21正数与负数
正数和负数的认识和计算
正数和负数的认识和计算正数和负数是数学中的基本概念,对于我们日常生活和数学运算都起着非常重要的作用。
本文将详细介绍正数和负数的概念及其在计算中的运用。
一、正数和负数的概念1. 正数:正数是指大于零的数,即比零更大的数。
例如1、2、3等都是正数。
在数轴上,正数位于零的右侧。
2. 负数:负数是指小于零的数,即比零更小的数。
例如-1、-2、-3等都是负数。
在数轴上,负数位于零的左侧。
3. 对称性:正数和负数之间具有对称性,即正数与负数相加得到零。
例如1 + (-1) = 0。
二、正数和负数的运算规则1. 加法:正数与正数相加,结果仍然是正数。
负数与负数相加,结果仍然是负数。
正数与负数相加,结果取决于数的大小。
如果正数的绝对值大于负数的绝对值,结果为正数;如果正数的绝对值小于负数的绝对值,结果为负数。
2. 减法:正数与正数相减,结果可能是正数、零或者负数。
负数与负数相减,结果可能是正数、零或者负数。
正数与负数相减,可以将减法转化为加法,即正数与负数相加。
3. 乘法:两个正数相乘,结果仍然是正数。
两个负数相乘,结果也是正数。
正数与负数相乘,结果为负数。
4. 除法:正数除以正数,结果仍然是正数。
负数除以负数,结果仍然是正数。
正数除以负数,结果为负数。
负数除以正数,结果为负数。
三、正数和负数的应用举例1. 温度计:温度计以零度为基准,正数表示高于零度的温度,负数表示低于零度的温度。
例如,0度表示水的结冰点,正数表示温度升高,负数表示温度降低。
2. 资产负债表:在会计中,正数代表资产,负数代表负债或负债。
因此,正数和负数的加减运算可以用于计算企业的资产和负债情况。
3. 高低海拔:地理中,海拔高度可以用正数和负数来表示。
正数表示地势高于海平面,负数表示地势低于海平面。
4. 银行账户:银行账户中,存款表示正数,取款表示负数。
根据存取款的情况可以计算账户的余额。
四、正数和负数的计算技巧1. 加减法运算:计算正数和负数的加减法时,可以先将符号去掉,将数值计算后再加上符号。
2.1 正数与负数
3 “+”号读作“正”,如“+
三分
”读作“正
例1:指出下列各数中的正数、负数:
9 1 +7,-9, ,-4.5,998, 10 3 1 解: +7, ,998是正数, 3 9 -9,-4.5, 10 是负数.
,0.
0是什么数呢?
答:0既不是正数,也不是负数.它是 正数与负数的分界
练一练
P13
负分数
例3
把下列各数填入相应的集合内: 1 1 99.9 , 6, , 0, -101,+3 , 1.25 , 3 4 5 0.01 , 67 , 10% , , 2009 , 18. 13
„} „} 分数集合:{ 正数集合:{ „} „}
整数集合:{ 负数集合:{
活动三
把下列各数分别填在表示圈里 -11, 4.6, +7.3, 0, -2.7,
例2. 如果汽车向北行驶8千米记作+8千米, 那么向南行驶5千米记作什么? 解:向南行驶5千米记作-5千米. 例2. 如果运进粮食3t记作+3 t ,那么-4t表 示什么? 解: -4t表示运出粮食4t.
例题3
用正、负数表示下列具有相反意义的量: ①收入500元和支出237元; ②水位升高5.5米和下降3.6米37元记作-237元;
6,
正整数集合
正分数集合
正数集合
能力提升:
1。填空: (1)前进了-300米表示____________. (2)在食品的包装袋上,标明食品的净 质量是80±5克,这个“80±5”表示的 是____________. (3)正数集合与分数集合的公共部分是 ____________.
2.一次百米赛跑测验的达标线是18秒,下面 各数据是一些同学的成绩,超过18秒的部分 记为“+”,低于18秒的部分记为“-”。
2.1 正数与负数
正整数
整数
零 负整数
分数
正分数
负分数
例3 把下列各数填入相应的集合内:
99.9
,6
,
1 3
,0
,-101,+3
1 4
,1.25
,
0.01, 67 ,10% ,5 ,2009 ,18.
13
整数集合:{ 6,0,-101, 67 ,2009,18 …}
分数集合:{
99.9
,
1 3
,+3
1 4
“+”读作“正”,如“+ 2 ”读作“正三分
3
之二”,正号通常省略不写;“-”读作“负”, 如“-117.3”读作“负一百一十七点三”.
例1 指出下列各数中的正数、负数:
+7,-9,
1,-4.5,998,3
9 10
,0.
解: +7, 1,998 3
是正数,
-9, -4.5,- 9 10
是负数.
0℃以上的温度用正数表示, 0℃以下的温 度用负数表示.日常生活中,许多具有相反意 义的量都可以用正数、负数来表示.
5
负数集合:{ 7.25, 3 , 1 …}.
42
2.填空:
(1)如果买入200 kg大米记为+200 kg,那么卖
出120 kg大米可记作___-__1_20_k_g__;
(2)如果-50元表示支出50元,那么+40元表示
____收__入__4_0_元_;
(3)太平洋最深处的马里亚纳海沟低于海平面
,1.25
,0.01,10%
,5 13
…}
正数集合:{
6
,+3
1 4
,0.01,
初一上册数学《正数和负数》教案(精选10篇)
初一上册数学《正数和负数》教案(精选10篇)初一上册数学《正数和负数》教案 1一、内容和内容解析1、内容正数和负数的意义。
2、内容解析引入负数,将数的范围扩充到有理数,是解决实际问题的需要,也是为了解决数学内部的运算、解方程等问题的需要。
本课内容是本章后续的有理数的相关概念及运算的基础。
通过实例引入正数与负数,既能让学生感受负数与现实生活的紧密联系,体会引入负数的必要性,又有助于学生了解正数和负数的意义,从而学会用正数、负数去刻画现实中具有相反意义的量。
在刻画现实问题时,通常将“上升”“增加”“盈利”等确定为正,相应地将“下降”“减少”“亏欠”等确定为负。
基于以上分析,确定本节课的教学重点为:感受引入负数的必要性;能用正数和负数表示具有相反意义的量。
二、目标和目标解析1、教学目标(1)体会引入负数的必要性;(2)了解负数的意义,会用正数、负数表示具有相反意义的量。
2、目标解析(1)学生能自己举出含有相反意义的量的生活实例,说明引入负数的必要性;(2)学生能借助具体例子,用实际意义(如“增加”与“减少”,“收入”与“支出”等)说明负数的含义。
在含有相反意义的量的问题情境中,学生能用正数和负数来表示相应的量。
三、教学问题诊断分析学生在小学已经学习了整数、分数(包括小数),即正有理数及0的知识,对负数的意义也有初步的了解,还会用负数表示日常生活中的一些量,但他们对负数意义的了解非常有限。
在一些比较复杂的实际问题中,需要针对问题的具体特点规定正、负,特别是要用正数与负数描述向指定方向变化的现象(如“负增长”)中的量,大多数学生都会有困难。
这既与学生的生活经验不足有关,同时也因为这样的表示与日常习惯不一致。
突破这一难点,需要多举日常生活、生产中的实例,让学生通过例子来理解正数与负数的意义,学会用正数、负数表示具有相反意义的量。
本节课的教学难点为:用正数、负数表示指定方向变化的量。
四、教学过程设计1、创设情境,引入新知教师展示教科书图1。
