2个单位 6.【图象与性质】对于抛物线y =−3(x +1)2−2,下列说法正确的是( ) A. 抛物线开口向上 B. 当x >−1时,y 随x 的增大而减小 C. 函数最小值为−2D. 顶点坐标为(1,−2)7.【增减性】已知(−3,y 1),(−1,y 2),(2,y 3)是抛物线y =−3x 2+6x +m 上的三个点.则( ) A. y 1<y 3<y 2B. y 3<y 2<y 1C. y 1<y 2<y 3D. y 2<y 1<y 38.【最值】已知二次函数y=x2−4x+2,关于该函数在−1≤x≤3的取值范围内,下列说法正确的是( )A. 有最大值−1,有最小值−2B. 有最大值0,有最小值−1C. 有最大值7,有最小值−1D. 有最大值7,有最小值−29.【系数与图象】二次函数y=ax2+bx+c(a≠0)与一次函数y=ax+c在同一坐标系中的图象大致为( )A. B. C. D.10.【求解析式】如图所示,已知二次函数y=ax2+bx+c的图象,求二次函数的解析式.11.如图,已知二次函数y=ax2−4x+c的图象经过点A(−1,−1)和点B(3,−9).(1)求该二次函数的解析式、对称轴及顶点坐标;(2)点C是抛物线与x轴的一个交点,点D是抛物线与y轴的交点,求三角形ACD 的面积;(3)已知点M(x1,y1)和N(1+x1,y2)在抛物线对称轴的右侧,判段y1和y2的大小.12.在运动会比赛时,九年级的一名男同学推铅球,已知铅球经过的路线是某二次函数图象的一部分(如图所示),如果这名男同学的出手处A点的坐标为(0,2),铅球路线的最高处B点的坐标为(6,5).(1)求出这个二次函数的解析式;(2)请求出这名男同学比赛时的成绩?13.如图是抛物线形拱桥,当拱顶离水面2m时,水面宽4m.(1)建立平面直角坐标系,求抛物线的解析式;(2)如果水面下降1m,则水面宽度是多少米?14.某商场一种商品的进价为每件30元,售价为每件50元.每天可以销售48件,为尽快减少库存,商场决定降价促销.(1)若该商品连续两次下调相同的百分率后售价降至每件40.5元,求两次下降的百分率;(2)经调查,若该商品每降价2元,每天可多销售16件,那么每天要想获得最大利润,每件售价应多少元?最大利润是多少?。
22《二次函数》章节核心知识点分类整合
![22《二次函数》章节核心知识点分类整合](https://img.taocdn.com/s3/m/0c0f26f5fd0a79563d1e721e.png)
21 一元二次方程核心知识点分类整合【知识网络】【要点梳理】1.二次函数的解析式的几种形式:(1)y=ax2;(2)y=ax2+bx;(3)y=ax2+c; (4)y=ax2+bx+c;(5) y=a(x-h)2; (6)y-a(x-h)2+k;(7))y=a(x-x1)(x-x2).2.抛物线y=ax2+bx+c的对称轴是直线x=-b2a ,顶点坐标公式是(-b2a,4ac−b24a)3.抛物线y=ax2+bx+c,当a>0时,开口向上,在对称轴的左侧y随x的增大而减小,在对称轴的右侧y随x的的增大而增大,当x=-b2a时,y有最小4ac−b24a;当a<0时,开口向下,在对称轴的左侧y随x的增大而增大,在对称轴的右侧y随x的增大而减小,当x=-b2a时,y有最大值4ac−b24a。
4.抛物线y=ax2+bx+c与x轴的交点个数与一元二次方程ax2+bx+c=0的根的情况有关,该一元二次方程的两根就是抛物线与x轴交点的横坐标.知识方法专题类型一单个图象的位置特征例1:[中考·深圳】二次函数y=ax2+bx+c的图象如图22-1,给出以下结论:①a>0,②b>0,③c<0,④b2-4ac>o,其中有正确结论的序号是( )A.②④ B.①③C.③④ D. ①② ③类型二两个图象之间的位置变换例2:【中考·荆州]将抛物线)y= X2-2x+3向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线的解析式为( )A.y=(x-1)2+4 B.y=(x-4)2+4C.y=(x+2)2+6 D.Y=(x-4)2+6例3:[中考·常州]已知二次函数y=X2+(m-1)x+1,当x>1时,y随x的增大而增大,则m的取值范围是( )A.m=-1 B. m=3 C.m≤-1 D.m≥-1 类型一根据两个变量之间的关系求解析式例4:如图22-2,已知抛物线y=—12x2+bx+c与坐标轴分别交于点A(0,8),B(8,0)和点E,动点C从原点D开始沿OA方向以每秒1个单位长度的速度移动,动点D从点且开始沿BO方向以每秒1个单位长度的速度移动,动点C,D同时出发i当动点D到达原点D时,点C,D停止运动。
第22章 二次函数 核心素养整合与提升-2022-2023学年九年级全一册初三数学(人教版)
![第22章 二次函数 核心素养整合与提升-2022-2023学年九年级全一册初三数学(人教版)](https://img.taocdn.com/s3/m/c8a5b8c28662caaedd3383c4bb4cf7ec4afeb623.png)
第22章二次函数核心素养整合与提升-2022-2023学年九年级全一册初三数学(人教版)一、知识点概述本章主要学习二次函数的相关内容,包括二次函数的定义、性质、图像与图像的性质、二次函数的应用等。