苏科版七年级数学上《2.1正数与负数》同步测试含答案解析
2.1 正数与负数一.选择题(共 10 小题)1.如果向北走 6 步记作+6,那么向南走 8 步记作( )A .+8 步B .﹣8 步C .+14 步D .﹣2 步2.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数 若其意义相反,则分别叫做正数与负数,若气温为零上 10℃记作+10℃,则﹣3℃ 表示气温为()A .零上 3℃B .零下 3℃C .零上 7℃D .零下 7℃3.大米包装袋上(10±0.1)kg 的标识表示此袋大米重( )A .(9.9~10.1)kgB .10.1kgC .9.9kgD .10kg4.纽约、悉尼与北京时差如下表(正数表示同一时刻比北京时间早的时数,负 数表示同一时刻比北京时间晚的时数):当北京 6 月 15 日 23 时,悉尼、纽约的时间分别是( )A .6 月 16 日 1 时;6 月 15 日 10 时B .6 月 16 日 1 时;6 月 14 日 10 时C .6 月 15 日 21 时;6 月 15 日 10 时D .6 月 15 日 21 时;6 月 16 日 12 时城市 时差/时悉尼 +2纽约 ﹣135.一种面粉的质量标识为“25±0.25 千克”,则下列面粉中合格的是()A.24.70 千克B.25.30 千克C.24.80 千克D.25.51 千克6.在﹣2 、+ 、﹣3、2、0、4、5、﹣1 中,负数有()A.1 个B.2 个C.3 个D.4 个7.某种速冻水饺的储藏温度是﹣18±2℃,四个冷藏室的温度如下,则不适合储藏此种水饺的是()A.﹣17℃B.﹣22℃C.﹣18℃D.﹣19℃8.有四包真空包装的火腿肠,每包以标准质量450g 为基准,超过的克数记作正数,不足的克数记作负数.下面的数据是记录结果,其中与标准质量最接近的是()A.+2 B.﹣3 C.+4 D.﹣19.如图是加工零件的尺寸要求,现有下列直径尺寸的产品(单位:mm),其中不合格的是()A.Ö45.02 B.Ö44.9 C.Ö44.98 D.Ö45.0110.如果“盈利5%”记作+5%,那么﹣3%表示()A.亏损3% B.亏损8% C.盈利2% D.少赚3%二.填空题(共10 小题)11.如果向东走3 米记为+3 米,那么向西走6 米记作.12.某种零件,标明要求是ö:20±0.02 mm(ö表示直径,单位:毫米),经检查,一个零件的直径是19.9 mm,该零件(填“合格”或“不合格”).13.如果把长江的水位比警戒水位高0.2 米,记作+0.2 米,那么比警戒水位低0.15 米,记作米.14.每袋大米以50kg 为标准,其中超过标准的千克数记为正数,不足的千克数记为负数,则图中第3 袋大米的实际重量是kg.15.如果+20%表示增加20%,那么减少6%记作.16.阅览室某一书架上原有图书20 本,规定每天归还图书为正,借出图书为负,经过两天借阅情况如下:(﹣3,+1),(﹣1,+2),则该书架上现有图书本.17.仔细思考下列各对量:①胜两局与负三局;②气温升高3℃与气温为﹣3℃;③盈利3 万元与支出3 万元;④甲、乙两支球队组织了两场篮球比赛,甲、乙两队的比分分别为65:60 与60:65.其中具有相反意义的量有.18.若收入10 万元记做“+10 万元”,则支出1000 元记做“元”.19.检查5 个篮球的质量,把超过标准质量的克数记作整数,不足的克数记作负数,检查结果如表:篮球的编号与标准质量的差(g)1+42+73﹣34﹣85+9(1)最接近标准质量的是号篮球;(2)质量最大的篮球比质量最小的篮球重g.20.中国人最先使用负数,魏晋时期的数学家刘徽在“正负术”的注文中指出,可将算筹(小棍形状的记数工具)正放表示正数,斜放表示负数.如图,根据刘徽的这种表示法,观察图①,可推算图②中所得的数值为.三.解答题(共6 小题)21.在一次食品安检中,抽查某企业10 袋奶粉,每袋取出100 克,检测每100 克奶粉蛋白质含量与规定每100 克含量(蛋白质)比较,不足为负,超过为正,记录如下:(注:规定每100g 奶粉蛋白质含量为15g)﹣3,﹣4,﹣5,+1,+3,+2,0,﹣1.5,+1,+2.5(1)求平均每100 克奶粉含蛋白质为多少?(2)每100 克奶粉含蛋白质不少于14 克为合格,求合格率为多少?22.足球训练中,为了训练球员快速抢断转身,教练设计了折返跑训练.教练在东西方向的足球场上画了一条直线插上不同的折返旗帜,如果约定向西为正,向东为负,练习一组的行驶记录如下(单位:米):+40,﹣30,+50,﹣25,+25,﹣30,+15,﹣28,+16,﹣18.(1)球员最后到达的地方在出发点的哪个方向?距出发点多远?(2)球员训练过程中,最远处离出发点多远?(3)球员在一组练习过程中,跑了多少米?23.某巡警骑摩托车在一条南北大道上来回巡逻,一天早晨,他从岗亭出发,中午停留在A 处,规定向北方向为正,当天上午连续行驶情况记录如下(单位:千米):+5,﹣4,+3,﹣7,+4,﹣8,+2,﹣1.(1)A 处在岗亭何方?距离岗亭多远?(2)若摩托车每行驶1 千米耗油0.5 升,这一天上午共耗油多少升?24.某公司6 天内货品进出仓库的吨数如下:(“+”表示进库,“﹣”表示出库)+31,﹣32,﹣16,+35,﹣38,﹣20.(1)经过这6 天,仓库里的货品是(填增多了还是减少了).(2)经过这6 天,仓库管理员结算发现仓库里还有货品460 吨,那么6 天前仓库里有货品多少吨?(3)如果进出的装卸费都是每吨5 元,那么这6 天要付多少元装卸费?25.某校对七年级男生进行俯卧撑测试,以能做7 个为标准,超过的次数用正数表示,不足的次数用负数表示,其中8 名男生的成绩如下表:第一次 ﹣3 第二次 +8 第三次 ﹣9 第四次 +10 第五次 +4 第六次﹣6 第七次﹣2(1)这 8 名男生的达标率是百分之几?(2)这 8 名男生共做了多少个俯卧撑?26.某检修小组从 A 地出发,在东西方向的马路上检修线路,如果规定向东行 驶为正,向西行驶为负,一天中七次行驶记录如下(单位:km ):(1)求收工时检修小组距 A 地多远;(2)在第 次记录时时检修小组距 A 地最远;(3)若每千米耗油 0.1L ,每升汽油需 6.0 元,问检修小组工作一天需汽油费多 少元?﹣1 ﹣2 ﹣3 2 0 3 1 0参考答案与试题解析一.选择题(共10 小题)1.(2017•天门)如果向北走6 步记作+6,那么向南走8 步记作()A.+8 步B.﹣8 步C.+14 步D.﹣2 步【分析】“正”和“负”是表示互为相反意义的量,向北走记作正数,那么向北的反方向,向南走应记为负数.【解答】解:∵向北走6 步记作+6,∴向南走8 步记作﹣8,故选B.【点评】本题考查了正数和负数的定义.解本题的根据是掌握正数和负数是互为相反意义的量.2.(2017•成都)《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10℃记作+10℃,则﹣3℃表示气温为()A.零上3℃B.零下3℃C.零上7℃D.零下7℃【分析】此题主要用正负数来表示具有意义相反的两种量:若零上记为正,则零下就记为负,直接得出结论即可.【解答】解:若气温为零上10℃记作+10℃,则﹣3℃表示气温为零下3℃.