二、核心素养整合在学习二次函数的过程中,我们将综合运用多个核心素养,包括数学思维能力、空间想象能力、模型构建能力等。
通过学习和应用二次函数的知识,我们可以提升这些核心素养,培养我们的数学思维能力和创新意识。
1. 数学思维能力在学习二次函数的过程中,我们需要通过分析问题、建立数学模型、运用数学知识等方式来解决实际问题。
这要求我们具备良好的数学思维能力,包括观察力、分析能力、抽象思维能力等。
通过学习二次函数的相关知识,我们可以提升这些数学思维能力,更好地应用数学知识解决实际问题。
2. 空间想象能力二次函数的图像是一个抛物线,对于抛物线的形状和位置,我们需要具备较好的空间想象能力。
通过观察和研究二次函数的图像,我们可以培养和提升空间想象能力,更好地理解和应用二次函数。
3. 模型构建能力二次函数可以用来描述很多实际问题,比如物体的运动轨迹、经济问题中的成本与利润等。
在应用二次函数解决问题时,我们需要将问题抽象为数学模型,并进行求解。
这要求我们具备良好的模型构建能力,能够将实际问题转化为数学问题,并运用数学方法解决。
通过学习和应用二次函数的知识,我们可以提升这一核心素养,培养问题解决能力和创新意识。
三、核心素养提升实例实例:抛物线的运动轨迹某物体从地面上垂直向上抛出,其高度与时间的关系可以用二次函数描述。
假设物体在抛出后 t 秒的高度为 h 米,则有关系式 h = -5t² + 10t + 1。
现在我们来分析这个关系式的含义,并利用它回答以下问题:1.物体的初速度是多少?物体的初速度可以通过关系式 h = -5t² + 10t + 1 推导得出。
假设物体在t = 0 时的高度为 h0 米,则有 h0 = -5 × 0² + 10 × 0 + 1,解得 h0 = 1。
第22章二次函数全章知识点归纳总结人教版九年级数学上册
![第22章二次函数全章知识点归纳总结人教版九年级数学上册](https://img.taocdn.com/s3/m/e18836e67e192279168884868762caaedd33ba82.png)
初三上学期二次函数全章知识点归纳总结【例1】下列函数是二次函数的有()①y=(x+1)2﹣x2;②y=﹣3x2+5;③y=x3﹣2x;④y=x2−1x+3.A.1个B.2个C.3个D.4个【变式11】下列函数中,是二次函数的有()①y=√x2+2;②y=﹣x2﹣3x;③y=x(x2+x+1);④y=11+x2;⑤y=﹣x+x2.A.1个B.2个C.3个D.4个【例2】若y=(a+1)x|a+3|﹣x+3是关于x的二次函数,则a的值是()A.1B.﹣5C.﹣1D.﹣5或﹣1【变式21】函数y=(a﹣5)x a2+4a+5+2x﹣1,当a=时,它是一次函数;当a=时,它是二次函数.【例3】关于函数y=(500﹣10x)(40+x),下列说法不正确的是()A.y是x的二次函数B.二次项系数是﹣10C.一次项是100D.常数项是20000【例4】下列具有二次函数关系的是()A.正方形的周长y与边长x B.速度一定时,路程s与时间tC.正方形的面积y与边长x D.三角形的高一定时,面积y与底边长x【例5】某种商品的价格是2元,准备进行两次降价.如果每次降价的百分率都是x,经过两次降价后的价格y(单位:元)随每次降价的百分率x的变化而变化,则y关于x的函数解析式是()A.y=2(x+1)2B.y=2(1﹣x)2C.y=(x+1)2D.y=(x﹣1)2【变式51】据省统计局公布的数据,合肥市2021年第一季度GDP总值约为2.4千亿元人民币,若我市第三季度GDP总值为y千亿元人民币,平均每个季度GDP增长的百分率为x,则y关于x的函数表达式是()A.y=2.4(1+2x)B.y=2.4(1﹣x)2C.y=2.4(1+x)2D.y=2.4+2.4(1+x)+2.4(1+x)【例1】用配方法将下列函数化成y=a(x+h)2+k的形式,并指出抛物线的开口方向,对称轴和顶点坐标.(1)y=12x2﹣2x+3;(2)y=(1﹣x)(1+2x).【变式11】把下列二次函数化成顶点式,即y=a(x+m)2+k的形式,并写出他们顶点坐标及最大值或最小值.(1)y=﹣2x﹣3+12x2(2)y=﹣2x2﹣5x+7【变式12】用配方法可以解一元二次方程,还可以用它来解决很多问题例如:因为5a2≥0,所以5a2+1≥1,即:当a=0时,5a2+1有最小值1.同样,因为﹣5(a2+1)≤0,所以﹣5(a2+1)+6≤6有最大值1,即当a=1时,﹣5(a2+1)+6有最大值6.(1)当x=时,代数式﹣3(x﹣2)2+4有最(填写大或小)值为.(2)当x=时,代数式﹣x2+4x+4有最(填写大或小)值为.(3)矩形花园的一面靠墙,另外三面的栅栏所围成的总长度是14m,当花园与墙相邻的边长为多少时,花园的面积最大?最大面积是多少?利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点. 【例2】已知二次函数y =ax 2+bx +c 中,函数y 与自变量x 的部分对应值如下表:x … 0 1 2 3 4 … y…52125…(1)求该二次函数的表达式; (2)当x =6时,求y 的值;(3)在所给坐标系中画出该二次函数的图象.【变式21】如图,已知二次函数y =−12x 2+bx +c 的图象经过A (2,0)、B (0,﹣6)两点. (1)求这个二次函数的解析式;(2)求该二次函数图象的顶点坐标、对称轴以及二次函数图象与x 轴的另一个交点; (3)在右图的直角坐标系内描点画出该二次函数的图象及对称轴. 【知识点3 二次函数的图象与各系数之间的关系】在y 轴的右侧则0<ab ,概括的说就是“左同右异” ③常数项c :总结起来,c 决定了抛物线与y 轴交点的位置. 【知识点4 二次函数图象的平移变换】 (1)平移步骤:变式21例2①将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ①保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【例4】把抛物线y =ax 2+bx +c 的图象先向右平移2个单位,再向上平移2个单位,所得的图象的解析式是y =(x ﹣3)2+5,则a +b +c = .【变式41】要得到函数y =﹣(x ﹣2)2+3的图象,可以将函数y =﹣(x ﹣3)2的图象( ) A .向右平移1个单位,再向上平移3个单位 B .向右平移1个单位,再向下平移3个单位 C .向左平移1个单位,再向上平移3个单位 D .向左平移1个单位,再向下平移3个单位 【知识点5 二次函数图象的对称变换】 (1)关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;(2)关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;(3)关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; (4)关于顶点对称(即:抛物线绕顶点旋转180°)()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.向上 向下【例1】已知二次函数y =x 2﹣2x ﹣3的自变量x 1,x 2,x 3对应的函数值分别为y 1,y 2,y 3.当﹣1<x 1<0,1<x 2<2,x 3>3时,y 1,y 2,y 3三者之间的大小关系是( ) A .y 1<y 2<y 3B .y 2<y 3<y 1C .y 3<y 1<y 2D .y 2<y 1<y 3【例2】在二次函数y =﹣x 2+bx +c 中,函数y 与自变量x 的部分对应值如下表:则m 、n 的大小关系为x … ﹣1 1 3 4 … y … ﹣6m n﹣6…A .m <nB .m >nC .m =nD .无法确定0a >0a <【变式21】二次函数y=ax2+bx+c(a≠0)中x,y的部分对应值如下表:x…﹣2﹣1012…y…0﹣4﹣6﹣6﹣4…则该二次函数图象的对称轴为()A.y轴B.直线x=12C.直线x=1D.直线x=32【知识点1 二次函数图象与x轴的交点情况决定一元二次方程根的情况】二次函数的图象【例1】抛物线y=(x﹣x1)(x﹣x2)+mx+n与x轴只有一个交点(x1,0).下列式子中正确的是()A.x1﹣x2=m B.x2﹣x1=m C.m(x1﹣x2)=n D.m(x1+x2)=n【变式11】抛物线y=x2+2x﹣3与坐标轴的交点个数有()A.0个B.1个C.2个D.3个【例2】二次函数与一元二次方程有着紧密的联系,一元二次方程问题有时可以转化为二次函数问题.请你根据这句话所提供的思想方法解决如下问题:若s,t(s<t)是关于x的方程1+(x﹣m)(x﹣n)=0的两根,且m<n,则m,n,s,t的大小关系是()A.s<m<n<t B.m<s<n<t C.m<s<t<n D.s<m<t<n【知识点1 解二次函数的实际应用问题的一般步骤】审:审清题意,弄清题中涉及哪些量,已知量有几个,已知量与变量之间的基本关系是什么,找出等量关系(即函数关系);设:设出两个变量,注意分清自变量和因变量,同时还要注意所设变量的单位要准确;列:列函数解析式,抓住题中含有等量关系的语句,将此语句抽象为含变量的等式,这就是二次函数;解:按题目要求结合二次函数的性质解答相应的问题;检:检验所得的解,是否符合实际,即是否为所提问题的答案;答:写出答案.【例1】为优化迪荡湖公园的灯光布局,需要在一处岸堤(岸堤足够长)为一边,用总长为80m的灯带在湖中围成了如图所示的①②③三块灯光喷泉的矩形区域,且要求这三块矩形区域的面积相等.设BC的长度为xm,矩形区域ABCD的面积为ym2.(1)求y与x之间的函数关系式,并注明自变量x的取值范围;(2)x为何值时,y有最大值?最大值是多少?【变式11】爱动脑筋的小明在学过用配方法解一元二次方程后,他发现二次三项式也可以配方,从而解决一些问题.例如:x2﹣6x+10=(x2﹣6x+9﹣9)+10=(x﹣3)2﹣9+10=(x﹣3)2+1≥1;因此x2﹣6x+10有最小值是1,只有当x=3时,才能得到这个式子的最小值1.同样﹣3x2﹣6x+5=﹣3(x2+2x+1﹣1)+5=﹣3(x+1)2+8,因此﹣3x2﹣6x+5有最大值是8,只有当x=﹣1时,才能得到这个式子的最小值8.(1)当x=时,代数式﹣2(x﹣3)2+5有最大值为.(2)当x=时,代数式2x2+4x+3有最小值为.