故选:B.【点评】此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.3.(2017•六盘水)大米包装袋上(10±0.1)kg 的标识表示此袋大米重()A.(9.9~10.1)kgB.10.1kg C.9.9kg D.10kg【分析】根据大米包装袋上的质量标识为“10±0.1”千克,可以求得合格的波动范围,从而可以解答本题.【解答】解:∵大米包装袋上的质量标识为“10±0.1”千克,∴大米质量的范围是:9.9~10.1 千克,故选:A .【点评】本题考查正数和负数,解题的关键是明确题意,明确正数和负数在题目 中的实际意义.4.(2017•聊城)纽约、悉尼与北京时差如下表(正数表示同一时刻比北京时间 早的时数,负数表示同一时刻比北京时间晚的时数):当北京 6 月 15 日 23 时,悉尼、纽约的时间分别是( )A .6 月 16 日 1 时;6 月 15 日 10 时B .6 月 16 日 1 时;6 月 14 日 10 时C .6 月 15 日 21 时;6 月 15 日 10 时D .6 月 15 日 21 时;6 月 16 日 12 时【分析】由统计表得出:悉尼时间比北京时间早 2 小时,悉尼比北京的时间要早 2 个小时,也就是 6 月 16 日 1 时.纽约比北京时间要晚 13 个小时,也就是 6 月 15 日 10 时.【解答】解:悉尼的时间是:6 月 15 日 23 时+2 小时=6 月 16 日 1 时, 纽约时间是:6 月 15 日 23 时﹣13 小时=6 月 15 日 10 时.城市时差/时 悉尼 +2 纽约 ﹣13故选:A.【点评】本题考查了正数和负数.解决本题的关键是根据图表得出正确信息,再结合题意计算.5.一种面粉的质量标识为“25±0.25 千克”,则下列面粉中合格的是()A.24.70 千克B.25.30 千克C.24.80 千克D.25.51 千克【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:“25±0.25 千克”表示合格范围在25 上下0.25 的范围内的是合格品,即24.75 到25.25 之间的合格,故只有24.80 千克合格.故选:C.【点评】此题考查正负数在实际生活中的应用,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.6.在﹣2 、+ 、﹣3、2、0、4、5、﹣1 中,负数有()A.1 个B.2 个C.3 个D.4 个【分析】根据负数的定义逐一判断即可.【解答】解:在﹣2 、+、﹣3、2、0、4、5、﹣1 中,负数有在﹣2、﹣3、﹣1 共3 共个.故选:C.【点评】本题考查了负数的定义:小于0 的数是负数.7.某种速冻水饺的储藏温度是﹣18±2℃,四个冷藏室的温度如下,则不适合储藏此种水饺的是()A.﹣17℃B.﹣22℃C.﹣18℃D.﹣19℃【分析】根据有理数的加减运算,可得温度范围,根据温度范围,可得答案.【解答】解:﹣18﹣2=﹣20℃,﹣18+2=﹣16℃,温度范围:﹣20℃至﹣16℃,A、﹣20℃<﹣17℃<﹣16℃,故A 不符合题意;B、﹣22℃<﹣20℃,故B 不符合题意;C、﹣20℃<﹣18℃<﹣16℃,故C 不符合题意;D、﹣20℃<﹣19℃<﹣16℃,故D 不符合题意;故选:B.【点评】本题考查了正数和负数,有理数的加法运算是解题关键,先算出适合温度的范围,再选出不适合的温度.8.有四包真空包装的火腿肠,每包以标准质量450g 为基准,超过的克数记作正数,不足的克数记作负数.下面的数据是记录结果,其中与标准质量最接近的是()A.+2 B.﹣3 C.+4 D.﹣1【分析】根据正负数的意义,绝对值最小的即为最接近标准的.【解答】解:|2|=2,|﹣3|=3,|+4|=4,|﹣1|=1,∵1<2<3<4,∴从轻重的角度来看,最接近标准的是记录为﹣1.故选:D.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.9.(2016•金华)如图是加工零件的尺寸要求,现有下列直径尺寸的产品(单位:mm),其中不合格的是()A.Ö45.02 B.Ö44.9 C.Ö44.98 D.Ö45.01【分析】依据正负数的意义求得零件直径的合格范围,然后找出不符要求的选项即可.【解答】解:∵45+0.03=45.03,45﹣0.04=44.96,∴零件的直径的合格范围是:44.96≤零件的直径≤45.03.∵44.9 不在该范围之内,∴不合格的是B.故选:B.【点评】本题主要考查的是正数和负数的意义,根据正负数的意义求得零件直径的合格范围是解题的关键.10.(2016•宜昌)如果“盈利5%”记作+5%,那么﹣3%表示()A.亏损3% B.亏损8% C.盈利2% D.少赚3%【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:∵“盈利5%”记作+5%,∴﹣3%表示表示亏损3%.故选:A.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.二.填空题(共10 小题)11.如果向东走3 米记为+3 米,那么向西走6 米记作﹣6 米.【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:根据题意,向西走6 米记作﹣6 米.故答案为:﹣6 米.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示12.某种零件,标明要求是ö:20±0.02 mm(ö表示直径,单位:毫米),经检查,一个零件的直径是19.9 mm,该零件不合格(填“合格”或“不合格”).【分析】ö20±0.02 mm,知零件直径最大是20+0.02=20.02,最小是20﹣0.02=19.98,合格范围在19.98 和20.02 之间.【解答】解:零件合格范围在19.98 和20.02 之间.19.9<19.98,所以不合格.故答案为:不合格.【点评】本题考查数学在实际生活中的应用.13.如果把长江的水位比警戒水位高0.2 米,记作+0.2 米,那么比警戒水位低0.15 米,记作﹣0.15 米.【分析】由已知长江的水位比警戒水位高0.2 米,记作+0.2 米,根据正负数的意义可得出.【解答】解:已知长江的水位比警戒水位高0.2 米,记作+0.2 米,则比警戒水位低0.15 米,记作﹣0.15 米.故答案为:﹣0.15 米.【点评】此题考查了学生对正负数意义的理解与掌握.关键是高记“+”,则低记“﹣”.14.每袋大米以50kg 为标准,其中超过标准的千克数记为正数,不足的千克数记为负数,则图中第3 袋大米的实际重量是49.3kg.【分析】根据有理数的加法,可得答案.【解答】解:50+(﹣0.7)=49.3kg,故答案为:49.3kg.【点评】本题考查了正数和负数,利用有理数的加法运算是解题关键.15.(2016 秋•渝北区期末)如果+20%表示增加20%,那么减少6%记作﹣6% .【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.