(3)矩形自行车场地ABCD一边靠墙(墙长10m),在AB和BC边各开一个1米宽的小门(不用木板),现有能围成14m长的木板,当AD长为多少时,自行车场地的面积最大?最大面积是多少?【例2】如图,在矩形ABCD中,AB=12cm,BC=9cm.P、Q两点同时从点B、D出发,分别沿BA、DA 方向匀速运动(当P运动到A时,P、Q同时停止运动),已知P点的速度比Q点大1cm/s,设P点的运动时间为x秒,△P AQ的面积为ycm2,(1)经过3秒△P AQ的面积是矩形ABCD面积的1时,求P、Q两点的运动速度分别是多少?3(2)以(1)中求出的结论为条件,写出y与x的函数关系式,并求出自变量x的取值范围.【变式31】廊桥是我国古老的文化遗产,如图,是某座抛物线型的廊桥示意图.已知水面AB宽40米,抛物线最高点C到水面AB的距离为10米,为保护廊桥的安全,在该抛物线上距水面AB高为8米的点E,F处要安装两盏警示灯,求这两盏灯的水平距离EF.(结果保留根号)。
人教版数学九年级上册 第二十二章《二次函数》章节知识点归纳总结
![人教版数学九年级上册 第二十二章《二次函数》章节知识点归纳总结](https://img.taocdn.com/s3/m/2585ac4c52d380eb63946d4b.png)
《二次函数》章节知识点归纳总结一、二次函数概念:1.二次函数的概念:(1)一般地,形如2y ax bx c =++(a b c ,,是常数,a ≠0)的函数,叫做二次函数。
(2)这里需要强调:和一元二次方程类似,二次项系数a ≠0,而b c ,可以为零.二次函数的定义域(x)是全体实数.2. 二次函数 2y ax bx c =++ 的结构特征:(1)等号左边是函数,右边是关于自变量x的二次式,x 的最高次数是2.(2)a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.3. 二次函数解析式的几种形式(1)一般式:y=ax 2+bx+c (a ,b ,c 为常数,a ≠0) (2)顶点式:y=a(x-h)2+k [抛物线的顶点P ( h ,k )](3)交点式:y=a(x-x 1)(x-x 2)[仅限于与x 轴有交点A (x 1,0)和 B (x 2,0)的抛物线]其中x 1,x 2是抛物线与x 轴的交点的横坐标,即一元二次方程ax 2+bx+c =0的两个根,a ≠0. x 1,x 2 = (-b ±ac 4b 2-)/2a 在三种形式的互相转化中,有如下关系:h= -b / 2a ; k=(4ac-b 2) / 4a ; x 1,x 2 = (-b ±ac 4b 2-) / 2a说明:(1)任何一个二次函数通过配方都可以化为顶点式y =a(x-h)2+k ,抛物线的顶点坐标是(h,k);(2) 当h =0时,抛物线y =ax 2+k 的顶点在y 轴上;当k =0时,抛物线a(x-h)2的顶点在x 轴上;当h =0且k =0时,抛物线y =ax 2的顶点在原点;(3) 如果图像经过原点,并且对称轴是y 轴,则设y=ax 2;如果对称轴是y 轴,但不过原点,则设y=ax 2+k4、抛物线的性质: (1).抛物线是轴对称图形。
对称轴为直线 x = -b/2a 。
《二次函数》全章知识点梳理
![《二次函数》全章知识点梳理](https://img.taocdn.com/s3/m/038603de31b765ce0408143b.png)
《二次函数》全章复习与巩固—知识讲解(基础)【学习目标】 1.通过对实际问题情境的分析确定二次函数的表达式,并体会二次函数的意义; 2.会用描点法画出二次函数的图象,能从图象上认识二次函数的性质; 3.会根据公式确定图象的顶点、开口方向和对称轴(公式不要求记忆和推导),并能解决简单的实际问题; 4.会利用二次函数的图象求一元二次方程的近似解.【知识网络】【要点梳理】要点一、二次函数的定义一般地,如果是常数,,那么叫做的二次函数.要点诠释:如果y=ax2+bx+c(a,b,c是常数,a≠0),那么y叫做x的二次函数.这里,当a=0时就不是二次函数了,但b、c可分别为零,也可以同时都为零.a 的绝对值越大,抛物线的开口越小.要点二、二次函数的图象与性质1.二次函数由特殊到一般,可分为以下几种形式: ①;②;③;④, 其中;⑤.(以上式子a≠0) 几种特殊的二次函数的图象特征如下:函数解析式开口方向对称轴 顶点坐标 (轴) (0,0) (轴)(0,) (,0)(,)当时开口向上 当时开口向下()2.抛物线的三要素: 开口方向、对称轴、顶点. (1)的符号决定抛物线的开口方向:当时,开口向上;当时,开口向下;相等,抛物线的开口大小、形状相同. (2)平行于轴(或重合)的直线记作.特别地,轴记作直线.3.抛物线20()y ax bx c a =++≠中,,,a b c 的作用: (1)决定开口方向及开口大小,这与中的完全一样. (2)和共同决定抛物线对称轴的位置.由于抛物线的对称轴是直线, 故:①时,对称轴为轴;②(即、同号)时,对称轴在轴左侧;③(即、异号)时,对称轴在轴右侧. (3)的大小决定抛物线与轴交点的位置. 当时,,∴抛物线与轴有且只有一个交点(0,): ①,抛物线经过原点; ②,与轴交于正半轴;③,与轴交于负半轴. 以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在轴右侧,则.4.用待定系数法求二次函数的解析式: (1)一般式:(a≠0).已知图象上三点或三对、的值,通常选择一般式. (2)顶点式:(a≠0).已知图象的顶点或对称轴,通常选择顶点式. (可以看成的图象平移后所对应的函数.) (3)“交点式”:已知图象与轴的交点坐标、,通常选用交点式: (a≠0).(由此得根与系数的关系:).要点诠释:求抛物线2y ax bx c =++(a≠0)的对称轴和顶点坐标通常用三种方法:配方法、公式法、代入法,这三种方法都有各自的优缺点,应根据实际灵活选择和运用.要点三、二次函数与一元二次方程的关系 函数,当时,得到一元二次方程,那么一元二次方程的解就是二次函数的图象与x 轴交点的横坐标,因此二次函数图象与x 轴的交点情况决定一元二次方程根的情况. (1)当二次函数的图象与x 轴有两个交点,这时,则方程有两个不相等实根; (2)当二次函数的图象与x 轴有且只有一个交点,这时,则方程有两个相等实根; (3)当二次函数的图象与x 轴没有交点,这时,则方程没有实根. 通过下面表格可以直观地观察到二次函数图象和一元二次方程的关系:的图象的解方程有两个不等实数解方程有两个相等实数解方程没有实数解要点诠释:二次函数图象与x 轴的交点的个数由的值来确定. (1)当二次函数的图象与x 轴有两个交点,这时,则方程有两个不相等实根; (2)当二次函数的图象与x 轴有且只有一个交点,这时,则方程有两个相等实根; (3)当二次函数的图象与x 轴没有交点,这时,则方程没有实根.要点四、利用二次函数解决实际问题利用二次函数解决实际问题,要建立数学模型,即把实际问题转化为二次函数问题,利用题中存在的公式、内含的规律等相等关系,建立函数关系式,再利用函数的图象及性质去研究问题.在研究实际问题时要注意自变量的取值范围应具有实际意义. 利用二次函数解决实际问题的一般步骤是: (1)建立适当的平面直角坐标系; (2)把实际问题中的一些数据与点的坐标联系起来; (3)用待定系数法求出抛物线的关系式; (4)利用二次函数的图象及其性质去分析问题、解决问题. 要点诠释:常见的问题:求最大(小)值(如求最大利润、最大面积、最小周长等)、涵洞、桥梁、抛物体、抛物线的模型问题等.解决这些实际问题关键是找等量关系,把实际问题转化为函数问题,列出相关的函数关系式.【典型例题】类型一、求二次函数的解析式1.已知二次函数的图象经过原点及点11,24⎛⎫-- ⎪⎝⎭,且图象与x 轴的另一交点到原点的距离为1,则该二次函数的解析式为____ ____. 【答案】 21133y x x =-+或2y x x =+. 【解析】 正确找出图象与x 轴的另一交点坐标是解题关键.由题意知另一交点为(1,0)或(-1,0). 因此所求抛物线的解析式有两种. 设二次函数解析式为2y ax bx c =++.则有0,1114420c a b c a b c =⎧⎪⎪-=-+⎨⎪++=⎪⎩,或0,111,4420,c a b c a b c =⎧⎪⎪-=-+⎨⎪-+=⎪⎩解之13130a b c ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩,或1,1,0.a b c =⎧⎪=⎨⎪=⎩因此所求二次函数解析式为21133y x x =-+或2y x x =+. 【点评] 此题容易出错漏解的错误.举一反三:【高清课程名称:二次函数复习【变式】已知:抛物线y=x 2+bx+c 的对称轴为x=1,交x 轴于点A 、B(A 在B 的左侧),且AB=4,交y 轴于点C.求此抛物线的函数解析式及其顶点M 的坐标. 【答案】∵对称轴x=1,且AB=4∴抛物线与x 轴的交点为:A(-1,0),B(3,0)b b=-212c=-31b c 0⎧-=⎧⎪∴∴⎨⎨⎩⎪-+=⎩ ∴y=x 2-2x-3为所求,∵x=1时y=-4 ∴M(1,-4) ∵对称轴x=1,且AB=4∴抛物线与x 轴的交点为:A(-1,0),B(3,0)b b=-212c=-31b c 0⎧-=⎧⎪∴∴⎨⎨⎩⎪-+=⎩ ∴y=x 2-2x-3为所求, ∵x=1时y=-4 , ∴M(1,-4).类型二、根据二次函数图象及性质判断代数式的符号2.(2015•盘锦)如图是二次函数y=ax 2+bx+c=0(a ≠0)图象的一部分,对称轴是直线x=﹣2.关于下列结论:①ab <0;②b 2﹣4ac >0;③9a ﹣3b+c <0;④b ﹣4a=0;⑤方程ax 2+bx=0的两个根为x 1=0,x 2=﹣4,其中正确的结论有( )A .①③④B . ②④⑤C . ①②⑤D . ②③⑤【答案】B ;【解析】解:∵抛物线开口向下, ∴a <0, ∵﹣=﹣2,∴b=4a ,ab >0,∴①错误,④正确,∵抛物线与x 轴交于﹣4,0处两点,∴b 2﹣4ac >0,方程ax 2+bx=0的两个根为x 1=0,x 2=﹣4,。
人教版九年级数学上册第22章《二次函数》知识小结与复习
![人教版九年级数学上册第22章《二次函数》知识小结与复习](https://img.taocdn.com/s3/m/8399fc2d8f9951e79b89680203d8ce2f01666517.png)
解:(1)∵抛物线过点(3,8),(-1,0),(0,5),
8 则 0
9a 3b c, a b c,
解得
a b
1, 4,
5 c.