“正”和“负”相对,所以如果+20%表示增加20%,那么﹣6%表示减少6%.【解答】解:根据正数和负数的定义可知,﹣6%表示减少6%,故答案为:﹣6%【点评】此题考查正数和负数问题,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.16.阅览室某一书架上原有图书20 本,规定每天归还图书为正,借出图书为负,经过两天借阅情况如下:(﹣3,+1),(﹣1,+2),则该书架上现有图书19 本.【分析】(﹣3,+1)表示借出3 本归还1 本,求出20 与借出归还的和就是该书架上现有图书的本数,【解答】解:20﹣3+1﹣1+2=19(本)故答案为:19【点评】本题考查了有理数的加减混合运算,弄懂记录(﹣3,+1)等是关键.17.仔细思考下列各对量:①胜两局与负三局;②气温升高3℃与气温为﹣3℃;③盈利3 万元与支出3 万元;④甲、乙两支球队组织了两场篮球比赛,甲、乙两队的比分分别为65:60 与60:65.其中具有相反意义的量有①②.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.“正”和“负”相对.【解答】解:①胜两局与负三局,符合题意;②气温升高3℃与气温为﹣3℃,符合题意;③盈利3 万元与支出3 万元,不合题意;④甲、乙两支球队组织了两场篮球比赛,甲、乙两队的比分分别为65:60 与60:65,不合题意.故答案为:①②.【点评】此题主要考查了正数与负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.18.若收入10 万元记做“+10 万元”,则支出1000 元记做“ ﹣1000元”.【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:根据题意得:支出1000 元记作:﹣1000 元;故答案为:﹣1000;【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.19.检查5 个篮球的质量,把超过标准质量的克数记作整数,不足的克数记作负数,检查结果如表:篮球的编号与标准质量的差(g)1+42+73﹣34﹣85+9(1)最接近标准质量的是 3 号篮球;(2)质量最大的篮球比质量最小的篮球重17 g.【分析】(1)根据超过标准质量的克数记作整数,不足的克数记作负数,绝对值最小的最接近标准,可得最接近标准质量的球;(2)根据质量最大的篮球减去质量最小的篮球,可得(2)的结果.【解答】解:(1)∵|4|=4,|7|=7,|﹣3|=3,|﹣8|=8,|9|=9,3<4<7<8<9,∴3 号球质量接近标准质量,故答案为:3;(2)质量最大的排球比质量最小的排球重:9﹣(﹣8)=17(克),故答案为:17.【点评】本题考查了绝对值、有理数的减法在实际中的应用.解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.20.(2017•江西)中国人最先使用负数,魏晋时期的数学家刘徽在“正负术”的注文中指出,可将算筹(小棍形状的记数工具)正放表示正数,斜放表示负数.如图,根据刘徽的这种表示法,观察图①,可推算图②中所得的数值为﹣3 .【分析】根据有理数的加法,可得答案.【解答】解:图②中表示(+2)+(﹣5)=﹣3,故答案为:﹣3.【点评】本题考查了有理数的运算,利用有理数的加法运算是解题关键.三.解答题(共6 小题)21.在一次食品安检中,抽查某企业10 袋奶粉,每袋取出100 克,检测每100 克奶粉蛋白质含量与规定每100 克含量(蛋白质)比较,不足为负,超过为正,记录如下:(注:规定每100g 奶粉蛋白质含量为15g)﹣3,﹣4,﹣5,+1,+3,+2,0,﹣1.5,+1,+2.5(1)求平均每100 克奶粉含蛋白质为多少?(2)每100 克奶粉含蛋白质不少于14 克为合格,求合格率为多少?【分析】(1)平均每100 克奶粉含蛋白质为:标准克数+其余数的平均数,把相关数值代入即可求解;(2)找到合格的奶粉的数目,除以总数目即为所求的合格率.【解答】解:(1)+15=14.6(g);(2)其中﹣3,﹣4,﹣5,﹣1.5 为不合格,那么合格的有6 个,合格率为=60%.【点评】用到的等量关系为:平均数=标准+和标准相比其余数的平均数;合格率等于合格数目与总数目之比.22.足球训练中,为了训练球员快速抢断转身,教练设计了折返跑训练.教练在东西方向的足球场上画了一条直线插上不同的折返旗帜,如果约定向西为正,向东为负,练习一组的行驶记录如下(单位:米):+40,﹣30,+50,﹣25,+25,﹣30,+15,﹣28,+16,﹣18.(1)球员最后到达的地方在出发点的哪个方向?距出发点多远?(2)球员训练过程中,最远处离出发点多远?(3)球员在一组练习过程中,跑了多少米?【分析】(1)根据加法法则,将正数与正数相加,负数与负数相加,进而得出计算得结果;(2)求出每一段到出发点的距离,即可判断出结果;(3)利用绝对值的性质以及有理数加法法则求出即可.【解答】解:(1)(+40)+(﹣30)+(+50)+(﹣25)+(+25)+(﹣30)+(+15)+(﹣28)+(+16)+(﹣18)=+15(米);答:球员最后到达的地方在出发点的正西方向,距出发点15m;(2)第一段,40m,第二段,40﹣30=10m,第三段,10+50=60m,第四段,60﹣25=35m,第五段,35+25=60m,第六段,60﹣30=30m,第七段,30+15=45m,第八段,45﹣28=17m,第九段,17+16=33m,第十段,33﹣18=15m,∴在最远处离出发点60m;(3)∵|+40|+|﹣30|+|+50|+|﹣25|+|+25|+|﹣30|+|+15|+|﹣28|+|+16|+| ﹣18|=277(米),答:球员在一组练习过程中,跑了277 米.【点评】本题考查了有理数的加减混合运算以及绝对值的性质,关键是熟练利用加法的运算法则进行运算.23.某巡警骑摩托车在一条南北大道上来回巡逻,一天早晨,他从岗亭出发,中午停留在A 处,规定向北方向为正,当天上午连续行驶情况记录如下(单位:千米):+5,﹣4,+3,﹣7,+4,﹣8,+2,﹣1.(1)A 处在岗亭何方?距离岗亭多远?(2)若摩托车每行驶1 千米耗油0.5 升,这一天上午共耗油多少升?【分析】(1)将题目中的数据相加,即可解答本题;(2)取题目中的各个数据的绝对值,将它们相加再乘以0.5 即可解答本题.【解答】解:(1)由题意可得,5+(﹣4)+3+(﹣7)+4+(﹣8)+2+(﹣1)=﹣6,答:A 处在岗亭南方,距离岗亭6 千米;(2)由题意可得,0.5×(5+4+3+7+4+8+2+1)=0.5×34=17,答:这一天上午共耗油17 升.【点评】本题考查正数和负数,解答本题的关键是明确正数和负数在题目中的实际意义.24.某公司6 天内货品进出仓库的吨数如下:(“+”表示进库,“﹣”表示出库)+31,﹣32,﹣16,+35,﹣38,﹣20.(1)经过这6 天,仓库里的货品是减少(填增多了还是减少了).(2)经过这6 天,仓库管理员结算发现仓库里还有货品460 吨,那么6 天前仓库里有货品多少吨?(3)如果进出的装卸费都是每吨5 元,那么这6 天要付多少元装卸费?