c 5.
∴该二次函数关系式为y=-x2+4x+5
(2)顶点M的坐标为(2,9), 对称轴为直线x=2,则B点坐标为(5,0), 过M作MN⊥AB于N,则
S四边形ABMD =S△AOD+S梯形DONM +S△MNB
教学反思
本课时是对本章知识点的全面总结,教学 时,教师注重引导学生回忆知识点并构建知识 结构框图,同时辅以典型例题,复习和巩固所 学知识点,最后教师详细讲解解题思路和分析 过程.
4.已知抛物线y
1 2
x
2
3
x
5 2
.
(1)求抛物线的开口方向、对称轴及顶点坐标;
(2)求抛物线与x轴、y轴的交点坐标;
解:(1)
y
1 2
x
2
3
x
5 2
.
1 2
(
x
3)2
7.
开口:向上,
对称轴:x=3,
顶点坐标:(3,-7).
(2)
0
1 2
(x轴的交点:
(3 14,0),(3 14,0).
ab<0;②b2-4ac>0;③9a-3b+c<0;④b-4a=0;
⑤方程ax2+bx=0的两个根为x1=0, x2=-4. y 其中正确的结论有( B )
A.①③④ B.②④⑤
-4 -2 O
x
C.①②⑤ D.②③⑤
专题训练四 二次函数与一元二次方程的关系
(黑龙江牡丹江中考)已知二次函数y=kx2+(2k-1)x-1与x轴
第22章:二次函数与反比例函数知识点总结
![第22章:二次函数与反比例函数知识点总结](https://img.taocdn.com/s3/m/fa6cd828ed630b1c59eeb588.png)
第22章:二次函数与反比例函数强化记忆知识点知识点1:二次函数的图象与系数的关系.二次函数2y ax bx c =++中图象与系数的关系:(1)二次项系数a 的正负决定开口方向,a 的大小决定开口的大小. a>0时,开口向上,a<0时,开口向下。
a 越大,开口越小。
a 越小,开口越大。
(2)一次项系数b ,在a 确定的前提下,b 决定了抛物线对称轴的位置.若0>ab ,则对称轴a b x 2-=在y 轴左边,若0<ab ,则对称轴a bx 2-=在y 轴的右侧。
若b=0,则对称轴abx 2-==0,即对称轴是y 轴.概括的说就是“左同右异,y 轴0” (3)常数项c ,c 决定了抛物线与y 轴交点的位置.当0c >时,交点在y 轴的正半轴上 ;当0c =时,抛物线经过原点,;当0c <时,交点在y 轴的负半轴上, 简记为“上正下负原点0”(4) △=b 2-4ac 决定了抛物线与x 轴交点的个数. ① 当0∆>时,抛物线与x 轴有两个交点 ② 当0∆=时,抛物线与x 轴只有一个交点; ③ 当0∆<时,抛物线与x 轴没有交点.另外当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <.注:a +b +c 表示x=1时,对应的函数值。
a -b +c 表示x= -1时,对应的函数值.4a +2b +c 表示x=2时,对应的函数值。
9a -3b +c 表示x= -3时,对应的函数值.等知识2:一次函数的图象与系数的关系.一次函数:y=kx +b(k,b 是常数,k≠0) 中图象与系数的关系:(1)走向:k>0,图象经过第一、三象限;k<0,图象经过第二、四象限b>0,图象经过第一、二象限;b<0,图象经过第三、四象限⇔⎩⎨⎧>>00b k 直线经过第一、二、三象限 ⇔⎩⎨⎧<>00b k 直线经过第一、三、四象限 ⇔⎩⎨⎧><00b k 直线经过第一、二、四象限 ⇔⎩⎨⎧<<00b k 直线经过第二、三、四象限 (2)增减性: k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小.(3)截距: 当b>0时,图象交于y 轴正半轴, 当b<0时,图象交于y 轴负半轴,当b=0时,图象交于原点.(4)倾斜度:|k|越大,图象越接近于y 轴;|k|越小,图象越接近于x 轴.知识3:反比例函数的图象与系数的关系以及反比例函数性质. 反比例函数:y =xk(k 为常数,k ≠0)中图象与系数的关系: (1)反比例函数的增减性不连续,在讨论函数增减问题时,必须有“在每一个象限内”这一条件。
第22章 二次函数知识点总结 2023—2024学年人教版数学九年级上册
![第22章 二次函数知识点总结 2023—2024学年人教版数学九年级上册](https://img.taocdn.com/s3/m/b4f2ee735b8102d276a20029bd64783e09127d85.png)
第二十二章二次函数22.1二次函数的图像和性质22.1.1 二次函数知识点一 二次函数的定义1.二次函数的定义:一般地,形如)0a ,,(2≠++=是常数,c b a c bx ax y 的函数,叫做二次函数.2.任何一个二次函数的解析式都可化成)0a ,,(2≠++=是常数,c b a c bx ax y 的形式,因此,把)0a ,,(2≠++=是常数,c b a c bx ax y 叫做二次函数的一般式3.二次函数)0a ,,(2≠++=是常数,c b a c bx ax y 中y x ,是变量,c b a ,,是常量.自变量x 的取值范围是全体实数,b 和c 可以是任意实数,a 必须是不等于 0的实数.知识点二 实际问题中的二次函数22.1.2二次函数2ax y =的图像和性质理解 题意 分析问题中的变量和常量及它们之间的关系列函数 关系式22.1.3二次函数()k h x a y +-=2的图像和性质第一课时 二次函数k ax y +=2的图像和性质第二课时 二次函数()2h x a y -=的图像和性质第三课时 二次函数()k h x a y +-=2的图像和性质22.1.4 二次函数)0a ,,(2≠++=是常数,c b a c bx ax y 的图象和性质第一课时 二次函数c bx ax y ++=2的图象和性质知识点一 二次函数c bx ax y ++=2与()k h x a y +-=2之间的关系 利用二次函数图象平移的规律求平移后的函数的解析式,首先要把函数解析式化为顶点式:()k h x a y +-=2知识点二 二次函数c bx ax y ++=2的图象和性质 1. 二次函数c bx ax y ++=2的图象是一条抛物线,与抛物线2ax y =的形状相同,位置不同,利用配方法可以将c bx ax y ++=2转化成顶点式,即a b ac a b x a c bx ax y 442222-+⎪⎭⎫ ⎝⎛+=++= 2. 二次函数c bx ax y ++=2的性质(1)当0>a 时,抛物线开口向上,对称轴为直线a bx 2-=,顶点坐标为⎪⎪⎭⎫ ⎝⎛--a b ac ab 44,22c bx ax y ++=20>a0<a开口方向 向上 向下对称轴 直线ab x 2-= 直线ab x 2-= 顶点坐标⎪⎪⎭⎫ ⎝⎛--a b ac a b 44,22 ⎪⎪⎭⎫⎝⎛--a b ac a b 44,22 增减性当a b x 2->时,y 随x 的增大而增大;当a b x 2-<时,y 随x 的增大而减小当abx 2->时,y 随x 的增大而减小;当abx 2-<时,y 随x 的增大而增大最值当ab x 2-=时,ab ac y 442-=最小值当ab x 2-=时,ab ac y 442-=最大值知识点三 二次函数c bx ax y ++=2的图象与系数c b a ,,之间的关系 系数 图像的特征 系数的符号a开口向上 0>a 开口向下0<a b对称轴为y 轴 0=b对称轴在y 轴左侧同号b a ,对称轴在y 轴右侧 异号b a ,c经过原点0=c 与y 轴正半轴相交 0>c 与y 轴负半轴相交0<c第二课时 用待定系数法求二次函数的解析式知识点一 用待定系数法求二次函数的解析式根据已知条件确定二次函数解析式,通常利用待定系数法,用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题便捷。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
类型二根据图象上的点的坐标求解析式
例5:[中考·龙东]如图22-3,抛物线y=x2bx+c交x轴于点A(1,0),交y轴于点B,对称 轴是直线x=2.
(1)求抛物线的解析式. (2)点p是抛物线对称轴上的一个动点,是 否存在点P,使△PAB的周长最小?若存在, 求出点P的坐标;若不存在,请说明理由。
《二次函数》章例1:[中考·深圳】二次函数y=ax2+bx+c
的图象如图22-1,给出以下结论:①a>0, ②b>0,③c<0,④b2-4ac>o,其中有正确结 论的序号是( ) A.②④ B.①③ C.③④ D. ① ② ③
类型二两个图象之间的位置变换
例4:如图22-2,已知抛物线 y=—12x2+bx+c与坐标轴分别交于点 A(0,8),B(8,0)和点E,动点C从 原点D开始沿OA方向以每秒1个单 位长度的速度移动,动点D从点且 开始沿BO方向以每秒1个单位长 度的速度移动,动点C,D同时出 发i当动点D到达原点D时,点C,D 停止运动。
(1)求抛物线的解析式; (2)求△CED的面积S关于D点运 动时间t(s)的函数解析式;当f为 何值时△CED的面积最大?最大 面积是多少?