【分析】(1)将所有数据相加即可作出判断,若为正,则说明增多了,若为负,则说明减少了;(2)结合(1)的答案即可作出判断;(3)计算出所有数据的绝对值之和,然后根据进出的装卸费都是每吨5 元,可得出这6 天要付的装卸费.【解答】解:(1))+31﹣32﹣16+35﹣38﹣20=﹣40(吨),∵﹣40<0,∴仓库里的货品是减少了.故答案为:减少了.(2)+31﹣32﹣16+35﹣38﹣20=﹣40,即经过这6 天仓库里的货品减少了40 吨,所以6 天前仓库里有货品460+40=500 吨.(3)31+32+16+35+38+20=172(吨),172×5=860(元).答:这6 天要付860 元装卸费.【点评】本题考查了正数和负数的知识,解题关键是理解“正”和“负”的相对性, 确定具有相反意义的.25.某校对七年级男生进行俯卧撑测试,以能做 7 个为标准,超过的次数用正 数表示,不足的次数用负数表示,其中 8 名男生的成绩如下表:(1)这 8 名男生的达标率是百分之几?(2)这 8 名男生共做了多少个俯卧撑?【分析】(1)达标的人数除以总数就是达标的百分数.(2)要求学生共做的俯卧撑的个数,需理解所给出数据的意义,根据题意知, 正数为超过的次数,负数为不足的次数.【解答】解:(1)这 8 名男生的达标的百分数是 ×100%=62.5%;(2)这 8 名男生做俯卧撑的总个数是:(2﹣1+0+3﹣2﹣3+1+0)+8×7=56 个.【点评】本题考查了正数和负数的知识,属于基础题,解决本题的关键理解已知 中正数、负数的含义.﹣1 ﹣2 ﹣3 2 0 3 1 0第一次﹣3 第二次+8第三次﹣9第四次+10第五次+4第六次﹣6第七次﹣226.某检修小组从A 地出发,在东西方向的马路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中七次行驶记录如下(单位:km):(1)求收工时检修小组距A 地多远;(2)在第五次记录时时检修小组距A 地最远;(3)若每千米耗油0.1L,每升汽油需6.0 元,问检修小组工作一天需汽油费多少元?【分析】(1)七次行驶的和即收工时检修小组距离A 地的距离;(2)计算每一次记录检修小组离开A 的距离,比较后得出检修小组距A 地最远的次数;(3)每次记录的绝对值的和,是检修小组一天的行程,根据单位行程的耗油量计算出该检修小组一天的耗油量.【解答】解:(1)﹣3+8﹣9+10+4﹣6﹣2=2(km),所以收工时距A 地2 km(2)第一次后,检修小组距A 地3km;第二次后,检修小组距A 地﹣3+8=5(km);第三次后,检修小组距A 地﹣3+8﹣9=﹣4(km)第四次后,检修小组距A 地﹣3+8﹣9+10=6(km)第五次后,检修小组距A 地﹣3+8﹣9+10+4=10(km)第六次后,检修小组距A 地﹣3+8﹣9+10+4﹣6=4(km)第七次后,检修小组距A 地﹣3+8﹣9+10+4﹣6﹣2=2(km)故答案为:五(3)(3+8+9+10+4+6+2)×0.1×6.0=42×0.1×6.0=25.2(元)答:检修小组工作一天需汽油费25.2 元【点评】本题考查了有理数的加减法在生活中的应用.耗油量=行程×单位行程耗油量.。
2022年《正数和负数教案》4篇
2022年《正数和负数教案》4篇《正数和负数教案》篇1教学内容:人教版七年级上册第一章有理数 1.1 正数和负数教学目标:在熟悉的生活情景中,能用正数和负数表示生活中具有相反意义的量、知道负数的写法和读法,会用负数表示一些日常生活中的量。
使学生经历数学化,符号化的过程,体会负数产生的必要性。
感受正、负数和生活的密切联系,享受创造性学习的乐趣.教学重点:体会负数的意义,学会用正、负数表示日常生活中具有相反意义的量。
教学难点:体会负数的意义,通过描述性定义认识正数、负数和“0”。
教学过程:一、感受相反方向的数量,经历负数产生的过程。
1、回忆小学学过那些数:自然数,分数出示信息:看数的产生过程,现实中负数学习的必要。
2、引入负数的概念3、总结正负数(1)这些数很特别,都带上了符号,它们是一种“新数”。
-9、-4.5等都叫负数; +7、+988等都叫正数。
你会读吗?请你读给大家听。
注意“-”叫负号,“+”叫正号。
(2)读给你的同伴听。
(3)把你新认识的负数再写两个,读一读。
下面让我们走进正数和负数的世界,进一步了解它们。
(板书课题)二、借助实际生活情境的直观,丰富对正负数的认识。
1、负数有什么用?用正数或负数表示下列数量。
(1向东走200米,用+200米表示;那么向西走200米元用表示。
2.说说实际问题中负数的确定(1.)表示海拔高度(2.)解释温度中正负数的含义(3)做练习三3、怎样理解具有相反意义的量三、理解01、0既不是正数也不是负数。
0是正负数的分界。
2、0只表示没有吗?1).空罐中的金币数量;2).温度中的0℃;3).海平面的高度;4).标准水位;5).身高比较的基准;6.)正数和负数的界点;3、总结0既不是正数,也不是负数;0是正数负数的分界。
0是整数,0是偶数,0是最小的自然数。
四、探究活动(出示课件):1.探究活动一:东、西为两个相反方向,如果- 4米表示一个物体向西运动4米,那么+2米表示什么?物体原地不动记为什么?若将28计为0,则可将27计为-1,试猜想若将27计为0,28应计为。
2.1.1正数与负数
它们都是具有相反意义的量.
在天气预报中,零上5℃和零下 5℃是用什么数来表示的?
在天气预报中,通常规定零上为 正,于是零下就为负. 零上5℃表示成5℃, 零下5℃表示成-5℃. 一般地,对于具有相反意义的量, 我们都可以用正数或负数来表示.
• 汽车向东行驶3千米或向西行驶3千米. 如果规定向东为正,那么向西为 3 千米,向 负.向东行驶3千米记作_____ -3 千米. 西行驶3千米记作_____ • 卖出一件衣服盈利500元或亏损200元. • 水位上升1.2米或下降0.7 米.
~
(2)某机器零件的长度设计为100mm, 加工图纸标注的尺寸为100 0.5(mm). ①这里的 0.5表示什么意思?
解:+0.5表示比设计尺寸多0.5mm, -0.5表示比设计尺寸少0.5mm.
②小王加工的零件长度为99.8mm, 请问这个零件合格吗?
解:100+0.5=100.5(mm),100-0.5=99.5(mm), 所以零件长度的合格尺寸范围为100.5mm到99.5mm.
0既不是正数也不是负数. 0是正负数的分界.
例.下列各数中,哪些是正数?哪些
是负数?
1 4 100,1.5, 5 , 0, 99, 8 , 2.25, 2 5 5 1 0.001, 56, , 7%, , 2008. 6 7
1、填一填:
(1)王叔叔本月收入2500元,记作+2500元, 支出500元记作( - 500 )元. (2)商店1月盈利1200元,2月亏损300元, 分别记作( 1200 )元和( - 300 )元,3 月没盈利也没亏损记作( 0 )元.
3.一个圆形小球的质量要求是10 0.5. (单位:克) (1)这种小球的标准质量是多少? (2)合格产品中最大质量和最小质量 分别是多少? (3)已知一个小球与标准质量的偏差 是-0.3克,则它的实际质量是多少?