类型二二次函数在几何中的应用
例8:[中考·铜仁]如图22-7,已知:关 于x的二次函数y=x2+bx+c的图象与x轴交于 点A(1,0)和点B,与y轴交于点C(0,3), 抛物线的对称轴与x轴交于点D.
(1)求二次函数的解析式; (2)在y轴上是否存在一点P,使△PBC为 等腰三角形,若存在,请求出点P的坐标; (3)有一个点M从点A出发,以每秒1个单 位长度的速度在AB上向点B运动,另一个 点N从点D与点M同时出发,以每秒2个单
A.m=-1 B. m=3 C.m≤-1 D.m≥-1 解:由二次项系数为正,可知抛物线开口
向上,在对称轴右侧,)y的值随x值的增大 而增大,可得对称轴应为直线x=1或在其左 侧.
由于抛物线的对称轴为直线x=-m2−1, 所以-m2−1 ≤1,解得m≥-1. 2 答案:D
类型一根据两个变量之间的关系 求解析式
(3)参照以上两个求不等式解集的过程, 借助一元二次方程的求根公式,直接写 出关于x的不等式ax2+bx+c>0(a>0)的解 集.
类型一二次函数的实际应用
例7:【中考·鄂州]鄂州市化工材料经销公司
购进一种化工材料若干千克,价格为每千克 30元,物价部门规定其销售单价不高于每千 克60元,不低于每千克30元.经市场调查发 现,日销售量)y(千克)是销售单价x(元) 的一次函数,且当x=60时,y=80;x=50时, y=100.在销售过程中,每天还要支付其他费用 450元.
(1)求y与x的函数解析式,并写出自变量x的 取值范围;
(2)求该公司销售该材料日获利w(元)与销 售单价x(元)之间的函数解析式;
(3)当销售单价为多少元时,该公司日获利 最大?最大利润是多少元?
解:(1)设y=kx+b,由题意得: 80=60k+b, 100=50k+ b.
方法点拨:解此类题的关键是理清各种数量关系,能根据数量关系列函数 解析式;利用函数的增减性以及自变量的取值范围解决问题,
(3)当点A在y轴右侧的抛物线上运动时,矩 形ABCD能否成为正方形若能?请求,出此 时正方形的周长;若不能,请说明理由.
图象(只画出图象即可).
②求得界点,标示所需:当y=0时,求得
方程-2x2-4x=0的解为____;并用线标示出
函数y=-2x2-4x图象中y≥0的部分.
③参借助图象,写出解集:由所标示图象,
可得不等式2x2-4x ≥0的解集为
。
(2)利用(1)中求不 等式解集的步骤, 求不等式x2-2x+1< 4的解集.。 ①构造函数,画出图象; ②求得界点,标示所需; ③借助图象,写出解集.
大值或最小值时,通常可以考虑将问题转化
为函数的最值问题,利用二次函数的顶点坐 标结合自变量的取值范围解决.
例9:关于x的二次函数)y=-x2+(k2-4)x+ 2k-2的图象以y轴为对称轴,且与y轴的交点 在石x轴的上方.
(1)求此抛物线所对应的函数解析式, 并在直角坐标系中画出函数的大致图象;
(2)设A是y轴右侧抛物线上的一个动点,过 点A作AB⊥x轴于点B,再过点A作X轴的平行 线交抛物线于点D,过点D作DC⊥X轴于点C, 得到矩形ABCD.设矩形ABCD的周长为l,点A 的横坐标为x,试求l关于x的函数解析式;
例2:【中考·荆州]将抛物线)y= X2-2x+3
向上平移2个单位长度,再向右平移3个
单位长度后,得到的抛物线的解析式为( )
A.y=(x-1)2+4 B.y=(x-4)2+4
方法点拨:两个函数图象作全等的变
C.y=(x+2)2+6 D.Y=(x-4)2+6
换,则这两个函数图象上所有的点都
解:将抛物线y= x2-2x+3=(x-1)2+2向上 作同样的变换,求变换后的图象的解
方法点拨:求有函数图象的函数解析 式,一般都是采用待定系数法,根据 函数图象提供的信息求出函数解析式。
例6:[中考·滨州】根据下列要求,解答相
关问题.
(1)请补全以下求不等式-2x2-4x≥0的解集
的过程
①.构造函数,画出图象:根据不等式
特征构造二次函数y=-2x2-4x;并在下面的坐
标系
中(如图22-5)画出二次函数y=-2x2-4x的
平移2个单位长度,得y= (x-1)2+4 ,再向 析式时,一般利用顶点式,确定顶点
右平移3个单位长度后,得到的抛物线的解 坐标是关键,再任找一点作为辅助的
析式为y= (x-4)2+4,故选择B.
条件即可。
答案:B
例3:[中考·常州]已知二次函数y=X2+(m-1) x+1,当x>1时,y随x的增大而增大,则m的 取值范围是( )
位长度的速度在抛物线的对称轴上运动, 当点M到达点B时,点M,N同时停止运动, 问M,N运动到何处时,△MNB的面积最 大,试求出最大面积,
方法点拨:(1)会用待定系数法求函数解析 式;(2)利用“数形结合”的思想,按照“解 析式→坐标→距离(线段长度)→几何图形 性质及应用”的思路思考;(3)在运动中求最