2_1正数和负数
课题:2.1正数和负数【学习目标】1. 理解负数,能区分正数与负数;对整数和分数有新的理解。
2. 会用正负数表示生活中具有相反意义的量.【重点难点】重点:理解负数的意义。
难点:能应用正负数表示具有相反意义的量。
【新知导学】一、读一读:阅读欣赏课本P12—P13例2二、想一想:1. 在小学里,学过了哪几类数?。
2. 章头图中的哈尔滨-13~-7表示;课本P12图片中资料卡片中的“-117.3”表示;新闻报道中的“—0.102%”表示。
(小组合作)三、练一练:P13练一练1、2、3(小组交流)【新知归纳】(合上课本)1.(1)像8844.43、100、357、78这样的数是,它们都比0 ;像-154、-38.87、-117.3、-0.102%这样的数是,它们都比0 ; 0既不是,也不是。
(2)正、负数的读法与写法:“–”号读作“负”,如–5,读作“”;“+”号读作“正”.如“23 ”,读作“”.“–”号是省略的.“+”省略不写.(填“能够”或“不能够”)2.正整数、负整数、零统称为;正分数、负分数统称为。
(对照课本,小组批阅)补充:非负数包括和。
非正数包括和。
非负整数包括和。
非正整数包括和。
非零数包括和。
【例题教学】例1.把下列各数填入相对应的集合内:+5,-7.25,34-,0,125+,0.32,12-正数集合:{ …}负数集合:{ …}整数集合:{ …}分数集合:{ …}非负数集合:{ …}例2.(1)如果零上8℃记作+8℃,那么零下5℃记作_________。
(2)如果温度上升2℃记作+2℃,那么温度下降3℃记作________。
(3)如果盈利2万元记作+2万元,那么-3万元表示。
(4)如果顺时针旋转3圈记作+3圈,那么-5圈表示。
(5)如果运进粮食3t记作+3t,那么-4t表示。
巩固练习:P14习题1,2,3,4【课堂检测】1.判断正误:(1)一个整数不是正数就是负数.()(2)最小的数是零.()(3)不小于0的数都是正数.()2. 把下列各数填入表示集合的大括号内:-3、+48、1-2、7.5、0、-9.1、-155、227、2正数集合:{ …}负数集合:{ …}整数集合:{ …}分数集合:{ …}3. 填空:(1)如果收入2000元,可以记为+2000元,那么支出5000元,记为元。
正数与负数的运算规则
正数与负数的运算规则在数学中,我们常常会遇到正数和负数的运算。
正数和负数是数学中最基本的概念之一,它们有着特定的运算规则。
本文将详细介绍正数与负数的运算规则,以帮助读者更好地理解和应用这些规则。
一、正数与正数的运算当两个正数进行运算时,我们可以直接按照普通的加、减、乘、除运算法则进行计算,结果仍然是一个正数。
具体运算规则如下:1. 加法运算:两个正数相加,结果仍然为正数。
例如,2 + 3 = 5。
2. 减法运算:两个正数相减,结果可能是正数,也可能是0。
当被减数大于减数时,结果为正数;当被减数等于减数时,结果为0。
例如,5 - 3 = 2;3 - 3 = 0。
3. 乘法运算:两个正数相乘,结果仍然为正数。
例如,2 × 3 = 6。
4. 除法运算:两个正数相除,结果仍然为正数。
例如,6 ÷ 2 = 3。
二、正数与负数的运算当正数与负数进行运算时,运算结果的正负性由数值的大小关系所决定。
具体运算规则如下:1. 加法运算:正数与负数相加,结果的符号由数值绝对值较大的那个数的符号决定。
当正数的绝对值大于负数时,结果为正数;当正数的绝对值小于负数时,结果为负数。
例如,3 + (-2) = 1;2 + (-3) = -1。
2. 减法运算:正数与负数相减,可以转化为正数与正数的加法运算,根据加法运算的规则进行计算。
例如,5 - (-3) = 5 + 3 = 8;3 - (-3) = 3 + 3 = 6。
3. 乘法运算:正数与负数相乘,结果的符号与正负数的符号相反。
例如,2 × (-3) = -6;(-2) × 3 = -6。
4. 除法运算:正数与负数相除,结果的符号与正负数的符号相反。
例如,6 ÷ (-2) = -3;(-6) ÷ 2 = -3。
三、负数与负数的运算当两个负数进行运算时,运算结果仍然是负数。
具体运算规则如下:1. 加法运算:两个负数相加,结果仍然为负数。
2-1正数,负数与绝对值
2-1正數、負數與絕對值一、✎練習一下1.若用正號表示賺錢,負號表示賠錢,賺500元記為┼500元,那賠400元記為。
2.倉庫出貨12公斤用─12公斤,進貨5公斤用表示。
3.若水位高於基準線3公尺記為┼3公尺,則水位低於基準線7公尺記為。
4.東方和西方是相對的,小宗以車站為基準點,向西走8公里記為─8公里,那麼向東走5公里可記為。
5.以老師的身高為基準點,小慧比老師高3公分記為┼3公分,小蓉比老師矮10公分記為。
☆數線三要素:原點、方向、單位長例1:請在數線上標示出以下各點:4、-3、1、-5、0例2:請在數線上標示出以下各點:5、2、-1、-3、0☆相反數:正數的相反數是,負數的相反數是。
例1:+3的相反數是-3,-5的相反數是。
例2:-8的相反數為________、21相反數為________、0相反數為________。
例3:寫出下列各式的值:①-(-3)=________ ②-(-5)=_______③-【-(-3)】=________(註:偶數個負號可得正、奇數個負號可得負)例4:在數線上標出A(6)、B(-6)兩點。
✺1.數線上任一點與原點的距離,我們以符號 表示, 讀作 。
EX (1)3.1-=(2)=-212(3)9= (4)=-7✽練習一下1. 請寫出3-、7-、4、5-的絕對值。
2. 若5=甲數,則甲數是多少?3.數線上和原點距離8單位長的數有和。
4.將「>、<或=」填入下列空格中:(1)33(2)-5(3)5-21(4)215.0(5)寫出下列各數的相反數:(6)若7=甲數,則甲數=。
2.1 正数与负数
) 如果向北走 8km 记作+8km,
km 记作什么?
果粮库运进粮食 3t 记作+3t,
示什么? 举例说明用正数、负数表示生活中的具有相反意义的量.
用正数和负数表示生活中其他
量吗?
分数 整数分为正整数、零和负整数;分数分为正分数和负分数.
、负整数、零统称为整数.
引导学生感
、负分数统称为分数.
拓展他们对数的
下列各数填入相应的集合内: 解:整数集合{6,0, -101 ,+67,2009, 18 „};
1 1 1 1 5 ,0, -101 , +3 , 1.25 , 分数集合{ 99.9 , , +3 , 1.25 ,0.01, 10% , „}; 3 3 13 4 4 5 1 5 , 10% , ,2009, 18 . 正数集合{6, +3 ,0.01,+67, ,2009 „}; 13 13 4 1 合{„};分数集合{„}; 负数集合{ 99.9 , , -101 , 1.25 , 10% , 18 „}. 3 合{„};负数集合{„}.
理解负数的意义. 学生活动教学过程(教师)Fra bibliotek设计思
的正数与负数
从生活中的
:
学生感受到生活
里, 我们学过正数、 负数、 零. 你 分别说出 8844.43、-154、-117.3、-0.102%的意义.
和负数.它们都可
片中各数的意义吗?
中的各种意义的
负数的意义
理解正数、
43、100、357、78 这样的数叫 8848.43、100、357、78 是正数. -154、-38.87、-117.3、-0.102%是负数.
+7,
会根据正数
正数和负数知识点归纳总结
正数和负数知识点归纳总结引言正数和负数是数学中最基本的概念之一,也是数学运算的基础。
在日常生活和各个领域中,正数和负数都有广泛的应用。
了解正数和负数的性质和规律,对于我们理解数学和解决问题具有重要意义。
本文将对正数和负数的相关知识点进行归纳总结,帮助读者更好地理解和应用这一概念。
一、正数和负数的定义和表示正数是大于零的数,负数是小于零的数。
在数轴上,正数位于原点的右侧,负数位于原点的左侧。
数学中通常用符号来表示正数和负数,例如,正数可以用”+“表示,负数可以用”-“表示。
二、正数和负数的比较正数和负数之间可以进行比较。
当两个数的绝对值相同时,正数大于负数。
例如,2大于-2,-3小于3。
当两个数的绝对值不同时,绝对值大的数大于绝对值小的数。
例如,5大于-5,-8小于3。
正数和正数的比较1.当两个正数相加时,结果仍然是正数。
2.当两个正数相减时,结果可能是正数,也可能是负数,取决于被减数的大小。
负数和负数的比较1.当两个负数相加时,结果仍然是负数。
2.当两个负数相减时,结果可能是正数,也可能是负数,取决于被减数的大小。
正数和负数的比较1.正数和负数相加时,结果的绝对值取两个数的绝对值之和,符号取绝对值大的数的符号。
2.正数和负数相减时,结果的绝对值取两个数的绝对值之差,符号取绝对值大的数的符号。
三、正数和负数的运算规律正数和负数的运算规律主要包括加法、减法、乘法和除法。
加法1.正数与正数相加,结果仍然是正数。
2.负数与负数相加,结果仍然是负数。
3.正数与负数相加,结果的绝对值取两个数的绝对值之差,符号取绝对值大的数的符号。
减法1.正数与正数相减,结果可能是正数,也可能是负数,取决于被减数的大小。
2.负数与负数相减,结果可能是正数,也可能是负数,取决于被减数的大小。
3.正数与负数相减,结果的绝对值取两个数的绝对值之和,符号取第一个数的符号。
乘法1.两个正数相乘,结果是正数。
2.两个负数相乘,结果是正数。
2.1正数和负数 课件(共21张PPT) 苏科版数学七年级上册
时的水位可记作 +0.2m ,低于正常水位0.3m 时的水位可记作 -0.3m .
例1.读出下列各数,并将它们分别填入相 应的集合内.
-9 +7 -4.5
0 998
… 正数集合
… 负数集合
正整数、 、负整数 统称为整数
正分数、负分数统称为分数
0
正整数 正分数
0表示相反意义的量的基准。
收入500元
升高1.2米 增产 20t 买进100辆 向东行驶
3km
记作
+500元 支出200元
+1.2米 下降0.7米
+20t +100辆 +3km -3km
减产17t
卖出20辆 向西行驶
2km
记作
-200元 -0.7米 -17t -20辆
-2km +2km
小试牛刀
(1)设向南为正,向南走30米,记作 +30米 , 向北走20米,记作 -20米 ,原地不动记 作 0 ,-80米表示 向北走80米 。
保险 RMB 钞 -2593 124
ATMD RMB 钞 -100
24
现存 RMB 钞 +4300 4324
保险 RMB 钞 -4300 24
问题背景2 “+”号读作“正”, +2717 如:“+2717”读作“正2717”
-2593
“-”号读作“负”, 如:“-2593”读作“负2593”
概念引入
像 +2717 、+4300、 +3、+200、+1.5、+0.03%
这样的数是正数,它们都是比0大的数;
江苏省无锡市滨湖中学七年级数学上册《21 正数与负数》教案
学习目标:1.通过生活实例认识正数与负数.2.会用正数与负数表示相反意义的量。
3.知道整数、分数的分类。
教学重难点:正、负数的意义.预习检测:1.在日常生活中,常会遇到这样一些量:①零上5℃和零下3℃;②盈利300元和亏损250元;③增长20﹪和降低5﹪;问:(1)这些例子中的每一对量,有什么共同特点?(2)怎样表示具有这种特点的量?2.(1)如果节约用水30吨记为+30吨,那么浪费20吨记为吨.(2)如果4年后记作+4,那么8年前记作.(3)如果运出货物7吨记作-7吨,那么+100吨表示.(4)小亮体重增加了3kg,记作+3,小阳体重减少了2 kg,则小阳体重增长了。
生生互动:1.若-600元表示支出600元,则+200元表示_______________________.若想东走4m记做+4m,则向西走6m记做_______________________.盈利8%记作________________,亏损5%记作__________________.2.不用负数,说明下面一些话的意义(1)美国商品进出口总额的增长率是-6.4%。
(2)运出大米-3吨。
(3)中国森林面积平均每年增加-866平方千米。
(4)向南走-30米。
3.某地气象站测得某天的四个时刻气温分别为:早晨6点零下3℃,中午12点零上1℃,下午4点0℃,晚上12点零下9℃。
(1)用正数或负数表示这四个不同时刻的温度;(2)早晨6点比晚上12点高多少度;(3)这一天最高气温与最低气温相差多少度。
师生互动:1.学校对初一男生进行立定跳远的测试,以能跳170cm及以上为达标,超过170cm的厘米数用正数表示,不足170cm的厘米数用负数表示,第以组10名男生成绩如下:问第一组有百分之几的学生达标。
2.把下列各数添在相应的集合内7,-5,-0.3,18,0,12-,8.6,314-,151,-32正数集合:{,…}负数集合:{,…}分数集合:{ ,…}3.检查5个篮球的质量,把超过标准质量的克数记为正数,不足标准质量的克数记为负数,检查的结果如下表:你认为几号球最符合标准?为什么? 质量最大的比质量最小的重几克?课堂检测:1.如果向东走5 m ,记作+5 m ,那么-15 m 表示为 ;2.学校举行排球比赛,如果胜1局记作+1局,那么-2表示 ;3.如果把顺时针旋转60度记作+60度,那么-15度表示 ;4.如果高于海平面100 m 记作+100 m ,那么低于海平面159 m 记作 ;5.下列四组数中,其中都不是负数的是( )A .03.1,0,72B .6745,1.3,56+-C .0,5.7,12--D .%23.0,2,1- 6.下列结论正确的是( )A .0既是正数,又是负数B .0是正数C .0是负数D .0既不是正数,也不是负数7.把下列各数填入表示它所在的数集的圈里42216 , 3.14159 , 0 , 2005 , , 0.2432 , 85% , , 77π---提补作业: 1.在-0.1,25,3.14,-8,0,100,13-中,负数有 个。
人教版数学七年级上册1.1《正数和负数》教学设计
人教版数学七年级上册1.1《正数和负数》教学设计一. 教材分析《正数和负数》是人教版数学七年级上册的第一节内容,为学生以后学习更高级的数学知识打下基础。
这一节主要介绍正数和负数的概念,以及它们的性质。
教材通过简单的例子引入正数和负数,使学生能够直观地理解和掌握。
二. 学情分析七年级的学生刚从小学升入初中,对数学的知识体系还不够了解。
他们对正数和负数可能有一定的了解,但对其性质和运算可能还不够熟悉。
因此,在教学过程中,需要注重引导学生从实际情境中发现问题,通过自主探究和合作交流来理解和掌握正数和负数的概念和性质。
三. 教学目标1.理解正数和负数的概念,掌握它们的性质。
2.能够运用正数和负数解决实际问题。
3.培养学生的抽象思维能力和团队合作能力。
四. 教学重难点1.重难点:正数和负数的概念及其性质。
2.难点:理解正数和负数的运算规律。
五. 教学方法1.情境教学法:通过实际情境引导学生理解和掌握正数和负数的概念和性质。
2.自主探究法:鼓励学生自主探究,发现问题,解决问题。
3.合作交流法:引导学生与他人合作,共同解决问题,提高团队协作能力。
六. 教学准备1.教学PPT:制作精美的PPT,展示正数和负数的例子和性质。
2.教学素材:准备一些实际问题,用于引导学生运用正数和负数解决。
3.学生活动材料:准备一些练习题,用于学生在课堂上进行自主学习和巩固。
七. 教学过程1.导入(5分钟)利用PPT展示一些实际情境,如购物、温度等,引导学生发现正数和负数的存在。
让学生分享他们对正数和负数的理解,为新课的展开做好铺垫。
2.呈现(10分钟)通过PPT呈现正数和负数的概念和性质,用简洁的语言进行讲解。
同时,给出一些例子,让学生跟随老师一起分析和总结正数和负数的性质。
3.操练(10分钟)让学生分成小组,共同解决一些与正数和负数相关的问题。
教师巡回指导,解答学生遇到的问题。
4.巩固(5分钟)挑选几名学生上黑板进行正数和负数的运算练习,让其他学生进行评价和补充。
2.1正数与负数
(苏科版)
2.1正数与负数
我们在小学曾学过了哪些数? 我们知道,为了表示物体的个数或事物 的顺序,产生了数1,2,3,…… ;为了表 示“没有”,引入了数0;有时分配、测量 的结果不是整数,需要用分数(小数)表 示.总之,数是为了满足生产和生活的需 要而产生发展起来的.
8844.43
2005
正整数集合
负分数集合
思考 假设有一个池塘,里面有无穷多的水。 现有2个空水壶,容积分别为5升和6 升。问题是如何只用这2个水壶从池 塘里取得3升的水。
课堂实际成绩 为93分,被老师简记为+3分,如果同组 另外4名同学的成绩简记为+7分,-3分, 0分,-1分,则这4名同学的实际成绩应 分别是多少?
整数:
下列各数: 1 22 -4,9,-3.14,0,5.23, ,7 228 属于正数的有: 9 , 5.23 ,
7
(2)向北行走5 km;
(3)–4 t表示运出粮食4 t.
(1)书P13 练一练2. (2)如果水位升高3m时水位变化记作 +3m,那么水位下降2m时的水位变化记 作 -2m 。水位不升不降时,水位变化记 作 0m 。 (3)书P14 练一练3.
思考:
某食品包装袋上标有“净含量225±3克,” 这里的“±3”表示什么涵义?
3、高于海平面8844.43米和低于海平面154米. 规定高于海平面为正,则低于海平面为负 高于海平面8844.43米记作8844.43米,低于海平面154米 记作–154米
例2 (1)向北走8 km记作+8 km,那么向南行走5 km记 作什么? 原地不动记作什么呢? (2)向南走8km记作+8 km,那么–5 km表示什么? (3)如果运进粮食3 t记作+3 t,那么–4 t表示什么? 解: (1)向南行走5 km,记作–5 km;
苏科版七年级上册 第2章 21 正数和负数 提高题训练无答案.doc
A.盈利3万元与支出3万元 C.向东走100m 与向西走正数与负数专题训练(一)一、选择题1.如图,贤贤同学用手工纸制作一个台灯灯罩,做好后发现上口太 小了,于是他把纸灯罩对齐压扁,剪去上面一截后,正好合适, 以下裁剪示意图中,正确的是()下列各对量中,不具有相反意义的是( B.胜2局与负2局D.转盘逆时针转6圈与顺时针转6圈3.下列说法中:①若干个有理数相乘,如果负因数的个数是奇数,则乘积一定是负 数;②若。
、。
互为相反数,贝U? = -1;③当。
球。
时,|Q |总是大于0;④如果。
=b, 那么: = 其中正确的说法个数是()二、 填空题4, 我们知道,海拔高度每上升100米,温度下降O.6°CJE 城市区海拔大约100米,某时刻肥城市区地面温度为16弋,泰山的海拔大约为1530米,那么此时泰山顶部的 气温大约为 °C.5, 一跳蚤在一直线上从。
点开始,第1次向右跳1个单位,紧接着第2次向左跳2个单位,第3次向右跳3个单位,第4次向左跳4个单位,...,依此规律跳下去,当 它跳第100次落下时,落点处离。
点的距离是 个单位.6, 以下说法:①正数和负数互为相反数②两个数的和一定大于其中的一个加数③汽 车从汽车站出发向东行驶150米,然后向西行驶60米,又向东行驶200米,则汽 车在车站的东边290米处④单项式-乎的系数是-2,次数是5⑤两个负数中倒数 大的反而小.其中正确的是.(填序号)三、 解答题A.7,某市质量技术监督部门从某食品厂生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标(1)若标准质量为450克,则抽样检测的20袋食品的总质量为多少克?(2)若该种食品的合格标准为450 ± 5g,求该食品的抽样检测的合格率8.一辆出租车从A地出发,在一条东西走向的街道上行驶,若记向东为正,每次行驶的路程记录如下(x>9,单位:km).(1)求经过四次行驶后,这辆出租车所在的位置;(2)若% = 12,这辆出租车一共行驶了多少路程?9.又到了蜜桔收获季节,张大爷想估算一下他家的桔树平均每棵能收获多少斤桔子, 他随机采摘了 10棵桔树,称的重量记录如下(以200斤为标准,超过标准重量用正数表示,低于标准重量用负数表示,单位:斤)+ 12, —4, —2, +6, +10, —5, +9, +3, —2, +13(1)请你用恰当的方法帮助张大爷计算出平均每棵桔树收获桔子多少斤?(2)由于今年桔子品相好,预计今年桔子能卖到每斤1.5元,张大爷家有桔树1000 棵,按(1)中的平均值估计张大爷家今年桔子能卖到多少钱?(结果用科学计数法表示)10.小明的妈妈在某玩具厂工作,厂里规定每个工人每周要生产某种玩具140个,平均每天生产20个,但由于种种原因,实际每天生产量与计划量相比有出入.下表是小明妈妈某周的生产量情况(超产记为正、减产记为负):星期一二三四五六0增减产值+ 10-12.4+8-1+60(1)根据记录的数据可知小明妈妈星期三生产玩具个;(2)根据记录的数据可知小明妈妈本周实际生产玩具个;(3)该厂实行“每日计件工资制”(即每天计算一次工资)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学课题
2.1 正数与负数
课型 新授
本课题教时数:1 本教时为第 1 教时 备课日期 9月 2 日 教学目标:
1.通过生活实例感受生活中的正数和负数; 2.会用正数、负数表示意义相反的量; 3.了解整数和分数分类.
教学重点、难点:1.理解正数与负数的意义. 2.用正数、负数表示意义相反的量. 理解负数的意义. 教学方法与手段:
教学过程: 教师活动
学生活动
设计意图
生活中的正数与负数 议一议:
在小学里,我们学过正数、负数、零.你知道右边图片中各数的意义吗?
分别说出8844.43、-154、-117.3、-0.102%的意义. 从生活中的例子出发,让学生感受到生活中存在正数和负
数.它们都可以表示生活中的
各种意义的量. 正数与负数的意义
像8848.43、100、357、78这样的数叫做正数;像-154、-38.87、-117.3、 -0.102%这样的数叫做负数.
0既不是正数也不是负数.
“+”读作“正”,如“+2
3”读作“正
三分之二”,正号通常省略不写;
“-”读作“负”,如“-117.3”读作“负一百一十七点三”.
例1 指出下列各数中的正数、负数:
+7,-9,13,-4.5,998,9
-10,0.
8848.43、100、357、78是正数. -154、-38.87、-117.3、-0.102%是负数. +7,
1
3
,998是正数, -9,-4.5,9
-10是负数. 理解正数、
负数的意义,0既不是正数也不是负数.0不再表示没有,是正数与负数的分界.
会根据正数、负数的意义找到正数与负数.
用正数、负数表示相反意义的量 0C 以上的温度用正数表示,0C 以下
的温度用负数表示.日常生活中,许多具有相反意义的量都可以用正数、负数来表示. 解:(1)向南走5km 记作5 km . (2)-4t 表示运出粮食4t . 举例说明用正数、负数表示生活通过生活中的
实例,让学生感受到用正数、负数可以。